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1. Introduction

Caenorhabditis elegans (hereinafter called C. elegans) is a one millimeter long, transparent

subspecies of roundworms living mostly in soil, �rst observed in 1900 by Émile Maupas.

Despite the insigni�cance this tiny creature looks to represent at �rst glance, it has been

broadly used as a model organism since the moment biologist Sydney Brenner published

his results regarding the worm's genetics in 1974. As a matter of fact, C. elegans became

the �rst multicellular organism having its entire genetical structure described, along with

its full neural map (so called connectome) known. It is out of the question that examining

the C. elegans connectome from a mathematical point of view is useful, as it may help

neuroscientists understand properties which are deeply hidden in the structure of its

nervous system.

Figure 1.1: Caenorhabditis elegans

https://hu.wikipedia.org/wiki/Caenorhabditis_elegans

The goal of this thesis is to build the su�cient theoretical knowledge for us to be able

to examine the connectome of C. elegans. Concretely, we are curious about the so called

controllability of the dynamical system lying behind its nervous system. Brie�y, this means

that we would like to know if the nervous system can reach an arbitrary state if provided

the suitable shape and amount of input. In furtherance of achieving this, the formal

de�nition of such system is given and some basic properties are introduced in chapter 2.

The formal description of controllability is given as well as some fundamental theorems

that are going to be the tools in our hands to describe a real-life dynamical system.

One such tool is the famous theorem of Rudolf Emil Kalman from 1963, which gives
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an algebraic characterization of controllability ([11]). Especially the topic of structural

controllability is emphasized as it really suits well such situations when the information

does not hide in the precise numerical values, rather in the structure of the system. In

fact, the concrete numerical properties of a real-life system can hardly be determined

in most cases. The concept of structural controllability was introduced by Ching-Tai

Lin in 1974 mainly based on a graph theoretic approach ([12]). Another two important

milestones were reached thanks to Hosoe (1981, [10]) and Poljak (1990, [20]), whom

extended Lin's theorem to a slightly more general system and gave additional equivalent

forms of structural controllability. We are also having a look at the paper of Murota and

Poljak (1990, [15]) in which they took the so-called target control problem into account

and proved lower and upper bounds to the dimension of the largest controllable subsystem.

The latter problem has been reached the attention in recent years due to its diversi�ed

applications on real-life networks. For instance, see [8] for some simple heuristics or see

[9] for a more complicated heuristical algorithm on solving an even harder version of the

problem and its biological application.

In chapter 3, our mathematical formalization of the connectome of C. elegans is

illustrated. Some result of Albert-László Barabási and his colleagues are summarized, in

which they successfully applied control theoretic results on the nerve graph of C. elegans

to predict some motion related phenomena that had been unknown before. Examining the

nematode's nervous system from a theoretical point of view has been occupying scientist's

mind for a while now, even Paul Erd®s has some papers on the topic ([17], [16], [18]). A

simulation of the nervous system is implemented by the author. The code is written in

Python and is available on GitHub ([1]).

Finally, in chapter 4, a fairly new approach of the problem is exposed by applying

reinforcement learning on the system. Exploiting machine learning related knowledge

in order to learn something about C. elegans is not an entirely new idea, for the sake

of example see [7], where the authors applied a learning algorithm to approximate the

dynamics of the worm's response to rapidly rising temperature.
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2. Control theory

2.1 Basics

2.1. De�nition. Let ϕ : R × Rn → Rn be a continuously di�erentiable function. If the

following conditions hold, then ϕ is called a continuous time dynamical system:

• ∀x ∈ Rn : ϕ(0, x) = x

• ∀x ∈ Rn : ∀y, z ∈ R : ϕ(y, ϕ(z, x)) = ϕ(y + z, x)

Intuitively, a dynamical system is a model of a deterministic process in a way, that

the state of the process after time t� starting from the state x� is given by ϕ(t, x). An

important variant is when the time is considered to be discrete.

2.2. De�nition. Let ϕ : Z×Rn → Rn be a continuous function. If the following conditions

hold, then ϕ is called a discrete time dynamical system:

• ∀x ∈ Rn : ϕ(0, x) = x

• ∀x ∈ Rn : ∀y, z ∈ Z : ϕ(y, ϕ(z, x)) = ϕ(y + z, x)

Discrete time systems can be interpreted as if the system is in the state x(t) at time

step t, there is an f function (depending on ϕ) driving the system into the state x(t+1) =

f(x(t)). Fortunately, continuous and discrete time systems typically behave similarly.

In this thesis we are interested in the following special linear system:ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)
(2.1)

where x ∈ Rn, y ∈ Rs, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m and C ∈ Rs×n, respectively meaning

the state vector, output and input vectors, state matrix, output and input matrices.

Additionally, we also demand A,B,C and u to be piecewise continuous in t in those cases
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where they actually depend on t.

The discrete time alternative isx(t+ 1) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t)
(2.2)

having the same dimensions as above.

In chapter 2, we suppose that all the systems are linear and also time-invariant, that

is if there is a ∆ delay of time in the input u(t+ ∆), the output will be y(t+ ∆).

2.3. Notation. For better readibility, in some cases A(t), B(t) and C(t) are denoted by

At, Bt and Ct, respectively.

2.4. Theorem. (formula of variation of constants) [6]

Let ẋ(t) = A(t)x(t) + b(t) be an inhomogeneous equation. The solution satisfying

x(t0) = x0 is given by the following formula:

x(t) = ψ(t)ψ−1(t0)x0 + ψ(t)

∫ t

t0

ψ−1(s)b(s)ds

where ψ(t) is the fundamental matrix of the homogeneous equation.

Proof. Let's search the solution in the special form x(t) = ψ(t)vt, where v(t) is an

arbitrary function. Substituting this into the original equation gives

ψ̇(t)v(t) + ψ(t)v̇(t) = ẋ(t) = A(t)x(t) + b(t) = A(t)ψ(t)v(t) + b(t) = ψ̇(t)v(t) + b(t)

where the last equation is a known property of the fundamental matrix. This gives us

ψ(t)v̇(t) = b(t) =⇒ v̇(t) = ψ−1(t)b(t) =⇒ v(t)− v(t0) =

∫ t

t0

ψ−1(s)b(s)ds

for some real t0. The desired result comes after multiplying both sides by ψ(t). �

2.5. Proposition. [11] The system de�ned in 2.1 determines a dynamical system.

Proof. Immediately follows from the formula of variation of constants. �

2.6. De�nition. [4] A linear system of form 2.1 is said to be controllable at time t0,

if there exists an input function u(t) such that it transfers the initial x(t0) state into 0 in

a �nite time t1 > t0.

The system is (completely) controllable if it is controllable in all t ∈ R.
The system is output controllable, if for every y ∈ Rm exists an input function u(t)

and a �nite time t1 > t0 such that y = y(t1).
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An equivalent de�nition of complete controllability is given.

2.7. Proposition. A linear system of form 2.1 is completely controllable i� for every

x ∈ Rn exists a function u(t) and a �nite time t1 > t0 such that the corresponding

solution satis�es x(t1) = x, i.e. the system can be forced to an arbitrary state from its

initial state.

Proof. Let us suppose that a linear system is controllable. We have to show that we can

force an initial x0 state to an arbitrary x1 state by �nding the proper u(t). Let ψ be the

fundamental matrix of ẋ(t) = A(t)x(t). Let's assume that at time t0 we are at the state

s0 = x0 − ψ(t0)ψ
−1(t1)x1, choosing t1 in a way that it takes t1 time to reach 0 from s0.

Let u denote the corresponding input function. By the formula of variation of constants:

0 = ψ(t1)ψ
−1(t0)s0 + ψ(t1)

∫ t1

t0

ψ−1(s)B(s)u(s)ds =

= ψ(t1)ψ
−1(t0)x0 − x1 + ψ(t1)

∫ t1

t0

ψ−1(s)B(s)u(s)ds

By rearranging x1 to the left side one can see that u takes the

system from x0 to x1. �

From now until we explicitly state the opposite, we will assume that A,B,C and u

are independent from t. The following theorem is a widely famous characterization of

controllability.

2.8. Theorem. (Kalman's condition) [11][5]

Let M = [B|AB|A2B|...|An−1B] ∈ Rn×nm. The system ẋ(t) = Ax(t) + Bu is controllable

i� rank(M) = n. M is called the controllability matrix of the system.

2.9. Notation. The rank of the matrix M de�ned in 2.8 is denoted by d(A,B).

Proof of Kalman's condition theorem can be found in [11].

2.10. Corollary. Let M = [B|AB|A2B|...|An−1B] ∈ Rn×nm. The systemẋ(t) = Ax(t) +Bu

y(t) = Cx(t)
(2.3)

is output controllable i� C has full row-rank and rank(CM) = s. CM is called the output

controllability matrix of the system.

