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Ákos Horváth
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1 Introduction

Let us consider the initial value problem (IVP)

u′(t) = F (t, u(t)), u(t0) = u0. (1)

An IVP (1) could arise in the sense of method of line approach, i.e. when

we spatially discretize partial differential equations (PDEs) and we obtain

a large system of ordinary differential equations (ODEs) in time. In this

thesis, we will be focusing on a special time discretization family which was

developed for the time evolution of spatially discretized hyperbolic PDEs and

mainly used for hyperbolic conservation laws.

Since in this class the exact solutions may develop discontinuities (e.g.

shockwaves) even for smooth initial data, therefore solving these problems

numerically are very challenging. Because of this reason, a huge effort has

been put into the development of high-order spatial discretizations that can

handle discontinuities like essentially non-oscillatory (ENO), weighted ENO

finite difference and finite volume schemes [1], [2], [3], [4].

As an important example let us consider the one-dimensional hyperbolic

law in the form

ut(t, x) + fx(u(t, x)) = 0, (2)

where the subscripts refer to the partial derivatives. Applying an appropriate

spatial discretization scheme (ENO, WENO, finite volume schemes) to (2),

we obtain a system in the form

ut = F (u). (3)
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Typically

F (u) = −fx(u) +O(∆xk),

where ∆x and k refer to mesh size and order of accuracy in space, respec-

tively. Now we would like to discretize (3) in time such that the preserved

stability properties of the original PDE (2) will be maintained during the

time discretization process.

Using the first order forward Euler method in time the fully discretized

scheme has the form

un+1 = un + ∆tF (un), (4)

where ∆t denotes the mesh size in time. The problem with the full scheme

(4) is that even if we are using high-oder spatial discretization methods the

global order is one due to forward Euler method.

Therefore we would like to design high-order time discretization methods

such that we are maintaining the required stability properties. In the sequel

we assume that the semi-discretization (3) and a convex functional || · || (or

norm, semi-norm) are given, and that there exists a ∆tFE forward Euler time

step such that the so-called forward Euler condition

||u+ ∆tF (u)|| ≤ ||u|| for 0 ≤ ∆t ≤ ∆tFE (5)

holds for all u. The method is called strong stability preserving (SSP) if the

estimate

||un+1|| ≤ ||un||

holds for the numerical solution of (3), whenever (5) holds and ∆t ≤ C∆tFE.

The constant C is called the SSP coefficient.
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In Chapter 2. we briefly summarize the connection between the Butcher

and the so-called Shu-Osher representations following the lines of [5]. In

Chapter 3. we list the optimal SSP Runge–Kutta (RK) methods. In Chapter

4. we introduce certain criteria designing embedded pairs for optimal SSP

RK methods. For the implicit case we give our new results in details based

on paper [6].
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2 Representing Runge–Kutta methods

In 1988 Shu and Osher introduced a special class of RK methods to main-

tain total variation diminishing (TVD) and total variation bounded (TVB)

properties of semi-discrete problem (3) coupled with high-order RK methods

[1]. Their key observation was that certain RK methods can be rewritten

as convex combinations of the forward Euler method and these methods can

maintain the desired stability properties.

The classical representation of the s-stage explicit RK (ERK) methods is

u(i) = un + ∆t
i−1∑
j=1

aijF (u(j)) (1 ≤ i ≤ s)

un+1 = un + ∆t
s∑
j=1

bjF (u(j)),

where aij, bj are real parameters. They are represented in the Bucher tableau

[7]. As we mentioned Shu and Osher rewrote the stages and the step as convex

combinations of forward Euler method. ERK methods can be written in the

form

u(0) = un

u(i) =
i−1∑
j=0

(
αiju

(j) + ∆tβijF (u(j))
)

(6)

un+1 = u(s).

Consistency requires the condition
i−1∑
j=0

αij = 1. Furthermore, if all the coef-

ficients αij and βij are non-negative, then it can be manipulated into convex
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combinations of forward Euler steps with a modified time step. This repre-

sentation is called Shu-Osher representation.

The following theorem gives us a time step restriction maintaining the

strong stability property for RK methods.

Theorem 1 ([5], Thm. 2.1.). Let us apply the forward Euler method to (3).

