


Eötvös Loránd University

Faculty of Science

Kernel-Based Classification Algorithms and
Their Stochastic Guarantees

Thesis

Author:

Ambrus Tamás
Applied Mathematics MSc

Supervisors:

Balázs Csanád Csáji

Senior Research Fellow

Institute for Computer Science and Control (SZTAKI)

Ágnes Backhausz

Assistant Professor
Eötvös Loránd University (ELTE)

Budapest, 2020



Acknowledgements

I am very grateful to Balázs Csanád Csáji and Ágnes Backhausz for supervising me. This
thesis improved a lot by their valuable guidance and useful suggestions. I really appreciate all
the advice that I received during the preparation process. They helped me a lot to develop a
deep understanding of this field.

I also thank my family, my girlfriend and my friends for their constant support in this period
of my life and bringing daily joy.

I



Contents

Introduction 1

1 Foundations of Statistical Learning 3
1.1 Binary Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Regression Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Classification vs Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Formal Learning Models 8
2.1 Empirical Risk Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Bias-Variance Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Parametric vs Nonparametric Statistics . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Learning Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 The VC Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 The Fundamental Theorem of PAC Learning . . . . . . . . . . . . . . . . . . . . 18
2.8 Structural Risk Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.9 Uniform Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.9.1 Frequencies to Their Probabilities . . . . . . . . . . . . . . . . . . . . . . 24
2.9.2 Means to Their Expectations . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Strong Uniform Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.11 Universal Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Nonparametric Methods 30
3.1 Local Averaging Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Stone’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Kernel Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Universal Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Strong Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 The k-Nearest Neighbors Estimate . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Kernel Methods 42
4.1 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Reproducing Kernel Hilbert Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 46

II



4.4 Representer Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Kernel Mean Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Confidence Regions 51
5.1 Resampling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Non-Asymptotic Confidence Regions . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 Algorithm I (ERM Based) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Numerical Experiments I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Algorithm II (Local Averaging Based) . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Algorithm III (Embedding Based) . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.7 Algorithm IV (Discrepancy Based) . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.8 Numerical Experiments II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Conclusion 72

Appendix 73

A Tail and Concentration Inequalities 73
A.1 Deriving the Chernoff Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Sub-Gaussian Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.3 Hoeffding’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.4 Generalization to Martingale Differences . . . . . . . . . . . . . . . . . . . . . . 77

B Proofs 79
B.1 A Bayes Optimal Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2 A Uniform Exponential Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.3 Stone’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
B.4 Banach–Steinhaus Theorem for Integral Operators . . . . . . . . . . . . . . . . . 85
B.5 Covering Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography 88



Introduction

Machine learning is a rapidly evolving field with a wide range of real-life applications, hence
its mathematical foundation is extremely important. Since learning theory has its roots in
statistics and computer science, the theoretical study of this area has a long and rich history.

Supervised learning problems are probably the most well-known examples of this field. The
goal in this area is to understand observation generating mechanisms with the help of statistical
samples and infer models with good generalizing property and design algorithms that can be
used in practice. Besides, we would like to ensure the applicability of these learning methods
with, preferably non-asymptotic and distribution-free, stochastic guarantees.

In our reasearch we studied binary classification and aimed at estimating the underlying
regression function, which is the conditional expectation of the class labels given the inputs.
The regression function is a key component of the Bayes optimal classifier, because it does not
only provide optimal predictions, but also the risk of misclassification can be computed from
it. We aimed at building non-asymptotic confidence regions for the regression function and
suggested an empirical risk minimization based and three kernel-based semi-parametric resam-
pling algorithms. Chapter 5 contains the new results of our reasearch, where the four afore-
mentioned methods are introduced and the asymptotical analysis of the algorithms are also
presented. It is proved that they are all strongly consistent in some sense.

I had two purposes in my mind throughout the writing process of this thesis. First, my goal
was to introduce our new methods and present the corresponding results. These are included in
Chapter 5, but since we build on many ideas from statistical learning theory I tried to provide a
brief introduction to the applied concepts as well. My second goal was to give a comprehensive
summary of the most important tools and theoretical results regarding the theory of supervised
learning. However, since this field is huge and rapidly evolving, in most cases I chose to focus
only on those materials that are related to our new findings.

Many sources were used during the preparation of this thesis. The book of Vladimir Vapnik
[23], the book of Trevor Hastie et al. [14] and the book of Shai Shalev-Shwartz and Shai Ben-
David [19] were good starting points. The books of László Györfi et al., [8] and [11], offered a
high level analysis of nonparametric and distribution-free supervised learning concepts.

In Chapter 1 we review the most important results corresponding to the problem of classifi-
cation and regression analysis. We prove that the regression function is a key object to examine
for both problems. My main sources for this chapter were the aforementioned books of Györfi
et al., [8], [11] and the book of Vapnik, [23].

In Chapter 2 we define a formal learning model and state the fundamental theorem of
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CONTENTS

probably approximately correct (PAC) learning which is closely related to the VC dimension
of model classes. We present the structural risk minimization principle and two uniform laws
of large numbers with the help of complexity measures. We also derive a no-free-lunch theorem
which says that there is no universal PAC learner algorithm. In the end of this chapter a lighter
notion, universal consistency is considered which can be reached for all regression functions
with nonparametric estimates. The following books were the main sources for this part of the
thesis: [8], [11], [19], [23] and [25].

The goal of Chapter 3 is to derive a strongly consistent method for regression functions with
the help of nonparametric local averaging estimates. Stone’s theorem is applied to show that a
broad class of kernel estimates is universally consistent. Then a long reasoning is presented to
show that strong consistency can be reached for many distributions of the examined sample.
Beside the local averaging kernel estimates the k-nearest neighbors approach is defined. These
estimation techniques are applied in our methods in Chapter 5. Mainly the books of Györfi et
al. were used for this chapter, see [8] and [11].

General kernel methods are motivated and presented in Chapter 4 based on [14],[17], [18],
[24] and [25]. First, the ridge regression estimate and support vector machines are introduced,
then the theory of reproducing kernel Hilbert spaces and kernel mean embeddings are presented.
These techniques are applied in our new algorithms in Chapter 5.

Finally, Chapter 5 contains our new results and algorithms for constructing exact, non-
asymptotic confidence regions for the true underlying regression function. First, the resampling
framework is introduced, which is similar to Monte Carlo tests and bootsrap methods. Second,
a general construction scheme is defined and a non-asymptotic, exact guarantee is infered for
these confidence regions under mild statistical conditions. Then four concrete algorithms are
introduced. The first one is based on empirical risk minimization. We provide uniform bounds
on its asymptotic behaviour. The other three methods use kernel-based techniques and are
strongly consistent. Algorithm II uses local averaging kernel estimates in the construction,
while Algorithm III and IV are built on kernel methods and kernel mean embeddings. In the
end of this chapter we illustrate our algorithms with numerical examples.

Appendix A is a short summary of tail bounds and concentration inequalities, that are used
throughout the thesis. It is mainly based on [11] and [25]. In Appendix B some important proofs
are presented for the sake of completeness.
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Chapter 1

Foundations of Statistical Learning

1.1 Binary Classification
Classification or pattern recognition is one of the principle problems in statistical learning

theory [23]. Let (Ω,A,P) be a probability space as always and let (X × Y,X ⊗ Y) denote a
measurable sample space. We call X the input space and Y the output space. In classifica-
tion X can be an abstract high dimensional space, but in this thesis we often assume that
X ⊆ Rn, while Y in classification is always a finite set. In this thesis we only deal with the
binary case, i.e. Y = {+1,−1}. In classification a sample is given, D = {(Xi, Yi)}ni=1, from the
(X, Y ) : Ω → X × Y random pair’s unknown joint distibution, which is denoted by PX,Y or
simply by P . In the whole thesis we assume that {(Xi, Yi)}ni=1 is an i.i.d. sample from the
distribution of (X, Y ).

The joint distribution can be described in a variety of ways in this case. In classification
probably the most intuitive way to define PX,Y is to do so by a pair of (PX, η), where PX is
the distribution of X - the marginal distribution of PX,Y - and η is the conditional probability
function, i.e.

PX(A) .= P(X ∈ A) and
η(x) = P(Y = 1|X = x).

(1.1)

The following claims are proved based on [8].

Claim 1.1.1. The pair (PX, η) determines the joint distribution of (X, Y ).

Proof. It is sufficient to see that for all measurable C ⊆ X × {+1,−1} the probability
PX,Y (C) = P

(
(X, Y ) ∈ C

)
can be derived from PX and η. Notice that

C =
(
C ∩ (X× {+1})

)
∪
(
C ∩ (X× {−1})

)
= C+1 × {+1} ∪ C−1 × {−1}, (1.2)

where C+1 and C−1 are determined measurable parts of X. With these sets we can express the
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Foundations of Statistical Learning

sought quantity as

P
(
(X, Y ) ∈ C

)
= P

(
X ∈ C+1, Y = +1

)
+ P

(
X ∈ C−1, Y = −1

)
=
∫
C+1

η(x)dPX(x) +
∫
C−1

(1− η(x))dPX(x),
(1.3)

that is PX and η determines PX,Y .

We call a g : X → {+1,−1} measurable function classifier or decision rule. This function
chooses a class for each input point. To define the problem of classification a loss function is
needed, which is an L : Y×Y→ R+ function measuring our error in a given output point. The
most common loss function in classification is the 0/1 loss which is defined as L(ŷ, y) .= I(ŷ 6= y),
where I denotes the indicator function. Usually the goal of classification is to minimize the so-
called a priori risk or Bayes risk, which is the expected loss, i.e. R(g) .= E

[
L(g(X), Y

]
. We say

that g is Bayes optimal or just optimal if its risk is minimal, i.e. g ∈ arg minR(f). From the
definition we can see that the Bayes optimal classifier is not necessarily unique and sometimes
it does not exist. Nevertheless the loss functions that are applied in practice usually ensure at
least the existence of an optimal classifier. We will see that uniqueness does not occur in general.
When the 0/1 loss is used we can see that the Bayes risk becomes simply the misclassification
probability:

R(g) = E
[
I(g(X) 6= Y )

]
= P ( g(X) 6= Y ). (1.4)

Moreover, the Bayes optimal classifiers can be easily interpreted and expressed with the help
of the η function.

For practical reasons we define the sign function as follows

sign(x) .= 2 I(x > 0)− 1. (1.5)

Claim 1.1.2. The following function

g∗(x) = sign( 2η(x)− 1 ) = sign
(
E
[
Y |X = x

] )
, (1.6)

with domain X, is Bayes optimal in case of the 0/1 loss.

This claim is very intuitive. It says that when we look at variable Y conditioned onX = x we
simply observe a Rademacher variable which takes the value +1 with probability p(x) and the
value −1 with probability 1−p(x). It is reasonable that the optimal classifier always chooses the
outcome which is more likely to occur, this way minimizing the misclassification error. When
the two class probabilities are equal to each other then we can choose arbitrarily. In such cases
our choice, g∗, prefers the +1 class, because of (1.5). The formal proof from [8, Theorem 2.1]
can be found in the appendix, see B.1.

Notice that the conditional expected value function, f∗(x) .= E
[
Y |X = x

]
, which is also

called the regression function, contains even more information than the Bayes optimal classifier,
because g∗ can be easily derived from f∗. Besides, the misclassification probability for each input
point is encoded in the regression function, hence it is worth examining f∗ instead of g∗.
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Foundations of Statistical Learning

1.2 The Regression Function
We started by defining the problem of binary classification and we found that a Bayes

optimal classifier can be expressed with the so-called regression function, E
[
Y |X = x

]
.

Nevertheless, as the regression word indicates it, this function is extremely important in the
problem of regression which is as follows. The setup for the regression problem is similar to
what was before. Again, we have a sample from an (X, Y ) random pair’s unknown distribution,
though this time Y is real-valued, therefore we use a different loss function than in classifi-
cation. There are several options here. The most common choices are the squared deviation,
L(ŷ, y) .= (ŷ − y)2, or the absolute deviation, L(ŷ, y) .= |ŷ − y|. Given a loss we can define a
risk function similarly as before for any real-valued measurable f : X→ Y.

R(f) .= E[L(f(X), Y )] (1.7)

In regression our goal is to minimize this risk functional. From now on we are going to use the
squared deviation to penalize the error we make, because it has many advantages. Notice that
our problem becomes an L2 risk minimization problem with this loss as

R(f) = E
[
(f(X)− Y )2

]
. (1.8)

We would like to find a (measurable) function f∗ : X→ Y such that

E
[
(f∗(X)− Y )2

]
= min

f
E
[
(f(X)− Y )2

]
(1.9)

Here, we assume that this integration can be carried out, therefore EY 2 <∞ is required. Recall
that the regression function, i.e. the conditional expected value function f∗(x) .= E(Y |X = x)
has this minimizing property, indeed the conditional expectation can be viewed as an orthogonal
projection in the proper L2 space. Thus, for any (measurable) f in L2(PX) we have that

E
[
(f(X)− Y )2

]
= E

[
(f(X)− f∗(X) + f∗(X)− Y )2

]
= E

[
(f(X)− f∗(X))2

]
+ E

[
(f∗(X)− Y )2

]
− 2E

[
(f(X)− f∗(X))(f∗(X)− Y )

]
= E

[
(f(X)− f∗(X))2

]
+ E

[
(f∗(X)− Y )2

]
− 2E

[
E((f(X)− f∗(X))(f∗(X)− Y )|X)

]
= E

[
(f(X)− f∗(X))2

]
+ E

[
(f∗(X)− Y )2

]
− 2E

[
(f(X)− f∗(X))(f∗(X)− f∗(X))

]
= E

[
(f(X)− f∗(X))2

]
+ E

[
(f∗(X)− Y )2

]
.

(1.10)

Therefore the risk of f can be divided into two parts, where E
[
(f∗(X)−Y )2

]
is called the Bayes

risk and it does not depend on f and E
[
(f(X)− f∗(X))2

]
is called the L2 error of f and it is

minimized when f = f∗.
In theory f∗ has the lowest risk, but since we do not know the distribution of (X, Y ) we

cannot predict Y using f∗(X). Recall that our only access to the true distribution is the given
i.i.d. sample, D = {(Xi, Yi)}ni=1. Therefore we estimate the regression function with the help of
the data. In other words we try to find a data-dependent fDn which is close to the regression
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function, f∗. This statistical estimation process is also called learning. As it is clear that an
estimation fDn depends on the sample we leave out D from the notation and think of fn as a
random function measurable to D.

Similarly to (1.10), since fn is measurable to D and (X, Y ) is independent of D

E
(
(fn(X)− Y )2 | D

)
= E

(
(fn(X)− f∗(X) + f∗(X)− Y )2 | D

)
= E

(
(fn(X)− f∗(X))2 | D

)
+ E

[
(f∗(X)− Y )2

]
− 2E

[
(fn(X)− f∗(X))(f∗(X)− Y ) | D

]
=
∫
X

(fn(x)− f∗(x))2 dPX(x) + E
[

(f∗(X)− Y )2
]

(1.11)
holds, so the L2 risk of an estimate fn is close to the optimal if and only if the random L2 error
is small. That is why it is beneficial to use the L2(PX) metric to measure the fit of an estimate.

Notice that
∫
X (fn(x) − f∗(x))2 dPX(x) is a random quantity, because fn depends on the

sample. In addition, we can see that the L2 error has only theoretic advantages and in practice
usually it is not possible to calculate it for a given fn estimate, because we do not have access
to the probability measure PX nor we know the true regression function f∗. Because of these
reasons in many cases it is useful to measure the distance between the estimator and the
regression function in more traditional ways such as the pointwise distance for a fixed x ∈ X,
the sup-norm or the Lp norms with p ≥ 1 with the Lebesgue measure when X ⊆ Rn is compact.

1.3 Classification vs Regression
We introduced the two main problems of supervised learning. We defined the risk functional

for each case as the expected loss and our goal became to minimize these risks. In classification
we used the 0/1 loss while in regression we applied the squared error. For classification it was
desirable to find the so-called Bayes optimal classifier, which can be described as the sign of the
regression function. In regression we showed that the regression function has always minimal
risk when the squared error is used. Consequently if we can solve the regression problem and find
the regression function then we can derive the Bayes optimal classifier as well, which suggests
that classification is easier than regression. In fact this is the case in some sense. In this section
we are going to show that if we have a method to estimate the regression function well than
we can also derive a decision rule with close to optimal risk. For any measurable function f we
define g(x) .= sign(f(x)), which is the plug-in classifier of f . Then similarly to (B.4) we have

P(g(X) 6= Y )− P(g∗(X) 6= Y ) =
∫
X
f∗(x)

(
I(g∗(x) = 1)− I(g(x) = 1)

)
dPX(x)

≤
∫
X
| f∗(x)− f(x) | dPX(x) ≤

√∫
X
| f∗(x)− f(x) |2 dPX(x),

(1.12)

where we used that f∗(x)
(
I(g∗(x) = 1) − I(g(x) = 1)

)
≤ | f∗(x) − f(x) | for all x ∈ X. It

holds because when
(
I(g∗(x) = 1) − I(g(x) = 1)

)
6= 0 then f∗(x) and f(x) have different

signs, therefore f∗(x) ≤ |f∗(x)| ≤ | f∗(x) − f(x) |. The second inequality holds because of the
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Cauchy-Schwartz inequality. Furthermore, with the same steps we can conclude that

P(gn(X) 6= Y | D)− P(g∗(X) 6= Y ) ≤
√∫

X
| f∗(x)− fn(x) |2 dPX(x). (1.13)

As we can see an estimate fn with small L2 error leads to a decision rule with close to optimal
misclassification probability. It is clear though that to construct an optimal classifier it is
sufficient to find a function which has always the same sign as the regression function. To sum
up, regression is a harder problem than classification, but it gives us a better understanding of
the underlying data generating mechanism.

7



Chapter 2

Formal Learning Models

We have already got to know the two most important supervised learning problems, classifi-
cation and regression. We defined our goals as risk minimization in both cases. In classification
we wish to find the Bayes classifier in regression we search for the regression function. Since
both of these are just a minimizer of a risk we call them target functions from now on. Our
problem is that we do not have direct access to the risk, but only to an i.i.d. sample. That
is where learning is introduced. In this section we are going to define the notion of learning
precisely, but first we deal with the challenge of risk minimization.

2.1 Empirical Risk Minimization
For now, our biggest concern is that we do not have direct access to the risk which is the

expected value of a loss. The first idea is to estimate the true risk with an empirical average,
which can be calculated from the data

R̂(g) .= 1
n

n∑
i=1

L(g(Xi), Yi). (2.1)

This is called the empirical risk. The strong law of large numbers (SLLN) ensures that this
quantity for any given g tends to the risk (a.s.) as n → ∞, so this should be a good estimate
for big datasets.