2.11. Notation. Let A ∈ Rm×n be a matrix, then Im(A) denotes the image (or range)

of A, i.e. Im(A) = {z ∈ Rm | ∃x ∈ Rn : Ax = z}.
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Proof. Using the notations of 2.1, if the row-rank of C is smaller, than s, one can

transform C into the form of having at least one row of zeros (e.g. Gauss-elimination). It

is clear that along the dimension of that row there cannot be any nonzero output. Hence,

C is supposed to have row-rank of s. Now using 2.7 and Kalman's criteria, we have to

show that rank(M) = n⇔ rank(CM) = s. But

rank(CM) = dim(Im(CM)) = dim{y ∈ Rs|∃x ∈ Rnm : CMx = y} =

= dim{y ∈ Rs|∃z ∈ Im(M) : Cz = y} = s⇔ dim(Im(M)) = n

because C has full row-rank. As dim(Im(M)) = rank(M), we are done. �

2.12. Notation. The rank of the matrix CM de�ned in 2.10 is denoted by d(A,B,C),

while the system itself is denoted by (A,B,C).

An important aspect of the previous proof is that a controllable system is not automatically

output controllable (consider the case where does not have full rank). The converse is not

true either, i.e. an output controllable system is not necessarily controllable. The reason

behind it is that controllability regards to the inner state of the system, while output

controllability regards to the output state. It can easily happen that a speci�c output

state can be reached from several di�erent inner states such that we cannot conclude

these inner states only using the knowledge of our output state.

2.2 Structural controllability

2.2.1 Motivation

Following the terminology introduced in [8], a target control problem is a special

output control problem, where one wants to control a speci�c set of target nodes corresponding

to the rows of the matrix C (considering a system of form 2.1). Moreover, we usually want

to �nd a minimum set of so-called driver nodes, i.e. a set of nodes described by B, for

which the target node set can be controlled.

Seemingly, there is no task to perform here as only 2.10 has to be checked, however, there

are two major di�culties in practical terms. One is that in case of real life networks,

weights and signs of matrices A,B and C cannot be determined precisely. Another

problem is that even if these matrix entries were exactly known, computing the rank

of the controllability matrix may take too long in case the network is tremendously large.

Finding a minimum set of driver nodes can also be quite a challenge for larger networks,

as one has to examine 2N − 1 distinct node combinations. One way to make progress is

given by some results of structural controllability.

9



2.13. De�nition. [12][24] Matrices M and N are said to be structurally equivalent if

they share the same size and for every i and j mij = 0 i� nij = 0. A system (A,B,C) is

structurally equivalent to a system (A′, B′, C ′) if the corresponding matrices are pairwise

structurally equivalent. A linear system of form 2.1 is structurally controllable if the

matrix [A|B|C] is structurally equivalent to an [A′|B′|C ′] matrix which de�nes an output

controllable system. The de�nition is analogue for output controllability.

The natural question arising here asks if it is worth examining structural controllability

in order to tell something about the controllability of the system. The answer is yes and

based on the following.

2.14. De�nition. [21] A V subset of Rn is called a(n) (algebraic) variety, if there exist

some polynomials p1, ..., pk, pi ∈ R[x1, ..., xn], k <∞, such that

V = {x ∈ Rn | pi(x) = 0, ∀ 1 ≤ i ≤ k}.

That is, V is the set of common zeros of some (�nite many) polynomials. V is proper if

V 6= Rn, while V is nontrivial if V 6= ∅.
A property P is a Rn → {0, 1} function, where P (x) indicates whether the property P

holds or fails at x.

2.15. Proposition. Let V be a proper variety. The Lebesgue measure of V is 0.

Proof. [3] Let's suppose for contradiction that V has positive Lebesgue measure and let

there be a point v in V such that v has an open, proper neighborhood - denoted by D

- entirely lying in V . Let p ∈ R[x1, ..., xn] be one of the de�ning polynomials of V . By

the de�nition of V , p is zero on D. Let qw(z) = p(w1z, ..., wnz) be a polynomial with just

one variable (w ∈ Rn). As p is zero on D, qw is zero on in�nite many points, meaning

that qw has to be the zero polynomial. However, w can be chosen in a way that the

lexicographically greatest monomial in p cannot get cancelled, leading to a contradiction.

�

Consider a system S = (A,B,C), where A,B and C are structured matrices, i.e. the

nonzero entries are a independent parameters, while the positions of zero entries are �xed.

Let these parameters be denoted by (y1, ..., ya). Let M be the controllability matrix of S,

and let p ∈ R[y1, ..., ya] be the sum of squares of the maximal order minors of M . Note,

that this is indeed a polynomial. It is well known, that an A matrix has rank a, i� there is

a non-zero minor in A of size a, while all minors having greater order are zero. Combining

Kalman's condition (2.8) with this fact, we get that S is uncontrollable at x ∈ Rn (this

means that we substitute xi to yi for all i), i� p(x) = 0. But this last equation de�nes

a proper variety, hence the cardinality of those cases, where an uncontrollable system
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is structurally controllable has Lebesgue measure 0. Conversely, the nonzero elements of

an uncontrollable, but structurally controllable system can be modi�ed by an arbitrarily

small value to obtain a controllable system. Note, that due to 2.10, the above described

argument holds for structural output controllability as well. This result tells us that it is

certainly useful to investigate the structural controllability of a system, especially if the

exact values of the de�ning matrices are unknown as it commonly happens in case of real

life networks. In the remaining part of this chapter, some important theoretical result is

presented.

2.2.2 Lin's structural controllability theorem

The following two examples play an important role in the characterization of structural

controllability given by Lin in 1974. In this section, the de�nitions, examples and theorems

are based on [12].

2.16. Notation. (A, b) denotes the system of the form

ẋ(t) = Ax(t) + bu (2.4)

where u ∈ R, A ∈ Rn×n and b ∈ Rn.

2.17. Example. Let (A, b) be a linear system described in 2.4. Let A and b be of the

form

A =

(
A11 0

A21 A22

)
and

b =

(
0

b2

)
where A11 ∈ Rk×k and b2 ∈ Rn−k(1 ≤ k ≤ n). By Kalman's criteria (2.8), d(A, b) < n,

hence the system is not structurally controllable.

2.18. Example. Let (A, b) be a linear system described in 2.4. Let [A|b] be of the form

[A|b] =

(
P1

P2

)

where P2 ∈ R(n−k)×(n+1) and P1 ∈ Rk×(n+1)(1 ≤ k) such that P1 can have at most k − 1

nonzero columns. As rank([A|b]) < n, the system is not structurally controllable.

Before introducing Lin's theorem, we have to get familiar with the necessary, graph

theoretical terminology.
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2.19. De�nition. The graph G(A, b) of a system (A, b) is de�ned as follows. Each vertex

of G(A, b) correspond to a column of the matrix N = [A|b], while there is a directed edge

between vi and vj i� nji is a nonzero parameter in N . The node corresponding to the last

column of N is called the origin of G(A, b) and is denoted by vn+1.

2.20. De�nition. A node u in the graph G of an (A, b) linear system is called inaccessible,

if there is no directed vn+1u path in G.

2.21. Remark. Let L = (A, b) be a linear system described in example 2.17, and let

its graph be G. As A22 is the zero matrix, there is no directed edge pointing from

{vk+1, ..., vn+1} to {v1, .., vk}, therefore G contains a inaccessible vertex.

What is more, the reverse is also true, i.e. if a system S has the inaccessible vertices

v1, ..., vk in its graph, the submatrix [A22|b1] must be the zero matrix (one can permutate

the coordinates in a way that the inaccessible nodes have the indices 1, .., k).

2.22. Notation. Let D = (V,A) be a digraph and S ⊆ V . The notation

T (S) = {v ∈ V | ∃u ∈ S : vu ∈ A} is used.

Note, that the set S ∩ T (S) is not necessarily empty.

2.23. De�nition. Let G be the graph of and (A, b) linear system. We say that G contains

a dilation if there exists an S ⊆ V (G) \ {vn+1} such that |T (S)| < |S|.

2.24. Remark. Let L = (A, b) be a linear system described in example 2.18, let its graph

be G, and let S = {v1, ..., vk}. By examining T (S), one can see that G contains a dilation.

Indeed, edges pointing towards S can only exist due to the nonzero entries of P1, but P1

can have at most k − 1 nonzero columns, hence |T (S)| ≤ k − 1 < k = |S|.
The reverse is true here as well, as if a vertex set S causes the dilation in G, one can

permutate the coordinates so that S = {v1, ..., vk}. As |T (S)| ≤ k − 1, P1 can have at

most this many nonzero columns.

2.25. De�nition. A directed path is called a stem, if the starting vertex of the path is

the origin of the graph.

2.26. Example. Let the de�ning matrices of the system (A, b) be

A =


0 a12 0

0 0 a23

0 0 0

 b =


0

0

b3


The graph of the system is a stem:
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v4 v3 v2 v1

b3 a23 a13

2.27. De�nition. A graph that is made of a directed cycle and a distinguished edge

pointing to one of the vertices of the cycle is called a bud.

