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Introduction

Spreading models are a subclass of interacting particle systems, creating precise mathe-
matical models with the help of probability theory to numerous real life processes arising
in physics, biology and economics. In this thesis we examine two similar stochastic pro-
cesses, where individuals spread their opinions or a virus between one another depending
on relationships or social contacts between them. The main difference between them is
that virus transmission is only possible through direct contacts, while opinion can spread
between any two individuals. The main interest in this thesis is epidemic spread; as we can
experience that in the past as well as nowadays, dealing with virus spread is still difficult.
Mathematical models aim to describe the likely outcome of an epidemic and calculate
the effect of different public health interventions such as mass vaccination campaigns or
restriction measurements. There exist several approaches to model mathematically epi-
demics, such as using differential equations [18], branching processes [1] and the theory of
random graphs [23]. Real life networks possess rather complex structure, as role, degree
and type (according to some aspect) of a node can be varying and thus having a great
influence in the outcome of the process. For this reason, in this thesis we give a possible
implementation to the discretized processes on an underlying random graph, describing
social contacts of individuals. It is widely studied that the structure of the graph can have
an important impact on the course of the epidemic, thus properties such as degree dis-
tribution are essential to understand the dynamics. In our implementation of the model,
age of an individual is also taken into consideration, since contact behaviour as well as
reaction to a specific disease often depends on age. We use collected statistics and basic
assumptions both in the creation of random graphs and in the setting of parameters of
the disease.
A variant of the voter model is also studied in this thesis. Voter model is typically used for
population dynamics, but also related to epidemics as well, since Durett and Neuhauser
[12] applied the voter model to study virus spread. The two processes can be connected by
the following idea: We can see virus spread as a special case of the voter model with two
different opinions (healthy and infected), but only one of the opinions (infected) can be
transmitted, while any individuals with infected opinion switch to healthy opinion after
a period of time. Also the virus can spread only through direct contacts of individuals
(edges of the graphs), while in the voter model it is possible for the particles to influence
one another without being neighbors in the graph. The voter model is usually examined

5



on the d-dimensional integer lattice, however as in case of epidemics, we also simulate the
process on random graphs. Codes of random graphs and processes were written in Matlab
and can be found at webpage [24].

The outline of the thesis is as follows. In the first three chapters we examine epidemics
described by compartment models: In the first chapter we define SEIR epidemics, where
disease transmission is possible between any two individuals of the population. As proved
in this chapter is possible to couple the epidemic model with a branching process. The
analytical study of virus spread is often achieved by branching processes, thus here we
review the most important properties and theorems about dicrete and continuous time
branching processes, as in the first two chapters we will strongly rely on these results. In the
first chapter in Theorem 1.3.4 we also give an asymptotic property stating the branching
process and the epidemic agree up to a time point tending to infinity in probability, as
we consider a population growing to infinity. Thus later we can also give the probability
of a major outbreak.

In the second chapter we study a special case of SEIR epidemic with no incuba-
tion period, the SIR model on random graphs of different structures created by different
methods: the complete graph, configuration model graphs and stochastic block model
graphs are investigated. Again we strongly rely on theorems and properties of branch-
ing processes, since by generation counting infected individuals, we can find a suitable
branching process to couple the virus spread with. Through this chapter we consider the
same disease with Exponential infectious period of parameter γ, and disease transmitting
independently only on the edges of the graph with Exponential rate λ. For each graph
structure we compute the mean number of infections caused by an infecting individual
through its infectious period in the beginning of the process. This quantity is usually
referred as the R0 of the disease, here proved to be strongly dependent not only on the
characteristic of the disease but also measures describing underlying graphs, too.

In the third chapter we carry out simulations of the SEIR process on age-grouped con-
figuration model random graphs of different degree distributions. The underlying graphs
are created in a way that they match the real-world data from [18] considering number
of individuals in - and number of contacts between age groups. Parameters are chosen to
replicate Covid − 19 virus. We expand a possible implementation of the classical time-
discretized SEIR process with possible self-isolation of individuals and also introduction
of restricting measurements corresponding to examine the process on an edge-reduced
subgraph of the original network. We investigate overall attack rate of the virus and max-
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imum number of infected individuals at the same time on graphs under different scenarios.
In the last chapter voter model is studied, however we also define generally interacting

particle systems to connect spread of diseases with the voter model. We describe a possible
implementation of the discretized process on graphs: analytical study as well as simulations
on Erdős–Rényi and Barabási–Albert graphs are also carried out in this model.
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Chapter 1

The stochastic SEIR epidemic model in

a closed homogeneous community

In this chapter firstly we define SEIR process, and introduce some basic facts about
stochastic epidemic models. Then in the second section we introduce the branching process
and review the most important results without proofs in order to be able to examine the
epidemic model with the help of branching processes according to Part I of book [1]. In
the last section of the chapter we prove that in homogeneous mixing population suitable
branching process approximations can be used to completely review the connection of
the two processes. General results of branching processes also lay the foundation of the
second chapter, since SEIR on different random graphs will be originated in a suitable
branching process.

1.1 Definition of the model

Compartmental models simplify the mathematical modelling of infectious diseases. In
these models individuals are assigned to compartments with labels and might progress
between them in time. These compartments corresponds to stages of a disease. The order
of the labels usually shows the flow patterns between the compartments as seen in the
following. In this section we introduce SEIR (Susceptible - Exposed - Infected -Recovered)
compartment model, one of the most frequently used epidemic model for diseases with
the characteristic that the individuals who recover from the illness are immune, and no
longer prone to the virus. Recovery confers lasting resistance in case of many diseases
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such as measles, mumps and rubella. In the SEIR category of models, individuals usually
experience a long incubation duration (in the acronym E for “exposed” category), such
that the individual is infected but not yet infectious (for example chicken pox). In this
sense, SIR models can be interpreted as a special case of SEIR with no incubation
period, as examined later in the second chapter.

Through the document we consider the case of a closed community: without influx or
born of new susceptibles, mortality and migration, so the size of the population remains
fixed for the process.

Firstly we give a precise definition to the SEIR process:

Definition 1.1.1 The stochastic SEIR epidemic model in a closed homogeneous commu-
nity. (Definition 1.1.1 in [1])
Consider a closed population of N + 1 individuals. At any point in time t each individual
is either susceptible, exposed, infectious or recovered. Let S(t), E(t), I(t) and R(t) denote
the numbers of individuals in the different states at time t (S(t)+E(t)+I(t)+R(t) = N+1

for all t). The epidemic starts at t = 0 in a specified state called the index case (often the
state with one infectious individual), which corresponds to some individuals being exter-
nally infected, and the rest being susceptible. Then the process operates the following way:
While infectious, an individual has infectious contacts according to a Poisson process with
rate λ. Each contact is with an individual chosen uniformly at random from the rest of
the population, and if the contacted individual is susceptible it becomes infected, otherwise
the infectious contact has no effect. Individuals that become infected are first latent (called
exposed) for a random duration (incubation period) L with distribution FL, then they be-
come infectious for a duration (infectious period) I with distribution FI , after which they
become recovered and also immune for the remaining time. All Poisson processes, uniform
contact choices, latent periods and infectious periods of all individuals are defined to be
mutually independent.

The epidemic goes on until the first time τ when there are no exposed or infectious
individuals, E(τ) + I(τ) = 0. At this time no further individuals can get infected so the
epidemic stops. The final state hence consists of susceptible and recovered individuals, and
we let Z denote the final size, the number of individuals who got infected by the end of the
epidemic excluding the index case(s): Z = R(τ)− I(0) = N − S(τ).

The rate of infectious contacts is λ, so the rate at which one infectious has contact with
a specific other individual is λ

N
since each contact is with a uniformly chosen other indi-
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vidual. This way only the incubation and infectious period is independent of N , however
the whole epidemic is not, thus we usually emphasise dependence of N with an index.

Some special cases of the model have received special attention in the literature. The
model is called Markovian SEIR, if both L and I are exponentially distributed, while
with L = 0 and exponential I choice the SIR process is known as General stochastic
epidemic model examined later in the second chapter.

Only regarding the infectious period the two most studied special cases are when it
is exponentially distributed and when it is nonrandom. To model real infections usually
neither of these properties hold, and the approximating distribution is strongly dependent
on the exact disease to be modelled. Later in the third Chapter when simulating the
process on random graphs, we will also choose exponentially distributed latent period, and
recovery period with a small variance distribution. To capture more reality, λ parameter
can be defined as not a constant, but a function of time elapsed from the infection,
however in this paper only time-independent λ is examined in analytical result as well as
in simulations.

One of the most important quantities in epidemic models is the R0 basic reproduction
number, which denotes the mean number of infections caused by an infected individual be-
fore its recovery during the early stage of an outbreak. So it measures the average number
of infections an infectious individual causes during its infectious period in a population of
only susceptible individuals (without vaccination or previous immunity). It characterizes
the intensity of the epidemic. R0 has an important threshold value of 1 (critical case),
restricting measures and vaccination strategies usually target the decrease of R0 below
this. If R0 > 1, it suggests that an infected is "replaced" with more than one infectee
after its recovery in the beginning of the epidemic, possibly resulting in the infection of a
significant fraction of the population through the process, later referred as a major out-
break. With the same reasoning in case of R0 < 1 we expect the virus to disappear after
reaching negligible ratio of the community. The presumption above later will be engrossed
as a theorem and proved with the help of branching processes in Corollary 1.3.5.

1.2 Branching Process

The stochastic and mathematical analysis of the spread of infectious diseases in large
populations often relies on the theory of branching processes. Kendall in book [17] was
the first in 1956 to suggest a branching process approximation for epidemics.
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Branching processes are introduced as a model to describe family trees, where the
simplifying assumption is that all individuals have the same probability of having k de-
scendants, and the numbers of descendants of different individuals are independent. The
classical model ignores important properties of real populations, such as changing circum-
stances, however the model has proved to be useful in many situations. The process with
varying offspring distribution is also studied in book [16].

With branching process we can model the reproduction of organisms such as human
beings, cells or neutrons, in addition in [11] Durrett used it to study the emergence of a
giant component in Erdős–Rényi random graphs.

Branching processes are also useful to describe the spread of SEIR epidemics, where
an infection can be seen as a birth, with the infector being the ancestor and the infectee the
descendant. In this model competition for resources is obvious, since once a susceptible
individual gets infected, it cannot be infected ever again. However, if the population
size N is large and the number of no longer-susceptible individuals is of o(

√
N), then

suitable branching process approximations are very good according to paper [2] in different
types of networks such as homogeneous mixing populations, configuration model network
populations and multi-type population models. In the third section we prove this result in
case of homogeneous mixing populations. When we later introduce epidemics models on
graphs we will also rely on these results. In article [8] branching process is used to study
epidemics with different vaccination strategies.

Firstly, I compass the reason why it is a natural idea and possible to describe the
spread of SEIR epidemics with branching process, then introduce the branching process
and some important results without proof. In the next section then an approximation and
also a totally equivalent definition is given to SEIR with the help of branching process.

We consider the model with a large population N at the "beginning" of the pro-
cess, when less than k = k(N) individuals have been infected since t = 0. According to
Definition 1.1.1 each infectious individual transmits the disease independently with rate
λ, however dependence appears due to the fact that individuals become immune to the
virus after recovering, so an individual can get infected at most once. Thus making an
infectious contact with a previously infected individual (either in E, I or R) results in no
further infection. Although, within a large community at the beginning of the outbreak
two infectious individuals make contact with the same individuals only with a negligible
probability. Therefore, we can approximate the number of infected individuals at the be-
ginning of the outbreak by a branching process: In this branching process "being born"
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means to get infected, and correspondingly "dying" is identical to a recovery of individual
in the SEIR model.

To examine analytic properties of the process, such as the probability that the branch-
ing process does not go extinct corresponding to the disappearance of the disease, it is
practical to associate with the process its discrete-time skeleton. If in the SEIR model the
latent period is long in comparison to the infectious period, then we can divide infected
individuals into generations: the first generation consists of the index cases, the second
generation those who were infected by the index case(s), and so on. Since the number
of offspring of an individual depends on the duration of the reproductive stage, this de-
pendence has to appear in the discrete-time process: Conditional upon reproductive stage
I = y, the number of descendants has Poisson distribution with parameter y, thus the
unconditional distribution of number of offspring is mixed-Poisson. Therefore if we simply
study the number of individuals born in each generation, then our branching process is a
Bienaymé–Galton–Watson process with offspring distribution being MixPoi(λI).

In the following I give a precise definition first to discrete and continuous time branch-
ing process in general, and review some of the most important results without proof
according to A.1 part of book [1], which will serve as a theoretical backbone to theorems
about epidemics in the next section.