Our hope is that R̂(g) is close to R(g), therefore it is a reasonable idea to minimize the
empirical version instead of the true risk. Thus, we need to find a g which satisfies

g ∈ arg min 1
n

n∑
i=1

L(g(Xi), Yi). (2.2)

This type of optimization is called the empirical risk minimization (ERM) principle. Though it
is a natural approach, some issues arise when we try to solve this optimization for example for
the regression problem. Since we have not restricted ourselves to a specific function class yet,
i.e. f can be any measurable function, we can construct f̂(x) = ∑n

i=1 I(x = Xi)Yi. It is easy to
see that when all Xi are different R̂(f̂) = 0, so we found a minimum, since the emprical risk is

8
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nonnegative. Unfortunately this does not imply that our true risk is small. Instead in this case
the opposite can be true, that is for instance when PX is absolutely continuous for the Lebesgue
measure then f̂ = 0 in the L2(PX) sense. Thus, the risk equals to the risk of the zero function
which was arbitrarily chosen. Such estimates can only perform well for already seen inputs,
whenever a new input is observed f̂ fails to predict its regression, in other words f̂ cannot
generalize well. We can say that this estimator only memorizes the data. This phenomenon
happens if we apply the empirical risk minimization principle without restricting ourselves to
a function class where the minimization is considered. Our problem is that though for each
function f we know that R̂(f) a.s.−−→ R(f) as n → ∞, it does not imply that for all function
classes F we have

inf
f∈F

R̂(f) a.s.−−→ inf
f∈F

R(f). (2.3)

In fact, without restrictions on F often inff∈F R̂(f) = 0 occurs for all n ∈ N. When our estimate
achieves a low empirical risk without generalizing well, we say that our estimate overfits the
data. It is something that we really want to avoid.

2.2 Bias-Variance Trade-Off
We argued that if we continue our thread of reasoning with ERM, then we must make a

restriction on the function class we minimize on. As a start let F denote the set where the
minimization takes place. Then the ERM estimate of the target funtcion is defined as

f̂ ∈ arg min
f∈F

R̂(f). (2.4)

We asssume that this minimum exists and though we do not require unicity we think of f̂ as
a well-defined single function. This holds for the whole thesis, whenever we write arg min we
assume that it exists and it is well-defined. Notice that when f∗ 6∈ F then the ERM method
cannot find the true target function. We can only hope to infer the best function in the model
class, which is f̃ ∈ arg minf∈F R(f). Notice that the L2 error can be described as the sum of
two terms

R( f̂ )−R(f) = R( f̂ )−R( f̃ ) +R( f̃ )−R(f), (2.5)

where R( f̂ )−R( f̃ ) is called the estimation error and R( f̃ )−R(f) is called the approximation
error. We can see that there is a trade-off here. When we choose a big F which contains g∗
more likely, the approximation error will become small. On the other hand in this case the
chance of overfitting becomes high implying that the estimation error increases. In the other
direction we may choose a small F in which case it is easy to estimate f̃ well, but this time the
approximation error can grow large, because f∗ can have much lower risk than f̃ . In conclusion,
it is our goal to find the right balance between these two. Doing so we should define more
precisely what it means to have a big model class and find a method to control it.

9
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2.3 Parametric vs Nonparametric Statistics
There are several ways to find the right model class we work with. The classical approach is

to simply fix one in advance, which is parameterized with finitely many parameters. This way
we can encode our prior knowledge about the target function’s structure. For example we can
assume that the regression function is in a finite dimensional linear space (linear regression)
or we can assume that the Bayes classifier is linear (e.g. perceptron). This approach has many
advantages and also some short-comings. When we have a priori knowledge about the target
function then it sounds like a good idea to use it. In practice though, our a priori knowledge
is often limited, therefore we want to make as few assumptions on the data as possible. In this
perspective it is our goal to reduce the constraints that we build in our methods. Thus, when
we know the structure or some property of the target function it is reasonable to exclude those
models which do not coincide with our criteria, but when such solid knowledge is not available
we should make as few assumptions as possible. Parametric estimators have the advantage that
they can perform well even for a small data set, because of those a priori concepts that are built
inside them. Besides, they are often easy to interpret. Many times the parameters have actual
physical meanings. On the other hand, they are not really flexible, since usually for different
problems we make different assumptions on the target function. Furthermore, it is important to
keep in mind that via the parameterization we introduce an inductive biasedness to the problem,
which can be misleading when we deal with real-world data. For example assuming linear
dependence is reasonable many times, but in reality it is usually just an abstract simplification
of the complicated data generating mechanism. In conclusion parametric methods can perform
well, but it is important to keep in mind their limitations.

Nonparametric methods were developed to overcome the issues we mentioned concerning the
parametric methods. These are very flexible tools that do not assume that the target function
can be described by finitely many parameters. Usually the number of parameters which arise
in these algorithms increases with the data size. These methods can be applied almost without
any prior knowledge. The most known examples of these are the local averaging estimates, see
[11] and the kernel-methods, see [18], which are going to play a central role in this thesis. In
Chapter 3 and 4 we are going to analyze these techniques more deeply. For now it is sufficient to
see that during these methods we do not apply the ERM principle. Instead we either construct
an estimator on a smart way and hope that it will have good generalizing property and close
to optimal risk or we adopt the capacity of the model class to the data size. This second
paradigm is related to the bias-variance trade-off which was mentioned earlier. To make this
precise, later we are going to define the capacity or complexity measure of model classes and
present the structural risk minimization principle. To sum up nonparametric methods are very
flexible, need almost no prior knowledge about the data and are computationally cheap or at
least manageable, while the ERM method in practice often has a high computational burden.
On the other hand their convergence to an optimal estimator is often slow, therefore they need
more data in general.

10
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2.4 Learning Theory
In this section we finally define the notion of learning. We are already familiar with all

important concepts that we will use. Recall that given an i.i.d. sample, D = {(Xi, Yi)}ni=1,
from an unknown distribution. Regarding the distribution we do not have any preconception.
However we are going to assume that we have a model class F . This model class or hypothesis
set incorporates our prior knowledge about the target function. For now it is fixed. We are
going to focus on the problem of risk minimization in this model class. Again, we assume that
there exists a minimum. Let Γ denote a learning algorithm, which choses a model from F based
on any given sample, formally Γ(D) ∈ F . It will be clear that usually we cannot hope for an
algorithm which always finds the minimum exactly. It is the case for example when we deal
with absolutely continuous distributions and model classes containing infinitely many functions
with high expressing capacity. Hence we are going to be satisfied even when we can reduce our
risk very close to the minimum with a chosen high probability. This leads us to the framework
of probably approximately correct learning or simply PAC learning (also called agnostic PAC
learning), see [19]. Let RP denote the risk with the indication that it depends on the joint
distribution P .

Definition 2.4.1 (PAC learnability). We say that a model class F is PAC learnable if for all
ε > 0 and δ > 0 there exists nF(ε, δ) ∈ N and a learning algorithm Γ such that when Γ learns
from an i.i.d. sample with size n > nF(ε, δ) from any distribution P , then it returns a model
Γ(D) = ĝ such that

P
(
RP ( ĝ ) ≤ min

g∈F
RP (g) + ε

)
≥ 1− δ. (2.6)

Here, we have two approximation parameters, we refer to ε as accuracy parameter and to
δ as the confidence parameter. The function nF tells us how many sample points we need to
infer a PAC estimate. It is easy to see that when F is PAC learnable then there are many such
functions. We call the minimal one the sample complexity. It is important that in practice when
we know the sample complexity, then we can give non-asymptotic guarantees for the risk of our
estimate, which is desired in practice.

This concept is very intuitive and formalizes our desires about a learning algorithm, but
we will see that it is a little bit restrictive too. We should ask what model classes are PAC
learnable. Now we are going to deal with only the problem of binary classification since it is our
main topic. First, we are going to see that in classification the set of all measurable decision
rules is not PAC learnable, hence there is no universal algorithm to solve the classification
problem in the PAC sense. This statement is called the no-free-lunch theorem for classification.
There are some stricter versions of this theorem, but trying to remain self-contained we present
a basic one from [19].

Theorem 2.4.1. (no-free-lunch) Consider the problem of binary classification. For a domain
X ⊆ Rd for all sample sizes, n ∈ N, smaller than |X|/2 (|X| can be infinite), and learning

11
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algorithm Γ there exists a distribution P such that there is a measurable g with RP (g) = 0 and

P
(
RP ( Γ (D ) ) ≥ 1

8

)
≥ 1

7 . (2.7)

It says that for a learning algorithm and sample size we can find a distribution P such that
Γ performs poorly on it with a significant high probability.

Proof. Fix n ∈ N and learning algorithm Γ. Let C ⊆ X such that |C| = 2n. Our idea is
that if we can only observe half of the possible instances then we cannot find a classifier for
the unseen part of the domain. It is clear that there are T = 22n distinct classifiers on C.
Denote these with g1, . . . , gT : C → {+1,−1}. For all i ∈ [T ] let Pi be a distribution defined
as Pi( (x, gi(x)) ) = 1/2n for all x ∈ X and zero everywhere else. We use the [T ] .= {1, . . . , T}
notation. We can see that we always have a uniform marginal distribution on C. Furthermore,
clearly RPi(gi) = 0 for i ∈ [T ]. We are going to show that

max
i∈[T ]

E
(
RPi( Γ(D)

)
≥ 1

4 . (2.8)

From this equation our theorem follows because there exists a Pi for which E
(
RPi( Γ(D)

)
≥ 1/4

and we know that RPi( Γ(D)) ∈ [0, 1] so the following holds

1P
(
RPi

(
Γ(D)

)
≥ 1

8

)
+ 1

8 P
(
RPi( Γ(D) < 1

8

)
≥ E

(
RPi( Γ(D)

)
≥ 1

4 . (2.9)

Rearranging the equation yields that

P
(
RPi( Γ (D ) ) ≥ 1

8

)
≥ 1

7 . (2.10)

We turn to prove the inequality in (2.8). Let K = (2n)n, which is the number of the possible
sample sequences we can get from C. Let Sj = (x1, . . . , xn) denote these sequences for j ∈ [K]
and let Dij = {(x1, gi(x1), . . . , (xn, gi(xn))} be the labeled version of Sj with classifier gi. We
know that all sequences are equally likely so for a fixed distribution Pi we have

ED∼Dni
[
RPi( Γ(D) )

]
= 1
K

K∑
j=1

RPi( Γ(Dij) ). (2.11)

The maximum is always greater than the average, which is greater than the minimum, therefore
we obtain that

max
i∈[T ]

1
K

K∑
j=1

RPi( Γ(Dij) ) ≥ 1
T

T∑
i=1

1
K

K∑
j=1

RPi( Γ(Dij) ) (2.12)

= 1
K

K∑
j=1

1
T

T∑
i=1

RPi( Γ(Dij) ) ≥ min
j∈[K]

1
T

T∑
i=1

RPi( Γ(Dij) ) (2.13)

holds. Fix a j ∈ [K]. Let v1, . . . , vp be those elements of C which do not appear in Sj. It is clear
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that p ≥ n. For all g : C → {+1,−1} and for all i ∈ [T ] we know that

RPi(g) = 1
2n

∑
x∈C

I(g(x) 6= gi(x))

≥ 1
2n

p∑
r=1

I(g(vr) 6= gi(vr)) ≥
1
2p

p∑
r=1

I(g(vr) 6= gi(vr)) (2.14)

holds, from which it follows that

1
T

T∑
i=1

RPi( Γ(Dij) ) ≥ 1
T

T∑
i=1

1
2p

p∑
r=1

I(Γ(Dij)(vr) 6= gi(vr))

≥ 1
2

1
p

p∑
r=1

1
T

T∑
i=1

I( Γ(Dij)(vr) 6= gi(vr) ) ≥ 1
2 min
r∈[p]

1
T

T∑
i=1

I( Γ(Dij)(vr) 6= gi(vr) ). (2.15)

Now fix an r ∈ [p]. Let’s partite the set {g1, . . . , gT} into T/2 disjoint pairs so that gk and gl
belong together if gk(v) 6= gl(v)⇔ v = vr. Since vr is not in sequence Dij we have that for every
pair (gk, gl)

I( Γ(Dij)(vr) 6= gk(vr) ) + I( Γ(Dij)(vr) 6= gl(vr) ) = 1. (2.16)

Summing up these terms for all pairs and dividing by T we conclude that

1
T

T∑
i=1

I( Γ(Dij)(vr) 6= gi(vr) ) = 1
2 . (2.17)

Substituting this to (2.15) the lower bound for the sought expected value is proved.

Corollary 2.4.1.1. When X is an infinite domain set, then the set of all measurable classifiers
F is not PAC learnable.

Proof. Assume by contradiction that F is PAC learnable. Then for ε < 1/8 and δ < 1/7 there
exists a learning algorithm Γ and sample size nF(ε, δ) such that for all distributions P when
n ≥ nF(ε, δ) we have

P
(
RP ( Γ(D) ) ≤ min

g∈F
RP (g) + ε

)
≥ 1− δ. (2.18)

From the no-free-lunch theorem we also know that there is a distribution P̃ such that there is
a g with zero risk and

P
(
RP̃ ( Γ (D ) ) ≥ 1

8

)
= 1− P

(
RP ( Γ (D ) ) < 0 + 1

8

)
≥ 1

7 . (2.19)

It leads to a contradiction since ε < 1/8, δ < 1/7 and

P
(
RP̃ ( Γ (D ) ) < 1

8

)
≤ 1− 1

7 < 1− δ ≤ P
(
RP̃ ( Γ(D) ) ≤ ε

)
, (2.20)

thus the corollary follows.
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2.5 Uniform Convergence
We present necessary and sufficient conditions for PAC learnability. In this section we con-

centrate on deriving a sufficient condition. Our idea to ensure PAC learnability is to apply an
efficient learning algorithm Γ and determine the largest model class, F , which Γ can learn.
We are going to consider the ERM method. Regarding this learning algorithm our prob-
lem was that though |R̂(g) − R(g)| → 0 holds for all measurable g, it does not imply that
supg∈F |R̂(g) − R(g)| → 0 for a model class F , where the convergences hold almost surely.
Nevertheless, recall that an asympotical condition in general is not sufficient for PAC learning,
because we want non-asympotic guarantees. Therefore we need a stricter criterion.

Definition 2.5.1. (ε-representative sample) A sample D is ε-representative with respect to
domain X, model class F , loss L and distribution P if for all g ∈ F∣∣∣R̂(g)−R(g)

∣∣∣ ≤ ε. (2.21)

Claim 2.5.1. When D is ε/2-representative then any output of the ERM method with respect
to F , that is ĝ ∈ arg ming∈F R̂(g), satisfies

R( ĝ ) ≤ min
g∈F

R(g) + ε. (2.22)

Proof. Let g∗ ∈ arg minF R(g). The following holds

R(ĝ)−R(g∗) = R(ĝ)− R̂(ĝ) + R̂(ĝ)−R(g∗)

≤ |R(ĝ)− R̂(ĝ)|+ |R̂(ĝ)−R(g∗)| ≤
ε

2 + ε

2 ,
(2.23)

because both absolute deviations are lower than ε/2, since D is ε/2-representative. We used the
fact that when two functions are close to each other uniformly then their minimums are also
close to each other.

We can see that if the sample is ε-representative with probability at least 1 − δ, then the
ERM method is a PAC learner of F .

Definition 2.5.2. (uniform convergence) We say that a model class F has the uniform conver-
gence property w.r.t. a domain X and loss L if for all ε > 0 and δ > 0 there exists nUF(ε, δ) ∈ N
such that if D is a sample with at least n > nUF(ε, δ) i.i.d. examples according to any distribution
P , then D is ε-representative with probability at least 1− δ.

The uniform adjective refers to the fact that a PAC statement is true for any element of F
and for any distribution P .

An important corollary of Claim 2.5.1 is that whenever F has the uniform convergence
property then it is also PAC learnable, namely the ERM method is a PAC learner of F .
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2.6 The VC Dimension
In this section we still consider the problem of classification. Trying to find a necessary and

sufficient condition for PAC learnability we revisit the bias-variance trade-off phenomenon, see
Section 2.2. There, we showed that the “size” of the model class has a huge impact on learning,
that is if we include more models in F then our approximation error will decrease, but the
estimation error can grow high. It can be showed that finite model classes are PAC learnable
and also have the uniform convergence property, see [19]. Nevertheless, it is not hard to argue
that many infinite model classes are PAC learnable as well, hence it is clear that the cardinality
of F is not the best measure to decide whether a model class is PAC learnable or not. Indeed,
we need a new concept here, which measures the complexity or capacity of a model class. The
goal of these measures is to characterize somehow what model classes are learnable. There are
several notions for complexity. We are going to present the most important ones. In this section
we present the celebrated theory of VC dimension or Vapnik-Chervonenkis dimension, which
was proposed by Vladimir Vapnik and Alexey Chervonenkis, see [23]. Besides, other important
complexity measures are going to be defined in later sections for deriving sufficient conditions
for the uniform law of large numbers. In this section we are going to prove that VC dimension
grants a necessary and sufficient condition for PAC learnability.

First, we take another look at the no-free-lunch theory that we proved. Recall that we
showed that for every learning algorithm and sample size we can construct a distribution on
which the learning algorithm will perform poorly. Our idea was that when there are too many
decision rules which perform well on the data then a learning algorithm will have a very small
chance to find the optimal one. It is really the problem with the case when we do not make any
restriction on the model class. We can explain every dataset arbitrary well with many models.
This leads us to the concept of shattering. Assume that a model class of classifiers, F , is given.
Let C = {c1, . . . , cn} ⊆ X be a finite subset of the input space. Restrict our classifiers in F to
set C, so that FC = { (g(c1), . . . , g(cn)) | g ∈ F }. We see that FC ⊆ {+1,−1}n. We say that F
shatters C if FC contains all possible outcomes on C, that is when |FC | = 2n.

Definition 2.6.1. (VC dimension) Let F be a set of classifiers. The VC dimension of F is the
maximal size of a set C ⊆ X, |C| = n which is shattered by F . The VC dimension is infinite
when the maximum does not exist.

Claim 2.6.1. If F has infinite VC dimension then it is not PAC learnable.

Proof. Assume by contradiction that for 0 < ε < 1/8 and 0 < δ < 1/7 there exists a learning
algorithm Γ which PAC learns F from any i.i.d. sample of size nF(ε, δ). Then consider a set
C ⊆ X of size 2nF(ε, δ) which is shattered by F . For this set C we can apply the no-free-lunch
theorem, see Theorem 2.4.1, from which it follows that there is a distribution P̃ that Γ fails to
PAC learn. We reached the contradiction.

We defined the V C dimension as the maximal size of a set which can be shattered. The
maximal size of |FC | taking the maximum in C with a fixed size is another useful quantity
called growth, shatter coefficient or maximal effective size.
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Definition 2.6.2. (growth function) Let F be a model class. The growth function of F is
defined as

τF(n) .= max
|C|=n,C⊆X

∣∣∣FC ∣∣∣. (2.24)

When F has inifinite VC dimension then it is clear that τF(n) = 2n for all n ∈ N. The
suprising fact is that when F has finite VC dimension then the growth function can only
increase polynomially, that is the following holds, see [11], [19] and [23].