2.28. Example. Let the de�ning matrices of the system (A, b) be

A =


0 a12 0

0 0 a23

a31 0 0

 b =


0

0

b3


The graph of the system is a bud:

v4 v3

v2

v1

b3

a23 a13

a31

2.29. De�nition. Let G be a directed graph having one of its vertex called the origin.

Let S0 be a stem, B1, ..., Bk are buds and ui be the source of the distinguished edge of Bi.

If for all i,

• ui is not the last vertex of S0,

• Bi ∩
(
S0 ∪

i−1⋃
j=1

Bj

)
= ui,

• ui is the source of an edge in
i−1⋃
j=1

Bj

then S0 ∪
j−1⋃
j=1

Bj is called a cactus. The graph G′ of a linear system (A′, b′) is spanned

by a cactus, if one can obtain a cactus by removing some edges of G′.

We are now ready to state the following theorem.

2.30. Theorem. (Lin's structural controllability theorem) [12]

Let L = (A, b) a linear system, the graph of L is denoted by G. The following statements

are equivalent.

1. L is structurally controllable

2. The coordinates of L cannot be permutated to take L into the form of either 2.17 or

2.18
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3. G does not contain any dilation or inaccessible node

4. G is spanned by a cactus

Proof. (Sketch)[12]

1. ⇒ 2. Proved in 2.17 and 2.18.

2. ⇔ 3. Proved in 2.21 and 2.24.

3. ⇒ 4. Only the main ideas of the proof is described here. Let G be a graph of a linear

system, having no inaccessible nodes, nor dilation and let G be minimal in a sense that

any edge deletion causes dilation or creates a inaccessible node.

2.31. Lemma. For all u ∈ V (G) there is exactly one directed vn+1u path in G (where

vn+1 is the origin of G).

This can be proven by supposing for contradiction that there exists a w ∈ V (G) such that

there are two di�erent vn+1w paths in G. Let e be the last edge of the �rst path which is

not an edge of the second path. By deleting this edge, G must contain a dilation (G was

minimal and no inaccessible node could have been created). By examining the possible

properties of this dilation, one can have a contradiction.

This lemma motivates the upcoming idea. Let F = {vn+1w | vn+1w ∈ E(G)}. For each
ei ∈ F , let Vi = {w ∈ V (G) | ∃vn+1w directed path inG}. Lemma 2.31 and the fact that

all nodes are accessible in G imply that V (G) =
⋃̇
i

Vi ∪ {vn+1}. Similarly, if the subgraph

of G spanned by Vi ∪ {vn+1} is denoted by Gi, then G =
⋃̇
i

Gi. These Gi graphs are

called bunches. A Gi bunch is called terminal bunch, if there exists an S ⊆ Vi such

that |T (S)| = |S|. It is possible to show that there is exactly one terminal bunch in G,

moreover, this terminal bunch is spanned by a cactus.

One last de�nition is needed. A graph H =
⋃̇
i

Bi is called a precactus, if for all i,

• Bi is a bud

• Bi ∩
( i−1⋃
j=2

Bj

)
= ui,

• ui is the source of an edge in
i−1⋃
j=2

Bj.

On the �rst hand, one can show that a precactus is spanned by a cactus. On the other

hand, one can also show that all non-terminal bunches of G is spanned by a precactus.

Therefore, G is spanned by a cactus.

4. ⇒ 1. Let G be a graph of a structurally controllable system, while B be a bud and

let u denote the source of its distinguished edge. Suppose, that G ∩ B = {u}. It is

possible to show that in this scenario, G∪B is structurally controllable. The proof of this

statement relies on the theorem saying that an (A, b) system is completely controllable,

i� the implication cTA = zcT =⇒ cT b 6= 0 is true, where z is a complex number and c is
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a nonzero complex vector.

Considering the de�nition of a cactus, the above described proposition completes the

proof.

For the comprehensive proof of Lin's theorem, see [12]. �

It is quite clear-cut that a network containing inaccessible nodes cannot be controlled.

As for networks containing a dilation, intuitively one cannot control a set of nodes by

in�uencing a smaller set of nodes. Let us consider the following situation.

v1

v2 v3

a12 a13

By choosing S = {v2, v3}, obviously T (S) = {v1}. While Lin's theorem tells us the system

is not structurally controllable, even if we weren't aware of this theorem, we wouldn't

expect the two nodes to reach an arbitrary state by controlling one node only, as we don't

have e�ect on the distribution of the signal propagating away from v1.

2.2.3 Controllable subspaces

At �rst in this section, we are examining the system of form

ẋ(t) = Ax(t) +Bu(t) (2.5)

where u ∈ Rs, A ∈ Rn×n and B ∈ Rn×m, the latter two are structured matrices. Similarly

to 2.4, the notation (A,B) is used. Let nA and nB denote the number of parameters in

A and B, respectively (recall that a structured matrix contains �xed nonzero entries and

non-�xed, independent parameters). If (A,B) is not structurally controllable, one may

would like to take the largest controllable subsystem into account. However, it might be

unclear how to de�ne the size of a subsystem at �rst glance. To resolve this problem,

Hosoe introduced the concept of generic dimension in 1980 ([10]).

2.32. De�nition. Let M be a structured matrix containing m nonzero parameters. The

generic rank ofM is genrank(M) = max
x∈Rm

[
rank(M(x))

]
, whereM(x) denotes the result

matrix of substituting the coordinates of x into the parameters of M .

2.33. De�nition. [10] The generic dimension of the (largest) controllable subsystem

(or subspace of the parameter space) of (A,B) is de�ned as dc = genrank(M), where M

is the controllability matrix of (A,B).
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The motivation behind this de�nition is the following. Let A′ and B′ are concrete

realizations of A and B, and let r = rank(M) < n, where M is the controllability matrix.

let A∗ and B∗ be the submatrices of A and B created by r independent rows of them.

According to Kalman's condition (2.8), the system de�ned by A∗ and B∗ are completely

controllable. This means that in case of a concrete realization of the parameters, the

dimension of the controllable subspace is given by the rank of the controllability matrix.

However, this dimension is almost always equal to dc. To see this, we can apply the same

argument we used in the previous section to clarify the motivation behind the de�nition

of structural controllability. Namely, let P (A,B) be the sum of squares of the dc-order

minors ofM . As P is a polynomial of the nonzero parameters, the equation P = 0 de�nes

an algebraic variety denoted by V . One can see that a concrete realization of A and B

having smaller dimension of its controllability subspace than dc must lie on V .

As for the de�nition of the graph of a system, we can extend the de�nition given in the

previous section (2.19).

2.34. De�nition. The graph G(A,B) of a system (A,B) is de�ned as follows. Each

vertex of G(A,B) correspond to a column of the matrix N = [A|B], while there is a directed

edge between vi and vj i� nji is a nonzero parameter in N . The nodes corresponding to the

columns of B are called the origins of G(A,B) and are denoted by VB = {vn+1, ..., vn+m},
respectively. The rest of the nodes are denoted by VA = {v1, ..., vn}.

2.35. Notation. LetM ∈ Rn×m be a matrix. The notationMi1,...,ik denotes the submatrix

of M formed by rows i1, ..., ik and columns i1, ..., ik, n+ 1, ...,m of M .

2.36. Theorem. (Hosoe) [10] Let L = (A,B) a linear system described above and let

dc be the generic dimension of the controllable subsystem. If L cannot be permutated to

the form of 2.17, then

dc = ν([A|B]) := max{s ∈ Z | ∃ i1, ..., is : [A|B]i1,...,is has generically full rank}.

We omit the proof here as it is rather technical, nonetheless it can be found in [10].

Furthermore, we will use the following corollary only.

2.37. Corollary. The generic dimension of the controllable subsystem equals to the

maximum number of accessible nodes of VA which can be covered by a cactus con�guration.

A cactus con�guration is a set of disjoint cycles and stems.

Proof. By the de�nition of ν, [A|B]i1,...,is has generically full rank i� it contains at least

ν([A|B]) independent nonzero parameters. Hosoe's theorem �nishes the proof as these

independent entries form a cacti con�guration. �
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The next step towards our goal to describe the system 2.1 is extending our de�nition

of the graph of a system in order to give yet another characterization of the controllable

subspace. The following construction is de�ned over the discrete time variant of the system

2.5, i.e.

x(t+ 1) = Atx(t) +Btu(t) (2.6)

where u ∈ Rs, At ∈ Rn×n and Bt ∈ Rn×m, 1 ≤ t ≤ T . From now on, we allow the

de�ning matrices to be time dependent. The only restriction is that At and Bt have to be

structurally equivalent to A and B, respectively.