If (5) holds and αij, βij ≥ 0, then the solution obtained by (6) satisfies the

strong stability bound

||un+1 ≤ ||un||

under the time step restriction

∆t ≤ C(α, β)∆tFE,

where C(α, β) = min
i,j

αij
βij

and the ratio is understood as infinite if βij = 0.

Although Theorem 1 is really useful, it does not help us calculating the

largest SSP coefficient C(α, β), since the representation is not unique. To

demonstrate this we will consider a two-stage second order ERK method in

three ways.

Example ([5], Example 2.2.). Let us consider the method

u(0) = un

u(1) = u(0) + ∆tF (u(0))

un+1 = u(0) +
1

2
∆tF (u(0)) +

1

2
∆tF (u(1)). (7)

Based on Theorem 1. the corresponding SSP coefficient is 0. However, one

can rewrite (7) as

un+1 =
3

4
u(0) +

1

4
∆tF (u(0)) +

1

4
u(1) +

1

2
∆tF (u(1)),
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which yields C(α, β) = 1/2. As a third option we have

un+1 =
1

2
u(0) +

1

2
u(1) +

1

2
∆tF (u(1)),

which yields C(α, β) = 1.

As we have seen in Example 2., the three representation of the same

method gives us different SSP coefficients. Obviously we would like to get

the largest SSP coefficient in order to allow the largest step size. Until so far

the problem is that we have infinitely many Shu-Osher representations. We

will make a step further towards the direction of unique representation.

2.1 The modified Shu-Osher form

The generalization of Shu-Osher form was independently introduced by Higu-

eras [8], and Ferracina and Spijker [9]. It has the form

u(i) = viu
n +

s∑
j=1

(
αiju

(j) + ∆tβijF (u(j))
)

(1 ≤ i ≤ s+ 1)

un+1 = u(s+1)

which can represent both explicit and implicit RK methods. An immediate

advantage of this modified Shu-Osher form is the indexing since it agrees

with the stage numbering in the Butcher form. Rearranging it we have

u(i) = viu
n +

s∑
j=1

αij

(
u(j) + ∆t

βij
αij

F (u(j))
)

(1 ≤ i ≤ s+ 1).

Since consistency requires that

vi +
s∑
j=1

αij = 1 (1 ≤ i ≤ s+ 1),
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then if αij, βij, vj ≥ 0, then each stage u(i) is a convex combination of forward

Euler steps.

To generalize Theorem 1. first we have to exclude the so-called non-

zero-well-defined methods. An RK method is zero-well-defined if the stage

equations have a unique solution when the method is applied to the scalar

problem (3).

Theorem 2 ([5], Thm 3.1.). If the forward Euler method applied to (3) is

strongly stable under the time step restriction ∆t ≤ ∆tFE, then the solution

obtained by a zero-well-defined Runge–Kutta method satisfies the strong

stability bound ‖un+1‖ ≤ ‖un‖ under the time step restriction

0 ≤ ∆t ≤ C(α, β)∆tFE,

where

C(α, β) =

{
min
i,j

αij
βij

, if αij, βij, vj ≥ 0

0, otherwise

The ratio is understood as infinite if βij = 0.

We will introduce a compact notation which helps to represent better RK

methods. Let us define the matrices ααα and βββ as

(ααα)ij =

{
αij 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s

0 j = s+ 1

(βββ)ij =

{
βij 1 ≤ i ≤ s+ 1, 1 ≤ j ≤ s

0 j = s+ 1.

We will use the notation uuun and uuu(i) since the solution un and the stages u(i)
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are usually vectors. We define the vectors

yyyi = uuu(i)

fff i = F (uuu(i))

and the matrices by using Kronecker-products

v̄̄v̄v = III ⊗ vvv

ᾱ̄ᾱα = III ⊗ααα

β̄̄β̄β = III ⊗ βββ.

Now the RK method can be written in a compact form

yyy = v̄̄v̄vuuun + ᾱ̄ᾱαyyy + ∆tβ̄̄β̄βfff (8)

uuun+1 = yyys+1.

Here, we would like to emphasize that neither the Shu-Osher nor its modified

version is unique. In order to get the maximum SSP coefficient over all

representation we need a way of unique representation of a particular method.

2.2 Unique respresentation

In this subsection we make the final step having unique representations.