Theorem 2.6.1. (Sauer) Let F be a model class with VC dimension VF . Then for any n ∈ N

τF(n) ≤
VF∑
i=0

(
n

i

)
. (2.25)

The notation of the proof becomes easier if we think of F as a set system on X×{+1,−1}.
Let A(g) = {(x, y) | g(x) = y} ⊆ X× {+1,−1} for all g ∈ F . Then for a model class F we can
construct a set system A = {A(g) | g ∈ F}. The VC dimension and the growth function can be
defined similarly as before, i.e. for all C ⊆ X× {+1,−1} we can define AC .= {A ∩ C |A ∈ A}
and we say that A shatters C, if |AC | = 2n, where |C| = n. The VC dimension of A is the
maximal size of those sets that A can shatter and the growth function becomes

τA(n) = max
|C|=n,C⊆X×{+1,−1}

∣∣∣AC |. (2.26)

Then it is easy to show that VA = VF , and τA(n) = τF(n). Later we are going to generalize this
concept to arbitrary set systems.

Proof. Let A be as before and C = {(x1, y1), . . . , (xn, y1)} = {z1, . . . , zn} ⊆ X× {+1,−1}. We
are going to show that

|{A ∩ C |A ∈ A}| ≤
VA∑
i=0

(
n

i

)
. (2.27)

Let K =
(

n
VA+1

)
and F1, . . . , FK be the subsets of C of size VA + 1. Notice that for all i ∈ [K]

there exists Hi ⊆ Fi such that

A ∩ Fi 6= Hi for all A ∈ A (2.28)

because A shatters no Fi. Since Fi ⊆ C it is clear that A∩Fi = (A∩C)∩Fi. Substituting this
into (2.28) yields that

(A ∩ C) ∩ Fi 6= Hi for all A ∈ A. (2.29)

Now let C0
.= {D ⊆ C |D∩Fi 6= Hi for each i ∈ [K] }. We just showed that {A∩C |A ∈ A} ⊆ C0.

We are going to prove that |C0| ≤
∑VA
i=0

(
n
i

)
. Notice that if Hi = Fi for all i ∈ [K] then

D ∩ Fi 6= Hi ⇔ Fi 6⊆ D from which it follows that C0 contains all subsets of C of size at most
VA, which are ∑VA

i=0

(
n
i

)
elements.

We are going to reduce the general case to this special one. Let H ′i
.= (Hi ∪ {z1}) ∩ Fi for
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i ∈ [K]. It means that we link z1 to Hi if it is in Fi. Furthermore, let

C1
.= {D ⊆ C |D ∩ Fi 6= H

′

i for all i ∈ [K] }. (2.30)

We claim that |C1| ≥ |C0|. Since C0 = (C0 ∩ C1) ∪ (C0 \ C1) and C1 = (C0 ∩ C1) ∪ (C1 \ C0) are
disjoint unions it is sufficient to prove that |C0 \ C1| ≤ |C1 \ C0|. Let ∆ : C0 \ C1 → C1 \ C0 be a
function such that ∆(D)→ D \ {z1}. We are going to prove that ∆ is injective from which the
claim follows. For D ∈ C0 \ C1 we have that D ∩ Fi 6= Hi for all i ∈ [K], because D ∈ C0 and
there exists an index i0 such that D ∩ Fi0 = H

′
i0 , because D 6∈ C1. Consequently

H
′

i0 = (Hi0 ∪ {z1}) ∩ Fi0 6= Hi0 , (2.31)

hence z1 6∈ Hi0 , but z1 is contained in Fi0 , H
′
i0 and D. Since z1 ∈ D for all D ∈ C0 \ C1 then the

extraction is a one-to-one mapping from C0 \ C1, i.e. ∆ is injective. It remained to show that
D \ {z1} ∈ C1 \ C0. Since D ∩ Fi0 = H

′
i0 and z1 /∈ Hi0 it follows that

(D \ {z1}) ∩ Fi0 = (D ∩ Fi0) \ {z1} = H
′

i0 \ {z1} = Hi0 , (2.32)

thus D \ {z1} /∈ C0. We need to prove that D \ {z1} ∈ C1. When z1 /∈ Fi then we obtain that

(D \ {z1}) ∩ Fi = D ∩ Fi 6= Hi = H
′

i , (2.33)

because of D ∈ C0. When z1 ∈ Fi then it is included in H ′i too, but certainly not in D \ {z1},
hence D \ {z1}∩Fi 6= H

′
i . Either way (D \ {z1})∩Fi 6= H

′
i holds, i.e. (D \ {z1}) ∈ C1. So far we

proved that |C0| ≤ |C1|. We can repeat this procedure n−1 times starting from C1, C2, . . . , Cn−1

with elements z2, . . . , zn, then we get classes with

|C0| ≤ |C1| ≤ · · · ≤ |Cn|. (2.34)

In the definition of Cn we have Hi = Fi, hence the special case occurs which was argued in the
beginning.

Corollary 2.6.1.1. For a model class F with VC dimension VF < ∞ we have that for all
n ∈ N

τF(n) ≤ (n+ 1)VF (2.35)

and for all n > VF

τF(n) ≤
(
en

VF

)VF
. (2.36)

Proof. We can apply the Sauer theorem and the binomial theorem to obtain

τF(n) ≤
VF∑
i=0

(
n

i

)
≤

VF∑
i=0

n!
(n− i)!

1
i! ≤

VF∑
i=0

ni
(
VF
i

)
≤ (n+ 1)VF . (2.37)
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When VF/n < 1, then similarly as before
(
VF
n

)VF
τF(n) ≤

(
VF
n

)VF VF∑
i=0

(
n

i

)
≤

VF∑
i=0

(
VF
n

)i(n
i

)

≤
n∑
i=0

(
VF
n

)i(n
i

)
=
(

1 + VF
n

)n
≤ eVF . (2.38)

Thus, the corollary follows.

2.7 The Fundamental Theorem of PAC Learning
In this section we state the fundamental theorem of PAC learning, which characterizes the

PAC learnable model classes.

Theorem 2.7.1. (Fundamental Theorem of PAC Learning) Consider the problem of binary
classification with the 0/1 loss function. Let F be a class of decision rules from domain X to
{+1,−1}. Then the followings are equivalent:

1. F has the uniform convergence property.

2. Any ERM method is a successful PAC learner of F .

3. F is PAC learnable.

4. F has a finite V C dimension.

There is a quantitative version of this theorem where it turns out that the VC dimension
not only characterizes PAC learnability but also determines the sample complexity, for further
details see [19].

Here, we stated the theorem for classification. A similar result holds for regression with
the squared loss function, however it cannot be generalized for arbitrary learning tasks. It
is interesting that there are examples for learnable classes which do not possess the uniform
convergence property. Furthermore, it can happen that the ERM method fails to learn a given
class, but another algorithm can, see [20].

Proof. We discussed 1⇒ 2 in Section 2.5. From 2 to 3, it is a triviality. The implication 3⇒ 4
holds, because of Claim 2.6.1. In order to prove 4⇒ 1 we first state Theorem 2.7.2.

We are going to use the notion of the empirical distribution. Notice that the quantity
R̂(g) = 1

n

∑n
i=1 L(g(Xi), Yi) can be seen as an expected value with respect to the measure

defined by Pn(A) .= ∑n
i=1 I(Zi ∈ A) where Zi = L(g(Xi), Yi). This probability measure is called

the empirical distribution. Notice that it is a random measure as it depends on variebles {Zi}ni=1.
The celebrated Glivenko–Cantelli theorem states that when Z1, Z2, . . . are i.i.d. variables then
the empirical measure tends to the true distribution of Z1, P , uniformly on the sets of half-lines,
see [10] and [4]. We need a generalization of this theorem.
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Theorem 2.7.2. (Vapnik–Chervonenkis) For every probability distribution P and a class of
measurable sets A, where A ⊆ X× {+1,−1} for all A ∈ A, we have

P
(

sup
A∈A
|Pn(A)− P (A) | > ε

)
≤ 8 τA(n) e−nε2/32. (2.39)

Remark 2.7.3. The measurability of the supremum in Theorem 2.7.2 needs to be verified. In
fact each time we consider a supremum in this thesis measurability issues can arise. The book
of Giné and Nickl, see [9], handles such problems with the notion of outer probability. Since for
many applications it is sufficient to consider the supremum of countable variables we do not
deal with these measurability issues in this thesis.

Proof. The proof will be done in four steps as in [8]. First, we use a symmetrization with a
hypothethical sample. Let Z1, . . . , Zn be the given i.i.d. sample from P and Z ′1, . . . , Z

′
n be an

alternative i.i.d. sample from the same distribution independent of the original variables, and
P
′
n denote the empirical distribution of the alternative sample. We claim that

P ( sup
A∈A
|Pn(A)− P (A) | > ε) ≤ 2P ( sup

A∈A
|Pn(A)− P ′n(A) | > ε/2). (2.40)

Let A∗ be a set for which |Pn(A∗) − P (A∗) | > ε or if there is no such A∗, then A∗ is fixed
arbitrarily. The following holds

P ( sup
A∈A
|Pn(A)− P ′n(A) | > ε/2) ≥ P ( |Pn(A∗)− P

′

n(A∗) | > ε/2)

≥ P
(
|Pn(A∗)− P (A∗) | > ε, |P ′n(A∗)− P (A∗) | < ε/2

)
= E

[
I ( |Pn(A∗)− P (A∗) | > ε)P ( |P ′n(A∗)− P (A∗) | < ε/2 |Z1, . . . , Zn)

]
.

(2.41)

We proceed by applying Chebyshev’s inequality as

P
(
|P ′n(A∗)− P (A∗) | < ε/2 |Z1, . . . , Zn

)
≥ 1− P (A∗)(1− P (A∗))

n ε2

4
. (2.42)

Since P (A∗)(1− P (A∗)) ≤ 1/4 and we can assume that nε2 ≥ 2, otherwise the upper bound is
trivial in the theorem, it follows that P

(
|P ′n(A∗)−P (A∗) | < ε/2 |Z1, . . . , Zn

)
≥ 1/2. Substituting

it back to (2.41) the inequality in (2.40) is proved.
In the second step we are going to symmetrize with an i.i.d. uniform random sign sample, that
is σ1, . . . , σn where P(σ1 = +1) = P(σ1 = −1) = 1/2. Clearly as Z1, Z

′
1, . . . , Zn, Zn are i.i.d.

supA∈A |Pn(A) − P
′
n(A)| = supA∈A 1

n

∣∣∣∑n
i=1 I(Zi ∈ A) − I(Z ′i ∈ A)

∣∣∣ has the same distribution
as supA∈A 1

n

∣∣∣∑n
i=1 σi(I(Zi ∈ A) − I(Z ′i ∈ A))

∣∣∣. Applying this remark and the union bound we
conclude that

P
(

sup
A∈A

1
n

∣∣∣∣ n∑
i=1

(I(Zi ∈ A)− I(Z ′i ∈ A))
∣∣∣∣ > ε/2

)

= P
(

sup
A∈A

1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A)− I(Z ′i ∈ A))
∣∣∣ > ε/2

)
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≤ P
(

sup
A∈A

1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

)
+ P

(
sup
A∈A

1
n

∣∣∣ n∑
i=1

σi(I(Z
′

i ∈ A))
∣∣∣ > ε/4

)

≤ 2P
(

sup
A∈A

1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

)
. (2.43)

In the third step we bound P
(

supA∈A 1
n

∣∣∣∑n
i=1 σi(I(Zi ∈ A))

∣∣∣ > ε/4

)
by conditioning on

Z1, . . . , Zn. Fix a possible outcome z1, . . . , zn. Notice that there are at most τA(n) different(
I(z1 ∈ A), . . . , I(zn ∈ A)

)
vectors, because each such vector corresponds to an intersec-

tion of form A ∩ {z1, . . . , zn} for an A ∈ A and τA(n) was the maximum of these. Therefore
supA∈A 1

n

∣∣∣∑n
i=1 σi(I(Zi ∈ A))

∣∣∣ is the maximum of at most τA(n) variables, therefore we can
apply the union bound to obtain

P
(

sup
A∈A

1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

∣∣∣Z1, . . . , Zn

)

≤ τA(n) sup
A∈A

P
( 1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

∣∣∣Z1, . . . , Zn

)
, (2.44)

with a supremum outside the probability.
In step four we apply Hoeffding’s inequality, see Theorem A.3.1.1, for bounding

P
( 1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

∣∣∣Z1, . . . , Zn

)
. (2.45)

For a fixed z1, . . . , zn variable ∑n
i=1 σi(I(zi ∈ A)) is the sum of n independent, zero mean

variables bounded between −1 and +1. We apply Hoeffding’s inequality to obtain

P
( 1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

∣∣∣Z1, . . . , Zn

)
≤ 2 e−nε2/32, (2.46)

hence

P
(

sup
A∈A

1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

∣∣∣Z1, . . . , Zn

)
≤ τA(n) 2 e−nε2/32. (2.47)

Taking the expected value on both sides yields

P
(

sup
A∈A

1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

)
≤ τA(n) 2 e−nε2/32 (2.48)

The theorem is proved by putting these steps together.

Corollary 2.7.3.1. Let F be a class of decision rules. Let R̂(g) be the empirical risk and R(g)
the expected risk, then the following holds

P
(

sup
g∈F
| R̂(g)−R(g) | > ε

)
≤ 8 τF(n) e−nε2/32. (2.49)
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Proof. Let A = {A(g) | g ∈ F} for which we know that τA = τF and notice that∣∣∣∣ 1n
n∑
i=1

I(g(Xi) 6= Yi)− P(g(X) 6= Y )
∣∣∣∣

=
∣∣∣∣ 1n

n∑
i=1

(1− I(g(Xi) = Yi))− (1− P(g(X) = Y ))
∣∣∣∣ =

∣∣∣Pn(A(g))− P (A(g))
∣∣∣. (2.50)

The corollary then follows from Theorem 2.7.2.

This corollary can be used to finish the proof of the fundamental theorem of PAC learning.

Proof of Theorem 2.7.1. We need to show that when F has a finite dimension then for all
ε, δ > 0 there exists nUF(ε, δ) such that for all distributions P whenever |D| > nUF(ε, δ) we have

P ( sup
g∈F
| R̂(g)−R(g)| ≤ ε) ≥ 1− δ. (2.51)

We apply Corollary 2.7.3.1 and Corollary 2.6.1.1 to obtain

P
(

sup
g∈F
| R̂(g)−R(g) | > ε

)
≤ 8 τF(n) e−nε2/32 ≤ 8

( 2n
VF

)VF
e−nε

2/32 (2.52)

We know that 8
(

2n
VF

)VF
e−nε

2/32 goes to 0 as n → ∞, so for all given δ and ε we can find a

number nUF(ε, δ) such that 8
(

2n
VF

)VF
e−nε

2/32 < δ holds for any n > nUF(ε, δ). As an example we
show that any natural number nUF(ε, δ) for which

nUF(ε, δ) >
64
(

log 8/δ + log(2)
)

ε2 +
(
VF

64ε2

)2
(2.53)

holds, works fine. Notice that for n > nUF(ε, δ) the following holds

VF
64ε2 ≤

√
n = n

n1/2 ≤
n

log n. (2.54)

Furthermore, using (2.54) in the second inequality yields

log
(8
δ

)
+ log(2) ≤ n

(
ε2/32− VF

ε2

VF64
)
≤ nε2

32 − VF log(n)

≤ nε2

32 − VF log(n) + VF log(VF).
(2.55)

We obtain the following by subtracting log(2) from each side, then multiplying them by −1
and taking the exponential in both sides

δ

8 ≥
( 2n
VF

)VF
e−nε

2/32. (2.56)

It is what we wanted to see. The existence of nUF(ε, δ) ensures that F possesses the uniform
convergence property.
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Working through a more involved argument it can be showed that there are posititive
constants C1 and C2 such that

C1

(
log 1/δ + VF

)
ε2 ≤ nUF(ε, δ) ≤ C2

(
log 1/δ + VF

)
ε2 . (2.57)

2.8 Structural Risk Minimization
We provided necessary and sufficient conditions for PAC learnability via uniform conver-

gence and VC dimension for the problem of binary classification. We also showed that the ERM
method is a successful PAC learner in this case. One may say that we argued that ERM is the
best learning algorithm that we can imagine. It is not the whole truth for many reasons. First
of all notice that we did not say anything about the feasibility of the problem of finding an
ERM estimator. The sad fact is that it is often hopeless to minimize the empirical risk. In
addition, it is important to mention that we only analized the statistical property of learning
algorithms, however computational and implementational aspects should also be an important
factor in learning algorithm design. For example it can happen that even though an empirical
risk minimizer can be carried out for our problem in hand, still we prefer to apply a simpler or
computationally lighter method, because it takes less time both to implement and run.

Besides, we mentioned above that PAC learnability is too restrictive in some sense. So far,
we fixed a model class, F , and tried to determine a good sample size which is sufficient to PAC
learn F . Notice that in real-world problems we usually do not know exactly F in advance. In
practice often the data size is fixed and it is part of the learning task to find a proper model
class for the given sample size. Therefore it is worth switching the perspective and ask what
is the lowest accuracy we can guarantee for a model class with VC dimension VF from a fixed
sample size n. Notice that when we have a fixed confidence parameter δ and data size n we
can bound the accuracy parameter ε. The following theorem was deduced from (2.53) with the
help of [19].

Theorem 2.8.1. Consider the problem of binary classification with the 0/1 loss. Given a model
class F with VC dimension VF <∞ and an i.i.d. sample with n elements. Then for all g ∈ F ,
δ > 0 and

ε ≥

√√√√√32
(

log 8
δ

+ VF log
(

2n
V

+ 1
))

n
(2.58)

we have that

P
(
R(g) ≤ R̂(g) + ε

)
≥ 1− δ. (2.59)
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Proof. The following simple implications hold.

ε ≥

√√√√√32
(

log 8
δ

+ VF log
(

2n
V

+ 1
))

n
⇒ ε2 ≥

32
(

log 8
δ

+ VF log
(

2n
V

+ 1
))

n
(2.60)(−nε2

32

)
≤ log δ8 − VF log

(2n
V

+ 1
)
< log δ8 − VF log

(2n
V

)
(2.61)

It is easy to show that from (2.61) the inequality 8
(

2n
VF

)VF
e−nε

2/32 < δ follows. Then Corollary
2.7.3.1 says that

P
(

sup
g∈F
| R̂(g)−R(g) | ≤ ε

)
≥ 8 τF(n) e−nε2/32 ≥ 1− δ, (2.62)

from which it is clear that for any g ∈ F we have

1− δ ≤ P
(
| R̂(g)−R(g) | ≤ ε

)
≤ P

(
R(g) ≤ R̂(g) + ε

)
, (2.63)

hence the theorem is proved.