2.38. De�nition. [20] The dynamic graph or linking graph of a system of form 2.6

- denoted by Gd
T - has the vertex set V (Gd

T ) = V d
A ∪ V d

B, where

V d
A = {vt,Ai | 1 ≤ i ≤ n, 1 ≤ t ≤ T} and
V d
B = {vt,Bi | 1 ≤ i ≤ m, 1 ≤ t ≤ T − 1},

while has the edge set E(Gd
T ) = Ed

A ∪ Ed
B, where

Ed
A = {vt,Aj vt+1,A

i | aij 6= 0, 1 ≤ t ≤ T − 1} and
Ed
B = {vt,Bj vt+1,B

i | bij 6= 0, 0 ≤ t ≤ T − 1}.
A set of node disjoint paths originating from V d

B while ending in a node vT,Ai for some i

is called a linking. The size of linking is the number of paths it contains. One such path

is called a legal path.

The idea behind this concept is that a legal path {vt,Bi1 , v
t+1,A
i2

, ..., vT,Aik
} correspond to a

signal starting at time step t at an origin node vi1 and arriving at node vik under T − t+1

time steps. Hence, in a linking every destination of a path can be controlled independently.

As a result, there is a direct connection between dc and the maximal linking size of Gd
T ,

described by the following theorem.

2.39. Notation. Let V d
A,T denote the set {vt,Ai ∈ V d

A | t = T}.
An (S, T ) linking is a linking such that the starting vertices of its paths are in S and the

ending vertices are in T .

2.40. Theorem. (Poljak) [20]

Let L be a linear system of form 2.6. Let dc be the generic dimension of the controllable

subsystem, Gd
T be its linking graph for T ≥ n time steps and G(A,B) be its graph (as

described in de�nition 2.34). The following quantities are equal.

1. The maximum number of accessible nodes of VA in G(A,B) which can be covered by

a collection of disjoint cycles and stems.

2. dc, i.e. the generic dimension of the controllable subsystem

3. genrank([BT−1|AT−1BT−2|...|AT−1AT−2...A1B0])
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4. The size of a maximal linking in Gd
T

Proof.

1. = 2. See 2.37.

2. ≤ 3. It is obvious from the de�nition of genrank.

3. ≤ 4.

The following argument is a modi�cation of the proof of Lemma 1 in [15]. Let M =

[BT−1|AT−1BT−2|...|AT−1AT−2...A1B0].

Let the weight of an edge in the dynamic graph be the corresponding matrix entry and

let w(S) :=
∏
e∈S

w(e) if S ⊆ E(Gd
T ). Also we de�ne a �xed ordering of the linking graph's

nodes, denoted by <. In case L is a k sized linking, let the starting vertices of the paths

be s1, ..., sk. The indices of the ending vertices of the paths in L de�ne a πL permutation

(subject to the �xed < ordering of the vertices). Using this observation, let sgn(L) :=

sgn(πL) be the sign of the linking L.

2.41. Proposition. Let I and J be a subset of the rows and columns of M with the same

cardinality and let M(I, J) be the submatrix of M made of these rows and columns. Then

det(M(I, J)) =
∑
L is a

(J,I) linking

sgn(L)w(L). (2.7)

Proof. As allAt andBt are structured matrices, a formally nonzero [AT−1...AT−kBT−k−1]ij

entry of the product matrix means that there are some k + 1 long legal paths from vt,Bj

to vT,Ai . Hence, the rows of M correspond to the vertices in V d
A,T while the columns of M

correspond to the nodes in V d
B . Let the ith row correspond to a node u ∈ V d

A,T and the

jth column correspond to the node wt ∈ V d
B for some t. Then

Mij =
∑

p is an
uw path

w(p)

But this gives use the desired result, because in the expansion of det(M(I, J)) the intersecting

paths will have opposite sign and will cancel out. �

Proposition 2.41 concludes the proof as if dc > 0, there exists a dc × dc sized submatrix

of M with a nonzero determinant, but then a linking of size dc also exists due to 2.7.

4. ≤ 1.[20]

As written in Poljak's paper, the problem described in 1. can be reformulated into a

maximum weight directed cycle partition problem, which can be solved using integer

programming. Let V (G(A,B)) = VA ∪ VB, |VA| = n, |VB| = m, and if there is any

inaccessible node in VA, let's simply get rid of those. We create the graph G′ by adding

the edge sets {vivj | 1 ≤ i ≤ n, n+ 1 ≤ j ≤ n+m} and {vivi | 1 ≤ i ≤ n+m} to G(A,B).
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The c(e) cost of the original e edges shall be 1, while the cost of the recently added edges

shall be 0. One can see that a cycle cover of a vertex set U can be bijectively mapped to

a cover of disjoint cycles and stems by removing the 0 cost edges. The optimal solution

of the following integer program gives us a maximal cycle cover. We want to �nd

OPTP = max
x∈{0,1}|E(G′)|

∑
e∈G′

c(e)xe (2.8)

where xe is the coordinate of x corresponding to the edge e. The constrainst are

∀v ∈ V (G′) :
∑

∃u∈V (G′)
e=vu

xe = 1 (2.9)

∀v ∈ V (G′) :
∑

∃u∈V (G′)
e=uv

xe = 1 (2.10)

2.42. Proposition. This IP problem is de�ned with a totally unimodular (TU) matrix.

Proof. Let M be the following matrix. The columns of M correspond to the edges of G′,

while the rows of M correspond to the vertices of G′. In fact, let the rows 2i and 2i + 1

correspond to a node vi such that mik = 1, if vi is the target of the directed edge ek,

and 0 otherwise. Similarly, let mi+1,k = −1, if vi is the source of the directed edge ek,

and 0 otherwise. Then M is a TU matrix. The reason for this is that let G′′ be the graph

resulting in doubling the vertices of G′, concretely we create vi,1 and vi,2 out of vi. If vjvi

is an edge is G′, let vj,2vi,1 be a directed edge in G′′. Also if vivk is an edge in G′, let

vi,2vk,1 be an edge in G′′. Now the vertex-edge incidence matrix of the directed graph G′′

is exactly M , therefore M is TU by the well known fact that the incidence matrix of a

digraph is totally unimodular.

Let b be a 2n dimensional vector such that b2i = 1 and b2i+1 = −1. The IP problem

Mx = b, x ≥ 0 is de�ned by a TU matrix (the constraint x ≥ 0 can be built into

M without ruining the total unimodularity), and is equivalent with the above described

program. Note, that 2.9 and 2.10 among with x ≥ 0 guarantee that we can �nd an optimal

binary x due to the total unimodularity of the de�ning matrix. �

By multiplying the odd rows ofM by -1, the system is still TU. Using the duality theroem

of linear programming, 2.8 equals to

OPTD = min
(y,z)∈{0,1}2(n+m)

n+m∑
i=1

(yi + zi) (2.11)
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subject to

∀vivj ∈ E(G′) : yi + zj ≥ c(vivj) (2.12)

We have two variables for each vi node in the dual problem, yi and zi, due to the

construction given in the above proof. What is more, an optimal integer valued (y, z)

vector exists because c is also integer valued (this is known as the duality theorem for TU

matrices). Now let us shift the coordinates of a dual vector to achieve

min
1≤i≤n

yi = −T (2.13)

As uvj is a 0 cost edge in G′ if n + 1 ≤ j ≤ n + m, zj ≥ T for such j indices. The last

trick is de�ning the following S set as

S = {vti ∈ V (Gd
T ) | − yi ≤ t ≤ zi, 1 ≤ i ≤ n+m}

If we show that S is a vertex cut of all the linkings in Gd
T , and |S| is at most the value

of 1., we will be done. Indeed, |S| ≤ OPTD = OPTP . Let pk, ..., pT be a path originating

from a vertex corresponding to time step k in Gd
T and let t be the greatest time step such

that k ≤ t ≤ T and t < zt. If t = T , it is obvious that pT ∈ S, otherwise −yt ≤ t ≤
zt+1 − 1 ≤ t < zt, where the �rst inequality is the result of combining the dual constraint

and the fact that ptpt+1 is an edge of G(A,B) (hence its cost is 1). Therefore pt ∈ S and

this is what we needed. �

What did we achieve by the Poljak's theorem proven above? Now we are able to

e�ciently calculate the generic dimension of the controllable subsystem. All one has to

do is �nding the maximal number of vertex disjoint legal paths, but it is very well-known

how to reduce it to a maximum �ow problem ([24]).

Finally, we reached the point where we have enough tools to start investigating the

linear system of form 2.2, i.e. solving the target control problem in general. Let's start

with extending our already introduced de�nitions to this scenario.

2.43. De�nition. LetM be the controllability matrix of the system (A,B,C). The generic

dimension of the controllable subspace is de�ned the same ways as before, i.e. dc =

genrank(M).

The graph theoretic terminology can also be generalized.

2.44. De�nition. [15] The graph G(A,B,C) of a system (A,B,C) is de�ned as follows.

Each vertex of G(A,B,C) correspond to a column of the matrix N = [A|B] or a row of

C. The nodes corresponding to the columns of B are called the origins of G(A,B,C) and

are denoted by VB = {vn+1, ..., vn+m}, respectively. The rest of the nodes corresponding to

the columns of A are denoted by VA = {v1, ..., vn}, while the nodes corresponding to the
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rows of C are denoted by VC = {vn+m+1, ..., vn+m+s}. If vi, vj ∈ VA ∪ VB, then vivj is a

directed edge if nji is not a nonzero entry. Additionally, if vk ∈ VC, vivk is an edge if cki

is not a nonzero entry in C.