Definition 1.2.1 Discrete time branching process.
We consider that initially (at generation 0) an ancestor has ξ0 children, according to some
probability distribution P(ξ0 = k) = qk. Each child of the ancestor belongs to generation 1.
The i-th of those children has himself ξ1,i children, where the random variables {ξk,i, k ≥
0, i ≥ 1} are i.i.d., and all having the same distribution as ξ0. We define Xn as the number
of individuals in generation n: Xn+1 =

∑Xn
i=1 ξn,i.

In the following we give the most widely-known result about the connection between
probability of extinction and m = E(ξ0) according to [1] book Proposition A.1.1. A proof
can be easily constructed with the help of the generating function of Xn.

Theorem 1.2.2 Let g(z) denote the generating function of ξ0, and z∞ = P(Xn = 0) for
some n.

• If m ≤ 1, then P(Xn = 0)→ 1 as n→∞, and z∞ = 1.

• If m > 1, P(Xn = 0) → z∞ = q as n → ∞, where q is the smallest solution of the
equation z = g(z).
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Now we consider the process in continuous time:

Definition 1.2.3 Binary continuous time branching process.
The process starts with a single ancestor born at time t = 0. This ancestor is characterized
by its life length L0 and the number of its children born on time interval [0, t] denoted by
N0(t), thus the pair (L0, {N0(t), t ≥ 0}) describes him. We assume of course that the
ancestor does not give birth after his death, so N0(∞) = N0(L0). We now assume that
the individuals are numbered in the order of their birth. To each individual i is attached
a pair (Li, {Ni(t)}), such that the sequence of pairs {(Li, {Ni(t)})}i≥0 is independent and
identically distributed. If the individual i is born at time Bi, the offspring of individual i are
born at the jump times of the process {Ni(t−Bi), Bi ≤ t ≤ Bi+Li}. Since Bi depends only
upon the pairs {(Lj, {Nj(t)})}0≤j<i, Bi and (Li, {Ni(t)}) are also independent, because
{(Li, {Ni(t)})}i≥0 is i.i.d.

Let Xt denote the number of individuals in the population alive at time t. We say the
process to be Markovian if and only if the following properties hold:

• the pair (Li, Ni(t)) is such that Li and {Ni(t), t ≥ 0} are independent.

• Li is an exponential random variable with parameter d.

• Ni(t) is a Poisson process with rate b.

Now we define the two most commonly used values of branching processes describing
the properties and intensity of the process in some sense. These parameters of the model
play an important part in understanding and determining the behaviour of birth-death
process.

Definition 1.2.4 Malthusian parameter.
The Malthusian parameter or the epidemic growth rate α of a branching process is defined
as the mean number of births minus the mean number of death per unit time. In the
super-critical case (1 < m <∞) α is the unique solution of∫ ∞

0

e−αtF (dt) = 1, (1.1)

where F (t) = E(N(t)).

We shall denote by Xk
t the number of descendants at time t of k ancestors at time 0.

The branching property implies that {Xk
t , t ≥ 0} is the sum of k independent copies of

{Xt, t ≥ 0}.
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Definition 1.2.5 Mean number of offspring.
Another important quantity is the mean number of offspring of each individual, which is
equal to m = E(N0(L0)). The process Xk

t is said to be

• subcritical, if m < 1 or α < 0.

• critical, if m = 1 or α = 0.

• supercritical, if m > 1 or α > 0

In case of a Markovian process m = b
d
and α = b− d. If N(t) is Poisson process with

rate λ, then F (t) = λ(t) is a function of time in Equation (1.1).
Now we try to investigate the dynamics of the process characterized and significantly

determined by the parameters above. We put emphasis on Markovian branching processes,
since in the second chapter we study the Markovian SIR epidemics on graphs. However,
we also consider non-Markovian or so called Crump–Mode–Jagers processes. We have the
following results for Xt and Xk

t considering a Markovian branching process:

Theorem 1.2.6 (Corollary A.1.3. in [1])
With Markovian branching process we have that E(Xk

t ) = keαt, where α = b− d.

From the theorem above we can see that in the subcritical case Xk
t → 0 in L1(Ω), and

it is also easy to show with the help of Markov inequality that limt→∞X
k
t = 0 almost

surely. (This also holds in the m = 1 critical case.)
We now study behaviour of Markovian Xt in the supercritical case, as t → ∞. The

next theorem is a key theorem in branching processes. It states that if the number of
individuals grows large, then it roughly grows at a rate proportional to eαt, where t is the
time since the population began, and α is the Malthusian parameter.

Theorem 1.2.7 (Proposition A.1.4. from [1])
If m > 1, or equivalently α > 0, there exists a non-negative random variable W such that
Xt ∼ Weαt almost surely, as t→∞. Moreover {W = 0} = {∃t > 0 : Xt = 0} and

P(W = 0) = P({∃t > 0 : Xt = 0}) =
d

b
(1.2)

Thus the branching process goes extinct with a probability of d
b
, which is the same as

P(limt→∞Xte
−αt = 0).
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In the non-Markovian case we also have similar, however weaker results considered the
growth rate of Xt with m > 1.

Theorem 1.2.8 (Proposition A.1.5. in [1])
Let F (t) denote F (t) = E(N(t)) as before and G(t) = P(L ≤ t). If 1 < m < ∞, then

there exists a unique α > 0 such that∫ ∞
0

e−αtF (dt) = 1, and

E(Xt) ∼ aeαt, where 0 < a =

∫∞
0

(1−G(t))e−αtdt∫∞
0
te−αtF (dt)

<∞.

1.3 The early stage of an outbreak

After possessing the necessary concept and properties of branching processes, I return to
build up the connection between SEIR models and the previous process along the first
chapter of book [1]. We now define the branching process in question to show that the
epidemic and branching process have similar distributions in the beginning.

The following notions will be used to construct the approximating branching process
as well as the stochastic SEIR epidemic for each N as follows:

Let L0, L1, . . . be i.i.d. latent periods having distribution FL, and similarly let I0, I1, . . .
be i.i.d. infectious periods having distribution FI . Further, let ξ0(·), ξ1(·), . . . be i.i.d. Pois-
son processes having intensity λ, and let U1, U2, . . . be i.i.d. U([0, 1]) random variables. All
random variables and Poisson processes above are assumed to be mutually independent.

Definition 1.3.1 The approximating branching process.(Definition 1.2.2.)
At time t = 0 we start with one new born ancestor having label 0. Let the ancestor
have childhood length L0 and reproductive stage for a duration I0 (so the ancestor dies
at time L0 + I0), during which the ancestor gives birth at the time points of the Poisson
process ξ0(·). If the jump times of this Poisson process are denoted T0,1 < T0,2 < . . . and
X0 denotes the number of jumps prior to I0, then the ancestor gives birth at the time
points L0 + T0,1, . . . , L0 + T0,X0 (the set is empty if X0 = 0). The first born individual
is given label 1, and having childhood period L1, reproductive period I1 and birth process
ξ1(·) defined above. This individual gives birth according to the same rules (starting the
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latency period at time L0 + T0,1), and the next individual born, either to individual 0 or
1, is given label 2 and variables L2, I2 and birth process ξ2(·), and so on. This defines the
branching process, and we let L(t), I(t), R(t) respectively denote the numbers of individuals
in the childhood state, in the reproductive state and dead, respectively, at time t. The total
number of individuals born up to time t, excluding the ancestor/index case, is denoted by
Z(t) = L(t)+I(t)+R(t)−1 in the branching process, and the ultimate number ever born,
excluding the ancestor, is denoted by Z which may be finite or infinite.

We now define the epidemic for any fixed N with the help of branching process (in the
epidemic childhood corresponds to latent and reproductive stage to being infectious). This
is done similarly as before with the exception that we now keep track of which individuals
get infected using the uniform random variables U1, U2, . . . .

Definition 1.3.2 The stochastic SEIR epidemic with N initial susceptibles. (Definition
1.2.3.)
We label the N + 1 individuals 0, 1, . . . , N , with the index case having label 0 and the
others being labelled arbitrarily. As for the branching process, the index case is given
latency period L0, infectious period I0 and contact process ξ0(·) and the epidemic is
started at time t = 0. The infectious contacts of the index case occur at the time points
L0 + T0,1, . . . , L0 + T0,X0. The first infectious contact is with individuals [U1N ] + 1. This
individual, k say, then becomes infected (and latent) and is given latent period, infectious
period and contact process L1, I1 and ξ1(·). The next infectious contact (from either the
index case or individual k) will be with individual [U2N ] + 1. If the contacted person is
individual k then nothing happens, but otherwise this new individual gets infected (and
latent), and so on.

Infectious contacts only result in infection if the contacted individual is still susceptible.
When a contact is with an already infected individual the branching process has a birth
whereas there is no infection in the epidemic: we say a “ghost” was infected when comparing
with the branching process. Descendants of all ghosts are also ignored in the epidemic.
The epidemic goes on until there are no latent or infectious individuals. This will happen
within a finite time, bounded by

∑N
j=0(Lj + Ij). The final number of infected individuals

excluding the index case is as before denoted ZN ∈ {0, ..., N}. Similar to before we let
LN(t), IN(t), RN(t) denote the numbers of latent, infectious and recovered individuals at
time t, and now we can also define the number of susceptibles SN(t) = N + 1− LN(t)−
IN(t)−RN(t).
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We now state two important results for these constructions of the branching process
and epidemics.

Theorem 1.3.3 (Theorem 1.2.4. in [1])
Definition 1.3.2 above agrees with the earlier Definition 1.1.1 of the Stochastic SEIR
epidemic in a homogeneous community.

Proof. The equivalence of the two definitions can be easily seen by checking that the
second definition satisfies all properties of the first: The latent and infectious periods have
the desired distributions, and an infective has infectious contacts with others at overall
rate λ, and each time such a contact is with a uniformly selected individual as desired.

�

We can not only give an alternative definition to the stochastic SEIR model with the
branching process, but also state an asymptotic property: The following theorem shows
that the epidemic behaves like the branching process up to a time point TN tending
to infinity in probability as N → ∞. This implies that we can use theory of branching
processes to obtain results for the early part of the epidemic.

In the proofs of the following theorem we will strongly rely on propositions and the-
orems stated in the previous chapter about branching processes is general. However, in
general Definition 1.2.1 and 1.2.3 of discrete and continuous time branching processes we
mention and consider no childhood period of individuals. The idea of investigating the
number of individuals born in each generation instead of continuous time was already
introduced: In this representation of the process the length or even existence of childhood
period corresponding to infected but not yet infectious period in the epidemics model
makes no difference. Therefore we can lean on theorems of the second chapter without
any restriction.

Theorem 1.3.4 (Theorem 1.2.5. in [1])
We let MN denote the number of infections prior to the first ghost, so the number of
uniformly selected individuals, before someone was reselected. (If this never happens we
set MN = ∞.) Also let TN denote the time at which the first ghost appears (and corre-
spondingly if this never happens we set TN =∞).

The branching process and N-epidemic agree up until TN : (LN(t), IN(t), RN(t)) =

(L(t), I(t), R(t)) for all t ∈ [0, TN). Secondly, TN → ∞ and MN → ∞ in probability as
N → ∞. So processes defined in 1.3.2 and 1.3.1 are identical up to a time point TN ,
which tends to infinity in probability as N →∞.
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Proof. The first statement of the proof is obvious because of the alternative definition
of SEIR epidemic with the help of branching process 1.3.2. The only difference between
the epidemic and the branching process in our construction occurs after the first time
when some individual is contacted again, since this results in new individual born in the
branching process but no new infection in the epidemic. Thus the tho processes must
agree until the appearance of the first ghost, noted by TN .

As for the second part of the theorem we first compute the probability that MN will
tend to infinity, and then that the time TN until the first ghost appears also tends to
infinity.

Since P(MN > k) can happen if and only if the first k contacts are with k distinct
individuals, we can easily compute its value:

P(MN > k) = 1 · N − 1

N
· N − 2

N
. . .

N − k
N

=
k∏
j=0

(
1− j

N

)
For fixed k we see that this probability tends to 1 as N → ∞. We can in fact say more.
We have the following lower bound:

P(MN > k) =
k∏
j=0

(
1− j

N

)
≥ 1−

k∑
j=0

( j
N

)
= 1− (k + 1)k

2N

As a consequence, we see that P(MN > k(N)) → 1 as long as k = k(N) = o(
√
N). In

particular MN →∞ in probability as N →∞. In the following we use w.l.p abbreviation
corresponding to "with large probability", meaning with a probability tending to 1 as
N →∞.