First, solving (8) for yyy yields

yyy = v̄̄v̄vuuun + ᾱ̄ᾱαyyy + ∆tβ̄̄β̄βfff

(III − ᾱ̄ᾱα)yyy = v̄̄v̄vuuun + ∆tβ̄̄β̄βfff

and assuming that the inverse (III − ααα)−1 exist (it exists when a method

is zero-well-defined), then

yyy = (III − ᾱ̄ᾱα)−1v̄̄v̄vuuun + ∆t(III − ᾱ̄ᾱα)−1β̄̄β̄βfff.
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Rearranging the consistency condition we have

yyy = eeeuuun + ∆t(III − ᾱ̄ᾱα)−1β̄̄β̄βfff.

From the relation yyy = v̄̄v̄vuuun + ᾱ̄ᾱαyyy+ ∆tβ̄̄β̄βfff and taking ααα = 0, consistency yields

vvv = eee. For the moment denoting the unknown coefficients βij by β̄0̄β0̄β0, the

method reads as

yyy = eeeuuun + ∆tβ̄̄β̄β0fff

uuun+1 = yyys+1.

So we can see the relation with the Butcher form since

βββ0 = (III −ααα)−1βββ =

 AAA 0

bbbT 0

 .

The matrix (III−ααα) singular for trivial class of methods ([5], Lemma 3.1.).

The remaining problem is that even using the Butcher form it is possible to

represent a method in multiple ways. This problem can be handled by using

DJ-reducible RK methods (see for further details [5], Section 3.2.2.).

2.3 Canonical Shu-Osher form

Now we have a unique Butcher form for irreducible methods but it does not

reveal the SSP coefficient. In this section we will have a form that reveals

the SSP coefficient of the method. Finding the SSP coefficient is easy when

we have a particular modified Shu-Osher form. Namely, where r = αij/βij is

the same for all i, j such that βij 6= 0. The method coefficients are αααr and

βββr such that αααr = rβββr. Since

βββ0 = (III −ααα)−1βββ,
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therefore for βββ = βββr we have

βββ0 = (III − rβββr)−1βββr.

If the method is zero-well-defined then III − rβββr = III −αααr is invertible. Then

βββr = (III − rβββr)βββ0 = βββ0 − rβββrβββ0

βββr + rβββrβββ0 = βββ0

βββr(III + rβββ0) = βββ0.

Then if the inverse of the matrix III + rβββ0 exists, then we have

βββr = βββ0(III + rβββ0)−1

αααr = rβββr = rβββ0(III + rβββ0)−1

vvvr = (III −αααr)eee =
(
III − rβββ0(III + rβββ0)−1

)
eee (9)

=
(
(III + rβββ0)(III + rβββ0)−1 − rβββ0(III + rβββ0)−1

)
eee

=
(
(III + rβββ0 − rβββ0)(III + rβββ0)−1

)
eee = (III + rβββ0)−1eee.

We will refer the form given by (9) as the canonical Shu-Osher form

yyy = v̄̄v̄vruuu
n−1 + ᾱ̄ᾱαr

(
yyy +

∆t

r
fff
)
. (10)
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3 Optimal SSP Runge–Kutta methods

The following theorem states that RK methods with SSP coefficient C can

always be rewritten in the form (10).

Theorem 3 ([5], Thm. 3.2.). Consider a Runge–Kutta method with Butcher

coefficient array βββ0. The SSP coefficient of the method is

C = max
{
r ≥ 0 | (III + rβββ0)−1exists, αααr ≥ 0, vvvr ≥ 0

}
.

During the proof of Theorem 3. it turns out that for a zero-well-defined

method

- the matrix III + rβββ0 is invertible for all 0 ≤ r ≤ C(α, β),

- for all 0 ≤ r ≤ C(α, β) the condition

(III + rβββ0)−1exists, αααr ≥ 0, vvvr ≥ 0

holds.

Taking into account the above statements we are able to compute the SSP

coefficients C by using the bisection method. Another option calculating the

SSP coefficients C is to form an optimization problem in terms of Butcher

array. For a given order and number of stages the corresponding optimization

problem ([5], Section 3.4.) is

maximize r subject to

βββ0(III + rβββ0)−1 ≥ 0

||rβββ0(III + rβββ0)−1||∞ ≤ 1

τk(βββ0) = 0,
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where the last row represents the set of order conditions for order k ≤ p.

Now we have algorithmic tools calculating the optimal SSP coefficients.