2.45. De�nition. [15] The dynamic graph or linking graph of a system of form 2.2

- denoted by Gd
T - has the vertex set V (Gd

T ) = V d
A ∪ V d

B ∪ V d
C , where

V d
A = {vt,Ai | 1 ≤ i ≤ n, 1 ≤ t ≤ T},
V d
B = {vt,Bi | 1 ≤ i ≤ m, 1 ≤ t ≤ T − 1} and
V d
C = {vCi | 1 ≤ i ≤ s},

while has the edge set E(Gd
T ) = Ed

A ∪ Ed
B ∪ Ed

C, where

Ed
A = {vt,Aj vt+1,A

i | aij 6= 0, 1 ≤ t ≤ T − 1},
Ed
B = {vt,Bj vt+1,B

i | bij 6= 0, 0 ≤ t ≤ T − 1}, and
Ed
C = {uTj vCi |uTj ∈ V d

A ∪ V d
B , cij 6= 0}.

A set of node disjoint paths originating from V d
B while ending in V d

C is called a linking.

The size of linking is the number of paths it contains. One such path is called a legal

path.

We used the same notation in case of systems of form 2.2 as in case of form 2.6, because

it is clear from the context which kind of system we are talking about. After having a

look at the previous de�nition and the theorem 2.40, a realistic expectation would be to

extend that theorem for the target control problem. However, according to [24], it has not

yet been comprehensively resolved as of today. The �nal segment of this chapter is about

some partial results which can e�ectively be used in the next chapter.

2.46. Notation. Following [15], the size of a maximal linking in the dynamic graph of a

system (A,B,C) is denoted by λ(A,B,C).

2.47. Proposition. [15] For a system (A,B,C) of form 2.2 dc ≤ λ(A,B,C).

Proof. The proof is almost exactly the same as the 3.≤ 4. part of 2.40, the only di�erence

in this case is M should be the controllability matrix of (A,B,C). �

Murota and Poljak gave an example for which dc < λ(A,B,C). The following lower

bound is the generalization of Hosoe's theorem (2.37) for the target control situation.

2.48. Proposition. [15] Let (A,B,C) a linear system, let G(A,B,C) be its graph and

let U ⊆ VA be an accessible vertex set. Let G(A,B) ⊆ G(A,B,C) the graph resulting in

ignoring vertices and edges that are adjacent to VC (i.e. the graph of the subsystem of

form 2.6). If U can be covered by a cactus con�guration in G(A,B) and U can be matched

into VC in G(A,B,C), then dc ≥ |U | (the latter means that a matching on U ∪ VC exists

such that the vertex classes are U and W ⊆ VC).
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Proof. Let M = [B|AB|...|An−1B]. Note, that the proposition 2.41 holds for M (the

proof is the same as described there). Let e1, ..., e|U | be the matching between U and VC .

If we show, that the rows of M corresponding to U are linearly independent, proposition

2.41 concludes the proof as if there is an |U | sized linking ending in U , each path can

be extended to V d
C by an ei edge of the matching. But this is true, because the rows

corresponding to the cactus con�guration cover of VA (and U as well) are independent

due to 2.37. �

How to make use of this bound in practical situations? Besides proving it, Murota

and Poljak also gave a heuristic algorithm to �nd a lower bound on dc. Unfortunately,

�nding the maximum sized U which ful�lls the requirements of 2.48 is an NP-hard problem

according to [15]. However, the following theorem gives us an algorithm which is succesfully

used in the next chapter.

2.49. Theorem. [15] Let W ⊆ VA be an accessible vertex set. The problem of �nding a

maximal U ⊆ W such that U can be covered by a cactus con�guration is in P.

Proof. Let V ′A and V ′B be a copy of VA and VB, respectively. We are creating a H bipartite

graph on the vertex set VA ∪ VB ∪ V ′A ∪ V ′B. If w is a node in the original graph, let w′

denote its copy in V ′A ∪ V ′B. The edge set is E(H) = E1 ∪ E2 ∪ E3, where

E1 = {uv′ |uv ∈ E(G(A,B))}
E2 = {uu′ |u ∈ VA ∪ VB}
E3 = {uv′ |u ∈ VA, v ∈ VB}

The cost of an uv′ edge shall be 1, if uv′ ∈ E1 and v ∈ W , otherwise 0. It is easy to see

that a perfect matching of H bijectively correspond to a cactus con�guration of a subset

of G(A,B), moreover, the cost of a matching equals to the number of nodes in W covered

by this con�guration. Hence, a maximal weight perfect matching will give us the desired

U , this can be found using the Hungarian method for instance. �

Using this theorem, one may generate many maximal W ∈ VA subset that can be

matched into VC , then choose the one which has the greatest U ⊆ W which can be

covered by a cactus con�guration.

2.3 Minimum set of driver nodes

In this section our goal is to �nd the minimum set of driver nodes necessary to make

the system structurally controllable. Only the simplest case comes into consideration,

particularly all state variables (equivalently all nodes of the graph) are allowed to receive
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an external input. Let our system be 2.5 and let G(A)

ẋ(t) = Ax(t) (2.14)

where A ∈ Rn×n, and let its graph be G(A). We would like to �nd out the dimension of

the input vector u, which is the same as the number of columns in the matrix B, such

that the system

ẋ(t) = Ax(t) +Bu(t) (2.15)

is structurally controllable. As the columns of B correspond to the driver nodes, we would

like to know how many driver nodes are necessary to control the system corresponding

to G(A). By saying controlling G(A) we formally understand controlling the system

corresponding to G(A). Before stating the theorem, we need the de�nition of directed

matching.

2.50. De�nition. Let G be a digraph. We say that an M ⊆ E(G) is a directed matching

if it is true for pair of edges in M that neither their source, nor their target is common. A

node is said to be covered by M if it is a target vertex of an edge of M . The set of nodes

covered by M is denoted by VM .

2.51. Theorem. [13] Let L be a linear system described above with graph G(A). The

minimum number of driver nodes needed to structurally control G(A) equals to

max(|V (G(A))| − |VM |, 1), where M is a maximum directed matching in G(A).

Proof. We would like to use Lin's theorem (2.30). If M is a perfect matching then M

hast to be a directed cycle cover, because if every node is covered, then
∑

v∈V (G)

dout(v) =∑
v∈V (G)

din(v) = |V (G)|, hence for every u ∈ V (G) din(u) = dout(u) = 1. In this case, one

new vn+1 node is added to the graph as the origin node and let one directed edge point

from vn+1 to one vertex of each cycle. If an arbitrary edge of an arbitrary cycle is deleted,

the resulting graph forms a cactus and hence is structurally controllable.

If M is not perfect, then the edges of M is a disjoint union of directed cycles and paths.

Let one connect an origin node for each unmatched node, forming N − |VM | stems. This

way, only the cycles has to be dealt with, but we can connect them to an arbitrary origin

vertex, resulting in a disjoint cactus cover of G(A). Note, that if a node set is covered by

disjoint cactuses, it is covered by a directed matching determined by the cacti. Therefore,

a maximum matching indeed determines the minimum set of driver nodes. �

2.52. Remark. It is easy to �nd a maximum directed matching in a digraph G. For

example, one can create make a V ′(G) and a V ′′(G) copy of V (G) and form a bipartite

graph H on V ′(G)∪V ′′(G). If uv is a directed edge in G, then u′v′′ shall be an undirected
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edge in H, where u′ ∈ V ′(G) corresponds to u and v′′ ∈ V ′′(G) corresponds to v. The

maximum directed matchings in G naturally correspond to the maximum matchings in

H that can be found using König's augmenting path algorithm of the Hopcroft-Karp

algorithm (the latter is more e�cient).

2.53. Remark. A more complex problem would be the following. Let an F ⊆ {1, .., n} is
also given representing the so-called forbidden variables. These variables (or equivalently

these nodes in G(A) cannot be directly a�ected by an external input signal. The question

is what is the minimum set of driver nodes necessary to make the system 2.15 structurally

controllable such that there is no direct edge from any driver node to any forbidden one?

The answer can be found in [19] along with a polynomial time algorithm �nding the

minimal set of suitable drived nodes.
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3. Connectome of C. elegans

In [24], the authors successfully applied control theoretic tools to a model of C.

elegans's connectome. In the following sections, we will mostly be following their notations.

3.1 The model

The model described in this section is the one presented in [24]. We imagine the

connectome as a directed graph with its nodes corresponding to the worm's neurons, and

its edges corresponding to the physical and chemical connections of these neurons [2]. As

we are interested in the moving mechanism of C. elegans, only the 282 non-pharyngeal

out of all the 302 neurons together with 97 muscles are present in the model. As the

authors highlight in their paper, neurons CANL/CANR and VC06 are excluded as they

are not accessible from the sensory neurons according to this dataset. Also the muscles

representing the anus and vulva are not considered to take part in the worm's motion

mechanism.