The idea of structural risk minimization (SRM) is that the quantity R̂(g) + ε should be
minimized instead of R̂(g) so that (2.60) holds for ε. This way we can find the tightest bound
on the true risk with at least a chosen high probability. We refer to R̂(g) + ε as the structural
risk. In SRM we consider a sequence of model classes with increasing VC dimension, usually
F1 ⊆ F2 ⊆ . . . , then we select the one which has the smallest structural risk. Later we are going
to present the method of Support Vector Machines (SVM) which is an important application
of this principle.

It is important to see that SRM goes beyond the limitation of PAC learnability, since we
do not fix the model class in this case. In fact, it can be showed that SRM is a nonuniform
learner. The notion of nonuniform learnability is a strict relaxation of PAC learnability, where
the sample size, which is required for the PAC statement, is allowed to depend on the model
we compete against. For further readings on this interesting topic see [19] and [23].

2.9 Uniform Law of Large Numbers
Recall that the need for introducing a model class F arised when we realized that

inf
g∈F

R̂(g) a.s.−−→ inf
g∈F

R(g) (2.64)

does not hold in general. In this section we examine this phenomenon more thoroughly. The
core idea of ERM was that for any fixed model g the empirical risk converges to the true risk,
i.e. for i.i.d. variables {(Xi, Yi)}i∈N when EL(f(Xi), Yi) <∞ we have

1
n

n∑
i=1

L(f(Xi), Yi)− EL(f(Xi), Yi) a.s.−−→ 0. (2.65)
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Observe that for any given model class F the following holds∣∣∣∣ inf
f∈F

1
n

n∑
i=1

L(f(Xi), Yi)− inf
f∈F

EL(f(Xi), Yi)
∣∣∣∣ ≤ sup

f∈F

∣∣∣∣ 1n
n∑
i=1

L(f(Xi), Yi)− EL(f(Xi), Yi)
∣∣∣∣ (2.66)

therefore, to apply the ERM method we need to ensure that

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

L(f(Xi), Yi)− EL(f(Xi), Yi)
∣∣∣∣→ 0, (2.67)

where the convergence can be in probability or almost surely. In this section we consider a more
general problem which is called the uniform law of large numbers (ULLN).

Definition 2.9.1. Let Z1, Z2, . . . be i.i.d. random variables taking values in Z. For a class F
of Z → R functions, with property Ef(Z1) < ∞ for all f ∈ F the uniform law of large
numbers holds if the following convergence occurs

sup
f∈F

∣∣∣∣ 1
n

n∑
i=1

f(Zi)− Ef(Z1)
∣∣∣∣ p−→ 0. (2.68)

In the literature many say that F is a Glivenko-Cantelli class for the distribution of Z1

when the ULLN holds. We are going to derive conditions on F in order to ensure the ULLN. It
is easy to see that the notion of uniform convergence provides a sufficient condition for ULLN,
but since uniform convergence requires universal non-asymptotic guarantees, it is not necessary.

2.9.1 Frequencies to Their Probabilities
First, we present a lighter sufficient condition for the ULLN of classifiers. Notice that in this

case the expected loss is the misclassification probability and the mean is a frequency.
Recall the definition of the growth function, τF(n) = τA(n). It was the maximum of |AC |

on sets C = {z1, . . . , zn}. Let NA({z1, . . . , zn}) .= |A{z1,...,zn}|.

Theorem 2.9.1. For every probability distribution P and a class of measurable sets A where
A ⊆ X× {+1,−1} for all A ∈ A, the following holds

P
(

sup
A∈A
|Pn(A)− P (A) | > ε

)
≤ 8ENA({Z1, . . . , Zn}) e−nε

2/32. (2.69)

Proof. The proof from [8, Theorem 12.5] is similar to the one which was presented for
Theorem 2.7.2. In fact the first two steps are identical to that. The difference is going to
be in the third step. There, we bounded the quantity P

(
supA∈A 1

n

∣∣∣∑n
i=1 σi(I(Zi ∈ A))

∣∣∣ > ε/4

)
by conditioning on Z1, . . . , Zn. We proceed similarly, but notice that for any fixed z1, . . . , zn
there are at most NF( {z1, . . . , zn} ) different vectors with form ( I(z1 ∈ A), . . . , I(zn ∈ A) ),
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because such vectors correspond to intersections of form A ∩ {z1, . . . , zn} for A ∈ A. Thus

P
(

sup
A∈A

1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

∣∣∣Z1, . . . , Zn

)

≤ NA({Z1, . . . , Zn}) sup
A∈A

P
( 1
n

∣∣∣ n∑
i=1

σi(I(Zi ∈ A))
∣∣∣ > ε/4

∣∣∣Z1, . . . , Zn

)

≤ NA({Z1, . . . , Zn}) 2 exp
(
− nε2

32

)
,

(2.70)

where the second inequality is justified exactly as the fourth step in the proof of Theorem 2.7.2.
Taking expectation and putting together the pieces yield the theorem.

Similarly as before, choosing the proper set system based on the classifiers in F we obtain

P
(

sup
g∈F
| R̂(g)−R(g) | > ε

)
≤ 8ENF({Z1, . . . , Zn}) e−nε

2/32. (2.71)

Therefore a uniform law of large numbers holds whenever ENF({Z1, . . . , Zn}) e−nε
2/32 → 0 as

n→∞. Notice that ENF({Z1, . . . , Zn}) depends on the distribution of Z1 therefore it is harder
to handle than the purely combinatorial VC dimension. With a more involved argument Vapnik
and Chervonenkis proved that E log2NF ({Z1,...,Zn})

n
→ 0 is a necessary and sufficient condition for

freqeuncies to converge to their corresponding probabilities, see [23]. They call the quantity
E log2NF({Z1, . . . , Zn}) entropy.

2.9.2 Means to Their Expectations
In this section we present a similar sufficient condition for the general version of the ULLN

via covering numbers and Rademacher complexity. In the previous section the idea was that
after a symmetrization the probability P

(
supA∈A 1

n

∣∣∣∑n
i=1 σi(I(Zi ∈ A))| > ε

)
could be bounded

by a maximum of finitely many terms times a complexity measure. Now we generalize this idea
for bounded X→ [0, B] type functions. Assume for this part that X ⊆ Rd.

Definition 2.9.2. (ε-covers) Let F be a set of bounded real-valued functions. For ε > 0 we say
that F(ε, ‖·‖) = {f1, . . . , fl} is an ε-cover of F with respect to norm ‖·‖ if for all f ∈ F there
is an index j(f) such that ∥∥∥f − fj(f)

∥∥∥ < ε. (2.72)

Let N (ε,F , ‖·‖) denote the size of the smallest ε-cover of F w.r.t. norm ‖·‖. Take
N (ε,F , ‖·‖) =∞ if no ε-cover exists. We call N (ε,F , ‖·‖) the ε-covering number of F w.r.t. the
given norm. The most important examples of these covers are induced by the supremum norm
or the Lp norms. We consider the Lp norms with an empirical measure. Let x = {x1, . . . , xn} be
an arbitrary set. Then, the empirical mesaure with respect to x is defined similarly as before

Pn(A) = 1
n

n∑
i=1

I(xi ∈ A). (2.73)
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The Lp norm then becomes

‖f‖Lp(Pn) =
( 1
n

n∑
i=1
|f(xi)|p

)1/p

. (2.74)

For the sake of simplicity we denote the ε-cover with respect to the Lp(Pn) norm by Np(ε,F ,x).
Notice that when we substitute a random sample in the place of x, the quantity Np(ε,F ,x)
becomes a random variable.

Theorem 2.9.2. Let F be a set of functions f : X→ [0, B] and X = {Xi}ni=1 an i.i.d. sample
taking values from X. For any n ∈ N, and any ε > 0,

P
(

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(Xi)
∣∣∣∣ > ε

)
≤ 8EN1(ε/8,F ,X) e−nε2/(128B2). (2.75)

The proof of this theorem from [11] can be found in the appendix, see B.2. Simi-
larly as in (2.71), from Theorem 2.9.2 it follows easily that the ULLN holds whenever
EN1(ε/8,F ,X) e−nε2/(128B2) → 0.

Vapnik proves in [23] that a necessary and sufficient condition for ULLN of means to their
expectations for a bounded family of functions can be formulated via the so-called expected
entropy or ε-entropy which is closely related to the concept of covering numbers. For further
details see the final chapter of Statistical Learning Theory, [23].

In addition, in the proof the quantity supf∈F
∣∣∣∣ 1
n

∑n
i=1 σi(f(Xi))

∣∣∣∣ plays a crucial role and a
similar quantity was extremely important in the proof of the Vapnik–Chervonenkis theorem.
It is formally the maximum correlation between a vector (f(X1), . . . , f(Xn)) and a random
“noise” vector (σ1, . . . , σn), where the maximum is taken over the model class. Intuitively a
function class is too rich when there is always a model which highly correlates with a random
noise. The expectation of this quantity is called the Rademacher complexity of the model class,
which also provides a useful concept for measuring complexity.

Finally, the notion of packing numbers is introduced, which is closely related to covering
numbers and VC dimension.

Definition 2.9.3. (ε-packings) Let F be a set of real-valued functions. For ε > 0 we say that
F(ε, ‖·‖) = {f1, . . . , fl} is an ε-packing of F with respect to norm ‖·‖ if for all 1 ≤ i < j ≤ l

‖fi − fi‖ > ε. (2.76)

Let M(ε,F , ‖·‖) be the size of the largest ε-packing of F w.r.t. norm ‖·‖ (it can be infinity).
We say thatM(ε,F , ‖·‖) is the ε-packing number of F w.r.t. norm ‖·‖.

The following lemma, which is going to be used in Chapter 5, yields a close relationship
between packing and covering numbers.

Lemma 2.9.3. Let F be a class of functions on Rd and ‖·‖ be a norm on F and ε > 0. Then

M(2ε,F , ‖·‖) ≤ N (ε,F , ‖·‖) ≤M(ε,F , ‖·‖). (2.77)
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Proof. Let {f1, . . . , fM} be a 2ε-packing of F w.r.t. ‖·‖ with maximal cardinality. Then for any
ε-cover {g1, . . . , gN} consider balls B(gi, ε) for i ∈ [N ]. It is easy to see that each B(gi, ε) can
contain at most one fj. In addition, all members of the packing are covered, therefore the first
inequality is proved.

For the second inequality let {f1, . . . , fM} be an ε-packing of F w.r.t. ‖·‖ with maximal
cardinality. Then for any h ∈ F the set {h, f1, . . . , fM} is not an ε-packing, therefore there
exists j ∈ [M ] such that

‖h− fj‖ < ε, (2.78)

i.e. {f1, . . . , fM} is an ε-cover of F w.r.t. ‖·‖.

These concepts are also strongly related to the notion of VC dimension, which can be defined
for set systems similarly to Definition 2.6.1.

Definition 2.9.4. (VC dimension) Let A be a class of subsets of X × Y. The VC dimension
(VA) of A is the largest integer n such that there exists n points in X × Y, C = {c1, . . . , cn}
that can be shattered by A, i.e. for all C̃ ⊆ C there is A ∈ A such that A ∩ C = C̃.

Let f be a real-valued function. The subraph of f is defined as

f+ .= {(x, t) ∈ X× R | t ≤ f(x)}. (2.79)

The VC dimension of subgraphs can be interpreted by the definition above when Y = R. Let
F be a class of real-valued function, then

F+ .= {{(x, t) ∈ X× R | t ≤ f(x)}, f ∈ F} (2.80)

contains all subraghs of functions in F . The following inequality yields a quantitative relation-
ship between the packing numbers of F w.r.t. the L1 norm and the VC dimension of F+.

Theorem 2.9.4. Let µ be a probability measure on Rd, let F be a class of µ-measurable
f : Rd → [0, 1] functions with VF+ <∞, and let ε > 0. Then

M(ε,F , ‖·‖L1(µ)) ≤ e(VF+ + 1)
(2e
ε

)VF+

. (2.81)

The proof can be forund in [12].

2.10 Strong Uniform Laws
So far we only proved the weak ULLN, but it is important to see that the presented results

can be used easily to ensure almost sure convergence as well.
We are going to use the Borel–Cantelli lemma to provide sufficient conditions for strong

ULLN based on Theorem 2.9.1 and Theorem 2.9.2, see [11, Theorem 9.1].
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Theorem 2.10.1. Let F be a set of functions f : X→ [0, B] and X = {Xi}ni=1 an i.i.d. sample
taking values from X. If

∞∑
n=1

EN1(ε/8,F ,X) e−nε2/(128B2) <∞ (2.82)

holds for all ε > 0, then the strong ULLN occurs, i.e.

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)
∣∣∣∣ a.s.−−→ 0. (2.83)

Proof. Let εk = 1/k and events An,k .=
{

supf∈F
∣∣∣ 1
n

∑n
i=1 f(Xi) − Ef(X1)

∣∣∣ > 1/k
}
. From the

Borel-Cantelli lemma and by the assumption of the theorem

lim sup
n→∞

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)
∣∣∣∣ ≤ 1

k
a.s., (2.84)

and consequently almost surely

lim sup
n→∞

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X1)
∣∣∣∣ ≤ 1

k
∀ k ∈ N, (2.85)

which implies that the strong ULLN holds.

Similarly the following can be proved.

Theorem 2.10.2. For every probability distribution P and a class of X → {+1,−1} type
classifiers, F , if for all ε > 0

∞∑
n=1

ENF({Z1, . . . , Zn}) e−nε
2/32 <∞ (2.86)

then, the strong ULLN holds, i.e.

sup
g∈F

∣∣∣ R̂(g)−R(g)
∣∣∣ a.s.−−→ 0. (2.87)

2.11 Universal Consistency
We argued that the model class of all classifiers is not PAC learnable, still our hope is that a

lighter asymptotic learning concept can be achieved for any measurable function. In this section
we deal with the notion of consistency.

Recall that in Chapter 1 we defined our goals as risk minimizations both for classification
and regression. For consistency we only require that our estimate’s risk converges to the optimal
Bayes risk in both cases, formally

Definition 2.11.1. (consistency of classifier estimates) Consider the problem of binary clas-
sification with the 0/1 loss. Let Dn = {(Xi, Yi)}ni=1 denote an i.i.d. sample from the (X, Y )
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random pair’s distribution, P . We say that a classifier estimate sequence, gn, is consistent for
distribution P if

P( gn(X) 6= Y | Dn ) p−→ min
g

P( g(X) 6= Y ). (2.88)

When the convergence holds almost surely we say that the estimate sequence, or simply
the estimate is strongly consistent. When the convergence occurs for all possible distributions
of the random pair (X, Y ), we say that the estimate sequence or learning rule is universal.
Consistency is defined for regression similarly.

Definition 2.11.2. (consistency of regression estimates) Consider the problem of regression.
Let Dn = {(Xi, Yi)}ni=1 denote an i.i.d. sample from the (X, Y ) random pair’s distribution, P .
We say that a sequence of regression function estimates, fn, is consistent for distribution P if

E
(
(fn(X)− Y )2 | Dn

)
p−→ min

f
E[ f(X)− Y )2 ]. (2.89)

When the convergence holds almost surely we say that the estimate or estimate sequence is
strongly consistent.

Definition 2.11.3. (strong universal consistency of classifier estimates) A sequence of regres-
sion function estimates, fn, is universally consistent if it is strongly consistent for all distribu-
tions of (X, Y ) with EY 2 <∞.

Recall that in (1.11) we showed that

E
(
(fn(X)− Y )2 | D

)
=
∫
X

(fn(x)− f∗(x))2dPX(x) + E
[

(f∗(X)− Y )2
]
, (2.90)

where E[ (f∗(X) − Y )2 ] is constant. Thus, fn is consistent if and only if the quantity∫
X (fn(x) − f∗(x))2dPX(x) tends to zero in probability and fn is strongly consistent if and
only if the quantity

∫
X (fn(x)−f∗(x))2dPX(x) tends to zero almost surely. In the book of Györfi

et al., [11], it is the definition of consistency. I decided to use the slightly different version to
clarify the connection between the consistency of regression and classification.

In the next chapter we are going to see that there exists nonparametric regression function
estimates that are strongly universally consistent. We have already proved that in case of the
problem of binary classification such regression estimates induce a classifier sequence which
inherits the strong universal consistency, see (1.13). In the next chapter we only deal with the
problem of regression, nevertheless in the Chapter 5 we are going to use the presented methods
to estimate the regression function for classification problems.
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Chapter 3

Nonparametric Methods

In this chapter we introduce a simple nonparametric method which is strongly universally
consistent. Namely, we present a thourough analysis of the local averaging kernel estimate. We
are going to present the proof of its strong consistency. In addition, we are going to define the k-
nearest neighbors estimate, which have similar properties. In Chapter 4 these kernel estimations
are generalized by the theory of reproducing kernel Hilbert spaces (RKHS). This chapter is
based on the books of Györfi et al., see [11], which deals with nonparametric regression, and
[8], which examines classification.

3.1 Local Averaging Estimates
In the book of Györfi et al. four paradigms are introduced. Local averaging is the simplest

approach. Local modeling, global modeling and regularized modeling are three more elaborated
versions of nonparametric regression estimation. In this thesis we limit ourselves to the local
averaging estimates, because they are good enough examples for illustrating strong universal
consistency.

Often we view regression as a function approximation problem from noisy observations, that
is we assume that the following holds for the datapoints

Yi = f∗(Xi) + εi (3.1)

for i ∈ [n], where Xi and εi are random and it is easy to see that E(εi |Xi) = 0. Notice that Yi
can be viewed as the sum of the regression function in Xi plus some noise with zero expectation.
It motivates us to try to locally average out the noise term. To define locality we require X to
be a metric space. For simplicity for this whole chapter we assume that X = Rd endowed with
the standard euclidean metric. We usually define a local averaging estimate by

fn(x) =
n∑
i=1

wn,i(x)Yi, (3.2)

where wn,i(x) are nonnegative weights often sum up to 1, dependent of the inputs, {Xi}ni=1.

30



Nonparametric Methods

3.2 Stone’s Theorem
We are going to apply Stone’s theorem which provides sufficient conditions on the weigths

for universal consistency of local averaging estimates. The proof of Stone’s theorem can be
found in the appendix, see B.3, where we take advantage of the fact that the set of continuous
functions of bounded support is dense in Lp(µ) for any p ≥ 1 and probability measure µ. For
the proof of this auxuliary statement see [11, Theorem A.1]. We refer to this theorem as the
denseness result later on.

Theorem 3.2.1. (Stone’s theorem) Let X be a variable identically distributed as X1 and in-
dependent of the given sample. Assume that for all possible distributions of X:

i There exists a constant c such that for every (measurable) nonnegative function f

satisfying Ef(X) <∞ and for any n ∈ N the following holds

E
( n∑
i=1
|wn,i(X) | f(Xi)

)
≤ cEf(X). (3.3)

ii There is D ≥ 1 such that for all n ∈ N

P
( n∑
i=1
|wn,i(X) | ≤ D

)
= 1. (3.4)

iii For all a > 0,
lim
n→∞

E
( n∑
i=1
|wn,i(X) | I( ‖Xi −X‖ > a)

)
= 0. (3.5)

iv
n∑
i=1

wn,i(X) p−→ 0 (3.6)

v
lim
n→∞

E
( n∑
i=1

w2
n,i(X)

)
= 0 (3.7)

Then fn(x) = ∑n
i=1wn,i(x)Yi is universally consistent.