3.1 The optimal explicit and implicit methods

An extensive effort have been made to find optimal explicit and implicit SSP

RK methods. Without giving the details in this section we would like to list

those optimal methods which will be used during the thesis. Other meth-

ods and theoretical observations will be mentioned and the corresponding

references will be given.

In the sequel we will denote the optimal explicit SSP RK and implicit

SSP RK methods with stage number s and order p by SSPERK(s, p) and

SSPIRK(s, p), respectively. We introduce the effective SSP coefficient

Ceff =
C
s

in order to compare the listed methods.

Optimal first order explicit SSP Runge–Kutta methods consist simply of

repeated forward Euler steps. These methods all have C = 1 and so Ceff = 1.

These methods are equivalent to simply using the forward Euler method.
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SSPERK(s, 2), [10]

The coefficients are

βi,i−1 =

{
1
s−1

1 ≤ i ≤ s− 1

1
s

i = s

αi,i−1 =

{
1 1 ≤ i ≤ s− 1

s−1
s

i = s

αs,0 = 1
s
.

The SSP coefficient in this family is s− 1, so Ceff = s−1
s

.

The optimal three-stage third order explicit SSP Runge–Kutta method

was reported in [1]. It has C = 1 and Ceff = 1
3
. The optimal four-stage third

order explicit SSP Runge–Kutta method was reported in [11]. It has C = 2

and Ceff = 1
2
.

SSPERK(n2, 3), [12]

In this family n > 2 and s = n2. The corresponding coefficients are

αi,i−1 =

{
n−1
2n−1

i = n(n+1)
2

1 otherwise

αn(n+1)
2

,
(n−1)(n−2)

2

= n
2n−1

βi,i−1 =
αi,i−1

n2−n .

In this family the SSP coefficient C is n2 − n = s −
√
s, therefore we have

Ceff = 1− 1
n

= 1− 1√
s
.

In [12] a ten-stage fourth order method is given. It has been proven

analytically that it is optimal for linear problems with Ceff = 6
10

. It is also

14



known that any irreducible explicit RK method with C > 0 has order p ≤ 4

([5], Observation 5.4).

Now we list the optimal implicit methods. The backward Euler method

is unconditionally SSP.

SSPIRK(s, 2), [13]

The coefficients are

αi+1,i =1

βi,i = βi+1,i =
1

2s
.

In this family C = 2s, so Ceff = 2.

SSPIRK(s, 3), [13]

The coefficients are

αi+1,i =

{
(s+1)(s−1+

√
s2−1)

s(s+1+
√
s2−1)

i = s

1 otherwise

βi,i = 1
2

(
1−

√
s−1
s+1

)

βi+1,i =

{
s+1

s(s+1+
√
s2−1)

i = s

1
2

(√
s+1
s−1
− 1
)

otherwise.

These methods have C = s− 1 +
√
s2 − 1 and Ceff = 1− 1

s
+
√
s2−1
s

.

The order barrier for the implicit case is six, so there is no implicit SSP

RK method with C > 0 and order p ≥ 7. Optimal fourth through sixth order
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methods have been derived for certain stage number. The corresponding

coefficients are listed in Section 7.4. in [5].

Its worth emphasizing that for explicit methods we have Ceff ≤ 1. So we

cannot guarantee a larger step size than the step size of forward Euler in the

effective sense but at least we increase the order. In the implicit case we can

achieve a larger effective step size.

3.2 Converting the Shu-Osher and Butcher forms

SSP analysis relies mostly on Shu-Osher forms, but computing the SSP coeffi-

cient is more convenient using the Butcher form. Here we give two algorithms

to convert a Runge-Kutta method from one form to the other.

Let us consider the Shu-Osher coefficient matrices α, β ∈ R(s+1)×s. First

we create matrices α̂, β̂ ∈ Rs×s by simply removing the last row from α and

β. The last rows are denoted by αlast, βlast. Then

X =I − α̂

A =X−1β̂

bT =βlast + αlastA

gives us the Butcher form.

In order to convert the Butcher form to the optimal Shu-Osher form, first we

16



need to compute the SSP coefficient C by using the bisection method. Then

K =

(
A 0

bT 0

)

β =K(I + CK)−1

α =Cβ

v =(I − α)e.

Since in the sequel we will use the more convenient Butcher form, therefore

we rephrase Theorem 3.