Neurons are assigned three types, namely sensory neurons, interneurons and motorneurons.

Sensory neurons are directly connected to the sensory features of the worm. In our model,

we make the assumtpion that a sensory neuron make a single connection to a sensory

organ. Motor neurons are the ones connected to the muscles or other organs. As we

would like to study the motion mechanism of C. elegans, only the muscles are relevant

for us. Interneurons are in between transmitting the signal between sensory neurons and

motorneurons. These de�nitions might not be totally precise in a biological point of view,

however are enough for a simple model of the nervous system.

The edges represent a connection between two neurons or a neuron and a muscle. These

connections are directed, meaning that if uv is an arc in the graph, the corresponding

neuron to u is able to send a signal to the corresponding neuron/muscle to v. Note, that

in many cases uv and vu are both edges of the graph, in some rare cases even self loops

are present. In reality, these connections have several di�erent kinds, such as chemical

synapses, gap junctions, neuromuscular junctions, etc. In section 3.3 some details are

considered, however, in this model only the presence of a connection counts.
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Figure 3.1: Directed graph of the nervous system

In the �gure above, blue nodes represent the sensory neurons, interneurons are orange,

motorneurons are yellow and muscles are purple. The positions of the neurons and muscles

along the body of the worm is illustrated in the following �gure.

Figure 3.2: Source: [24]

For the sake of moment, let us denote the number of neurons by N and the number of

muscles by M . The propagation of a signal captured by the sensory organs through the

graph can be modeled by a dynamical system

ż(t) = f(z, v, t) (3.1)

where z ∈ RN+M is the state vector, v ∈ Rs is the input vector and f is some continuously

di�erentiable function. The accepted standpoint is that f is a nonlinear function. In

contempt of this, a linear time-invariant system is assumed to model the nervous system,

viz. a system of form 2.1. In this scenario, matrices A, B and C are time independent and
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respectively representing the wiring of the nervous system, the sensory neurons and the

muscles.

The exact values of these matrices are unknown. For example, the rows and columns

of A correspond to the vertices of the nerve graph (which correspond to the neurons) such

that aij > 0 if there is a directed edge in the graph between nodes vj and vi. Here, the

value of aij somehow measures the e�ciency of the signal transmition between neurons

corresponding to vj and vi. Of course there is no one who exactly knows these values or

even has the power to explicitly measure these. Similarly, the rows of B represents the

N + M nodes, while the columns represent the external signals. In this context, each

sensory neuron gets (a possibly zero) signal at time t, and the elements of B are such that

the ith coordinate of Bu(t) represents the stimuli that vi recieved. It is important to note,

that in [24], the measure of a signal is not considered, meaning that a sensory neuron either

receives a signal or not. The rows of matrix C correspond to the muscles implying that the

ith coordinate of Cx(t) is the state of the ith muscle at time t. Neither the exact entries of

B nor C are known for the same reason as discussed before. This motivates us to handle

these matrices as structured matrices and investigating the structured controllability of

the system.

Before doing so, some words about why it is worth examining the linearized dynamical

system at all. The informal answer to this question could be because we have more

knowledege of linear systems, while knowing the linear charactheristics of the system

may get us into a better position to solve the nonlinear case. This is especially true

for complex real-world networks such as the human brain, where it is already a di�cult

problem to tell something about the linear dynamics of the system. The formal answer

to the question starts at Lyapunov's classical stability theory and goes as far as modern

stability theory. Brie�y talking, it can be formally proven that in many cases knowing

the linear stability or structured controllability of the system is su�cent to determine the

nonlinear charactheristics. For the details see e.g. [22].

3.2 Applying control theory

The structure of C. elegans's nervous system has been mapped for a while now, suitably

there has been much research going on this topic by many kinds of experts, but mainly

neuroscientists. Accordingly, the functions of neurons or neuron classes are more or less

discovered, yet we are far from the perfect knowledge of its working mechanism. One might

think that the only way to get closer to this goal is by performing direct experiments with

living worms under microscope. However, theoretical research also has its potential to

eventuate important results. We are about to witness an example of this scenario, as a
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team of researchers has managed to predict that certain neurons must take part in the

worm's response mechanism to anterior gentle touch ([24]). The essence of this result is

that many other neurons were known to take part in this mechanism as the outcome of

several experiments performed by neuroscientist, but not the newly discovered one. What

is more, physical experiments were only used to con�rm the results achieved by applying

graph theoretic and control theoretic tools to the mathematical model associated with

the nervous system of C.elegans.

According to [24], the sensory neurons responsible for detecting anterior gentle touch

are AVM, ALML and ALMR. Applying 2.47 to the connectome assuming only these three

neurons are allowed to receive external input, we have the linking size as an upper bound

of 89 to the number of independently controllable body wall muscles. This result has also

been veri�ed by the author using the dataset [2], see the python script upper_bound.py

in our repository [1].

As a lower bound, authors of [24] used a very similar method to the heuristic algorithm

given by Murota and Poljak based on 2.48. Following their notation let the connectome

graph be G, let VM ⊆ V (G) be the vertices corresponding to the muscles, VS ⊆ V (G) be

the vertices corresponding to the sensory neurons, VD ⊆ V (G) be the vertices adjacent to

VM and let VO = V (G)\VM . First, search for a H subgraph on VO \VD that is structurally

controllable. This can be done by using the auxiliary graph described in the proof of 2.49.

Next, extend H to a H ′ graph by adding vertices from VD such that the extended graph

is still structurally controllable. Then a lower bound is achieved by the cardinality of

the maximum U ⊆ VD ∩ V (H ′) that can be matched into VM (see 2.48). Interestingly, a

lower bound of 89 can be achieved by this heuristic method, resulting in the fact that the

number of independently controllable muscles controlled by AVM, ALML and ALMR is

89 in an adult, healthy nematode. This result is also veri�ed by the author, see the python

script lower_bound.py in the repository [1]. A surprising subsidiary result of the above

described method is that the motor neurons adjacent to the muscles are structurally

(state-) controllable, meaning that they independently receive signals from the sensors.

The general conjecture regarding the control of biological systems is that the target set

should not be fully controllable as it is not practical for a living system. For instance, if

all the worm's muscles were able to strongly contract at the same time, besides that the

worm wouldn't change its place, it would probably cause some damage in the long run. The

previously described result then means that the conditioning of the movement happens

between the muscles and its neighbours, rather than using the state of the remaining

nerve cells.

One of the main consequence of the control analysis is that the neuron PDB plays an

important role in the response mechanism to anterior gentle touch. By important role we
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mean that the ablation of this neuron negatively a�ects the response or motion mechanism

of C. elegans.

Figure 3.3: Based on a �gure of [24]

In the �gure above, one can see that the seven muscles are adjacent to �ve motor

neurons only, meaning that any signal received by the sensor neurons can get to the

muscles via those �ve motor neurons. Applying Lin's theorem (2.30), the above described

network cannot be structurally controllable (not even in the complete sense). As only 5

nodes can be matched to the set of those 7 muscles, those 7 muscles cannot be independently

controlled by those 3 receptor neurons. This conjecture has been con�rmed by experiments

performed on PDB ablated worms (see [24] for the corresponding video records).
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Figure 3.4: Frame from a video of a PDB ablated worm

Source: [24]

Another result presented in [24] is that some particular neurons of a neuron class called

DD play an important role in the response mechanism to either anterior or posterior gentle

touch, while some other neurons in the DD class can be ablated without disturbing this

response mechanism. This is quite unexpected considering that the general pattern of

connectivity was believed to be similar in the DD class.

3.3 Simulation

As there are several existing implementation of the C. elegans nerve system, it could

seem strange to create another for us instead of using one of those. The main reason for

this is there are many uncertainties regarding the C. elegan's nervous system behavior.

Even the neuroscience experts are debating, guessing or making assumptions in many

important aspects needed for a correct implementation. Thus, it was inevitable to create

our own to be able to freely experiment with the parameters of the model.

The starting point for our simulation was the model introduced in section 3.1. As

compared to that one, some more features are present in this simulation trying to make

it more alike the real one. However, in several cases we had to apply assumptions or

approximations as many details are yet unknown even for neuroscientists. In our model,

we also omitted the neurons CANL/R and VC06, along with the neuron PVDR as this one

is also inaccessible from the sensory neurons according to our dataset. Another important

di�erence compared to the previous model is that we assume that the power of external
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stimuli can be measured, i.e. there is a numerical value of each input.

Di�erent types of connections between neurons are considered as well, altogether we

deal with three of them, namely electric junction, neuromuscular junction and chemical

synapse. After looking into several resources, we decided to set the speed of the chemical

synapse twice as slow as the other two. The dataset we used also contains information

about the physical density of these connections, namely there is a number attribute for

each connection. To see what this means, let's have a look at the very brief shape of a

nerve cell.