Assumption ii and iv ensures that the sum of the weights is bounded and tends to 1.
Assumption iii says that fn(x) is only influenced in the long run by the sample points that are
in the neighborhood of x and assumption v says that the weights are asymptotically vanishing.
Assumption i is rather technical. For noiseless regression it says that the expected value of the
estimate is at most a constant times the expected value of the regression function. The proof
from [11, Theorem 4.1] can be found in the appendix, see B.3.
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3.3 Kernel Estimates
In this section we define the local averaging kernel estimate. It is an example for nonpara-

metric regression estimation. The k-nearest neighbors algorithm is a very similar technique,
which is also presented in the end of this section.

Let function K : X → R+ be the so-called user-chosen kernel function. For example in
practice the naive kernel K(x) = I(‖x‖ ≤ 1), the Epanechnikov kernel K(x) = (1−x2)+, where
f+(x) .= max(f(x), 0) and the Gaussian kernel K(x) = exp

(
−x2/2

)
are often used. Let hn be

the bandwidth which is positive for all n ∈ N. We define the kernel estimate for all n ∈ N as

fn(x) =

∑n
i=1 YiK

(
x−Xi
hn

)
∑n

i=1K
(
x−Xi
hn

) I
( n∑

i=1
K
(
x−Xi

hn

)
6= 0

)
. (3.8)

3.4 Universal Consistency
We prove the universal consistency of such estimates. For a start we prove a simple lemma

which is going to be applied several times, see [11, Lemma 4.1].

Lemma 3.4.1. Let B(n, p) be a binomial random variable with parameters n and p. Then

E
( 1

1 +B(n, p)

)
≤ 1

(n+ 1)p and (3.9)

E
( 1
B(n, p)I(B(n, p) > 0)

)
≤ 2

(n+ 1)p. (3.10)

Proof. The following calculation yields (3.9).

E
( 1

1 +B(n, p)

)
≤

n∑
i=1

1
i+ 1

(
n

i

)
pi(1− p)n−i = 1

(n+ 1)p

n∑
i=1

(
n+ 1
i+ 1

)
pi+1(1− p)n−i

≤ 1
(n+ 1)p

n+1∑
k=0

(
n+ 1
i+ 1

)
pk(1− p)n−k+1 = 1

(n+ 1)p(p+ (1− p))n+1 = 1
(n+ 1)p

(3.11)

Using this result, we obtain (3.10) by

E
( 1
B(n, p)I(B(n, p) > 0)

)
≤ E

( 2
1 +B(n, p)

)
≤ 2

(n+ 1)p. (3.12)

Theorem 3.4.2. Assume that there are numbers R and r with relation 0 < r ≤ R and b > 0
such that

I(x ∈ B(0, R)) ≥ K(x) ≥ b I(x ∈ B(0, r)) (3.13)

holds. Let fn be as in 3.8. If hn → 0 and nhdn →∞, then fn is universally consistent.
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Proof. The proof is from [11, Theorem 5.1]. It is sufficient to check the conditions of Stone’s
theorem. Let Kh(x) .= K(x/h). We see that

wn,i(x) = Khn(x−Xi)∑n
i=1 Khn(x−Xi)

I
( n∑

i=1
K
(
x−Xi

hn

)
6= 0

)
. (3.14)

For condition i let h = hn. Then

E
(∑n

i=1Kh(X −Xi)f(Xi)∑n
i=1 Kh(X −Xi)

I
( n∑
i=1

Kh(X −Xi) 6= 0
))

= nE
(
Kh(X −X1)f(X1)∑n

i=1Kh(X −Xi)
I
( n∑
i=1

Kh(X −Xi) 6= 0
))

= nE
(

Kh(X −X1)f(X1)
Kh(X −X1) +∑n

i=2Kh(X −Xi)
I
( n∑
i=1

Kh(X −Xi) 6= 0
))

= n
∫
X
f(u)E

[ ∫
X

Kh(x− u)I
(∑n

i=1Kh(X −Xi) 6= 0
)

Kh(x− u) +∑n
i=2 Kh(x−Xi)

dPX(x)
]
PX(u).

(3.15)

We are going to show that

E
[ ∫

X

Kh(x− u)I
(∑n

i=1K
(
x−Xi
hn

)
6= 0

)
Kh(x− u) +∑n

i=2Kh(x−Xi)
dPX(x)

]
≤ c

n
. (3.16)

Notice that K has a compact support, which can be covered by finitely many balls with radius
r/2. Let M denote the number of these balls and xk, k ∈ [M ] denote the centers of these
covering balls. Then for all x−u

h
∈ X there exists xk such that x−u

h
∈ B(xk, r/2), which is

equivalent to x ∈ B(u+ hxk, rh/2). By the covering property for all x and u

Kh(x− u) ≤
M∑
k=1

I(x ∈ B(u+ hxk, rh/2)). (3.17)

Furthermore, if x ∈ B(u + hxk, rh/2) then B(u + hxk, rh/2) ⊆ B(x, rh) equivalently
B(u−x

h
+xk, r/2) ⊆ B(0, r). Applying these two observations, the assumptions onK and Lemma

3.4.1 yields the following

E
[ ∫

X

Kh(x− u)I
(∑n

i=1Kh(x−Xi) 6= 0
)

Kh(x− u) +∑n
i=2Kh(x−Xi)

dPX(x)
]

≤
M∑
k=1

E
[ ∫

B(u+hxk,rh/2)

Kh(x− u)I
(∑n

i=1Kh(x−Xi) 6= 0
)

Kh(x− u) +∑n
i=2 Kh(x−Xi)

dPX(x)
]

≤
M∑
k=1

E
[ ∫

B(u+hxk,rh/2)

1
b+∑n

i=2Kh(x−Xi)
dPX(x)

]

≤ 1
b

M∑
k=1

E
[ ∫

B(u+hxk,rh/2)

1
1 +∑n

i=2 I(Xi ∈ B(x, rh)) dPX(x)
]

33



Nonparametric Methods

≤ 1
b

M∑
k=1

E
[ ∫

B(u+hxk,rh/2)

1
1 +∑n

i=2 I(Xi ∈ B(u+ hxk, rh/2)) dPX(x)
]

= 1
b

M∑
k=1

E
[

PX(B(u+ hxk, rh/2))
1 +∑n

i=2 I(Xi ∈ B(u+ hxk, rh/2))

]

≤ 1
b

M∑
k=1

E
[
PX(B(u+ hxk, rh/2))
nPX(B(u+ hxk, rh/2))

]
≤ M

nb
. (3.18)

For condition ii it is easy to see that∣∣∣∣ Kh(X −Xi)∑n
i=1 Kh(X −Xi)

∣∣∣∣I( n∑
i=1

Kh(X −Xi) 6= 0
)
≤ 1 (3.19)

with probability one. For condition iii let hnR < a, then
n∑

i=1
|wn,i(X) | I(‖Xi −X‖ > a)

=
∑n

i=1Khn(X −Xi)I(‖Xi −X‖ > a)∑n
i=1 Khn(X −Xi)

I
( n∑

i=1
Khn(X −Xi) 6= 0

)
= 0.

(3.20)

For condition iv we need to prove that ∑n
i=1 wn,i(X)→ 1 in probability. Notice that

1− wn,i(X) = I
( n∑

i=1
Khn(X −Xi) = 0

)
. (3.21)

Then, we proceed as

P
(
1 6=

n∑
i=1

wn,i(X)
)

= P
( n∑

i=1
Khn(X −Xi) = 0

)
≤ P

( n∑
i=1

I(Xi 6∈ B(X, rhn) = 0
)

= P
(
P n
X (B(X, rhn) = 0

)
=
∫

(1− PX(B(X, rhn))n dPX(x),

(3.22)

where P n
X denotes the empirical version of PX. For an arbitrary δ > 0 let B = B(0, L) such that

PX(B̄) < δ, where B̄ = X−B. Then

P
(

1 6=
n∑

i=1
wn,i(X)

)
≤
∫
B
e−nPX(B(X,rhn)) dPX(x) + PX(B̄)

=
∫
B
nPX(B(X, rhn))e−nPX(B(X,rhn)) 1

nPX(B(X, rhn)) dPX(x) + PX(B̄)

≤ max
u

ue−u
∫
B

1
nPX(B(X, rhn)) dPX(x) + δ.

(3.23)

Since B = B(0, L) there are z1, . . . , zMn such that B ⊆ ∪Mn
i=1B(zi, rhn/2) and Mn ≤ c̃(L)

hdn
from
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which it follows that∫
B

1
nPX(B(X, rhn)) dPX(x) ≤

Mn∑
j=1

∫ I(X ∈ B(zj, rhn/2))
nPX(BX , rhn) dPX(x)

≤
Mn∑
j=1

∫ I(X ∈ B(zj, rhn/2))
nPX(Bzj , rhn/2) dPX(x) ≤ Mn

n
≤ c̃(L)
nhdn

→ 0. (3.24)

Concerning condition v we use that K(x) ≤ 1. Then, for all ε > 0 we have
n∑

i=1
w2
n,i(X) =

∑n
i=1K

2
hn(X −Xi)

(∑n
i=1Khn(X −Xi))2 I

( n∑
i=1

Khn(X −Xi)) 6= 0
)

≤
∑n

i=1Khn(X −Xi)
(∑n

i=1 Khn(X −Xi))2 I
( n∑

i=1
Khn(X −Xi)) 6= 0

)
≤ min

(
ε,
I(∑n

i=1Khn(X −Xi)) 6= 0 )∑n
i=1 Khn(X −Xi)

)
≤ min

(
ε,

1∑n
i=1 bI(Xi ∈ B(X, rhn)

)

≤ ε+ 1∑n
i=1 bI(Xi ∈ B(X, rhn)I

( n∑
i=1

I(Xi ∈ B(X, rhn) > 0
)
.

(3.25)

It is sufficient to prove that

E
( 1∑n

i=1 I(Xi ∈ B(X, rhn)I
( n∑

i=1
I(Xi ∈ B(X, rhn) > 0

))
→ 0. (3.26)

Let B be similarly defined as before (3.23). Applying Lemma 3.4.1 yields

E
( 1∑n

i=1 I(Xi ∈ B(X, rhn)I
( n∑

i=1
I(Xi ∈ B(X, rhn) > 0

))

≤ E
( 1∑n

i=1 I(Xi ∈ B(X, rhn)I
( n∑

i=1
I(Xi ∈ B(X, rhn) > 0

)
I(X ∈ B)

)
+ PX(B̄)

≤ 2E
( 1

(n+ 1)PX(B(X, rhn)I(X ∈ B)
)

+ δ,

(3.27)

where E
(

1
(n+1)PX(B(X,rhn)I(X ∈ B)

)
goes to zero similarly as in (3.24).

Since all five conditions hold Theorem 3.2.1 can be used. This proves the universal consis-
tency of our kernel estimate.

3.5 Strong Consistency
We turn our attention to prove strong consistency for a broad class of kernel estimates in

case of bounded variable Y .
In order to prove strong consistency a quite involved argument is needed, see [11, Theorem

23.5]. The Banach–Steinhaus theorem for integral operators is going to be one of our tool to
proceed in the proof. The proof from [11, Theorem 23.2] can be found in the appendix, see B.4.

35



Nonparametric Methods

Theorem 3.5.1. Let Kn be Rd × Rd → R type functions for n ∈ N and µ be a probability
measure on Rd. Assume the followings:

i There exists c > 0 such that for all n ∈ N the following holds∫
|Kn(x, z) | dµ(x) ≤ c (3.28)

for µ-almost every z.

ii There exists D ≥ 1 such that for all x ∈ Rd and for all n ∈ N∫
|Kn(x, z) | dµ(z) ≤ D. (3.29)

iii For all a > 0

lim
n→∞

∫ ∫
|Kn(x, z) | I(‖x− z‖ > a) dµ(z) dµ(x) = 0. (3.30)

iv
lim
n→∞

ess supx
∣∣∣ ∫ Kn(x, z) dµ(z)− 1

∣∣∣ = 0. (3.31)

Then for all f ∈ L1(µ)

lim
n→∞

∫ ∣∣∣ f(x)−
∫
Kn(x, z)f(z) dµ(z)

∣∣∣ dµ(x) = 0. (3.32)

Strong consistency will be proved for a broad class of kernel functions.

Definition 3.5.1. (regular kernel) The kernel function K is regular, if K(x) ≥ 0 and there
exists r > 0 and b > 0 such that

bI(x ∈ B(0, r) ) ≤ K(x) ≤ 1 and∫
sup

u∈B(x,r)
K(u) dx <∞.

Theorem 3.5.2. Let fn be a kernel estimate of f∗ with a regular kernel function K. Assume
that there exists L < ∞ such that P(|Y | ≤ L) = 1. If hn → 0 and nhdn → ∞ then the kernel
estimate is strongly consistent.

The proof will be presented in many steps as in [11, Theorem 23.5]. Before proving this
general theorem four lemmas are presented. Let Kh(x) = K(x/h) as before.

Lemma 3.5.3. (covering lemma) Let K be a regular kernel. Then there exists a finite constant
% = %(K) such that for all u ∈ Rd, h > 0 and probability measure µ∫ Kh(x− u)∫

Kh(x− z) dµ(z) dµ(x) ≤ %. (3.33)
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In addition, for all δ > 0

lim
n→∞

sup
u

∫ Kh(x− u)I(‖x− u‖ > δ)∫
Kh(x− z) dµ(z) dµ(x) = 0. (3.34)

The proof can be found in the appendix, see B.5.

Lemma 3.5.4. Let h and R be real numbers such that 0 < h ≤ R <∞ and B = B(0, R) Then
for all probability measures µ we have that∫

B

1√
µ(B(x, h))

dµ(x) ≤
(

1 + R

h

)d/2
c(d) (3.35)

Proof. The proof is similar to the argument in (3.24). Let B = B(0, R) such that PX(B̄) < δ.
Take the balls B(zk, h/2), where zk = (−R + k1h/2, . . . ,−R + kdh/2) for k = (k1, . . . , kd) ∈[ ⌈

2R
h/2

⌉ ]d
. The union of these balls covers B. Let the number of these balls be M . Notice that

M =
⌈

2R
h/2

⌉d
≤
( 2R
h/2 + 1

)d
≤
(

1 + R

h

)d
c(d). (3.36)

Applying Jensen’s inequality for integrals and the covering property yields( ∫
B

1√
µ(B(x, h))

dµ(x)
)2
≤
∫
B

1
µ(B(x, h)) dµ(x)

≤
M∑
i=1

∫ I(x ∈ B(zj, h/2))
µ(B(x, h)) dµ(x) ≤

M∑
i=1

∫ I(x ∈ B(zj, h/2))
µ(B(zj, h/2)) ≤M,

(3.37)

which together with (3.36) proves the lemma.

In the proof of Theorem 3.5.2 the following auxiliary function

f ∗n(x) .=
∑n

i=1 YiKhn(x−Xi)
nEKhn(x−X) (3.38)

plays an important role. Lemma 3.5.5 is an important observation about this function.

Lemma 3.5.5. Under the conditions of Theorem 3.5.2 the following holds

lim
n→∞

∫
E | f∗(x)− f ∗n(x) | dPX(x) = 0. (3.39)

Proof. By the triangle inequality∫
E | f∗(x)− f ∗n(x) | dPX(x) ≤

∫
| f∗(x)− Ef ∗n(x) | dPX(x)

+
∫

E | f ∗n(x)− Ef ∗n(x) | dPX(x) = I1 + I2.
(3.40)
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We show that Theorem 3.5.1 can be used for I1. Let

Kn(x, z) .= Khn(x− z)∫
Khn(x− u) dPX(u) . (3.41)

For condition i by Lemma 3.5.3 with c = % for all z ∈ Rd and n ∈ N∫
|Kn(x, z) | dPX(x) ≤ c. (3.42)

Condition ii and iv trivially hold, since for all n ∈ N we have∫
Kn(x, z) dPX(z) = 1. (3.43)

For condition iii we can apply Fubini’s theorem and the second part of Lemma 3.5.3, that is∫ ∫
Kn(x, z)I(‖x− z‖ > a) dPX(z) dPX(x)

=
∫ ∫ K

(
x−z
hn

)
I(‖x− z‖ > a)∫

K
(
x−u
hn

)
dPX(u)

dPX(x) dPX(z)

≤
∫

sup
z

(∫ K
(
x−z
hn

)
I(‖x− z‖ > a)∫

K
(
x−u
hn

)
dPX(u)

dPX(x)
)
dPX(z)

= sup
z

(∫ K
(
x−z
hn

)
I(‖x− z‖ > a)∫

K
(
x−u
hn

)
dPX(u)

dPX(x)
)
→ 0

(3.44)

as n→∞. Therefore by Theorem 3.5.1 we proceed as∫ ∣∣∣∣ f∗(x)− E
(
YiKhn(x−Xi)
nEKhn(x−X)

) ∣∣∣∣ dPX(x)

=
∫ ∣∣∣∣ f∗(x)−

n∑
i=1

E
(E(Yi |Xi)Kn(x,Xi)

n

) ∣∣∣∣ dPX(x)

=
∫ ∣∣∣ f∗(x)− E

(
E(Y |X)Kn(x,X)

) ∣∣∣ dPX(x)

=
∫ ∣∣∣ f∗(x)−

∫
f∗(z)Kn(x, z) dPX(z)

) ∣∣∣ dPX(x)→ 0.

(3.45)

For I2 let h = hn. Apply the Cauchy–Schwarz inequality and that P( |Y | ≤ L) = 1 to obtain

E | f ∗n(x)− Ef ∗n(x) | ≤
√
E | f ∗n(x)− Ef ∗n(x) |2

=

√√√√√E
[(∑n

i=1 YiKh(x−Xi)− E(Y Kh(x−X))
)2]

n2(EKh(x−X))2

≤

√√√√√E
[(
Y Kh(x−X)− E(Y Kh(x−X))

)2]
n(EKh(x−X))2 ≤

√√√√√E
[(
Y Kh(x−X)

)2]
n(EKh(x−X))2
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≤ L

√√√√√ E
[
K2
(
x−X
h

)]
n(EKh(x−X))2 ≤ L

√√√√E
[
Kh(x−X)

]
supx∈Rd K(x)

n(EKh(x−X))2

≤ L
1√
b

1√
nPX(B(x, h))

. (3.46)

For ε > 0 let B .= B(0, R) such that PX(B̄) < ε/(2L). Then∫
B̄
E | f ∗n(x)− Ef ∗n(x) | dPX(x) ≤ 2

∫
B̄
E | f ∗n(x) | dPX(x) ≤ 2LPX(B̄) < ε. (3.47)

Furthermore, applying Lemma 3.5.4 yields
∫
B
E | f ∗n(x)− Ef ∗n(x) | dPX(x) ≤ L

√
1
bn

∫
B

1√
PX(B(x, h)

dPX(x)

≤ L

√
1
bn

(
1 + R

h

)d/2
c(d)→ 0 (3.48)

as n→∞, since nhdn →∞. Putting these together proves the lemma.