Theorem 4. Let us consider the matrix

K =

A 0

bT 0


and the SSP conditions

K(I + rK)−1 ≥ 0 (11a)

rK(I + rK)−1e ≤ e. (11b)

Then, the SSP coefficient is

C = sup
{
r : (I + rK)−1exists and conditions (11a)-(11b) hold

}
.
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4 Embedded pairs

Embedded pairs provide an estimate of local truncation error [14] and they

are used for automatic error control. For further details in case of Runge–

Kutta methods see [15] and [16].

In this section we would like to design embedded pairs for the previously

listed optimal explicit and implicit SSP Runge–Kutta methods. In the ex-

plicit case we briefly summarize the results of paper [17]. In the implicit case

we give our own results.

The extended Butcher tableau is

c A

bT

b̂T

where the pair bT corresponds to the higher order RK method. The embedded

pair and the full method are denoted by b̂T and RK(A, bT , b̂T ), respectively.

The order conditions up to order three are

bT e =1 (p = 1)

bT c =
1

2
(p = 2)

bT c2 =
1

2
(p = 3)

bT (c2/2− Ac) =0. (p = 3)

Following [17] the embedded pair should fulfill the below listed properties:

The embedded method is order of p− 1, i.e., it has one order less than

the SSPRK method.

a)
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The embedded method is non-defective, i.e., it violates all of the p-th

order conditions.

b)

Whenever possible, the embedded method has rational coefficients and

a simple structure.

c)

The embedded method has maximum SSP coefficient Ĉ, where Ĉ is the

SSP coefficient of the optimal SSPRK method of order p− 1. If this is

not the case, then we are looking for embedded SSPRK methods with

smaller SSP coefficient or simply embedded RK methods.

d)

Rephrasing the SSP conditions (11a)-(11b) and taking into account the listed

required properties a)-d) our task to find b̂T such that

K(I + CK)−1 ≥ 0,

||CK(I + CK)−1||∞ ≤ 1,

appropriate order conditions and a), b) properties are fulfilled,

c), d) properties are desired.

4.1 Embedded pairs for optimal SSPERK methods

In this section we briefly summarize the results of paper [17].

SSPERK(s, 2)

First, we consider optimal SSPERK(s, 2) methods. The corresponding Butcher

tableau is
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0

1
s−1

1
s−1

2
s−1

1
s−1

1
s−1

...
...

...
. . .

1 1
s−1

1
s−1

. . . 1
s−1

1
s

1
s

. . . 1
s

1
s

In [17] the authors recommended the embedded pair

b̂T =

[
s+ 1

s2
,
1

s
, . . . ,

1

s
,
s− 1

s2

]
.

The corresponding absolute stability region is given in Figure 1.

Figure 1: The absolute stability regions of SSPERK(s, 2) methods (red)

and the black contours of the embedded SSPERK(s, 1) methods from left

to right and top to bottom for s = 2, 4, 6, 8.
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SSPERK(n2, 3)

The Butcher tableau of optimal SSPERK(n2, 3) methods is

A =

0
1

n(n−1)

1
n(n−1)

. . .

1
n(n−1)

. . .

...
. . .

...
. . .

1
n(n−1)

. . . 1
n(n−1)

. . . . . . 1
n(n−1)

1
n(n−1)

1
n(n−1)

1
n(2n−1)

. . . 1
n(2n−1)

1
n(n−1)

...
...

...
...

...
. . .

︸ ︷︷ ︸
(n−2)(n−1)

2

1
n(n−1)

. . . 1
n(n−1)

1
n(2n−1)

. . . 1
n(2n−1) ︸ ︷︷ ︸

n(n−1)
2

− 1

1
n(n−1)

. . . 1
n(n−1)

0





∈ Rn2×n2

,

(12)

where the submatrix in the rectangle is a
(
n(n−1)

2

)
× (2n− 1) dimensional

matrix and

bT =

 1

n(n− 1)
, . . . ,

1

n(n− 1)︸ ︷︷ ︸
(n−1)(n−2)

2

,
1

n(2n− 1)
, . . . ,

1

n(2n− 1)︸ ︷︷ ︸
2n−1

,
1

n(n− 1)
, . . . ,

1

n(n− 1)︸ ︷︷ ︸
n(n−1)

2

 ∈ Rn2

.