This implies that all infectious contacts up to k(N) will w.l.p be with distinct individ-
uals, and therefore we are able to approximate the epidemic with the branching process
for any k(N) = o(

√
N).

Let Z(t) denote the number of individuals born before t in the branching process
(excluding the ancestor) and ZN(t) = N − SN(t) the number of individuals that have
been infected before t (excluding the index case) in the N-epidemic. Since the epidemic
and branching process agree up until TN it follows that Z(t) = ZN(t) for t < TN .

But, since k(N) < MN w.l.p. it follows that inf{t : Z(t) = k(N)} ≤ TN w.l.p. If the
branching process is (sub)critical, then Z(t) remains bounded as t → ∞, so TN = ∞
w.l.p. according to its definition.

Consider now the supercritical case. According to Theorem 1.2.8 the expected number
of individuals alive at time t denoted asXt can be approximated by aeαt, where 0 < a <∞
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is a constant and where α as described in 1.1 solves the equation∫ ∞
0

e−αsF (ds) =

∫ ∞
0

e−αsλ(s)ds = 1, (1.3)

since F (ds) = E(N(s)), which we can calculate in the following: The function λ(s) is
determined by FL and FI , since λ(s) = λP(individual infectious at s)= λP(L < s < L+I)

is the rate at which an individual gives birth s units after being born.
However, we need to compute Z(t) the number of individuals born ever before t in the

branching process. We know that Z(t) ≤ Xt, but we can estimate the expected value of
Z(t) by integrating Xs for 0 ≤ s ≤ t. Thus we get

E(Z(t)) ≤
∫ t

0

E(Xs)ds ≤ Keαt,

for some suitable K constant. Since Z(t) ≥ 0 and Z(t) ∈ L1(Ω) we can use Markov
inequality ∀K2 > 0,

P(Z(t) ≥ K2) ≤
E(Z(t))

K2

≤ Keαt

K2

We can conclude Z(t) = OP (eαt), meaning P(Z(t) > K3e
rt)→ 0, as K3 →∞. Because

of the reasons above and since inf{t : Z(t) = k(N)} ≤ TN w.l.p.

k(N) ≤ Z(TN) ≤ ceαT
N

with large probability

which implies that

P
(
TN ≥ log(k(N))

α
− log(c)

)
→ 1, as N →∞.

As a consequence by choosing k(N) = N
1
3 it follows that TN → ∞ in probability,

since it satisfies k(N) = o(
√
N).

�

We give two corollaries, stating that as long as the branching process stays finite the
epidemic and branching process coincide forever. However, if R0 > 1 and the branching
process grows beyond all limits, then the epidemic and branching process will not remain
identical.

Corollary 1.3.5 (Corollary 1.2.6. and Corollary 1.2.7. in [1])

• If R0 ≤ 1, then (LN(t), IN(t), RN(t)) = (L(t), I(t), R(t)) for all t ∈ [0,∞) w.l.p.
As a consequence, P(ZN = k) → P(Z = k) as N → ∞, and in particular ZN is
bounded in probability.
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• If R0 > 1, then for finite k: P(ZN = k) → P(Z = k) as N → ∞. Further,
{ZN →∞} with the same probability as {Z =∞}, which is the complement to the
extinction probability, the latter being the smallest solution to the equation z = g(z)

as described in Theorem 1.2.2.

Proof. In both cases we use Theorem 1.3.4. Firstly we consider R0 ≤ 1. Since we showed
that the epidemic and the branching process agree up until there has been MN births,
where for example MN > N

1
3 with large probability. However, we also know according

to Theorem 1.2.2 that in (sub)critical case the probability of extinction tends to 1 as
N → ∞, thus the probability of the number of births exceeding MN is tending to 0 as
N →∞. This implies that P(TN =∞) = 1 according to definition, therefore the epidemic
and the branching process agree forever.

In the supercritical case R0 > 1 we reason as follows: As we saw during the proof
of Theorem 1.3.4, if only k births occur, there will be no ghost in the epidemic with
large probability. Thus the epidemic and the branching process agree forever w.l.p., and
P(ZN = k)→ P(Z = k) as N →∞ for every finite k.

In the branching process a new individual is born, even when the disease is transmitted
to a previously infected individual in the epidemic resulting in no new real infection. Thus
we can conclude Z ≥ ZN ≥ MN . The coupling construction showed that MN → ∞ on
the other part of the sample space. Thus

P( lim
N→∞

ZN =∞) = P(Z =∞).

By using the discrete-time skeleton again, we know that the probability of extinction is
the smallest solution of equation z = g(z). Thus limN→∞ P(ZN =∞) = 1− z.

�

The two corollaries also show that the final number of infected individuals ZN will be
small with a probability equal to the extinction probability of the approximating branching
process, however it will tend to infinity with the remaining probability. According to
Section 3.3 in [1] the distribution of ZN is bimodal with one part close to 0 and the other
part being O(N) referred as minor and major outbreaks.
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Chapter 2

Epidemic models on random graphs

In this chapter we specialize epidemic models by adding to the process an underlying
network of connections between individuals represented by a random (or deterministic)
graph. In the last chapter we investigated the process with N individuals, where disease
transmission was possible between any two individuals. However, in a real life epidemics,
especially with largeN , this property seems surreal. In case of most of the viruses, infection
spreads with high probability (if not only) between individuals having social relationship
corresponding to edges in the random graph. In this chapter we assume that the random
graph describing relationships which considered suitable for a disease to spread, is fixed
through the process, and only on these edges of the graphs can the virus spread. Explaining
a real-life epidemics we should consider a random graph with some edges changing with
time corresponding to change in contacts of individuals. Another possible solution is a
fixed random graph through time plus some random edges changing as the process runs,
for describing the transmission of the disease between two individuals having a random
and short interaction, for example infection on public transportation. However, there are
diseases such as AIDS or Hepatitis C, where the disease can only spread along a social
network of individuals. With a graph representation we can also consider the spread of the
disease only by direct contacts neglecting indirect contacts such as airborne transmission
or contaminated objects, since the probability of these can be reduced by precautionary
actions.

Recently epidemics are commonly studied on graphs, Durrett in [11] had examined
SIR epidemics on Newman-Strogatz-Watts random graphs, and the SIS model on scale-
free networks. The percolation on NSW random graphs was also studied earlier by Cal-
loway, Newman, Strogatz, and Watts 2000 in [10].
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In the following chapter we discuss SIR epidemics model, which can be interpreted as
a special case of SEIR model reviewed in the previous chapter with no incubation period
I = 0. In the first section we define the model and some essential quantities concerning
the epidemics. Then according to book [23], we study the process on three types of graphs.

2.1 Definition of SIR

We now describe the spread of SIR diseases on graphs: We consider a population of size
N whose individuals are the vertices of a random graph GN . Similar to SEIR as before,
in SIR each individual at every moment is in exactly one of the following groups:

• Susceptible: individuals who can contract the disease

• Infected: individuals who can transmit the disease to susceptibles

• Recovered: individuals who were previously infectious and cannot transmit the dis-
ease anymore.

We denote corresponding by St, It and Rt the sizes of groups at time t, so St+It+Rt = N

since we assume a closed community.
On the graph GN , the dynamics is as follows. To each individual in I is associated

an exponential random clock with rate γ to determine its removal or length of infectious
period. (So with the notion of the previous chapter FI ∼ Exp(γ).) To each edge with
an infectious ego and a susceptible alter, we associate a random exponential clock with
rate λ. When it rings, the edge transmits the disease and the susceptible alter becomes
infectious.

In this chapter we introduce three graphs of different constructions and properties and
study analytically SIR epidemics models on them. As in the previous chapter, we compute
the critical value of the basic reproduction number R0 on each graph: This R0 takes into
consideration not only a characteristics of the disease (values of γ and λ parameters), but
also the structure of the graph.

Firstly, we give definition to R0 in relationship with birth rate in a branching process.

Definition 2.1.1 R0 (Definition 2.0.1 in [23])
The basic reproduction number of the epidemic, denoted by R0, is the mean offspring
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number of the branching process approximating the infectious population in early stages.
If we denote by β(t) the birth rate at time t > 0 in this branching process, then:

R0 =

∫ ∞
0

β(t)dt (2.1)

Because of Theorem 1.2.7 and the coupling of the SIR model with branching process,
we know that with R0 > 1 if the epidemic grows large, then the number of infectious
individuals grows roughly proportionally to eαt during the initial phase of the epidemic,
since in this chapter we only consider the Markovian SIR.

The epidemic growth rate α corresponds to the Malthusian parameter for population
growth defined before in the first Chapter. In the supercritical case it is a positive constant,
which depends on the parameters of the model, through the equation

1 =

∫ ∞
0

e−αtβ(t)dt (2.2)

It is easy to see that the equation below is the same as Equation (1.1), since F (t) =

E(N(t)) = β(t) according to its definition.
In the chapter we will use these simplified equations to compute critical values of R0

in different graphs.

2.2 Complete graph

Firstly, we examine the epidemics on the deterministic complete graph KN . The process
thus remains the same as in the previous chapter (except with no incubation period), and
can be approximated with a branching process.

Theorem 2.2.1 R0 for homogeneous mixing (Proposition 2.1.1 in [23])
In the case where GN = KN is the complete graph, many results for epidemics in large
homogeneous mixing populations can be obtained since the initial phase of the epidemic is
well approximated by a branching process.
The reproduction number is given by: R0 = λ

γ

In the case where λ > γ, then α = λ − γ, and the basic reproduction number can be
expressed as R0 = 1 + α

γ
.
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The second expression of R0 is proved to be helpful in case of the determination of R0

for a real-life disease, since it is independent of λ which can be complicated to estimate.
However, removal rate γ is usually easily measurable and the Malthusian parameter α
can be estimated from the dynamics of the emerging epidemics.
Proof. We use Definition 2.1.1 of R0, but for this first we need to determine the birth
rate. In homogeneous mixing population an infected individual makes contacts if it is still
infectious at rate λ, while e−γt is the probability that the individual is still infectious t
time units after it became infected, so β(t) = λe−γt.

R0 =

∫ ∞
0

β(t)dt =

∫ ∞
0

λe−γtdt =
[
− λ

γ
e−γt

]∞
t=0

= 0−
(
− λ

γ

)
=
λ

γ

According to (2.2), we need to solve the following equation:∫ ∞
0

e−αtβ(t)dt =

∫ ∞
0

e−αtλe−γtdt = λ

∫ ∞
0

e−(α+γ)tdt = 1

Thus 1 = λ
α+γ

resulting in α = λ− γ, which was to be demonstrated. �

2.3 Configuration model

In this section we bring more reality to the epidemics model by describing contacts of
individuals by a random graph suitable for satisfying many properties of real life networks.

In 1980 Bollobás was the first to construct graphs with specified degree distributions in
[4]. Since then, configuration models play a significant role in the mathematical modelling
and study of real-life networks. In paper [8] epidemics with different vaccinating strategies
are studied on configuration model graphs, while in [13] the SIR epidemic is examined
on an upgraded version of the graph: For each node of the graph not only a single number
of degree is given, but also the number of triangles of which the vertice is member. The
model is called Clustering Configuration Model (CMC) and was introduced by Miller and
Newman in 2009, motivated by the fact that clustering coefficient of graphs plays a crucial
role in the description of social networks.

We now introduce the classical Bollobás–Molloy–Reed or Configuration model, which
creates a random graph to a given degree sequence or degree distribution.

Definition 2.3.1 Configuration model.
Let p = (pk, k ∈ Z+) be a probability distribution on Z+. The Configuration model con-
structs a random graph GN(V,E) with N = |V | vertices for this probability distribution as
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follows. We associate with each vertex u ∈ V an independent random variable Xu drawn
from the distribution p that corresponds to the number of edges attached to u, or the degree
of u in GN random graph. Conditionally on

∑
u∈V Xu is even both of the following algo-

rithms create a random graph. (If the sum of degrees is odd, we redraw the degree of the
last node u, Xu from probability distribution p until the sum becomes even.) We create Xu

half edges or stubs for each u vertex, then we pair them according to one of the following
algorithms:

• During Algorithm 1. We choose two from the remained free stubs uniformly at ran-
dom, and form them into an edge of GN graph.

• During Algorithm 2. We associate with each stub an independent uniform random
variable on [0, 1] and sort the half-edges by decreasing values. Then we pair each odd
stub with the following even stub.

The Configuration model (created by Algorithm 1 or 2) is a multigraph, possibly con-
taining self-loops and multiple edges. However, according to Durrett we have asymptotic
result for the number of self-loops and multiple edges, if pk has a finite second moment.