Figure 3.5: Source: https://img.tfd.com/mk/D/X2604-D-16.png

The long �ber which conducts an electrical signal away from the cell is called the

axon. As an axon is able to form several branches, it is able to transmit the signal via

many synaptic terminals. Similarly, the dendrite, which is the part of the cell responsible

for propagating the incoming signal are split into branches. This means that the endings

of the axon of a neuron can connect to a dendrite of another neuron in several di�erent

points. We built into our model the information about these connection points from the

dataset.

Another important aspect is that a threshold value is given for each neuron. This

means that a neuron won't forward the incoming signal, that is to say it won't �re, if

the incoming signal is not strong enough. We imagine that the polarization of a neuron

happens progressively, namely the neuron gathers the signals for a certain amount of time

and if it reaches its threshold value, it gets depolarized and sends the amount of signal

it stored to all of its neighbors. As for the muscle cells, they also have a threshold value,

above which the muscle contracts. A fatigue rate is also set for the muscles, that is the

value stored in a muscle decreases over time. We also made experiments with a contraction

limit, i.e. if a muscle is contracted for too long, it gets tired and stretches for a while,

despite the incoming signals to contract again, but this has not got into the model yet.

Propagation of a signal through the network works as follows. The time is discrete,
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we call one time step a tick. In the initial tick, some input value is conducted to some

sensory neurons. Then, the value in a sensory neuron s is getting split into dout(s) part

uniformly, where dout(s) means the out degree of the node corresponding to s in the graph

of the nervous system. For each edge we have the speed of the signal being transmitted

corresponding to the type of the connection set. According to this speed property, the

signal on an edge gets into its destination neuron in the (t + k)th tick, where t is the

current tick and k is the speed property of the edge. In general at time tick t, the incoming

signals are summed for each neuron, then those neurons whom are above their threshold

�re and forward the amount of signal they store. Firing happens instantly as we imagine

neurons work much faster compared to the signal transmission speed among nerve cells.

The simulation is �nished, if we reach a tick limit T , or if the energy of the system has

become zero. This can happen, because the propagating signal decreases over time in the

muscles. Some very slow fatigue rate shall be set for the neurons as well.

One more feature of our model is that edge thresholds are also in the picture. We

imagine that during its learning phase, a neuron of a real worm learns to enhance/weaken

a signal arriving from a speci�c neighbor, or even only on a speci�c branch of its dendrite.

This way a worm is able to �ne tune its movement for example or its response to a gentle

touch or a strong hit. As the information about the density of a connection is built in

the model, we can make use of that. For example, let's suppose that there is a triple

connection between a pair of neurons c1 and c2 such that c1 sends the signal to c2. We are

able to set the threshold values individually on the 3 branches they communicate through.

What is more, also the distribution of the outcoming signal among those three branches

can be set. More information of how to make more use of this is in chapter 4.
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Figure 3.6: Simulation in progress

In the �gure above, a simple graphical interface of our simulation can be seen. The left

side of the rectangle correspond to the head of C. elegans, while the right side correspond

to its tail. The colorful letters (X and F) are the neurons and muscles along the worm's

body. F means the neuron is �red in the actual tick while X means it is not. In this

scenario, all the sensory neurons received an input signal. The simulation ended at tick

24 as the system has ran out of energy.

An important use case of our simulation is it makes investigating the e�ect of each

sensor neuron on each muscle cells possible. For instance, in the following �gure the e�ect

of AVM on some of the muscles is plotted. In this scenario, AVM received an input of

1500 unit, while the threshold values of all neurons were set to some constant value. For

a muscle we can track that out of the 1500 unit, how many got to the muscle eventually.

On the plot below, three types of average value are present, namely the average value

during those time steps where the muscle was triggered, the average value during those

time steps where any signal reached the muscle and �nally, the average during the whole

simulation. The �gure here contains those muscles only which were triggered during the

simulation.
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Figure 3.7: E�ect of AVM on some muscles

By examining the graph containing all the muscles, not just these ones, on could see

that a couple of muscles gets a relatively large portion of the signal sensed by AVM, while

other muscles are not triggered at all. Of course, if we set the input large enough all

muscles might get �red, however, we consider this an unrealistic scenario.

As for the technical details, the simulation is implemented in Python 3 and is based on

the dataset [2]. The properties of the neurons and the connections between them are stored

in the corresponding neuron and synapse objects. These are lumped together by a Network

class containing the graph structure stored in a NetworkX instance. A simulator class is

dedicated to perform the simulation itself, having the network as one of its attributes. The

graphical interface is implemented using the curses package. The source code is available

at [1].
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4. Reinforcement learning

In this chapter, we are introducing the basic terminology of the simplest form of

reinforcement learning models and the result of our experiments of applying Q-learning

to our model of C.elegans's nervous system based on the simulation described in section

3.3. In the whole chapter, especially in section 4.1, we are following the notation of [23].

All theoretical result introduced here is their work and cited from their book.

4.1 A brief overview

Machine learning is the �eld of studying learning algorithms. The most widely accepted

de�nition of learning algorithm was given by Tom M. Michell in 1997: �A computer

program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E.� Informally talking, tasks which are usually solved by machine learning tools

cannot be solved in a classical algorithmical way, as only a concrete set of rules or logical

patterns can be implemented. Some popular examples are regression or classi�cation

problems. As for the experience, it usually means the information extracted from one

or more data points. The measure of performance depends on the context but usually

happens using some test dataset, i.e. via comparing the output of the algorithm with the

expected output.

Examining the nature of machine learning algorithms, three di�erent class can be

created. The �rst two would be supervised and unsupervised learning. Without going into

the details, in case of supervised learning, the training dataset � the data used to train

the model � is labeled, meaning the model receives the expected output for each piece of

data and is able to use that during the training process. Unsupervised learning is about

learning some nontrivial properties hidden in a dataset which describes the structure of

the data.

The third one is called reinforcement learning and its simplest form is usually modeled

as follows. There is a so-called learning agent in some kind of state, that is able to interact

with is environment in order to reach a goal. Such interaction includes an action the agent
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performs, resulting in a possible change of its state as well as a reward it receives for its

action. The reward represents the quality of the performed action. The overall goal of the

agent is to maximize the cumulative reward it receives during its running.

Let us denote the state of the agent at time t by St, the action it performs by At and

the reward it gets after this action by Rt. The �rst problem is how should an agent decide,

which action to take in a given state? First, the agent has a Qt(a) estimation of the value

of an action a. The real value of a is given by

q∗(a) = E(Rt |At = a) (4.1)

where the expected value is taken over the probability distribution from which the reward

is chosen. Note, that this distribution is not necessarily unchanged over time. The agent

has the choice to choose between the action with the highest estimated reward � which is

called a greedy action � or an action with a smaller reward which may result in improving

the value of this action. The latter is called exploring while the former is called exploiting.

In order to maximize the reward in the long run, the agent has to �nd a good balance

between exploiting its current knowledge and exploring other possibilities.

Formally, the running process of a reinforcement learning algorithm is interpreted as

a Markov Decision Process.

4.1. De�nition. A �nite Markov Decision Process or MDP is a tuple (S,A, P,R),

where

• S is the set of states satisfying the Markov property

• A is the set of actions

• P is the set of sate-transition probabilities, i.e.

P = {Pr(St = s′ |St−1 = s, At−1 = a) | s, s′ ∈ S, a ∈ A, 1 ≤ t ≤ T}, where T is the

�nal time step

• R is the set rewards, i.e. R = {E(Rt |St−1 = s, At−1 = a) | s ∈ S, a ∈ A, 1 ≤ t ≤ T},
where T is the �nal time step

An St = s state has the Markov property, if Pr(St+1 = s′ |St = s) = Pr(St+1 = s′ |S1 =

s1, ..., St−1 = st−1, St = s), meaning that s has all relevant information of the past.
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Figure 4.1: Source: [23]

There are two main approach to set the objective function the agent wishes to maximize.

If the agent-environment interaction is made of subsequences, e.g. games of chess, we call

these subsequences episodes. The states episodes end are called terminal states. If T is a

random variable representing the terminal time step, the agent wants to maximize

Gt = Rt+1 + ...+RT (4.2)

In this case, the task is called episodic. The opposite of episodic tasks are called continuing

tasks, in which case T =∞, i.e. one cannot break the interaction into subsequences. The

key idea here is that the agent should discount the current value of future rewards, namely

let 0 ≤ γ ≤ 1 be the discount rate. Then

Gt =
∞∑
k=0

γkRt+k+1 (4.3)

is maximized over time. Note, that this series converges if the rewards are bounded and

γ < 1.