(13)

In [17] they recommended the embedded pair

b̂T =

[
1

s
, . . . ,

1

s

]
.
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Their numerical searches failed to find any embedded pair with C = n2 − n,

but computations showed that the method has C > 0 and nice absolute

stability regions. in Figure 2. shows the corresponding absolute stability

regions.

Figure 2: The absolute stability regions of SSPERK(n2, 3) methods (red)

and the black contours of the embedded methods from left to right and top

to bottom for n2 = 4, 9, 16, 25.

4.2 Embedded pairs for optimal SSPIRK methods

In this section we presents our own results regarding the embedded pairs for

optimal SSPIRK(s, 2) and SSPIRK(s, 3) methods.
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SSPIRK(s,2)

The Butcher tableau of optimal SSPIRK(s, 2) methods is

1
2s

1
2s

3
s

1
s

1
2s

5
s

1
s

1
s

1
2s

...
...

...
. . . . . .

2s−1
2s

1
s

1
s

. . . 1
s

1
2s

1
s

1
s

. . . 1
s

1
s

Numerical searches failed to find any embedded pair with C = 2s.

Theorem 5. There is no embedded pair for SSPIRK(s,2) with C = 2s.

Proof. For the sake of simplicity the proof is given for the optimal SSIRK(2, 2)

method but it can be generalized. The corresponding Butcher tableau is

1
4

1
4

0

3
4

1
2

1
4

1
2

1
2

Let us introduce the matrix K̂ as

K̂ =


1
4

0 0

1
2

1
4

0

b̂1 b̂2 0

 .
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In this case the SSP conditions are

M = K̂(I + rK̂)−1 =


1

4+r
0 0

8
(4+r)2

1
4+r

0

4(−2rb̂2+(4+r)b̂1)
(4+r)2

4b̂2
4+r

0


and

d = rMe =


r

4+r

r(12+r)
(4+r)2

4r((4−r)b̂2+(4+r)b̂1)
(4+r)2

 .
The SSP conditions require that M ≥ 0 and d ≤ 1. Since r = C = 4 we have

the relation

b̂1 ≥ b̂2,

b̂1 ≤
1

2
.

Taking into account the first order condition

b̂1 + b̂2 = 1

we can conclude that

b̂1 = b̂2 =
1

2
.

However, this implies that this method is second order since b̂T c = 1
2
. For

the general stage number s we have

b̂i ≥ b̂i + 1, (1 ≤ i ≤ s− 1),

b̂1 ≤
1

s
,

s∑
i=1

b̂i = 1,
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hence

b̂i =
1

s
, (i = 1, . . . , s).

This means that method is second order.

Taking into account Theorem 5. now we are looking for embedded pairs

with smaller C. Namely we choose the case C = s. Our searches suggested

three pairs which satisfy the properties a), b), and d), the appropriate order

conditions and the SSP conditions. These pairs are

b̂T1 =

[
2

s+ 1
, . . . ,

2

s+ 1
,

3

s+ 1

]T
,

b̂T2 =

[
1

s
, . . . ,

1

s
,

5

4s
,

3

4s

]T
and

b̂T3 =

[
1

s
, . . . ,

1

s
,

13

12s
,

10

12s
,

10

12s
,

15

12s

]T
.

Similarly to the explicit cases we demonstrate the effectiveness of our embed-

ded pairs by plotting their absolute stability regions in Figure 3. by using

NodePy Python package [18].
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SSPIRK(8, 2) Embedded pair b̂T1

Embedded pair b̂T2 Embedded pair b̂T3

Figure 3: The absolute stability regions of SSPIRK(8, 2) method and its

recommended embedded pairs from left to right and top to bottom.

Based on Figure 3. it is obvious that we choose embedded pair b̂T2 . As

we increase the number of stages we can see similar results.
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SSPIRK(s,3)

The Butcher tableau of optimal SSPIRK(s, 3) methods is

β1 β1

2β1 + β2 β1 + β2 β1

3β1 + 2β2 β1 + β2 β1 + β2 β1

...
...

...
. . . . . .

sβ1 + (s− 1)β2 β1 + β2 β1 + β2 . . . β1 + β2 β1

1
s

1
s

. . . 1
s

1
s

where

β1 =
1

2

(
1−

√
s− 1

s+ 1

)
and β2 =

1

2

(√
s+ 1

s− 1
− 1

)
.