Theorem 2.3.2 (Theorem 3.1.2. in [11])
Let µ =

∑
k kpk and µ2 =

∑
k k(k − 1)pk. As N → ∞, the number of self-loops χ0

and the number of parallel edges χ1 are asymptotically independent Poisson(µ2/2µ) and
Poisson((µ2/2µ)2) variables.

Thus the probability that the graph is simple has a positive limit, and E(χ0

N
) → 0 and

E(χ1

N
) → 0 as N → ∞. So, to describe relationships between individuals is reasonable

with the help of configuration model, since the number of self-loops and parallel edges is
negligible in a large graph. Therefore later in the third section we will be able to simulate
the process on configuration model random graphs.

From the aspect of epidemics, there are two definitions in connection with the config-
uration model, which play a major role in the understanding of disease dynamics on CM
graphs.

Definition 2.3.3 Size-biased degree distribution.
Lets suppose that

(
pk, k ∈ Z

)
is a graph degree distribution, with mean µ, and variance

σ2. We define
(
qk, k ∈ Z

)
the size-biased degree distribution of p,

qk =
kpk∑
l∈Z+

lpl
(2.3)
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Because of the construction, we see that in such a network, given an edge of u, the node v is
chosen proportionally to its number of half-edges. Since the epidemic starts by a randomly
selected individual being infected from outside, this individual has (approximately) the
degree distribution p, while the friends of this individual, (or of any individual), have the
size biased degree distribution q.

Another important value is the mean excess degree of a Configuration model graph:

Definition 2.3.4 Mean excess degree.
Let us assume that p = (pk, k ∈ Z+) admits a second order moment, so µ =

∑
k∈Z+

kpk =

g
′
(1), and σ2 =

∑
k∈Z+

(k − µ)2pk = g
′′
(1) + g

′
(1)− (g

′
(1))2, where g(z) is the generating

function of the degree distribution. The mean excess degree of the configuration model with
degree distribution p is defined the following way:

κ =
∑
k≥0

k(k − 1)pk∑
l∈Z+lpl

=
σ2

µ
+ µ− 1 =

g
′′
(1)

g′(1)
= Eq(D − 1) (2.4)

The mean excess degree κ, is in the context of SIR epidemics spreading on graphs, the
mean number of susceptibles that are contaminated by a typical infective (other than his
or her own infector).

Now we compute the value of R0 depending on the parameters of the epidemic model,
and pk degree distribution of the graph.

Theorem 2.3.5 R0 for Configuration Model. (Proposition 2.2 in [23])
Assume that GN is a configuration model graph whose degree distribution p admits a
mean µ and a variance σ2. Then

R0 =
( κλ

λ+ γ

)
. (2.5)

In the super-critical case, R0 can also be rewritten as

R0 =
γ + α

γ + α/κ
= 1 +

α

λ+ γ
(2.6)

Proof. As we did in the first chapter, we try to couple the epidemic model with a suitable
branching process to study analytic properties: Let us consider the following continuous
time birth-death process (Xt)t≥0. Individuals live during exponential independent times
with expectation 1

γ
. To each individual is associated a maximal number of offspring k−1,

where k (the ‘degree’ of the individual) is drawn in the size-biased distribution q. We
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associate to such an individual k − 1 independent exponential random variables with
expectations 1

λ
.

The ages at which the individual gives birth are the exponential random variables that
are smaller than the lifetime of the individual. There is an intuitive coupling between
(Xt)t≥0 and (It)t≥0 such as Xt ≥ It for every t, with the equality as long as no ‘ghost’ has
appeared. We can also associate with the process (Xt)t≥0 its discrete-time skeleton that
is a Galton–Watson process (Zn)n≥0 with Z0 = 1.
Now we try to compute the descendant distribution of an individual in the time-discretized
process: Conditionally on the degree k and the fact that the chosen individual remains
infectious for a duration y, the number of contacts contaminated by this individual follows
a binomial distribution with parameters k − 1 and 1 − e−λy: The chosen individual can
transmit the disease to a maximum of k − 1 individuals independently with 1 − eλy

probability, because an infection occurs if and only if the random variable with Exp(λ)

distribution corresponding to the time of birth is within the individual’s lifetime, and if
ζ ∼ Exp(λ), then P(ζ < y) = 1− e−λy.

Let Ψ denote the number of contacts contaminated by a randomly chosen individual
and ψ = ψ(k, y) denote the number of contacts contaminated by a randomly chosen
individual conditionally on it has degree k and infectious duration of y. To get R0 we
need to calculate E(Ψ). Using the law of total expectation E(E(Ψ|F)) = E(Ψ) for any
σ-algebra F , we only need E(ψ(k, y)). Since ψ ≥ 0, we use Fubini’s Theorem:

E(ψ(k, y)) =

∫ ∫ ∫
ψ(k, y)dP1dP2dP3,

where P1, P2 and P3 are the probability measures of random variables with Binomial,
Exponential distribution and distribution determined by size-biased degree distribution.
Since a random variable with Bin(n, p) distribution has expected value of np, and P2 and
P3 measures are given, we get

R0 = E(ψ(k, y)) =
∑
k≥0

k · pk
µ

∫ ∞
0

(k − 1)(1− e−λy)γe−γydy =

=
∑
k≥0

k · pk
µ

(k − 1)
λ

λ+ γ
=
(g′′(1)

g′(1)
− 1
) λ

λ+ γ
=

κλ

λ+ γ

From Definition 2.1.1 we can obtain that β(t) = κλe−(λ+γ)t. This can also be seen
by noting that κ is the expected number of susceptible acquaintances a typical newly
infected individual has in the early stages of the epidemic, while e−λt is the probability
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that a given susceptible individual is not contacted by the infective over a period of t time
units, and e−γt is the probability that the infectious individual is still infectious t time
units after he or she became infected.

Now the proof is almost complete, we only need to calculate some alternative expres-
sion to R0 in the super-critical case. If α > 0 from Equation (2.2) we can obtain the value
of α by solving the following:

1 =

∫ ∞
0

e−αtκλe−(λ+γ)tdt = κλ

∫ ∞
0

e−(λ+γ+α)tdt =
κλ

λ+ γ + α

Thus we get α = κλ− λ− γ. Rearrange the expression to κλ or λ we can bring R0 to
the desired form. By substitution into R0 obtained before, we get

R0 =
κα+γ
κ−1

α+γ
κ−1 + γ

=
κα + κγ

α + κγ
=

γ + α

γ + α/κ
, and

R0 =
α + λ+ γ

λ+ γ
= 1 +

α

λ+ γ
.

�

The following Theorem can be considered as an interpretation of Theorem 1.2.2 of a
branching process, however we now investigate SIR epidemics on CM graphs. The first
two parts are consequences of coupling between them, while the third part heuristically
says that at the beginning of the epidemics, the population either gets extinct with prob-
ability z, or reaches the size εn before a tn order log(n) time and before extinction with
probability 1− z, since the super-critical process has an exponential growth when it does
not go to extinction.

Theorem 2.3.6 (Proposition 2.2.3 in [23])
Let us consider the continuous time birth-death process (Xt)t≥0.

1. If R0 ≤ 1, the process (Xt)t≥0 dies out almost surely.

2. If R0 > 1, the process (Xt)t≥0 dies with a probability z ∈ (0, 1) that is the smallest
solution of

z =
γ

g′(1)

∫ ∞
0

g′(z + e−λy(1− z))e−γydy (2.7)

3. Let us define the times τ0 = inf{t ≥ 0 : Xt = 0} and τεn = inf{t ≥ 0 : Xt ≥ εn}. If
R0 > 1, then for all sequences (tn)n∈Z+ such that limn→∞

tn
logn

=∞ we have
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lim
n→∞

P(τ0 ≤ tn ∧ τεn) = z (2.8)

lim
n→∞

P(τεn ≤ tn ∧ τ0) = 1− z (2.9)

Proof.

The first two points are consequences of the continuous time birth-death process
(Xt)t≥0 defined in the proof of Theorem 2.3.5 that is coupled with (It)t≥0 as long as
no ghost has appeared. We can also consider the time-discretized (Zt)t≥0 process, ob-
tained from (Xt)t≥0 by counting individuals in each generation, also defined in the proof
mentioned before, since the probability of dying out agrees in the continuous time birth-
death process and in its time discretized skeleton Zn. Thus the first point of the theorem
is a straight consequence of Theorem 1.2.2 considered in the sub-critical case.

Concerning the second point of the theorem, we also rely on Theorem 1.2.2. According
to it in the super-critical case we need the smallest solution of equation z = g(z) to get the
probability of extinction in the branching process, where g(z) is the generating function
of the descendant distribution in Zn. We can easily determine that, since in the proof of
Theorem 2.3.5 we found out that conditionally on the degree k and the fact that the chosen
individual remains infectious for a duration y, the number of contacts contaminated by
this individual ψ = ψ(k, y) ∼ Bin(k − 1, 1− e−λy).

Let F denote the event that the infected individual has degree k and infectious pe-
riod y, while υ denotes the descendant distribution of an individual in the discrete time
skeleton. We use again the law of total expectation and Fubini Theorem:

P(υ = l) = E(1υ=l) = E(E(1υ=l)|F) =

∫ ∫
P
(
ψ(k, y) = l

)
dP2dP3,

where P2 and P3 are the probability measures of random variables with Exponential and
size-biased degree distribution. Summing over k and integrating with respect to y, we can
get the probability that in this Galton–Watson process an individual of generation n ≥ 1

has υ = l offspring. Thus we need to calculate

P(υ = l) =
∞∑

k=l+1

k · pk
µ

∫
P
(
ψ(k, y) = l

)
γe−γydy

P(υ = l) =
∞∑

k=l+1

k · pk
µ

∫ ∞
0

(
k − 1

l

)
(1− e−λy)l(e−λy)k−1−lγe−γydy
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Now instead of trying to calculate manually the integral above, we solve the problem by
examining the meaning of it. So far, we concluded that the number of disease transmitting
cases by a chosen individual follows Bin(k − 1, 1 − e−λy) distribution, conditionally on
the fact that individual is of degree k, and remains infectious for a duration y. Infections
caused by the same individual are independent, since we consider a Poisson process, and
the probabilities of disease transmissions are the same due to the fact that we examine
only constant λ infectious contacts through the process. Therefore, the number of disease
transmitting cases by a chosen individual conditionally only on it has k degree also follows
Binomial distribution. We now only need to determine the value of the second parameter.
(The first parameter k− 1 is unchanged, as except for the first infectee in the population,
an individual is able to infect a maximum of its neighbours minus one individual, the one
they got the disease from.) An infection occurs if and only if the lifetime of the individual
∼ Exp(γ) is longer than the Exp(λ) random variable associated to the edge. Thus, we only
need to calculate P(Z < Y ), where Z ∼ Exp(λ), Y ∼ Exp(γ), and they are independent.

P(Z < Y ) = E
(
P(Z < Y |Y = y)

)
=

∫ ∞
0

P(Z < y)γe−γydy =

=

∫ ∞
0

(1− e−λy)γe−γydy = γ ·
(1

γ
− 1

γ + λ

)
=

λ

λ+ γ
.

Thus we determined the parameter of the Binomial distribution in question, and cor-
respondingly got∫ ∞

0

(1− e−λy)l(e−λy)k−1−lγe−γydy =
( λ

λ+ γ

)l( γ

λ+ γ

)k−1−l
(2.10)

The distribution of the number of infectious contacts caused by an individual is given by:

P(υ = l) =
∞∑

k=l+1

k · pk
µ

(
k − 1

l

)( λ

λ+ γ

)l( γ

λ+ γ

)k−1−l
. (2.11)

Now we need to calculate the smallest solution of

z =
∞∑
l=0

zlP(υ = l) =
∞∑
l=0

zl
∞∑

k=l+1

k · pk
µ

(
k − 1

l

)( λ

λ+ γ

)l( γ

λ+ γ

)k−1−l
. (2.12)

Since we only consider z ≥ 0 and λ, γ ≥ 0 parameters, the expression above is non-
negative, and we can use Fubini’s Theorem by changing the sums:

z =
∞∑
k=1

k · pk
µ

k−1∑
l=0

(
k − 1

l

)
zl
( λ

λ+ γ

)l( γ

λ+ γ

)k−1−l
(2.13)
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Using Binomial Theorem this is not other than

z =
∞∑
k=1

k · pk
µ

(zλ+ γ

λ+ γ

)k−1
(2.14)

Now we try to obtain the same expression from Equation (2.7) to complete the proof:
Since here g(z) is the generating function of the configuration model graph’s degree distri-
bution in question, and according to definition g′(z) =

∑∞
k=1 kz

k−1pk, we need the smallest
solution of

z =
γ

g′(1)

∫ ∞
0

∞∑
k=1

kpk
(
z + e−λy(1− z)

)k−1
e−γydy =

=
γ

g′(1)

∫ ∞
0

∞∑
k=1

kpk
(
z(1− e−λy) + e−λy

)k−1
e−γydy.