Lemma 3.5.6. For all ε > 0 there exists n0 ∈ N such that for all n > n0 we have

P
( ∫
| f∗(x)− f ∗n(x) | dPX(x) ≤ ε

)
≤ exp

(
− nε2

8L2%2

)
(3.49)

Proof. We add and subtract the mean of the examined variable∫
| f∗(x)− f ∗n(x) | dPX(x) =

∫
E | f∗(x)− f ∗n(x) | dPX(x)

+
∫

( | f∗(x)− f ∗n(x) | − E | f∗(x)− f ∗n(x) | ) dPX(x) = In + Jn.
(3.50)

By Lemma 3.5.5 In → 0 so there exists n0 such that for all n > n0: |In| < ε/2. For Jn we are
going to apply McDiarmid’s inequality (Theorem A.4.2) for function

κ({(Xi, Yi)}ni=1) =
∫
| f∗(x)− f ∗n(x) | dPX(x). (3.51)

Let f ∗n(x) be the estimate function defined by a fixed (x1, y1), . . . , (xn, yn) sample and let fni(x)
be defined by a sample which is distinct from the one above only in the ith coordinate. Then
by Lemma 3.5.4 ∣∣∣∣ ∫ | f∗(x)− f ∗n(x) | dPX(x)−

∫
| f∗(x)− f ∗ni(x) | dPX(x)

∣∣∣∣
≤
∫
| f ∗n(x)− f ∗ni(x) | dPX(x) ≤ sup

y∈Rd

∫ 2LKh(x− y)
nEKh(x−X) dPX(x) ≤ 2L%

n

(3.52)

By McDiarmid’s inequality we obtain that for n > n0:

P
( ∫
| f∗(x)− f ∗n(x) | dPX(x) > ε

)
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≤ P
(( ∫

| f∗(x)− f ∗n(x) | dPX(x)− E
∫
| f∗(x)− f ∗n(x) | dPX(x)

)
> ε/2

)
≤ exp

(
− nε2

8L2%2

)
. (3.53)

Thus, the lemma is proved.

Proof of Theorem 3.5.2. It is easy to see that fn and f∗ are bounded by L, because |Y | ≤ L.
Notice that ∫

| fn(x)− f∗(x) |2 dPX(x) ≤ 2L
∫
| fn(x)− f∗(x) | dPX(x), (3.54)

therefore it is sufficient to prove
∫
| fn(x)− f∗(x) | dPX(x) a.s.−−→ 0. By the triangle inequality∫
| fn(x)− f ∗n(x) | dPX(x)

≤
∫
| fn(x)− f ∗n(x) | dPX(x) +

∫
| f ∗n(x)− f∗(x) | dPX(x) (3.55)

holds. The quantity
∫
| f ∗n(x) − f∗(x) | dPX(x) goes to zero almost surely by Lemma 3.5.6 and

the Borel-Cantelli lemma. Moreover

| f ∗n(x)− fn(x) | =
∣∣∣∣
∑n

i=1 YiKhn(x−Xi)
nEKhn(x−X) −

∑n
i=1 YiKhn(x−Xi)∑n

i=1Khn(x−Xi)

∣∣∣∣
≤
∣∣∣ n∑

i=1
YiKhn(x−Xi)

∣∣∣ ∣∣∣∣ 1
nEKhn(x−X) −

1∑n
i=1Khn(x−Xi)

∣∣∣∣
≤ L

∣∣∣ n∑
i=1

YiKhn(x−Xi)
∣∣∣ ∣∣∣∣ 1
nEKhn(x−X) −

1∑n
i=1Khn(x−Xi)

∣∣∣∣
= L |F ∗n(x)− 1 |,

(3.56)

where F ∗n(x) = f ∗n(x) when Y = 1 with probability 1. Then by Lemma 3.5.5∫
| f ∗n(x)− fn(x) | dPX(x) ≤ L

∫
|F ∗n(x)− 1 | dPX(x)→ 0 (3.57)

almost surely, which finishes the proof.

3.6 The k-Nearest Neighbors Estimate
Another simple and efficient technique for nonparametric regression is the k-nearest neigh-

bors estimate (kNN). It can be viewed as a kernel estimate using the naive kernel with datade-
pendent adaptive bandwidth. Consider the space X ⊆ Rd with the euclidean metric. Fix x ∈ X,
then we can define an order of the variables ‖x−Xi‖ for all i = 1, . . . , n. We extend these
random variables with the different elements of a random permutation π[n] → [n] to de-
cide in case of ties, so we define the total order ≺π as ‖x−Xi‖ ≺π ‖x−Xj‖ if and only if
‖x−Xi‖ < ‖x−Xj‖ or ‖x−Xi‖ = ‖x−Xj‖ and π(i) < π(j). Then for all i ∈ [n] we consider
variables I(Xi ∈ N(x, kn), where N(x, kn) is the first kn elements in the defined total order,
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that is the kn closest points in {Xi}ni=1 to x. With the help of these variables we can define the
kNN estimate for all n ∈ N as

f kNNn (x) .= 1
kn

n∑
i=1

I(Xi ∈ N(x, kn). (3.58)

Stone’s theorem can be applied to show that if kn → ∞ and kn/n → 0 as n → ∞ then the
kNN estimate is universally consistent. Besides, for the strong consistency of kNN estimates,
similarly as for kernel estiamtes (Theorem 3.5.2), the following holds:

Theorem 3.6.1. Assume that there exists L <∞ such that P(|Y | ≤ L) = 1 and that for each
random variable ‖x−X‖ is absolutely continuous. If kn → ∞ and kn/n → 0, then the kNN
regression function estimate is strongly consistent.

The proof is similarly involved as the argument for Theorem 3.5.2, see [11, Theorem 23.7].
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Chapter 4

Kernel Methods

In this chapter we present the theory of kernel methods. It is important to distiguish these
methods from kernel estimates which were introduced in Chapter 3, therefore we are not going
to use the word kernel estimate here. Kernel methods are generalizations of algorithms which
only depend on the data through an inner product.

Before we formally dive into the details of the theory of kernel methods, we show two very
important examples to illustrate that several algorithms can be expressed via an inner product.

4.1 Ridge Regression
Least squares estimates are probably the most widely applied tools in statistics. Ridge

regression (RR) is a generalization of the least squares method. We consider a regression problem
with data {(xi, yi)}ni=1, where xi ∈ Rd and yi ∈ R for i ∈ [n]. Let X .= [x1, . . . , xn]T and
Y = [y1, . . . , yn]T. We want to find a model from a linear space parameterized by θ ∈ Rd which
minimizes the following cost function

minimize 1
2 ‖Y −Xθ‖

2 + λ

2 ‖θ‖
2

for a user-chosen λ > 0. The minimizer of this cost function is called the ridge regression
estimate or regularized least squares estimate, because the term ‖θ‖2 is included in the cost for
regularization, which is an extremely important concept in machine learning. Without delving
into details, it is easy to see that in this case regularization ensures the existence and the
uniqueness of the minimizer, thus it can help to transform an ill-posed problem to a well-
posed one. Besides, it often happens that matrix XTX, which plays an important role in the
analitic least squares solution, has a very large condition number implying that it is numerically
problematic to compute (XTX)−1. In such cases the regularizer helps us to reduce the condition
number, so we can transform an ill-conditioned problem to a well-conditioned one. For further
readings on regularization see the books [14] and [18].

Notice that we can reduce the regularized problem to a least squares problem by substituting
in X̃ = [XT

√
λ]T and Ỹ = [Y T 0]T. Let I denote the identity matrix, then applying the analitic
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least squares formula we can express the ridge regression estimate as

θ̂λ = (XTX + λI)−1XTY, (4.1)

which is well-defined, because matrix XTX + λI is always positive definite. Notice that

(XTX + λI)θ̂λ = XTY ⇒ θ̂λ = λ−1(XTY −XTXθ̂λ). (4.2)

We introudce variable α as
α
.= λ−1(Y −Xθ̂λ) (4.3)

then we obtain that θ̂λ = XTα. Substituting it back to the definition of α yields the following
linear equation system

(XXT + λI)α = Y. (4.4)

Notice that our model estimate f̂ : Rd → R on a given input can be evaluated as

f̂(x) = xTθ̂λ = xTXTα =
n∑
k=1

αk〈x, xk〉, (4.5)

where from (4.4) we can see that α and the prediction depends on the inputs only through the
inner product.

4.2 Support Vector Machines
Our second example is the so-called Support Vector Machines (SVM) for classification, see

[18], [21] and [23].
Given a sample {(xi, yi)}ni=1 for binary classification. Consider the model class of linear

classifiers i.e. H = {g : g(x) = sign(wTx+ b), w ∈ Rd, b ∈ R} parameterized with normal vector
w and a bias term b. We assume that our data is linearly separable so there exists g ∈ H with
zero empirical risk. We say that (w, b) corresponds to a δ-margin separating hyperplane if

yi(wTxi + b) ≥ δ ∀ i ∈ [n], ‖w‖ = 1 (4.6)

holds. We call δ themargin, that is the minimal distance of the input points from the hyperplane.
In many books 2δ is called the margin, because if we take the convex hull of those xi’s which
have label +1 and the convex hull of the rest of the inputs the distance of these two hulls is 2δ.

Claim 4.2.1. The VC dimension of H in Rd is d+ 1.

Proof. The proof is based on [19]. First we show that the VC dimension of the homogenous
hyperplanes in Rd is d. It is easy to see that d points can be shattered. Let e1, . . . , ed be the
usual basis in Rd, where all coordinates of ei are zero except the ith, which is 1. In fact, for
all labelings y1, . . . , yd let the hyperplane be w = (y1, . . . , yd)T. Then 〈w, ek〉 = yk. Assume by
contradiction that we can shatter d + 1 points. Let z1, . . . , zd+1 be such points in Rd. Then
there exists a1, . . . , ad+1 ∈ R not all zeros, such that ∑d+1

i=1 aixi = 0. Let I = {i : ai > 0} and
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J = {i : ai ≤ 0}. First, assume that both I and J are nonempty. Then∑
i∈I

aixi =
∑
j∈J
| aj |xj. (4.7)

Since we assumed that x1, . . . , xd+1 can be shattered, there exists w for which 〈w, xi〉 ≥ 0 for
all i ∈ I and 〈w, xi〉 < 0 for all j ∈ J . Then the contradiction follows since

0 ≤
∑
i∈I

ai〈xi, w〉 =
〈∑
i∈I

aixi, w
〉

=
〈∑
j∈J
|aj|xj, w

〉
=
∑
j∈J
| aj | 〈xj, w〉 < 0. (4.8)

When J is empty then the contradiction follows from the fact that ∑i∈I aixi = 0, similarly
when I is empty then ∑j∈J |aj|xj = 0. For inhomogenous hyperplanes notice that the points
0, e1, . . . , ed can be shattered. For an arbitrary labeling y0, . . . , yd let w = (y1, . . . , yd)T as before
and let the bias b = y0/2. Then sign(wTek + b) = yk and sign(wT0 + b) = y0. Furthermore,
notice that w̃ = (wT, b)T defines a homogeneous hyperplane in Rd+1 therefore by the first part
the VC dimension of the inhomogeneous hyperplanes, H, cannot be more than d+ 1.

Theorem 4.2.1. Let xi ∈ X ⊆ Rd belong to a ball with radius R for all i ∈ [n]. The set of
δ-margin separating hyperplanes has VC dimension V bounded by

V ≤ min
{⌈

R2

δ2

⌉
, d

}
+ 1. (4.9)

Proof. The proof is only partially presented here based on [3], [13] and [24].
From Claim 4.2.1 it follows that V ≤ d + 1. Let h ≤ d and let x1, . . . , xh be h points

that can be shattered by δ-margin separating hyperplanes. We can think of a labeling by a
δ-margin hyperplane as a division of the points into two subsets such that the distance between
the convex hulls of the two sets is greater than 2δ. Let these divisions be T1, . . . , T2h and let
%(Ti) denote the distance between the two convex hulls induced by the two subsets in Ti. Since
x1, . . . , xh can be shattered mini∈[2h] %(Ti) ≥ 2δ. Let

H(h) .= max
x1,...,xh∈Rd

min
i
%(Ti). (4.10)

The maximum is attained in a h− 1 dimensional regular simplex on the h dimensional sphere
and can be calculated as

H(h) =


2R√
h−1 if k is even

2Rh
(h−1)

√
h−1 if k is odd.

(4.11)

For the detailed arguments see [3] and [13].
Then because of H(h) ≥ 2δ if h is even it is easy to see that

h ≤ R2

δ2 + 1 ≤
⌈
R2

δ2

⌉
+ 1. (4.12)
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Furthermore, if h is odd we can proceed as

R2

δ2 = (h+ 1)(h− 1)2

h2 ≥ (h− 1)h− 1
h⌈

R2

δ2

⌉
+ 1 ≥

⌈
(h− 1)2

h

⌉
+ 1 ≥

⌈
h− 2 + 1

h

⌉
+ 1 ≥ h.

(4.13)

Therefore the bound
⌈
R2

δ2

⌉
+ 1 holds in both cases.

It is useful to parameterize the linear classifiers such way that mini=1,...,n |wTxi + b| = 1. It
is called the canonical form. According to the SRM principle, by maximizing the margin we
minimize the VC dimension of the appropriate model class, because of Theorem 4.2.1. Therefore
the bound for the true risk of a model in Theorem 2.8.1 is also minimized. It can be shown
that the margin maximization yields the following convex quadratic program

minimize 1
2 ‖w‖

2

subject to yi(wTxi + b) ≥ 1, i = 1, 2, . . . , n, (4.14)

which is called the primal problem and has a unique minimizer which can be found efficiently
by a quadratic solver. We are going to show that the solution of this optimization problem has
an inner product representation. Let

L(w, b, α) .= ‖w‖2 +
n∑
k=1

(1− yk(wTxk + b)) (4.15)

be the Lagrange dual function, where αk ∈ R+ are the Lagrange multipliers. By the Karush-
Kuhn-Tucker (KKT) conditions, see [2], the optimum of (4.14) occurs if

∂L

∂w
(w, b, α) = 0⇒ w =

n∑
k=1

αkykxk and

∂L

∂b
(w, b, α) = 0⇒ 0 =

n∑
k=1

αkyk.

(4.16)

Substituting these identities back to the Lagrange dual function yields the following Wolfe-dual
problem

maximize
n∑
k=1

αk −
1
2

n∑
k=1

n∑
l=1

αkαlykyl〈xk, xl〉

subject to αk ≥ 0, i = 1, 2, . . . , n, (4.17)
n∑
k=1

αkyk = 0. (4.18)

It is a convex quadratic problem for the Lagrange multipliers. Our prediction on a given input
takes the form of g(x) = sign(∑n

k=1 α
∗
kyk〈x, xk〉+b∗). In order to calculate b∗ we can use the KKT

conditions (complementary slackness) from which for every αk 6= 0 we have 〈w∗, xk〉+ b∗ = yk.
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The name of the method originated from these points, because we say that xk is a support
vector when αk > 0. It can be shown that α usually admits a sparse representation with at
least d+ 1 nonzero coordinates. Notice that our prediction only depends on the inputs via the
inner products.

In practice the capacity of linear hyperplanes is limited. Therefore a good idea is to project
the inputs to a higher dimensional space and search for the optimal linear classifier in the
feature space. This leads to the notion of positive definite kernels that can be interpreted as an
inner product in a higher dimensional feature space.

4.3 Reproducing Kernel Hilbert Spaces
Definition 4.3.1. Let X be a set. The symmetric bivariate function k : X×X→ R is a positive
definite kernel if for all n ≥ 1 and x1, . . . , xn ∈ X the matrix K ∈ Rn×n defined elementwise as
Ki,j

.= k(xi, xj) is positive semidefinite.

The data dependent positive semidefinite matrix K is called the Gram matrix. If we want
to generalize the method of RR and the linear SVM we need to find a reasonably broad family
of functions where the optimization can be carried out. Reproducing kernel Hilbert spaces have
good properties both in the statistical and computational aspects.

Definition 4.3.2. Given a Hilbert space H of f : X → R type functions, with inner product
〈 ·, · 〉H, we say that it is a reproducing kernel Hilbert space (RKHS) if the point evaluation
function δx : f → f(x) is bounded (or equivalently continuous) for all x ∈ X.

In this case, by the Riesz representation theorem, there uniquely exists k(·, ·), such that for
all x ∈ X, k(·, x) ∈ H and f(x) = 〈 f, k(·, x) 〉H for all f ∈ H. This is called the reproducing
property, and the function k : X × X → R is called the reproducing kernel. In particular
〈 k(·, x), k(·, y) 〉H = k(x, y) thus k is symmetric. The following claims are from [1] and [25].

Claim 4.3.1. The reproducing kernel k is positive semidefinite.

Proof. For any n ≥ 1 and x1, . . . , xn consider the Gram matrix K. For all a = (a1, . . . , an)T by
the reproducing property we have

aTKa =
n∑

i=1

n∑
j=1

aiajKi,j =
〈 n∑

i=1
aik(·, xi),

n∑
j=1

ajk(·, xj)
〉

=
∥∥∥∥∥

n∑
i=1

aik(·, xi)
∥∥∥∥∥
H
≥ 0. (4.19)

Claim 4.3.2. For a RKHS the positive definite reproducing kernel function is unique.

Proof. Let k1 and k2 be two kernels in H with the reproducing property. By the reproducing
property and the symmetry

k1(x, y) = 〈k1(·, y), k2(·, x)〉 = 〈k2(·, x), k1(·, y)〉 = k2(y, x) = k2(x, y). (4.20)
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The converse is also true by the Moore-Arnoszjan theorem, see [1].

Theorem 4.3.1. For each positive definite function k there uniquely exists a RKHS in which
the kernel satisfies the reproducing property, i.e.

〈f(·), k(·, x)〉H = f(x) ∀ f ∈ H. (4.21)

Proof. Notice that H must contain all functions with form ∑n
i=1 aik(·, xi) for all a1, . . . , an ∈ R

and x1, . . . , xn ∈ X. Let denote the vector space

H̃ .=
{
f : f(·) =

n∑
i=1

aik(·, xi), n ∈ N, a1, . . . , , an ∈ R, x1, . . . , xn ∈ X
}
. (4.22)

In order to ensure that the reproducing property holds the inner product should be defined as

〈k(·, x), k(·, z)〉 .= k(x, y) (4.23)

for all x, z ∈ X. Then for any f(·) = ∑n
i=1 aik(·, xi) and g(·) = ∑m

j=1 bjk(·, zj) the inner product
is independent of the expansion of f and g, because

〈f, g〉 =
〈 n∑

i=1
aik(·, xi),

m∑
j=1

bjk(·, zj)
〉

=
n∑

i=1

m∑
j=1

aibjk(xi, zj) =
n∑

i=1
aig(xi) =

m∑
j=1

bjf(zj).
(4.24)

Furthermore, substituting k(·, x) for g yields that the reproducing property holds. The defined
inner product is clearly symmetric and linear. In order to prove its positive definiteness let
f(·) = ∑n

i=1 aik(·, xi). Then

〈f, f〉 =
n∑

i=1

n∑
j=1

aiajk(xi, xj) = aTKa ≥ 0. (4.25)

We show that 〈f, f〉 = 0 if and only if f = 0. Let λ ∈ R and x ∈ X, then

0 ≤
∥∥∥λk(·, x) +

n∑
i=1

aik(·, xi)
∥∥∥2

H
= λ2k(x, x) + λ

n∑
i=1

aik(x, xi). (4.26)

Since λ is arbitrary ∑n
i=1 aik(x, xi) needs to be 0.