Our numerical searches failed to find any embedded pair with SSP coefficient

C = s− 1 +
√
s2 − 1.

Theorem 6. There is no embedded pair for SSPIRK(s, 3) with SSP coeffi-

cient C = s− 1 +
√
s2 − 1.

Proof. For the sake of simplicity we give the proof in details for the two-stage

case. The corresponding Butcher tableau is

β1 β1 0

2β1 + β2 β1 + β2 β1

1
s

1
s
,

where

β1 =
1

2

(
1−

√
s− 1

s+ 1

)
and β2 =

1

2

(√
s+ 1

s− 1
− 1

)
.
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Let us introduce the matrix K̂ as

K̂ =


β1 0 0

β1 + β2 β1 0

b̂1 b̂2 0

 .

The SSP conditions are

M = K̂(I + rK̂)−1 =


1

3+
√

3+r
0 0

12
√

3
(−6+(

√
3−3)r)2

1
3+
√

3+r
0

6(b̂22
√

3r+b̂1(−6+(−3+
√

3)r))

(−6+(
√

3−3)r)2
6b̂2

6+3r−
√

3r
0


and

d = rMe =


1 + 6

−6+(−3+
√

3)r

6r(3+
√

3−(−2+
√

3)r)

(−6+(−3+
√

3)r)2

6r(3b̂2(2+r−
√

3)+b̂1(6−(−3+
√

3)r)

(−6+(−3+
√

3)r)2

 .
The SSP conditions require that M ≥ 0 and d ≤ 1. Since r = C = 1 +

√
3

we have the relations

b̂1 ≥ b̂2 and b̂1 ≤
1√
3
.

The order conditions up to order two are

b̂1 + b̂2 = 1 and b̂T c =
1

2
.

The abscissa of the method is

c =
[

1
2

(
1− 1√

3

)
, 1− 1√

3
+ 1

2
(−1 +

√
3)
]
.

Using the substitution

b̂1 = 1− b̂2
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we have

b̂T c = b̂T c =
(1

2
− 1

2
√

3

)
(1− b̂2) +

(
1− 1√

3
− 1

2
+

√
3

2

)
b̂2 =

=
1

2
− 1

2
√

3
+ b̂2

(1

2
− 1√

3
+

√
3

2
− 1

2
+

1

2
√

3

)
=

=
1

2
− 1

2
√

3
+ b̂2

(√3

2
− 1

2
√

3

)
=

1

2
− 1

2
√

3
+ b̂2

2

2
√

3
=

1

2
,

b̂2 =
1

2
√

3

2
√

3

2
=

1

2
,

b̂1 = 1− b̂2 =
1

2
.

This provides us a third order method, since

b̂T c2 =
1

3
,

b̂T (c2/2− Ac) =0.

For the general case we have

b̂i ≥ b̂i + 1, (1 ≤ i ≤ s− 1),

b̂1 = b̂s
s∑
i=1

b̂i = 1,

hence

b̂i =
1

s
, (i = 1, . . . , s).

It means that this is a third order method.

Similarly to the SSPIRK(s, 2) case, we are looking for the halved SSP

coefficient, i.e. C = s−1+
√
s2−1

2
. Our searches suggested two pairs which
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satisfy the properties a), b), and d), the appropriate order conditions and

the SSP conditions. These pairs are

b̂T1 =

[
1√
s2 − 1

, . . . ,
1√
s2 − 1

,
s− 1− s−2

s−1

√
s2 − 1

2
,
3− s+ s−2

s+1

√
s2 − 1

2

]
and

b̂T2 =

[
1

s
, . . . ,

1

s
,
21s+ 39− 3

√
s2 − 1

16s2 + 34s
,
3s+ 12 + 3

√
s2 − 1

8s2 + 17s
,
21s+ 39− 3

√
s2 − 1

16s2 + 34s

]
.

Similarly to the previous implicit case we plot the absolute stability re-

gions of the method and the embedded methods in Figure 4.

SSPIRK(8, 3) Embedded pair b̂T1

Embedded pair b̂T2

Figure 4: The absolute stability regions of SSPIRK(8, 3) method and its

recommended embedded pairs from left to right and top to bottom.
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Based on Figure 4. we recommend embedded pair b̂T2 . As we increase the

number of stages we can see similar results.
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