We fall back on Binomial Theorem again, and also use g′(1) = µ:

z = γ

∫ ∞
0

∞∑
k=1

k · pk
µ

k−1∑
l=0

(
k − 1

l

)
zl · (1− e−λy)l · (e−λy)k−1−l · e−γydy

By using non-negativity again, we get

z =
∞∑
k=1

k · pk
µ

k−1∑
l=0

(
k − 1

l

)
zl
∫ ∞
0

(1− e−λy)l · (e−λy)k−1−l · γe−γydy

We have already calculated this integral in Equation (2.10), and correspondingly we
concluded the probability of dying out to be the smallest solution z of Equation (2.13),
and also finished the second part of the proof.

We now prove the third part of the Theorem. We start by proving Equation (2.8):
For the birth-death process (Xt)t≥0 there is no accumulation of birth and death events,
so limt→∞ tn ∧ τεn = ∞ almost surely. Since a probability can always be dominated by
constant 1, we are able to use Lebesgue’s dominated convergence theorem to get the
following limit in question:

lim
n→∞

P(τ0 ≤ tn∧τεn) = lim
n→∞

E(1(τ0≤tn∧τεn)) = E( lim
n→∞

1(τ0≤tn∧τεn)) = E(1(τ0≤∞)) = P(τ0 <∞)

Since τ0 denotes the first time t at which the birth-death process Xt = 0, probability
P(τ0 < ∞) is nothing else than the extinction probability of the process, which is the
smallest solution of Equation (2.7), as proved before denoted by z. Thus limn→∞ P(τ0 ≤
tn ∧ τεn) = z.
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Now we have to prove the second Equation (2.9). Firstly, we try to determine limn→∞ P(τεn ≤
tn ≤ τ0), and then deal with the whole limn→∞ P(τεn ≤ tn ∧ τ0) = 1 − z expression. We
can divide τεn ≤ tn ≤ τ0 into two disjoint events, thus the probability turns into a sum:

P(τεn ≤ tn ≤ τ0) = P(τεn ≤ tn and τ0 =∞) + P(τεn ≤ tn ≤ τ0 <∞).

We can easily prove the second part of the sum converging to zero, as n→∞. Since
P(τεn ≤ tn ≤ τ0 < ∞) ≤ P(tn ≤ τ0 < ∞), and by using dominated convergence theorem
again

lim
n→∞

P(tn ≤ τ0 <∞) = P( lim
n→∞

tn ≤ τ0 <∞) = 0

as we consider a sequence tn such that tn →∞. Now we only have to concentrate on the
first component of the sum. For that we need to deflect a little bit: it can be proved with
martingale techniques that

lim
n→∞

logXt

t
= α,

where α is the initial epidemic growth rate defined in 2.2 and that is positive in the
super-critical case R0 > 1.

This is a straight corollary of Theorem 1.2.7, since we consider a Markovian process.
According to it, there exists a non-negative random W such that Xt ∼ Weαt almost
surely, as t → ∞, and the branching process dies out with a probability of P(W = 0).
However, we examine the event τεn ≤ tn and τ0 = ∞, where τ0 = ∞ means that the
branching process does not die out, as stated before. Therefore Wt = Xte

−αt is a positive
martingale and limt→∞Wt = W almost everywhere and also in L1(Ω).

Now we calculate the first component of the sum: Let us consider n > 1
ε
, so that

log(εn) > 0. Since P(limn→∞ τεn =∞) = 1, we have on {τ0 =∞} that:

lim
n→∞

log(εn)

τεn
≥ lim

n→∞

log(Xτεn−)

τεn
= α > 0,

because τεn denoted the first time t such that Xt ≥ εn, thus εn ≥ (Xτεn−).

So inequality lim
n→∞

log εn

τεn
≥ α corresponds to lim

n→∞

τεn
log εn

≤ 1

α
.

We deduce that:

lim
n→∞

P(τεn ≤ tn, τ0 =∞) = lim
n→∞

P(
τεn

log εn
≤ tn

log εn
, τ0 =∞) = P(τ0 =∞),

since by our choice of tn, limn→∞
tn

log(n)
= ∞, and also limn→∞

tn
log(εn)

= ∞, however
limn→∞

τεn
log εn

remains bounded as we showed before. According to definition τ0 = ∞
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event means our process Xt never reaches 0, thus P(τ0 = ∞) is the probability that the
continuous time birth-death process does not die out = 1− z, as seen before.

Now we concluded

lim
n→∞

P(τεn ≤ tn ≤ τ0) = lim
n→∞

P(τεn ≤ tn and τ0 =∞) + 0 = 1− z,

however, in Equation (2.9) we need to determine limn→∞ P(τεn ≤ tn∧ τ0). So far, we know

1− z = lim
n→∞

P(τεn ≤ tn ≤ τ0) ≤ lim
n→∞

P(τεn ≤ tn ∧ τ0) ≤ lim
n→∞

P(τεn ≤ τ0).

It remains to show that limn→∞ P(τεn ≤ tn ∧ τ0) ≤ 1 − z. Since we have already proved
Equation (2.8), we got

z = lim
n→∞

P(τ0 ≤ tn ∧ τεn) ≤ lim
n→∞

P(τ0 ≤ τεn), thus lim
n→∞

P(τεn ≤ τ0) ≤ 1− z.

It is clear that limn→∞ P(τεn = τ0) = 0, resulting limn→∞ P(τεn ≤ tn ∧ τ0) = 1 − z what
was to be demonstrated.

�

2.4 Stochastic block model

In this section we introduce the stochastic block model, which can be interpreted as a
multi-type generalization of Erdős–Rényi random graphs. SBM is a random graph model
with planted clusters, commonly used to study clustering and community detection, but
also have proven to be useful in network and data sciences. Because of its wide range of
importance the model appeared independently in multiple scientific communities: SBM
terminology comes from the machine learning and statistics literature Holland in [15],
while in the mathematics literature Bollobás [6] refers to the model as the inhomogeneous
random graph model.

Definition 2.4.1 Stochastic block model graph (SBM).
A stochastic block model graph is a undirected graph, where each vertex is given a type
independently from the others, all with the same probability, and where each pair of vertices
is linked independently of the other pairs with a probability depending on the types of the
vertices. If there are K types, say {1, . . . K}, we will denote by (ρi)i∈{1,...K} the probability
distribution of the types, and by πi,j the probability of linking a vertex of type i with a
vertex of type j.
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With different number of types, or sets of πi,j probabilities, the model can offer a great
variety of distinct interpretations: As mentioned before, SBM is a generalized model of
Erdős–Rényi graphs, since with K = 1 type it constructs an ER(p) graphs, while with
K = 2 and π1,1 = π2,2 choice we get a bipartite graph.

In fact, SBM random graphs areW-random graphs determined by a graphon. Accord-
ing to article [7], a graphon W is a bounded measurable functions W : [0, 1]2 → [0, 1],
such that W (x, y) = W (y, x) ∀x, y ∈ [0, 1], and a G(n,W )W-random graph with n nodes
can be created with the help of W the following way: Let i, j ∈ {1, 2, . . . , n} denote two
nodes, then we connect i and j with an edge in graph G with probability W ( i

n
, j
n
). In

case of a SBM , the graphon generating random graphs with corresponding structures
can be described by πi,j and (ρi), i, j ∈ {1, . . . , K} parameters. We divide two sides of the
[0, 1]× [0, 1] square according to distribution (ρi). The graphon associates the appropriate
πi,j probabilities on the rectangles created as above.

We now focus on the graphs model from the point of view of epidemics: Often a commu-
nity contains different types of individuals displaying specific roles in contact behaviour.
Types can relate to different aspects such as age, geographic situation, profession/ ev-
eryday occupation, or social behaviour. If the disease affects individuals of different age
significantly distinctly, with a suitable small K and statistically appropriate age- and
contact-distribution it is reasonable to construct an age-group graph with SBM . Another
possible interpretation of the types is the household structure, in which with a large K
πi,i = 1, while πi,j, i 6= j are tiny.

Now we compute the value of R0 in SBM graphs with the help of multi-type branching
process.

Theorem 2.4.2 R0 for SBM (Proposition 2.3. in [23])
Let us assume that there are K types of individuals, labeled {1, 2, . . . , K}, and that the
infection rate from an ego of type i to an alter of type j is λi,j

N
. Denote by ρ be the

largest eigenvalue of the matrix with elements λi,jρj. Then basic reproduction number of
the disease on SBM random graphs is given by

R0 =
ρ

γ
= 1 +

α

γ
(2.15)

Proof.

We can couple here the infection process with a multi-type branching process. The
rate at which a given i individual gives birth to an individual j corresponds to the rate, in
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the epidemic process, at which an individual i infects individual j at time t after infection.
Let ai,j denote this rate. Since an i individual contacts a given individual of type j at rate
λi,j
N

, while there are Nρj individuals of type j, and an i individual is still infectious t time
after being infected with probability e−γt, we can express

ai,j(t) =
λi,j
N
Nρje

−γt = λi,jρje
−γt (2.16)

For multi-type branching processes, it is well known according to [21] that the ba-
sic reproduction number R0 = ρM is the largest eigenvalue of the matrix M with el-
ements mi,j =

∫∞
0
ai,j(t)dt =

λi,jρj
γ

, and the epidemic growth rate α is such that 1 =∫∞
0
e−αtρA(t)dt, where ρA(t) is the largest eigenvalue of the matrix A(t) with elements

ai,j(t). We also know that ρA(t) = ρe−γt. Therefore

R0 = ρM =

∫ ∞
0

ρe−γt =
ρ

γ
,

and we can also compute

1 =

∫ ∞
0

e−αtρA(t)dt =

∫ ∞
0

e−αtρe−γtdt =
ρ

α + γ
.

Thus ρ = α+γ, and we can express R0 with the help of the parameters of the disease:

R0 =
ρ

γ
=
α + γ

γ
= 1 +

α

γ
.

�
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Chapter 3

Discretized SEIR with isolation

In this chapter we describe a possible implementation of discretized SEIR process en-
riched with isolation of individuals run on random graphs. From now on, we consider the
basic reproduction number only as a characteristic of a disease regardless the structure
of the random graph, denoted by R′0 to emphasise the difference. Firstly, we examine the
process with different means and proportion of individuals participating in self-isolation.

In the previous semesters according to [18] we also examined discretized virus spread
on random graphs with different vaccination campaigns, which were usually constructed
based on age groups. However, now we consider a disease with no available vaccine, and
assume no previous immunity of individuals, thus isolation of individuals and restriction
measurements are introduced to flatten the curve of infectious individuals. Most of the
time we try to set parameters of the disease to replicate properties of Covid-19. Later
we run the process (with the same transmission rate) not only on a fixed random graph,
but on 5 graphs, from which 4 can be obtained as a subgraph of the first one by deleting
edges corresponding to decreasing density. This is the equivalent graph representation of
restriction measurements applied to individuals.

Firstly, we define the precise implementation of the model, review necessary data
and parameter sets, describe examined original random graphs, and means of creating
subgraphs from them.

3.1 Implementation of the model

We added a quarantine compartment to the classical model as follows. Here we only
describe a general representation of isolating individuals, possible means of execution will
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be detailed later.

Definition 3.1.1 Discretized SEIR with isolation
Similarly to the classical SEIR model, each individual is in exactly one of the following

compartments at each time steps during the virus spread.

• Susceptible: Individuals are healthy, but can be infected.

• Exposed: Individuals are infected but not yet infectious.

• Infectious: Individuals are infected and infectious.

• Recovered: Individuals are not infectious anymore, and immune (cannot be infected
again).Thus R is a terminal point.

• Quarantined/Isolated: Individuals regardless infected or infectious cannot transmit
the disease to anyone, and also healthy individuals are not able to get infected as
long as they are staying in this compartment.

We could rather consider group of isolated individuals not only as one compartment, but
four different sub-compartment in S,E, I and R, since individuals in quarantine also can
experience infected and infectious periods, just not able to interact with others.

The rate at which individuals leave compartments are described by probabilities (trans-
mission rates) and the parameters of the model (incubation rate, recovery rate). We can
associate different meanings to isolation of individuals (individuals are transmitted to a
hospital, or self isolation), later we will consider different implementations to the problem.