We need to close H̃ to obtain a Hilbert space H. It can be done on the usual manner via a
density argument.

It remained to prove that the RKHS is unique. Let G be another Hilbert space including H
which is the minimal Hilbert space induced by H̃. Let h ∈ G 	 H. We know that H is closed
and linear, thus h ⊥ H. Since k(·, x) ∈ H by the orthogonality and the reproducing property
it follows that 0 = 〈h, k(·, x)〉 = h(x) for all x ∈ X. Therefore h = 0 and G = H.

Typical examples for reproducing kernels are the Gaussian kernel, k(x, y) = exp
(
−‖x−y‖2

2σ2

)
with σ > 0, the Laplacian kernel, k(x, y) = exp

(
−‖x−y‖

σ

)
with σ > 0, and the polynomial kernel,
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k(x, y) = (xTy + c)d with c ≥ 0 and d ∈ N.

Definition 4.3.3. (universal kernel) Let Cb(X) denote the space of bounded continuous
functions on a compact metric space X with the supremum norm. A kernel is universal if
the linear space span{k(·, x) : x ∈ X} ⊆ H is dense in Cb(X): for all f ∈ Cb(X) and ε > 0 there
exists λ1, . . . , λl ∈ R and x1, . . . , xl ∈ X such that supu∈X

∣∣∣ f(u)−∑l
i=1 λik(u, xi)

∣∣∣ < ε.

That is, any bounded continuous function on X can be uniformly approximated arbitrarily
well with universal kernels, see [16]. For example the Gaussian and the Laplacian kernels are
universal, see [17].

4.4 Representer Theorem
Optimizing over infinite dimensional Hilbert spaces sounds computationally demanding, still

the representer theorem makes the RKHS attractive in many cases.

Theorem 4.4.1. (representer theorem) Given a sample D = {(xi, yi)}ni=1 and a positive def-
inite kernel k(·, ·), an associated RKHS H with a norm ‖·‖H induced by 〈·, ·〉H, then, for any
strictly monotonically increasing regularizer, κ : [0,∞)→ [0,∞), and for arbitrary loss function
L : (X× R2)n → R ∪ {∞} each minimizer of the criterion

ν(f,D) .= L((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) + κ(‖f‖H) (4.27)

admits the following representation f(x) = ∑n
i=1 aik(x, xi).

Observe that instead of solving an optimization problem in a high, often infinite dimensional
Hilbert space, it is enough to minimize in a finite, at most n, dimensional linear space and the
solution admits a finite dimensional form. That us why the representer theorem is a very
powerful tool, and in many optimization problems the kernel values can be used instead of
standard inner products. The proof is from the book of Scölkopf and Smola, see [18].

Proof. First notice that κ̃(‖f‖2
H) can be used instead of κ(‖f‖H) because the quadratic function

is strictly monotone increasing on [0,∞), implying that κ is strictly monotone increasing if and
only if κ̃ is strictly monotone increasing.

Consider the span of the functions k(·, x1), . . . , k(·, xn). It is a finite dimensional closed linear
space, therefore all f ∈ H can be decomposed as

f = f‖ + f⊥, (4.28)

where f‖ = ∑n
i=1 aik(·, xi) and f⊥ ⊥ k(·, xi) for all i ∈ [n]. By the orthogonality and the

reproducing property for all j ∈ [n]

f(xj) =
〈 n∑

i=1
aik(·, xi), k(·, xj)

〉
+ 〈f⊥(·), k(·, xj)〉 =

n∑
i=1

aik(xi, xj) + 0, (4.29)
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that is f(xj) is independent of f⊥ from which it follows that the value
L((x1, y1, f(x1)), . . . , (xn, yn, f(xn))) is also independent of f⊥. Furthermore, by the
Pythagorean theorem

κ(‖f‖H) = κ̃
( ∥∥∥ n∑

i=1
aik(·, xi)

∥∥∥2

H
+ ‖f⊥‖2

H

)
≥ κ̃

( ∥∥∥ n∑
i=1

aik(·, xi)
∥∥∥2

H

)
= κ(‖f‖‖H), (4.30)

therefore f⊥ = 0 when f is a minimizer.

Though the representer theorem does not say anything about the existence of a minimizer,
in practice the form of the loss function often ensures it. Notice that if κ is monotone increasing
but not strictly monotone the same proof yields that if a minimizer exists, then there is one with
finite dimensional representation. By this theorem RR and SVM can be generalized for higher
dimensional optimization problems in a RKHS, because instead of the normal inner products
〈xi, xj〉 in the euclidean space, we can use the inner products in the RKHS 〈k(·, xi), k(·, xj)〉H,
which can be efficiently computed with the kernel function.

4.5 Kernel Mean Embedding
An important intuition behind the kernel functions is that it can be viewed as a feature

map. Namely the function x → k(·, x) maps the inputs to a higher dimensional feature space,
which is the RKHS.

Similarly we can define a mapping from the sets of distributions on a space X to the elements
of a RKHS with the help of the kernel. This is the idea of kernel mean embedding, see [17].

Definition 4.5.1. (kernel mean embedding) Let (X,Σ) be a measurable space and let M+(X)
denote the space of all probability measures on it. The kernel mean embedding of these probability
measures into a RKHS H endowed with a reproducing kernel k : X× X→ R is defined as

µ : M+(X)→ H,

P →
∫
k(x, ·) dP (x),

(4.31)

where the integral is a Bochner integral.

The following claim provides a sufficient condition for the existence of the kernel mean
embedding, see [17].

Claim 4.5.1. If EX∼P
[√
k(X,X)

]
<∞, then µP ∈ H and EX∼P [f(X)] = 〈f, µP 〉H

Proof. Consider the linear functional LPf .= EX∼P [f(X)]. It is bounded, because for all f ∈ H

|LPf | ≤ EX∼P |f(X) | = EX∼P
[
| 〈f(·), k(·, X)〉 |

]
≤ EX∼P

[√
k(X,X)

]
‖f‖H , (4.32)

where we applied Jensen’s inequality and the Cauchy-Schwarz inequality. By the Riesz repre-
sentation theorem we obtain that there exists µP ∈ H such that Lpf = 〈µP , f〉H. Then for
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f(·) = k(·, x) with an arbitrary x ∈ X it follows that

µP (x) = 〈µP (·), k(·, x)〉H = EX∼P [k(X, x)] =
∫
k(u, x) dP (u), (4.33)

thus the claim is proved.

A kernel is called characteristic if the embedding, µ, is injective (e.g., the Gaussian kernel).
In this case the embedded element captures all informations about the distribution, e.g., for all
P,Q ∈M+(X), ‖µP − µQ‖H = 0 if and only if P = Q. Hence, the embedding induces a metric
on M+(X). When X is a compact metric space and k is a universal kernel on X, then one can
show that k is also characteristic [17].

The kernel mean embedding has good properties even if the kernel is not characteristic. For
example, for polynomial kernels with degree d it holds that ‖µP − µQ‖H = 0 if and only if the
first d moments of P and Q are the same, see [17].

Furthermore, several fundamental operations can be performed in H instead of dealing
with the distributions themselves. For example kernel mean embedding can be performed on
conditional distributions and the conditional expected value can be expressed via an inner
product similarly to Claim 4.5.1. Consequently a wide range of tools can be performed in H
such as the sum, product and Bayes rules, see [17].

The underlying probability distribution of the sample is typically unknown, therefore the
kernel mean embedding should be estimated from empirical data. An important tool to prove
the validity of such approaches is the Strong Law of Large Numbers (SLLN) for random elements
taking values in a separable Hilbert space H, see [22, Theorem 3.2.4].

Theorem 4.5.1. Let {Xn}n≥1 be a sequence of independent random elements taking values in
a separable Hilbert space H. If

∞∑
n=1

D2(Xn)
n2 < ∞ (4.34)

where D2(X) .= E
[
‖X − E[X] ‖2

H

]
, then∥∥∥∥ 1

n

n∑
k=1

(Xk − E[Xk])
∥∥∥∥
H

a.s.−−→ 0 as n→∞. (4.35)
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Chapter 5

Confidence Regions

In several cases it is not enough to find a good estimator for a target function, but we also
need to quantify the uncertainty of the estimation for example for the purpose of stability, safety
or quality. In this chapter we are going to deal with the problem of classification and we want
to find non-asymptotic stochastic guarantee tags for finding the unknown regression function.
In this chapter the presented results were carried out together by me and my supervisor. In the
conference paper [7] we have already published some of these results.

We present the uncertainty quantification via confidence sets. Notice that usually the prob-
ability that a point estimate fn hits the target function exactly is zero, i.e. P(fn = f∗) = 0.
Confidence regions were introduced to overcome this difficulty by constructing a set of estima-
tor functions that contains the target function with high probability. In this thesis we present a
broad framework which enables us to build exact confidence regions, that contain the regression
function with a user-chosen probability, under mild statistical conditions. These random sets
provide us bounds on the misclassification probabilities as well, that are also very important in
practice. The methods, that are going to be presented, are distribution-free and non-asymptotic,
that is the confidence bounds will hold for all distributions and sample sizes. Furthermore, we
consider a broad model class for the regression function, e.g. the model class can be infinite di-
mensional, and nonparametric. Beside the finite sample advantages of the construction schemes
we also provide bounds for the asymptotical behavior of our region estimates.

5.1 Resampling Framework
We have seen already (see Claim 1.1.2) that the regression function is identical to the

conditional expected value function in case of the 0/1 loss, i.e.

f∗(x) .= E
[
Y | X = x

]
= 2 · P(Y = +1 | X = x ) − 1 = 2η(x)− 1. (5.1)

In this chapter we assume that

(A0) the sample D0 = {(Xi, Yi)}ni=1 is i.i.d.,
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(A1) given a parameterized family of the possible regression functions that contains the true
regression function, i.e. f∗ ∈ F .=

{
fθ : X→ [−1,+1 ] | θ ∈ Θ

}
,

(A2) the parameterization is injective in the L2(PX) sense, that is for all θ1 6= θ2 ∈ Θ

‖ fθ1 − fθ2‖2
P

.=
∫
X
(fθ1(x)− fθ2(x))2 dPX(x) 6= 0. (5.2)

For the sake of simplicity we call Θ the parameter space, but it can be infinite dimensional.
For examples the functions themselves can be the parameters. Let the true parameter, which
corresponds to the true regression function, be θ∗, that is fθ∗ = f∗.

As an example we consider the case when we observe a sample point from class “+1” with
probability p or a sample point from class “−1” with probability 1−p and the input distributions
corresponding to class “+1” and “−1” are determined by density functions ϕ1 and ϕ2. Then it
is easy to see that the regression function has the following form

f∗(x) = E
[
Y | X = x

]
= pϕ1(x)− (1− p)ϕ2(x)

pϕ1(x) + (1− p)ϕ2(x) I( pϕ1(x) + (1− p)ϕ2(x) 6= 0 ). (5.3)

Observe that if we have candidate densities for inputs with various labels and we know their
mixing probability, then we can compute the regression function. However, we see that the
regression function does not determine ϕ1, ϕ2 and p.

These type of regression functions were the test objects for the numerical examples that are
presented in the end of this chapter. Notice that f∗ does not determine the joint distribution
of the sample. In fact it contains almost no information about the distribution of the inputs.
Therefore our approach can be called semi-parametric.

Notice that the observed i.i.d. input-output dataset can be seen as an Sn-valued random
vector, where S = X × {+1,−1}. One of our core ideas is that if a candidate θ is given, then
we can generate (resample) alternative labels for the available inputs using the conditional
distribution induced by fθ, which is

Pθ(Y = +1 | X = x ) = fθ(x) + 1
2 ,

Pθ(Y = −1 | X = x ) = 1− fθ(x)
2 , (5.4)

as it immediately follows from our observations in (5.1).
Given a θ, we generate m− 1 alternative samples. Let these be

Di(θ) .= ((X1, Yi,1(θ)), . . . , (Xn, Yi,n(θ))), (5.5)

for i = 1, . . . ,m − 1, where for all (i, j) ∈ [n] × [m − 1], label Yi,j(θ) is generated randomly
according to the conditional distribution Pθ(Y | X = Xj ). For notational simplicity, we extend
this to D0, that is ∀ θ : D0(θ) .= D0 and ∀ j ∈ [n] Y0,j(θ) .= Yj.

Naturally, for all index i, dataset Di(θ) can also be identified with a random vector in Sn,
and D1(θ), . . . ,Dm−1(θ) are always conditionally i.i.d., given the inputs, {Xj}nj=1. Observe that
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in case θ 6= θ∗ the distribution of D0 is in general different than that of Di(θ), ∀ i 6= 0; while D0

and Di(θ∗) have the same distribution for i ∈ [m− 1].
Based on these observations our methods are going to operate on the following manner.

For a given θ we generate m − 1 alternative samples. If these samples are “similar” to the
original one we include the examined parameter, otherwise we exclude the parameter from the
confidence region. Consequently we need to derive a method to compare the datasets.

Our algorithms do the comparison via rank statistics. The key notion here is the ranking
function, which informally compares its first argument to the other arguments.

Definition 5.1.1. (ranking function) Let A be a measurable space (with some σ-algebra), a
(measurable) function ψ : Am → [m ], where [m ] .= {1, . . . ,m}, is called a ranking function if
for all (a1, . . . , am) ∈ Am it satisfies the following properties:

(P1) For all permutations µ of the set {2, . . . ,m}, we have

ψ
(
a1, a2, . . . , am

)
= ψ

(
a1, aµ(2), . . . , aµ(m)

)
,

that is the function is invariant w.r.t. reordering the last m− 1 terms of its arguments.

(P2) For all i, j ∈ [m ], if ai 6= aj, then we have

ψ
(
ai, {ak}k 6=i

)
6= ψ

(
aj, {ak}k 6=j

)
, (5.6)

where the simplified notation is justified by (P1).

The value taken by the ranking function is called the rank. An important observation about
the rank of exchangeable variables is the following.

Lemma 5.1.1. Let A1, . . . , Am be exchangeable, almost surely pairwise different random ele-
ments taking values in A. Then, ψ

(
A1, A2, . . . , Am

)
has discrete uniform distribution, that is

for all k ∈ [m ]
P
(
ψ
(
A1, A2, . . . , Am

)
= k

)
= 1
m
. (5.7)

Proof. Since random elements {Ai}mi=1 are exchangeable

P
(
ψ
(
A1, . . . , Am

)
= k

)
= P

(
ψ
(
Aµ(1), . . . , Aµ(m)

)
= k

)
(5.8)

for all k ∈ [m ] and for all permutations µ on set [m ]. Fix the value of k. In addition, notice
that because of property P1 we have{

ψ
(
A1, . . . , Am

)
= k

}
=
{
ψ
(
A1, Aσ(2) . . . , Aσ(m)

)
= k

}
(5.9)

for all permutation σ on set {2, . . . ,m}, therefore similarly to the convention in P2 we can use
the notation Ci .=

{
ψ
(
Ai, {Aj}j 6=i,

)
= k

}
. It is easy to see that events {Ci

}m
i=1

are disjoint and
they cover an event which occurs with probability 1, i.e. ∪mi=1Ci ⊇ Ω\Ω0 where Ω0 happens with
probability zero. The disjoint property of the events is ensured by P2. Let Ω0 denote the zero
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probability event which contains the cases when there exists i and j ∈ [m] such that Ai = Aj.
Then for all ω ∈ Ω \ Ω0 the values ψ(Aj(ω), {Ak(ω)}k 6=j) are distinct for all indices j ∈ [m]
because of P2. Furthermore, by definition these values are in [m], therefore there exists an index
i ∈ [m] such that ψ(Ai(ω), {Ak(ω)}k 6=i) = k, i.e. ω ∈ ⋃mi=1Ci. This is true for all ω ∈ Ω \ Ω0,
thus Ω\Ω0 ⊆

⋃m
i=1Ci holds, implying that ⋃mi=1Ci is a 1 probability event. Combining this with

the disjoint property and applying that the random elements {Ai}mi=1 are exchangeables yield

1 = P
(
Ω \ Ω0

)
= P

(⋃m
i=1Ci

)
= ∑m

i=1 P
(
Ci
)

= ∑m
i=1 P

(
ψ
(
Ai, {Aj}j 6=i,

)
= k

)
=

m∑
i=1

P(ψ
(
A1, {Aj}j 6=1,

)
= k ) = mP

(
ψ
(
A1, . . . , Am

)
= k

)
.

(5.10)

Dividing both sides by m we obtain that P
(
ψ
(
A1, . . . , Am

)
= k

)
= 1

m
for all k ∈ [m].

Observe that this lemma does not assume anything about the distribution of the random
elements {Ai}ni=1, only exchangeability is required, which holds for the original and the al-
ternative samples generated from the conditional distibution determined by θ∗. In order to
ensure pairwise difference, which does not always hold, we can extend the samples with the
different elements of a random permutation π : [m] → [m] by setting Dπi (θ) .=

(
Di(θ), π(i)

)
for all i = 0, . . . ,m− 1. With this idea we can apply the Lemma 5.1.1 on exchangeable samples
in general.

5.2 Non-Asymptotic Confidence Regions
Inspired by finite sample system identification methods [5, 6, 15], the core idea of the pro-

posed algorithms is to compare the original dataset to alternative samples which are randomly
generated according to a given hypothesis. The comparison will be based on the rank of the
original dataset among all the available samples, therefore the ranking function is in the heart of
all proposed algorithms and the differences between the presented methods primarily originate
from the various ways they rank.

First we state the general result for arbitrary ranking functions, then we present four ap-
proaches to define concrete examples for ranking. Let ψ be a ranking function on the extended
samples, i.e. ψ : (X× Y)m × [m ]→ [m ]. Furthermore, let p, q ∈ [m ] be user-chosen hyperpa-
rameters such that p ≤ q hold. Then we define a confidence region as

Θψ
%
.=
{
θ ∈ Θ : p ≤ ψ

(
Dπ0 , {Dπk (θ)}k 6=0

)
≤ q

}
, (5.11)

where % .= (m, p, q) denotes the hyperparameters. We are going to see that the probability
level of the confidence region can be controlled by varying m, p and q and we can reach any
(rational) probability level. Now we prove our main abstract result in this thesis with the help
of Lemma 5.1.1.