Another important characteristic of an RL model is called the policy which determines

how the agent behaves in each state. Concretely, it the policy the agent follows at time t

is denoted by πt, then πt(a, s) = Pr(At = a|St = s) denotes the probability of action a

will be taken at state s at time step t. If t is omitted from πt, it means that the policy

is time independent (only depends on the state). During a policy learning process, the

policy improves over time caused by the e�ect of the experiences. The value function is

the estimator function the agent uses to measure how good a state or an action is under

the policy it follows. Namely,

vπ(s) = Eπ(Gt |St = s) (4.4)

is called the state-value function for policy π and gives the expected reward of starting in

s and following π. Here the expected value is taken over the random variable representing
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the chance of the agent following the policy π. The action-value function can be de�ned

in a similar manner:

qπ(s, a) = Eπ(Gt |St = s, At = a) (4.5)

We say that a π1 policy is better than or equal to a policy π2 (denoted by π1 ≥ π2), if

vπ1(s) ≥ vπ2(s) holds for every s ∈ S. If π∗ is better than or equal to all other policies, then
π∗ is an optimal policy. The corresponding optimal state-value and action-value functions

are de�ned as

v∗(s) = max
π

vπ(s) (4.6)

and

q∗(s, a) = max
π

qπ(s, a) (4.7)

4.1.1 Temporal-Di�erence Learning

Temporal-di�erence (or TD) learning is a fundamental method of the reinforcement

learning introduced by Richard S. Sutton in 1988. We are going to use it as an implementation

of the so-called generalized policy iteration method. The latter means the following.

Imagine we have an algorithm denoted by E which takes a policy π as an input and

outputs vπ or at least a suitable approximation of it. Computing the state-value function

of a policy is called the policy evaluation or the prediction problem. Also imagine we

have another algorithm I taking a policy π0 and its state-value function as an input and

outputs a π1 policy which is strictly better, than π. The idea of policy iteration method

is repeating I and E to achieve better and better policies until we reach the optimum:

πo → vπ0 → π1 → ...→ π∗ → vπ∗

There are several ways to solve the problem of policy evaluation and policy improvement,

such as dynamic programming, Monte Carlo methods or TD learning. The key thought of

the latter is as follows. Let V be an approximation of vπ for some policy π, let 0 ≤ γ ≤ 1

be a discount rate and 0 < α ≤ 1 be a parameter called the learning rate. During the

running process, the algorithm will make the following update

V (St+1)← V (St) + α(Rt+1 + γV (St+1)− V (St)) (4.8)

The origin of the name temporal-di�erence comes from this update method, as the

estimated value of St depends on the discounted di�erence of V (St+1) and V (St). It

is also implicitly follows that the algorithm has to wait one time step to know V (St). The

term Rt+1 + γV (St+1)− V (St) is denoted by δt and is called the TD error. The following

pseudocode describes the so-called TD(0) algorithm for policy evaluation. The notation
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refers to the TD(λ) algorithm of which TD(0) is the simplest special case. It is possible

to show that under certain conditions, the TD(0) algorithm converges to a single answer.

TD(0) for approximating vπ
Input: π, α, γ

Output: vπ

1: V (terminal) := 0;V (s) initialized arbitrarily for nonterminal states

2: for all episode e do

3: initialize S

4: for all step of e do

5: A← action given by π

6: perform A→ R, S ′ reward and state

7: V (S)← V (S) + α(R + γV (S ′)− V (S))

8: S ← S ′

9: end for

10: end for

For the policy improvement, we will describe the so-called Q-learning algorithm introduced

by Christopher J. C. H. Watkins in 1989. Our task is to approximate the optimal action-

value function q∗. Let Q denote the estimation function. The most important aspect of

Q-learning is that it directly approximates q∗ independently of the policy being followed

by the agent. Of course, the policy has the e�ect on choosing the state-action pairs to

perform, however, it is not necessary to be known in order to prove the convergence of

this method.

Q-learning for approximating π∗
Input: 0 < α ≤ 1, ε > 0

Output: π ≈ π∗

1: Q(terminal, a) := 0 ∀a ∈ A; Q(s, a) initialized arbitrarily for nonterminal states

2: for all episode e do

3: initialize S

4: for all step of e do

5: A← action given by Q and S

6: perform A→ R, S ′ reward and state

7: Q(S,A)← Q(S,A) + α(R + γmax
a
Q(S ′, a)−Q(S,A))

8: S ← S ′

9: end for

10: end for
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Under certain conditions, Q-learning provides a convergence with probability 1.

4.2 Experiments

By using the simulation introduced in section 3.3 and the algorithm of Q-learning

introduced in section 4.1, it is possible to try to teach the nerve graph some features in

contemplation of understanding how the real worm's nervous system evolves from the

point it is born. The larges obstacle in our way to do so is that this would require a

very precise tuning of the hyperparameters of our model. For instance, we do not know

the exact threshold value of the neuron, nor the threshold of muscles. We suspect that it

would be enough to know these values only compared to each other and the input sizes,

however, we have no information regarding these values. These observations do not really

allow us to call our graph model the model of C. elegans in this context. Hence, we say

that we try to teach some features to an arti�cial worm whose nervous system is based

on the data of the connectome of C. elegans.

To demonstrate this idea, we are describing one kind of experiment of using reinforcement

learning on our arti�cial worm, namely we would like it to make a forward motion as a

response to gentle touch. To represent a touch, we put some input into some sensory

neurons and let the signal propagete itself through the network. By the state of the

muscle cells, we may be able to say something about the motion the worm may or may

note perform.

The obvious snag here is that there is no straightforward way to map the sate of the

muscles onto the set of possible motions. To eliminate this issue, we used an approximation

of the motion based on [14]. We imagine our worm as a four wheel vehicle, meaning that

the front right, front left, rear right and rear left groups of muscles correspond to the

wheels. We also make the assumption that the front wheels are mainly responsible for

the direction of the motion, while the rear ones mainly give the force to move along.

Exploiting the fact that a real C. elegans moves along sine waves, we consider a group of

muscles being �red, it at least half of the muscles of the group are �ring at a given time

step, while the opposite side group is not.

We would like to learn the threshold values of the muscle groups. By doing so, we may

reach that the muscle states during a simulation indicate a sine wave like motion. In this

scenario, each muscle of a given group has the same threshold value, which is chosen from

the set {3, 6, 9, 12, 15, 17, 20}, yielding us to the number of 74 = 2401 possible threshold

con�gurations. We consider a possible con�guration of thresholds an action.

The reward depends on the state of the muscles at the end of a simulation. Using the

motion approximation described above, the reward is positive and equals to the distance
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of the motion, if this distance is positive and the direction of the motion is straightforward.

Otherwise, the reward equals to a large negative constant, if the distance is 0, and if the

distance is positive, but the motion is not straightforward, the reward is negative and the

bigger the direction of the movement di�ers from forward motion, the smaller the reward

is.

We simulated two di�erent scenario, namely anterior and posterior gentle touch. For

each simulation of the former case, the input of AVM, ALML and ALMR is sampled from

normal distribution with the same expected value and standard deviation. We imagine

one step to be one simulation. After twenty thousand steps, the learning algorithm does

not seem to converge.

Figure 4.2: Simpli�ed view of the rewards

The rewards of the con�gurations seems to show the same pattern during the whole

learning process. The punishment value for not moving is −5, one can see that the worm

barely moves forward. The average reward for the whole process was −3, 46. The action-

value pairs after the end of the learning process can be seen in the next �gure.
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This shows that basically no threshold con�guration is better than any other, and also

corresponds to the bad reward rate. After repeating this experiment one more time we

got basically the same result, there was no sign of convergence to any con�guration.

For the posterior touch case, the neurons PLML and PLMR ([24]) were fed with input

generated from a normal distribution. Unlike in the anterior touch case, we experienced

that the learning algorithm converged to one of the con�gurations.
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After repeating the experiment, successful learning was achieved again, the only di�erence

was that this time a di�erent con�guration was learnt. Both of these con�gurations had

the same threshold value for the front right and rear right muscle groups, namely 17 and

3. As or the front and rear left groups, one of the con�gurations has the values of 12 and

15, while the other one has the values of 17 and 20, respectively.

One may notice that the structure of these threshold con�gurations are quite similar.

While the relatively large di�erence between the threshold values of the rear groups re�ects

the essence of the rewarding system of this setup, one may notice that this result may

not be suitable for a real-life example, as one side is much more sensitive to neural signals

than the other one.
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5. Discussion

In this thesis, the main control theoretic results have been introduced along with

a successful application on a real-life biological system. In the �nal chapter, the basic

terminology of reinforcement learning were given in order to apply Q-learning on our

model based on the nervous system of C. elegans. While we only described one type of

experiment, one can create many kind of setup in order to discover some hidden properties

of the system. However, for the sake of any future work, �ne tuning the attributes of the

model is a fundamental task to perform successful analysis. Some of the important aspects

that need to be carefully reviewed are

• the threshold values of neurons

• the input values should be �tting well with these neuron threshold values

• the fatigue rate of the muscle cells

• the possible con�gurations shall be detailed enough

• the correctness of the approximation for the motion vector

• the reward function should closely re�ect our objective

• how many and which sensory neurons should be given external input

• any major biological misconception from our side
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