Figure 3.1: Compartments in SEIR with self-isolation
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The process can by summarized by the Figure 3.1, describing possible moving of
individuals between compartments. Let Q-indexed stages represent isolated individuals
within the respective group, so EQ denotes infected but not infectious individuals isolating
themselves. In our implementation of the model recovered individuals do not get isolated.
(Individuals can leave a stage only on an edge heading out.)

3.2 Data and parameters

3.2.1 Data

To describe the underlying network, we use real-life data. We distinguish individuals
according to their age. In particular, we consider 5 age groups since they have different
social contact profiles, and also they are affected by the virus differently. The age groups
and the number of individuals in each per N = 10000 citizen (distributed as the 2005
European Union population, Eurostat 2006):

• 0-9: N1 = 1050

• 10-19: N2 = 1200

• 20-39: N3 = 2850

• 40-65: N4 = 3250

• 65+: N5 = 1650

To describe the social relationships of the different age groups, we used the contact matrix
obtained in [18]:

C =



5, 3580 1, 0865 3, 0404 2, 4847 0, 8150

0, 9507 10, 2827 2, 8148 3, 6215 0, 7752

1, 1201 1, 1852 6, 5220 4, 1938 0, 9016

0, 8027 1, 3372 3, 6776 5, 2632 1, 3977

0, 5187 0, 5638 1, 5573 2, 7531 2, 0742


,

where the elements ci,j represent the average number of contacts an individual in age
group i has with individuals in age group j.

We create random graphs detailed later which fulfill the distribution of age groups,
and edge densities between age groups.
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Later we will also consider the process with restricting measurements: these actions aim
to reduce contacts between individuals. We examined five different stages of restricting
measurements corresponding to five graphs. (All graphs are created from the original
random graph by deleting edges, thus reducing contacts in the population.) We tried to
set the proportion of contacts decreased to imitate real-life data, thus we have taken into
account results of questionnaires organized by University of Szeged, found at page [25].

1. Normal scenario: no restrictions, contact matrix C remains the same.

2. School closings: contacts within the first two age groups reduced drastically by 80%.

3. Home office: contacts within age group 3 and 4, and contacts between them reduced
by 60% uniformly.

4. School closing + Home office + mild restrictions: This action contains contact re-
duction of action 2 and 3, in addition all remained contacts is also reduced by 20%

regardless of age groups.

5. School closing + Home office + strict restrictions: In this action all remained contacts
reduced by 40% regardless of age groups. (Graph created here is also a subgraph of
the previous one.)

3.2.2 Parameters

The model is specified by the following family of parameters. We set parameters of the
disease to model Covid− 19 virus, according to article [3] and page [26].

• R′0 = 2: basic reproduction number. It characterizes the intensity of the epidemic.
Here we consider R′0 as only a characteristic of the disease regardless the structure
of the graphs.

• L: duration of latent period with distribution FL ∼ Exp(5). (Durations are rounded
to days, since we investigate the discretized model).

• I: duration of infectious period, E(I) = 5, with distribution FI :

P(I = 5) = 0.5, P(I = 4) = P(I = 6) = 0.25
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• β: transmission rate. They control the rate of the infection between a susceptible
and infectious individual. Since we assume that characteristic of connections be-
tween different age groups is implemented into the structure of our random graph,
we consider an universal β transmission rate. We determined β according to the
definition of R′0, the mean number of infections caused by an infectious individual
during its infectious period in a population of susceptibles. Thus we set the disease
transmissions to β̃ =

R′
0

E(I)·12.8113 . Only the overall average density of the graph (in
case of every considered graph this is approximately 12.8113), severity of the disease
and average time spent in infectious period can affect the parameters.

Isolation is implemented in the process according to two aspects by the following. Each
individual gets a type at the time of its birth, determining its reaction to the virus and
behaviour in self isolation during the virus spread:

• Individuals of type 2: They are considered to be the most endangered fraction of
the population. After catching the disease, they need treatment in hospitals. Thus,
the number of infected individuals of type 2 has crucial importance through the
process, restriction measurements are usually put into actions in connection with
this measure rather than the whole number of infected individuals, since we can
only estimate those. Since the virus has a characteristic that elderly people are more
prone to be affected seriously by the disease, the proportion of type 2 individuals
is also determined in connection with age groups: Each individual in age group 5

has type 2 independently with probability 0.2, while for other age groups only with
probability 0.05. Type 2 individuals go into quarantine after spending 2 days in the
infectious period, and also all neighbours of such an individual (regardless of type)
engage in self isolation with probability µmap. The self isolation of neighbours can
be considered as post-mapping contacts of infected individuals by authorities.

• Individuals of type 1: Independently from age groups individuals are considered to
be the "conscious" part of the population. These individuals show symptoms of the
disease, however they need no special treatment. After noticing some symptoms
(also after the second day of the infectious period) they decide to self isolate. The
proportion of individuals of type 1 can be increased by providing information about
the possible symptoms and means of spread of the disease. Thus we examine the
process with different µcon proportion of the population engaging in self isolation.

40



• Individuals of type 0: Individuals need no special treatment in hospitals after getting
the disease. They self isolate if and only if a neighbour of type 2 gets infected as
described above.

Regardless of the cause of self isolation, individuals spend exactly 14 days in quaran-
tine.

3.2.3 Random graphs

We would like to create an underlying network and examine the outcome of virus spread
on this given graph.

We generated random graphs of different degree distributions of N = 100000 nodes
with the help of the configuration model, such that each node has a type corresponding
to the age of the individual. In fact, for each node 5 different degrees were drawn from
the same distribution with different appropriate means representing the number of neigh-
bours of the individual broken down to age groups. Within an age group the ordinary
configuration model created a graph, while between any two age groups we modified the
configuration model to create a bipartite graph of the given degrees (paying attention to
the total number of degrees be equal in two age groups). The age distributions and num-
ber of contacts in the graph between age groups comply with statistic properties detailed
above. Since the contact matrix C describes only the average number of contacts, the
variances can be different.

As mentioned before, configuration model creates a multigraph containing self-loops
and multiple edges. However, according to Theorem 2.3.2 number of self-loops and parallel
edges can be neglected. Since we consider a SEIR process, disease transmission on self-
loops makes no sense, thus we leave them out of consideration. Contrarily, on k-multiple
edges the disease can spread with k-times bigger probability, since we assume a stronger
connection of these individuals in some way.

We examined three different degree distributions:

• Poisson distribution: Originally instead of Configuration model random graphs with
Poisson distribution we were planning to generate SBM -random graphs. However,
degree sequence of Erdős–Rényi random graphs are known to follow Poisson distri-
bution [14]. Since we can observe degrees of a node broken down from the aspect
of age groups as degrees in a Erdős–Rényi graph with corresponding density, and
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the number of age groups is only K = 5, we are able to approximate in SBM the
degree distributions of a node in different age groups with Poisson distributions.

From numerical point of view, generating SBM graphs with N nodes is O(N2),
since we create edges independently. In comparison configuration model is only
O(|E|), which can be significantly faster in case of spare networks. By approximating
the structure of SBM graphs with Configuration model random graphs of Poisson
degree distribution enabled us to run the process on N = 100000 individuals.

• Pareto distribution: Some years ago it was generally believed that real-life and social
networks have degree distributions that approximately follow a power law P (k) ∼
k−γ with some 2 < γ < 3 constant, called scale-free networks. We examine Pareto
degree distribution with shape parameter or also called tail index =2.7, however
now it is proved that despite the fact that most of the observed networks have fat-
tailed degree distributions, only a small percent of them is scale-free according to
[9]. (Tail index was chosen to be γ = 2.7, because variance of Pareto distribution
increases significantly, as we decrease γ, with parameter γ < 2 the variance is not
even finite. Thus an outstanding degree made the run of Configuration Model time
consuming. In some cases it was not even possible to create a graph, since sum of
degrees between different age groups must comply.)

• Geometric distribution: However this distribution is not heavy-tailed, Geometric dis-
tributions with the appropriate means correspond bigger variance than Pareto(2.7)
distribution.

After describing necessary parameters of the model and possible generation of random
graphs, we review the exact steps of our program:

In the discretized process, we start with 10 infectious nodes chosen randomly and
independently from the age groups. We usually observe a 200 day period. At a time
step firstly the infectious, but not self-isolated nodes can transmit the disease to their
neighbours. Only not self-isolated nodes in S can be infected, and they cannot be infected
ever again. When a node becomes infected, its position is set immediately to E, and also
the number of days it spends in E is generated. Secondly, we check if a node has reached
the end of its latent/infectious period, and we set its position to I or R. (As soon as a
node becomes infectious, the days it spends in I is also calculated.) Individuals of type
1 and 2 self-isolate after spending two days in infectious period, and some neighbours of
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type 2 individuals also are quarantined.
We change the underlying graph at certain time steps previously given, or determined

by the describing values of the virus spread at the moment. As described before, when
we create a random graph four edge-decreased version of it is also generated to model
restrictions. We change the underlying graph (restriction and also easing is possible) at
the beginning of an iteration, disease can only spread on the edges of the actual graph.
The β transmission rate remains the same on any restricted subgraph. To bring more
reality to the model infectious nodes are also able to transmit the disease to any (not
necessarily neighboring) node with probability 0.05 at each time steps.

3.3 Basic scenario

Firstly, we describe a so-called basic scenario, serving as a benchmark to different parame-
ter sets of the process. In this scenario we only consider the process on the original graph,
so no restriction measurements take place. We set µmap = 0.5, thus expectedly half of the
neighbours of an individual with type 2 will self-isolate after its infection, and µcon = 0.1

proportion of the population will self-isolate themselves after experiencing symptoms.
As described before, we only run the process on random graph generated by the

configuration model. Since in this section we consider R′0 only as a measure of the disease
regardless of the graph structure, and according to Theorem 2.3.5 the real R0 calculated
on the given graph is R0 = κλ

λ+γ
, where κ = σ2

µ
+ µ − 1 with mean and variance of

the generating degree distribution, we expect to get different results on random graphs
with Poisson, Pareto(2.7) and Geometric degree distributions. In the construction of the
graphs we set edge densities within and between age groups to the same, so the mean
must comply in case of every graph. However variances are respectively around 21, 36
and 77, thus we would expect a significant virus outbreak in case of random graphs with
Geometric degree distribution.

In the following we examine usually studied measures of the intensity of the virus
spread such as proportion of individuals recovered from the virus at the end of an examined
period called overall attack rate, and maximum number of individuals being infected at
the same time, while they are of crucial importance from the aspects of hospital capacity
and building herd-immunity.

To study the result, we generated 5 random graphs with N = 100000 nodes for each
degree distribution, and run the process 20 times on a random graph with independent
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initial choice of infected individuals. All in all, these 100 results were averaged. (Generating
graphs with 100000 nodes is rather time-consuming, however it is acceptable to run the
process on the same graph many times. Types of the individuals and initially infected
individuals at the beginning of the process are re-drawn from the appropriate distributions
in question, thus we can get very different result on the same graph.) We usually consider
a time period of 200 days.

Figure 3.2: Basic scenario virus spread on CM graphs of different degree distribution

We do can see differences between outcomes of the process on random graphs with
different degree distribution, however they are not always straightforward.

We can generally say that runs on graphs with generating degree distribution of bigger
variance results in swift and peaky curve of infected individuals, while in case of smaller
variance infectious individuals tend to be better distributed in time. We can experience a
difference of around 10% in the number of infectious individuals at the same time between
graphs of different degree distributions, and 7% in the overall attack rates. However,
degree distribution of the biggest attack rates do not coincide with the graph model of
the highest number of infectious individuals at the same time. Infectees on random graphs
with geometric degree distribution reaches its peak only around day 69 with number
of individuals approximating 8% of the population in case of N = 100000 individuals.
However, after the peak, the virus has a short falloff period, because many nodes have
only a couple of neighbours. Therefore we get the smallest attack rates after a 200 days
period on random graphs with Geometric degree distribution. The number of individuals
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in self-isolation reaches its maximum value a few days after the peak of the virus, by
affecting 10% of the whole population at that time.

Precisely measurable value is the number of individuals of type two, behaving the same
as the total number of infectees only with a couple days of delay. The number of individuals
in age group 5 dominates infectious people of type 2, because of the characteristic of the
disease. When we investigate the process broken into age groups, we can conclude that the
virus reaches its peak at different times, and also reaching different proportion of people,
because of the significant differences of the contact matrix.

Figure 3.3: Number and proportion of infected individuals in age groups

3.3.1 Change of parameters in the basic scenario

We investigate how and in what sort is it possible to change the outcome of the process only
modifying parameters of µcon and µmap, without examining the process on reduced graphs
of restrictions. In real life increase of µmap could be achieved by trying to accomplish more
successful mapping of possible contacts with infectious individuals. The increase of µcon
can be achieved by increasing awareness and knowledge of people about the characteristic
of the disease.
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Properties

Scenario Degree distribution Poisson Pareto(2.7) Geometric

Basic Overall attack rate 0.71297 0.72216 0.65672
µmap = 0.5 Max individuals in I 7520 8000 8229
µcon = 0.1 Peak day 91 82 69

Overall attack rate 0.63412 0.64596 0.59406
µmap = 0.5 Max individuals in I 5583 6071 6609
µcon = 0.3 Peak day 106 92 75

Overall attack rate 0.69204 0.70263 0.63500
µmap = 0.7 Max individuals in I 6988 7455 7569
µcon = 0.1 Peak day 91 83 70

The table above summarizes properties of the process with different sets of parameters:
We can experience bigger movement of measures by increasing the value of µcon, since it
affects more individuals. It influences significantly both examined values, corresponding
to the basic scenario with approximately R′0 = 1.8. The increase in µmap also suppresses
the disease, however we can see no delay in the peak of the virus, only a reduction of its
intensity.

In these cases still only relationships of type 2 individuals are sought out, however
contacts of infectious individuals of type 1 can be also taken into consideration as well as
random testing of individuals.

To study en masse testing of individuals I modified the model in which neighbours of
individuals of type 1 also sent into quarantine, if the individual is proven to be infected.
With neighbours of type 2 individuals self-isolated with probability 0.5, and neighbours
of type 1 individuals with probability 0.3, with 0.3 proportion of the population being of
type 1 could keep down the spread of the virus effectively by decreasing the overall attack
rate to ≈ 0.5 in both cases, and flatten the infectious curve significantly as maximum
number of individuals being in I at the same time become half of the basic scenario.

We also considered an extreme case of neighbours of type 2 individuals self-isolated
with probability 0.7, while neighbours of type 1 individuals with probability 0.5, with half
of the population being of type 1.Even with these parameter sets of the model it is not
possible to talk about the probability of a minor outbreaks (disappearance of the virus
in the early stage of the spread, affecting only a small number of individuals). We could
experience this happening only in case of graphs with Poisson degree distribution with an
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insignificant probability (3 out of 500 runs).
Thus, with so intense parameters of the virus (R0 = 2) it seems almost impossible to

stop the virus completely, even if monitoring and mapping of possible infectious contacts
of individuals begins at the first day of appearance of the virus (and of course with the
additional assumption that no disease transmission can occur coming from outside of this
examined population).

3.4 Restriction measurements

We examined 3 different sets of restriction and releasing actions, from which two are
executed at predefined time steps regardless of the actual state of the virus spread. In the
third case, actions are taken according to the number of infectious individuals. For both
of them we use basic parameter choice of µmap = 0.5 and µcon = 0.1.

Let G be the original graph of CM with any degree distribution we examine. We
denote by G1 = G,G2, G3, G4, G5 the appropriate edge reduced graphs created from G as
described before. We examine the following set of actions:

1. Late introduction of restrictions: Responses to the virus are overdue, and thus an
intensive restriction is needed. We change to graph G4 only after 60 days of the
appearance of the virus, then to G5 at day 90. Then we start easing by switching
back to G4 graph at day 110, and all restrictions are dissolved on day 150 by using
again the original graph G = G1.

2. Early introduction of restrictions: In this campaign we use a balanced sequence of
actions taken. Restrictions begin as early as day 10 by closing schools (graph G2),
then we use graph G4 from day 45, and graph G5 from day 90. Easing actions occur
at the same days and pace as before: Graph G4 is used from day 110, and G1 from
day 150.

3. Restrictions made according to number of infectious individuals: In this case it is
possible to keep switching between restriction and easing measurements, however
after an action is taken the same graph must be used for at least 14 or 21 days.
Measurements are introduced if the number of infected individuals I reach a certain
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threshold. We use 

G1, if I < 1000

G3, if 1000 ≤ I < 2000

G4, if 2000 ≤ I < 3500

G5, if I ≥ 3500.

(3.1)

In the previous sections we could see differences in intensity and values on random
graphs of different degree distributions, however the process overall behaved similarly.
With restrictions taken place curves are distorted at certain time steps, thus emphasizing
importance of a few days in the delay/ introduction of an action.

Now we examine the process on a 250 days period, since in some cases restrictions
flatten the curve so much that significant proportion of individuals are still infected or
get infected after day 200. As before, we also generate 5 random graphs with N = 100000

nodes and run the process 20 times on each graph (or sequence of graphs), then average
results. (In the third case it makes no sense to average different trajectories of the virus
spread, since actions can take place at different time steps.)

Figure 3.4: Late introduction of restrictions

We can generally conclude that effect of a restriction can be noticed only five days
after introduction of actions.

A delay of only a few days in actions can have a huge impact of the process, since
with late introduction of restrictions in case of Geometric degree distributed graphs the
peak is around day 69 makes almost no help of restrictions introduced on day 60. It is
only resulting in faster falloff of the virus, and thus smaller overall attack rate, since many
nodes have small degree. In case of the two other random graphs, we do can see help of
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the actions taken in flattening the curve. However, with too strict measurements taking
place at the beginning the curve was pressed down to a minimal level, and thus easing
actions resulted in another peak. The difference in the size of the peaks is depending on
the proportion of susceptible individuals. We can also observe that it was possible to reach
significantly smaller overall attack rate, even if at the end of the process we run the process
on the original G = G1 graph with no restrictions. With measurements taking place in the

Figure 3.5: Early introduction of restrictions

early days of the virus spread, on most of the graphs it only postponed almost the same
effect in volume of virus. On the first two graphs even introduction of home office could
tame the rate of increase of infected individuals, while we can say that on graphs G4 the
number of infected individuals remained almost constant in any graph. However, in case
of Geometric degree distribution early reaction was proved to be efficient, but also here
graph G5 seems to be too radical, since it is even able to decrease infected individuals.
But this success is only temporary, since after lifting all restrictions even on this graph
we can experience another peak.

With actions taken according to the numbers of infectious individuals we still can
experience difference in volume between graphs of different degree distributions. Not only
number of infectious individuals should be taken into consideration but also the steep
of the curve, which can be measured by the Malthusian parameter of the disease. By
alternating restricting and easing measurements the number of infectious individuals were
better distributed in time, a peak was created only at the beginning of the process.
However, this peak did not exceed significantly the chosen threshold of 4000 individuals.
In Figure 3.6 we illustrated a typical trajectory of infectious individuals evolving in time
with measurements taken according to their number. (The numbers on dotted or scattered

49



Figure 3.6: Typical trajectory of infected individuals with restrictions

line denote the number of subgraphs we run the process on, after the certain time step.) As
we can see, very strict restrictions corresponding to graph G5 were never even introduced,
thus aligned actions taken at the right time could not only flatten the curve, but also
allow the use of less severe restrictions.
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Chapter 4

Voter model

Interacting particle systems is a large and growing field of probability theory motivated by
models arising in statistical physics, biology, economics, and other fields. They are often
used as a simplified model for stochastic phenomena that involve a structure in space,
for us in this paper graph structures will serve as a spatial structure. Voter models and
contact processes are among the most studied in the field.

In this chapter firstly we introduce interacting particle systems generally, then define
and review a few results about the voter model according to book [19]. Contact processes
also will be presented to make a connection between the voter model and epidemics
processes. In the second section we show a possible implementation of the time-discretized
voter model on a random graph, and by making assumptions about the structure of the
graph and the allocation of opinions we show an analytical property of the proportion of
nodes representing one of the opinions. Therefore this enables us to run the discretized
process defined on random graphs in the next chapter.

4.1 Voter model in continuous time

Interacting particle systems are usually examined, as in books [19] and [20], as an ηt

continuous time strong Markov process, whose transition measures are weakly continuous
in the initial state, also known as Feller process, on the compact configuration space
{0, 1}S, where S is an arbitrary countable set. The process ηt is usually described by the
rates at which transition occurs, so the system changes from one configuration to another.
Here configuration refers to a state of a node according to some aspect. In case of SIS
epidemics the possible configurations are susceptible and infectious, while in the voter
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model configuration of a node is its opinion. If S is finite, saying that transition η → ψ

occurs at rate c means that for ηt 6= ψ: Pη(ηt = ψ) = ct+ o(t) as t→ 0.
These changes are generally local, in that only one or two sites change state at any given
time.

To describe the transition rates, the following notations are used for interacting particle
systems: If η ∈ {0, 1}S, and x, y ∈ S, then ηx, ηx,y ∈ {0, 1}S are defined by

ηx(u) =

η(u), if u 6= x

1− η(u), if u = x
(4.1)

ηx,y(u) =


η(u), if u 6= x, y

η(y), if u = x

η(x), if u = y

(4.2)

So ηx is obtained from η by changing only its value at x, while ηx,y is obtained from
η by interchanging the values at x and y. The transition η → ηx,y can be interpreted as
moving a particle from x to y or vica versa.

Definition 4.1.1 Voter model.
In the voter model ηt process can be described by the following: p(x, y) are the transition

probabilities for a Markov chain on S, such that p(x, y) ≥ 0 and
∑

y p(x, y) = 1. The
transition rates are given by

η → ηx at rate
∑

y:η(y)6=η(x)

p(x, y).

We can give the following interpretation to the model: the sites are individuals who can
have one of two opinions (denoted by 0 and 1) at any time. At exponential times of rate
1, the individual at x chooses a y with probability p(x, y) and adopts y’s opinion.

In books [19] and [22] only the canonical choice of the d-dimensional integer lattice
S = Zd and the case with p(x, y) = p(0, y − x) transition probabilities for an irreducible
random walk are considered, however we can also consider the model on a graph. Firstly,
we put an emphasis on the connection of voter model and virus spread models, then I
review some analytical result with S = Zd case according to Liggett [19]. However, from
the beginning of next section we consider the time-discretized voter model on random
graphs.
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Now, with the help of 4.1 notion we define contact process, a model which is usually
used to describe spread of infection, however it is also related to Reggeon Field Theory
in high energy physics, and it is a building block for more complex models in biology.

Definition 4.1.2 Contact process.
In the contact process S is a graph whose vertices have bounded degree, and λ is a positive
parameter. The notation x ∼ y means that vertices x and y are connected by an edge.
Then for each x ∈ S

η → ηx at rate

1, if η(x) = 1

λ · |{u ∼ x : η(u) = 1}|, if η(x) = 0
(4.3)

The process describes a virus spread: sites with η(x) = 1 are the infected individuals,
while sites with η(x) = 0 are healthy. Infected sites recover from the infection after an
exponential time of rate 1, while healthy sites become infected at a rate proportional to the
number of infected neighbours.

From the definition above we can easily see that contact process in terms of virus spread
corresponds to the SIS epidemics model in which recovery ensures no immunity to further
infection.

Now we concentrate on properties of the voter model with the special S = Zd and
p(x, y) = p(0, y − x) transition probabilities case.

According to [19] the behavior of the process depends heavily on the recurrence or
transience properties of the symmetrized random walk X(t) − Y (t), where X(t) and
Y (t) are independent random walks with unit exponential jump times and transition
probabilities p(·, ·).

Firstly, we give an informal insight to build up this property: Suppose we want to
determine the opinion ηt(x) of the voter at x at a large time t. His opinion must came
from some other voter at x1 at some earlier time t1. Taking steps backward this way,
we find that ηt(x) = η0(X(t)) for some random X(t), where the process X(t) is simply
a random walk with transition probabilities p(·, ·) and initial point X(0) = x. We can
similarly construct the opinion of some y 6= x at time t by ηt(y) = η0(Y (t)) for some other
Y (t) random walk, Y (0) = y. However, X(t) and Y (t) random walks are not independent:
they are independent only up to the first τ time when X(τ) = Y (τ), after that they evolve
together. Thus ηt(x) and ηt(y) can agree for two different reasons:
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• t > τ

• t < τ and η0(X(t)) = η0(Y (t)).

We say that a random walk is recurrent if it visits its starting position infinitely often with
probability one and transient if it visits its starting position finitely often with probability
one. If for the independent random walks, X(s) − Y (s) is recurrent, then the coalescing
random walks will agree eventually with probability 1, and hence ηt(x) = ηt(y) with large
probability for large t.

However, from this property it cannot be straightforwardly concluded that for each x
and y, ηt(x) = ηt(y) from some time on since, changing the t in the argument changes the
random walks X(s) and Y (s).

The following theorem reviews results about the stationary distributions of the process
in the recurrent case:

Theorem 4.1.3 (Theorem 3. in book [19] )

1. For every η ∈ {0, 1}S and every x, y ∈ S,

lim
t→∞

P η(ηt(x) 6= ηt(y)) = 0 (4.4)

2. We use the notion I stationary distributions for the process. This set I is convex,
and we will denote its extreme points by Ie. It is easy to see that the trivial stationary
distributions for the linear voter model are the pointmasses δ0 (η ≡ 0) and δ1 (η ≡ 1).
Moreover, Ie = {δ0, δ1}.

3. Let µS(t) denote the distribution of the process at time t, if the initial distribution
was µ. If for the initial distribution µ{η : η(x) = 1} = λ for all x ∈ S, then

lim
t→∞

µS(t) = λδ1 + (1− λ)δ0.

4.2 Discretized voter model

In this section a possible implement of the voter model in discrete time is defined according
to Definition 4.1.1 of the process in continuous time. As mentioned before, from now on
we examine a model not only on S = Zd d-dimensional integer lattice, but more general
on an arbitrary undirected graph.
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Definition 4.2.1 Voter model in discrete time.
An undirected graph G(V,E) is given. The individuals are represented by the n nodes

of the graph, contacts between them are the edges. Initially each node has an opinion repre-
sented by a number in {0, 1}: Each node independently chooses opinion 1 with probability
v, and opinion 0 with 1− v. Then individuals can change their opinion randomly in time,
under the influence of other vertices. Unlike in the case of epidemic spread, in the general
voter model, interaction is possible between any pair of vertices. However, the frequency
of the event that vertex x convinces vertex y depends on the distance of x and y, denoted
by d(x, y), just like in case of the studied continuous time. Usually d(x, y) represents the
classic graph distance, however on weighted graphs it denotes the smallest sum of weights
of a path between x and y.
Since the process in continuous time can be modelled with a family of independent Poisson
processes, for each pair of vertices (x, y) we have a Poisson process of rate q(x, y), which
describes the moments x convincing y. The rate q(x, y) increases as the distance d(x, y)

decreases. In the continuous case, every time a vertex is influenced by another one, it
changes its opinion immediately.

In our discretized voter process, there are two phases at each time step:

• First, nodes try to share their opinions and influence each other, which is successful
with probabilities q(x, y) depending on the distance of the two vertices. Still, every
vertex can "hear" different opinions from many other vertices within a time step.

• In the second phase, if a node v receives the message of m0 nodes with opinion 0,
and m1 nodes with opinion 1 during a time step, then v will represent opinion 0

with probability m0

m0+m1
during the next step, and 0 otherwise. If a node v does not

receive any opinions from others at a time step, then its opinion remains the same.

This way, the order of influencing message in the first phase can be arbitrary, and it
is also possible that two nodes exchange opinions.

Now we specify the probability that a vertex x manages to share its opinion to vertex
y in the first phase, in a way that vertices situated closer to each other have higher chance
that their opinion "reaches" the other one. We transform graph distances d(x, y) into a
matrix of transmission probabilities with choice q(x, y) = e−c·d(x,y), where c is a constant.
This is not a direct analogue of the continuous case, but it is still a natural choice of a
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decreasing function of d. (Usually we use c = 2, however later we also investigate cases
c ∈ {0.5, 1, 2, 3}. Decreasing c escalates the process.)

4.2.1 Analytical study

In the following we analytically study the time-discretized voter model in our implemen-
tation defined as above. We examine the proportion of nodes with opinion 1 on a random
graph of simplified structure: Let Xn denote the number of nodes representing opinion 1
after n iteration of the discretized voter model, while N denotes the number of nodes in
the graph. The degree sequence of the random graph is given by d = (di)

N
i=1. A standard

way to turn a difficult model into a much easier model is to take the mean-field limit. In
book [22] the voter model is studied on the complete graph with N vertices instead of Zd,
and it is also common to approx values by averaging.

Thus we make the following assumptions:

• There exists some k, such that each subgraph obtained from the k-radius of a node, is
a tree. Then, for a given node u, theN j

u = {v : d(u, v) = j} denotes the neighbours of
distance j of node u. With the help of d degree sequence we can compute |N j

u | = s
(j)
u .

• For each node u the proportion of neighbours of distance j with opinion 1 is equal
to the proportion of nodes with opinion 1 in the whole graph. So each node u has
s
(j),1
u = s

(j)
u

Xn
N

number of neighbours with opinion 1, and s(j),0u = s
(j)
u

(N−Xn)
N

number
of neighbours with opinion 0.

With the assumptions above, each node u independently with probability e−2j (in case
of c = 2) is convinced by other nodes being j distance from him. Then each node u is
convinced expectedly

s(1)u · e−2 + s(2)u · e−4 + · · ·+ s(k)u · e−2·k =
k∑
j=1

s(j)u · e−2·j (4.5)

times, from which it is convinced with opinion 1

k∑
j=1

s(j),1u · e−2·j (4.6)

times.
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Then a node u will represent opinion 1 with probability∑k
j=1 s

(j),1
u · e−2·j∑k

j=1 s
(j)
u · e−2·j

=
Xn

N
(4.7)

and opinion 0 with probability (N−Xn)
N

, regardless of the degree of node u according to the
mean-filed assumptions. In the discrete-time model a node influences others independently,
so each node will represent opinion 1 independently with probability Xn

N
.

Thus after n + 1 iterations of the voter model, we conclude the following about the
number of nodes with opinion 1:

E(Xn+1|X1, X2, . . . , Xn) = E(Xn+1|Xn) = Xn + (N −Xn) · Xn

N
−Xn ·

(N −Xn)

N
= Xn.

(4.8)
Because of this martingale property of the process, with the assumptions above the

expected number of individuals representing opinion 1 after any iteration of the voter
model is the same as in the beginning of the process.

Generally we cannot ensure the process to satisfy the second assumption. Most of the
random graphs also fail to possess the desired structure, however according to book [5] in
case of a d-regular random graph created by the configuration model, an uniformly drawn
node satisfies to have a tree for some radius j with probability converging to 1, as the size
of the graph converges to infinity.

4.3 Simulations on graphs

In this section we run a simplified version of the discrete time voter model on random
graphs. Firstly, we describe the implementation of creating Erdős–Rényi and Barabási–
Albert graphs. Later we examine the probability of disappearing type 1 after some given
viter iteration of the model, and investigate how it is possible to explain differences in
outcome in connection with the underlying graph structure. At last, we study the process
on Barabási–Albert graphs with different choices of nodes representing type 1, since in
this graph the role of nodes is rather asymmetrical.

In the discretized voter model described in Definition 4.2.1, on a graph on n nodes, at
every time step our algorithm consists of O(n2) steps, which can be problematic for bigger
graphs if our aim is to make sample with viter = 100 or 200 iterations of the voter model
(viter denotes the number of steps of the voter model). However, with c = 2 a node x
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convinces vertices y with d(x, y) = 3 only with a probability of e−6 = 0, 0025. Thus we used
the following simplified model: When we created a graph, we stored the list of edges and
also calculated for each node the neighbours of distance 2. The simplified voter model
spreads opinions only on these reduced number of edges with the proper probabilities.
Thus we were able to run the original discretized model only on graphs with n = 100,
while the simplified version can deal with n = 1000 nodes. We made the assumption that
neglecting those tiny probabilities cannot significantly change the outcome of the process.
From now on we only model the simplified version of the process.

4.3.1 Graph models

We study the voter model on Erdős–Rényi(n, p) and Barabási–Albert(n,m) random graphs.
Erdős–Rényi random graphs ER(n, p): The ER(n, p) random graph consists of

n nodes, and every possible pair x, y ∈ V is connected by an edge independently with
probability 0 ≤ p ≤ 1.

The Barabási–Albert graph is a dynamic model: we keep adding nodes to the graph
one by one and connect them to the previous nodes with exactly m edges in relationship
with the degrees of the old nodes. Thus, the network will consist of a few nodes with huge
degree. Instead of giving a precise definition, we focus only on the implementation of the
graph model:

Barabási–Albert random graphs BA(n,m): Initially we start with a graph G0. At
every time step we add a new node v to the graph and attach it exactly with m edges to
the old nodes with preferential attachment probabilities. Let D denote the sum of degrees
in the graph before adding the new node, then we attach an edge independently to u with
probability d(u)

D
.

We generated graphs starting from G0 = ER
(
50, m

(50−1)

)
graph of complying density.

Multiple edges can be created by the algorithm, however loops cannot occur. Attachment
probabilities are not updated during a time step. Multiple edges do matter in the voter
model, since they somehow represent a stronger relationship between individuals: opinion
on a k-multiple edge transmits with a k-times bigger probability.

4.3.2 Probability of disappearing

We examine the voter model on graphs above to understand the differences of the process
resulting from the structure. We compare graphs with the same density, BA(1000,m)
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graphs with m = {4, 5, . . . , 10} and ER(1000, p), where p ∈ [0.004, 0.01]. Initial probabil-
ity of opinion 1 is set to 0.05 in both graphs. We compare the probability of disappearing
the opinion with viter = 50 iteration of the voter model. We generated 10 different graphs
from each structure and ran voter model on each 20 times with independent initial opin-
ions. Altogether the results of 200 trials were averaged. Figure 4.1 shows the results.

Figure 4.1: Probabilities of disappearing opinion 1 with variable graph density

Before the phase transition of Erdős–Rényi graphs, that is, with p < lnn
n
≈ 0.007 with

n = 1000 nodes (BA graphs of the same density are belonging to m ≤ 7) the graph
consists of several components with high probability. It is possible that nodes being in a
tiny component of the graph, or even isolated nodes get opinion 1 initially, resulting in the
co-existence of the two opinions. (In a small component of the graph within a few time
steps any opinion can disappear easily, remaining the same for the rest of the process since
no other nodes can influence them.) This could be one of the reasons why disappearing
probabilities in ER graphs are significantly less. The another reason is in connection with
the next part: Since some nodes in BA graphs can possess outstanding number of degrees,
while most of them have only a few, the process can be influenced by the properties of
nodes chosen to represent opinion 1 initially. On the other hand, on BA graphs not only
the probability of the vanishing of opinion 1 is higher, but it is also more likely to get
extreme results. Proportions of opinion in ER graphs are more stable. We can generally
say that the increase of the density of graphs escalates voter model, since in expected
value more convictions happen at every time step, resulting in a more volatile proportion
of opinions, and thus in higher probabilities of the disappearance of the underrepresented
opinion.
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Different choices of L0

As mentioned before, in this sequel we investigate extreme outcomes of the process caused
by one of the most important properties of Barabási–Albert graphs. Since nodes do not
play a symmetrical role in Barabási–Albert graphs, fixing the proportion of nodes repre-
senting opinion 1 (we usually use v = 0.05, so 50 nodes represent opinion 1 in expected
value), but changing the position of these nodes in the graph can lead to different results.
We examined the following three ways of initial opinion setting:

• randomly: Each individual chooses opinion 1 with probability v.

• "oldest nodes": We deterministically set the first 50 nodes of the graph to represent
opinion 1. These nodes usually have the largest number of degrees, thus they play a
crucial part in the process. Not only have they large degrees, but they are also very
likely to be connected to each other (this is the densest part of the graph).

• "newest nodes": We deterministically set the last 50 nodes of the graph to represent
opinion 1. These nodes usually have only m edges, and they are not connected to
each other with a high probability.

Figure 4.2: Distribution of nodes with opinion 1, different L0

The histogram on Figure 4.2 shows the distribution of nodes with opinion 1 with the
three different choices of L0 vectors after viter = 50 iterations of the voter model on
BA(1000, 5) graphs. We experience differences in terms of probabilities of disappearing
opinion 1: with random opinion distribution 11%, with Lnew almost one third of the cases
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resulted in extinction of opinion 1, while for Lold this probability was negligible (0.005%).
Actually, for Lold after only one iteration of the voter model it is impossible to see any
structure in the distribution of individuals with opinion 1. Vector of opinions became
totally random, but with a probability of 0.12. Indeed only with one step of the voter
model individuals with opinion 1 could double in number, however opinion 1 cannot take
advantage of any special positions in the graph anymore. All in all, giving a certain opinion
to individuals who are more likely to be connected in the graph, reduces the probability of
disappearing, since they can keep their opinion with a high probability, while with opinion
1 scattered across the graph (in case of Lnew as well as Lrand) with a dynamic parameter
setting of c number of individuals with opinion 1 can reduce drastically even in a few time
steps.
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