Theorem 5.2.1. Assume that A0, A1 and A2 hold. Then for all ranking function ψ and
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hyper-parameter % = (m, p, q) with integers 1 ≤ p ≤ q ≤ m,

P
(
θ∗ ∈ Θψ

%

)
= q − p+ 1

m
. (5.12)

Proof. It is clear that D0(θ∗),D1(θ∗), . . . ,Dm−1(θ∗) are identically distributed and
conditionally independent with respect to the inputs {Xi}ni=1, hence they are exchangeables.
We extend these samples with the different elements of a random permutation π : [m] → [m]
generated independently uniformly from the symmetric group. Observe that the extended sam-
ples, Dπ0 (θ∗),Dπ1 (θ∗), . . . ,Dπm−1(θ∗), are almost surely pairwise different and still exchangeables
implying that we can apply Lemma 5.1.1. It follows that for all values k ∈ [m] the rank
ψ(Dπ0 , {Dπk (θ)}k 6=0) = k with probability 1

m
, thus p ≤ ψ

(
Dπ0 , {Dπk (θ)}k 6=0

)
≤ q with proba-

biltiy q−p+1
m

.

Observe that this theorem guarantees an exact covering probability level under very mild
statistical conditions. We do not assume anything about the distribution of the sample, i.e. the
result is distribution-free. Furthermore, the theorem holds for any finite sample size providing
us non-asymptotic guarantee tags. Moreover, the probability level can be chosen in advance
and any rational value is reachable.

Because of the generality some degenarate construction is allowed. For example we can
define ranking functions which only depend on the tie-breaking random permutations that
are appended to the datasets. We would like to avoid such cases, therefore we analyze the
asymptotic behaviour of the defined algorithms.

The so-called (pointwise) universal strong consistency is considered. Intuitively a method is
universally strongly consistent if for all possible distributions of the sample any bad parameters
are excluded from the confidence regions when the data size goes to infinity. Formally:

Definition 5.2.1. (universal strong consistency) A method is universally strongly consistent if
for all distributions of (X, Y ) we have

P
( ∞⋂

k=1

∞⋃
n=k

{
θ ∈ Θψ

%,n

})
= 0, (5.13)

for all parameters θ 6= θ∗, θ ∈ Θ, where Θψ
%,n denotes the confidence region constructed from a

sample of size n.

Obviously purely randomized algorithms are not consistent. We also consider a stronger
version of the consistency where the bad parameters are excluded uniformly. For this definition
we consider the confidence sets in the function space, i.e. let

Fψ%
.=
{
fθ ∈ F : θ ∈ Θψ

%

}
. (5.14)

The L2(PX) norm induces a metric on F which is a natural choice to define uniformity. Let
B(f∗, ε) denote the closed ball with center f∗ and radius ε in the L2(PX)-metric.
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Definition 5.2.2. (universal strong uniform consistency) A method is universally strongly uni-
formly consistent if for all distributions of (X, Y ), for all ε > 0

P
( ∞⋃

k=1

∞⋂
n=k

{
Fψ%,n ⊆ B(f∗, ε)

})
= 1, (5.15)

where Fψ%,n denotes the confidence region in F constructed from a sample of size n.

Sometimes it can be more convenient to consider a metric in the parameter space. When
the inverse of the parameterization is Lipschitz-continuous with respect to the L2(PX)-metric,
i.e. there exists L > 0 such that for all θ1, θ2 ∈ Θ we have

‖θ1 − θ2‖ ≤ L ‖fθ1 − fθ2‖L2(PX) , (5.16)

from (5.15) it follows that strong uniform consistency holds in the parameter space as well,
that is for all ε > 0

P
( ∞⋃

k=1

∞⋂
n=k

{
Θψ
%,n ⊆ B(θ∗, ε)

})
= 1, (5.17)

In the following sections we introduce four algorithms which construct exact, non-asymptotic
confidence regions and have advantageous asymptotic properties such as universal strong con-
sistency or strong uniform consistency.

5.3 Algorithm I (ERM Based)
The first algorithm is based on empirical risk minimizer estimates. We assume that

(A3) the model space is part of a linear space, i.e. there exists a square-integrable basis
ϕk : Rd → [−1, 1] for k = 1, . . . , r such that

F =
{
fθ | fθ(x) =

r∑
i=1

θiϕi(x), θ ∈ Rr , sup
x∈Rd

|fθ(x) | ≤ 1
}
, (5.18)

i.e. Θ ⊆ Rr. Let the linear space be denoted by F̃ .

(A4) The matrix determined elementwise for k = 1, . . . , p and j = 1, . . . , n as Ψj,k = ϕk(Xj) is
skinny (n > r) and has full rank (rank(Ψ) = r) with probability 1.

The idea is that we apply the ERM method to estimate the regression function based on
the extended original sample, Dπ0 , and similarly for a given model parameter θ we estimate the
regression function based on the extended alternative samples, {Dπi (θ)}m−1

i=1 . Let

f̃
(0)
θ,n ∈ arg min

f∈F̃

1
n

n∑
j=1

(f(Xj)− Yj)2, (5.19)

f̃
(i)
θ,n ∈ arg min

f∈F̃

1
n

n∑
j=1

(f(Xj)− Yi,j)2, (5.20)
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for i = 1, . . . ,m − 1. Notice that these function estimates can be determined as least squares
solutions that exist because of (A4). Unfortunately, these estimates are not necessarily bounded
in [−1, 1] therefore we truncate them, i.e.

f
(i)
θ,n

.= T1f̃
(i)
θ,n (5.21)

for i = 0, . . . ,m− 1, where TLf(x) .= max(L, |f(x)| ) · sign(f(x)) for L ∈ R+.
We define reference variables with the help of the empirical L2 distance as

Z(i)
n (θ) .= 1

n

n∑
i=1

(fθ(Xi)− f (i)
θ,n(Xi))2 (5.22)

for i = 0, . . . ,m− 1. Then, we can define the rank of Z(0)
n (θ) among {Z(i)

n (θ)}m−1
i=0 as

Rn(θ) .= 1 +
m−1∑
i=1

I
(
Z(i)
n (θ) ≺π Z(0)

n (θ)
)
, (5.23)

where binary relation “≺π” is the standard “<” with random tie-breaking, similarly as in Section
3.6. Consequently in case of Algorithm I, the ranking function is

ψ
(
Dπ0 , {Dπk (θ)}k 6=0

)
= Rn(θ). (5.24)

As we will see (cf. the proof of Theorem 5.3.3), for any fixed false parameter, Z(0)
n (θ) tends to

have the largest rank, therefore, we fix p = 1 and only exclude parameters which lead to high
ranks. That is, similarly as in (5.11), the confidence set is

Θ(1)
%,n

.=
{
θ ∈ Θ : Rn(θ) ≤ q

}
, (5.25)

where % .= (m, q ) again denotes the user-chosen hyper-parameters with 1 ≤ q ≤ m. Let the
confidence set in the model space induced by these parameters be

F (1)
%,n

.=
{
fθ ∈ F : Rn(θ) ≤ q

}
. (5.26)

Before analyzing the algorithm we state two theorems from [11] that are going to be applied
to prove Theorem 5.3.3.

Theorem 5.3.1. Asssume that

σ2 = sup
x∈Rd

D2(Y |X = x) <∞, and sup
x∈Rd

|f∗(x) | ≤ L (5.27)

hold for some L ∈ R+. Let F be a linear vector space of functions f : Rd → R which contains
f∗. Let r be the dimension of F . Define estimator fn as

fn = TLf̃n where f̃n ∈ arg min
f∈F

1
n

n∑
i=1

(f(Xi)− Yi)2. (5.28)

57



Confidence Regions

Then there exists some universal c such that

E
∫

(fn(x)− f∗(x))2 dPX(x) ≤ c ·max(σ2, L2)(log(n) + 1) · r
n

(5.29)

The proof can be found in [11].

Theorem 5.3.2. Let F̃ be an r dimensional linear space of functions f : Rd → R. For R > 0,
ε > 0 and z1, . . . , zn ∈ Rd

N2

(
ε, {f ∈ F : 1

n

n∑
i=1
|f(zi) |2 ≤ R2}, {z1, . . . , zn}

)
≤
(4R + ε

ε

)r
. (5.30)

Proof. Fix z1, . . . , zn. Let G .= {f ∈ F : 1
n

∑n
i=1 |f(zi) |2 ≤ R2}. For f and g we denote the inner

product w.r.t. the empirical measure by 〈f, g〉n, i.e.

〈f, g〉n
.= 1
n

n∑
i=1

f(zi)g(zi). (5.31)

We consider the norm induced by the inner product and denote it by ‖f‖2
n = 〈f, f〉n. Let

{f1, . . . , fN} be an ε-packing of G w.r.t. the defined norm. Because of Lemma 2.9.3 it is sufficient
to prove that

N ≤
(4R + ε

ε

)r
. (5.32)

Let ϕ1, . . . , ϕr be a basis of functions in F and a, b ∈ Rr. Let Φ be defined elementwise as
Φi,j = 〈ϕi, ϕj〉n for 1 ≤ i, j ≤ r. Then

∥∥∥ r∑
i=1

aiϕi −
r∑
i=1

biϕi
∥∥∥2

n
= (a− b)TΦ(a− b). (5.33)

It is easy to see that Φ is positive semidefinite because aTΦa ≥ 0 for all a ∈ Rr. Therefore there
exists a symmetric matrix Φ1/2 such that Φ = Φ1/2Φ1/2. Then

‖(a− b)TΦ1/2‖2 = (a− b)TΦ(a− b), (5.34)

where ‖·‖ denotes the euclidean metric on Rr. Let fi(x) = ∑r
j=1 a

(i)
j ϕj(x). Because of the

definition of G

‖Φ1/2a(i)‖ = ‖fi‖n ≤ R. (5.35)

In addition for all i 6= j:

‖Φ1/2a(i) − Φ1/2a(j)‖ = ‖fi − fj‖n ≥ ε, (5.36)

i.e. the euclidean balls B(Φ1/2a(i), ε/4) for i ∈ [N ] in Rr are disjoint. Furthermore, all of them
are inside B(0, R+ε/4). Therefore the euclidean volume of the sum of the small balls is smaller
than the volume of the large ball centered in the origin, i.e.

Ncd

(
ε

4

)r
≤ cd

(
R + ε

4

)r
(5.37)
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holds, where cd is the volume of the r dimensional unit ball. It suffices for the proof.

The following theorem summarizes the most important properties of Algorithm I.

Theorem 5.3.3. Assume that A0, A1, A3 and A4 hold, then

P
(
θ∗ ∈ Θ(1)

%,n

)
= q

m
, (5.38)

for all sample size n. Furthermore, if q < m Algorithm I is strongly uniformly consistent.

Proof. It is easy to show that the defined ranking function has properties P1 and P2, hence
the coverage probability is exact because of Theorem 5.2.1.

The proof of strong uniform consistency will be presented in several steps. Let f (0)
∗,n denote

f
(0)
θ,n which is independent of θ, since this estimate is computed from the original sample. First
notice that for all fθ ∈ F \B(f∗, ε) and for all i ∈ [m− 1]

Z(0)
n (θ)− Z(i)

n (θ) = 1
n

n∑
j=1

(fθ(Xj)− f (0)
θ,n(Xj))2 − 1

n

n∑
j=1

(fθ(Xj)− f (i)
θ,n(Xj))2 ≥

≥ 1
n

n∑
j=1

(fθ(Xj)− f∗(Xj))2 + 1
n

n∑
j=1

(f∗(Xj)− f (0)
∗,n(Xj))2+

+2 1
n

n∑
j=1

(fθ(Xj)− f∗(Xj))(f∗(Xj)− f (0)
∗,n(Xj))−

1
n

n∑
j=1

(fθ(Xj)− f (i)
θ,n(Xj))2 ≥

≥ E
[
(fθ(X)− f∗(X))2

]
− E

[
(fθ(X)− f∗(X))2

]
+ 1
n

n∑
j=1

(fθ(Xj)− f∗(Xj))2

+E
[
(f∗(X)− f (0)

∗,n(X))2
]
− E

[
(f∗(X)− f (0)

∗,n(X))2
]

+ 1
n

n∑
j=1

(f∗(Xj)− f (0)
∗,n(Xj))2

−E
[
(fθ(X)− f (i)

θ,n(X))2
]

+ E
[
(fθ(X)− f (i)

θ,n(X))2
]
− 1
n

n∑
j=1

(fθ(Xj)− f (i)
θ,n(Xj))2

− 4
n

n∑
j=1

∣∣∣ f∗(Xj)− f (0)
∗,n(Xj)

∣∣∣.

(5.39)

Since fθ /∈ B(f∗, ε) the following holds

inf
f /∈B(f∗,ε)

E
[
(fθ(X)− f∗(X))2

]
≥ ε2 > 0. (5.40)

Furthermore, bounding each term with a proper supremum yields

E
[
(fθ(X)− f∗(X))2

]
− 1
n

n∑
j=1

(fθ(Xj)− f∗(Xj))2

+E
[
(f∗(X)− f (0)

∗,n(X))2
]
− 1
n

n∑
j=1

(f∗(Xj)− f (0)
∗,n(Xj))2

−E
[
(fθ(X)− f (i)

θ,n(X))2
]

+ 1
n

n∑
j=1

(fθ(Xj)− f (i)
θ,n(Xj))2
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≤ 3 sup
f∈F ,g∈G

∣∣∣∣ 1
n

n∑
j=1

(f(Xj)− g(Xj))2 − E
[
(f(X)− g(X))2

]∣∣∣∣, (5.41)

where G .= T1F̃ = {g | ∃ f ∈ F̃ : g = T1f}. In addition, by Theorem 5.3.1 we know that

E
[
(fθ(X)− f (i)

θ,n(X))2
]
≤ c ·max(σ2, L2)(log(n) + 1)r

n
≤ c · r · (log(n) + 1)

n
= an, (5.42)

because σ2 = supx∈Rd D2(Y |X = x) ≤ 1 and L ≤ 1 for all θ ∈ Θ. Applying the Cauchy–Schwarz
inequality for the last term and subtracting its expected value yields that

4
n

n∑
i=1

∣∣∣ f∗(Xi)− f (0)
∗,n(Xi)

∣∣∣ ≤ 4
√√√√ 1
n2

n∑
i=1

(f∗(Xi)− f (0)
∗,n(Xi))2

n∑
i=1

1

≤ 4
√√√√ 1
n

n∑
i=1

(f∗(Xi)− f (0)
∗,n(Xi))2 − E

[
(f∗(X)− f (0)

∗,n(X))2
]

+ E
[
(f∗(X)− f (0)

∗,n(X))2
]

≤ 4
√√√√sup

f,g

∣∣∣∣ 1
n

n∑
i=1

(f(Xi)− g(Xi))2 − E
[
(f(X)− g(X))2

] ∣∣∣∣+ an.

(5.43)

We obtain the following by combining these equations

inf
fθ /∈B(f∗,ε),i∈[m−1]

(Z(0)
n (θ)− Z(i)

n (θ)) > ε2 − an

−3 sup
f∈F , g∈G

∣∣∣∣ 1
n

n∑
i=1

(f(Xi)− g(Xi))2 − E
[
(f(X)− g(X))2

] ∣∣∣∣
−4
√√√√sup

f,g

∣∣∣∣ 1
n

n∑
i=1

(f(Xi)− g(Xi))2 − E
[
(f(X)− g(X))2

] ∣∣∣∣+ an,

(5.44)

where an is a sequence with zero limit. Let H .= {(f − g)2 | f ∈ F , g ∈ T1F̃}. We are going to
prove that the following holds

sup
h∈H

∣∣∣∣ 1
n

n∑
i=1

h(Xi)− Eh(X)
∣∣∣∣ a.s.−→ 0. (5.45)

The VC theory provides us applicable conditions for this ULLN. We are going to prove that
there exists a universal C such that for all n ∈ N and sample {X1, . . . , Xn}

EN1(ε,H, {X1, . . . , Xn}) ≤ C. (5.46)

Then, Theorem 2.10.1 implies (5.45).
The proof of (5.46) will be in several steps. Fix a realization of X1, . . . , Xn. Let these be

x = {x1, . . . , xn}. First we prove that

N1(ε,H,x) ≤ N2(ε/8,F ,x) · N1(ε/8,G,x). (5.47)

Let ν(A) = 1
n

∑n
i=1 I(xi ∈ A) be the empirical measure based on x. Let f1, . . . , fN be an ε/8-
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cover of F w.r.t. the L2(ν) norm and g1, . . . , gM an ε/8-cover of G w.r.t. the L1(ν) norm. It can
be assumed w.l.o.g. that fi and gj are bounded in [−1, 1] (otherwise we can truncate them) for
all i ∈ [N ] and j ∈ [M ]. We are going to prove that the set {(fi − gj)2 | i ∈ [N ], j ∈ [M ]} is an
ε-cover of H w.r.t. the L1(ν) norm. Let h ∈ H arbitrary fixed. Then there exists f ∈ F and
g ∈ G such that h = (f − g)2. For this f and g there are fi and gj such that

‖f − fj‖L2(ν) ≤ ε/8 and

‖g − gj‖L1(ν) ≤ ε/8.
(5.48)

Applying (5.48), the Cauchy-Schwarz inequality and that f, g, fi, gj ∈ [−1, 1] yields that∫
|h− (fi − gj)2 | dν ≤

∫
| (f − g)2 − (fi − gj)2 | dν

≤
∫
| ((f − g) + (fi − gj)) · ((f − g)− (fi − gj)) | dν

≤ 4
∫ (
| f − fi | + | g − gj |

)
dν ≤ 4

√∫
(f − fi)2 dν + 4

∫
|g − gj| dν ≤ ε

(5.49)

In the second step we bound N2(ε/8,F ,x). Notice that for all f ∈ F we know that
1
n

∑n
j=1 f

2(xj) ≤ 1. We apply Theorem 5.3.2 to obtain that

N2(ε/8,F ,x) ≤
(4 + ε/8

ε/8

)r
= C1, (5.50)

where C1 is independent of the data points.
In the third step we bound N1(ε/8,G,x). First we prove that VG+ ≤ VF̃+ , where recall that

VG+ denotes the VC dimension of the subgraphs of functions in G. Notice that if G+ shatters
C = {(x1, t1), . . . , (xl, tl)} ⊆ Rd × R, then ti ∈ [−1, 1] for all i = 1, . . . , l because if t1 < −1
then ti ≤ g(xi) for all g ∈ G which contradicts the fact that G+ shatters C. The reasoning is
similar for ti > 1. When G+ shatters C and ti ∈ [−1, 1] then F̂+ also shatters C, because for
all f ∈ F̂ and T1f ∈ G we have

f+ ∩ C = T1f
+ ∩ C. (5.51)

Therefore VG+ ≤ VF̃+ holds. Furthermore, notice that

F̃+ = {{(x, t) ∈ Rd × R |t ≤ f(x)} | f ∈ F̂}
⊆ F++ .= {{(x, t) ∈ Rd × R |αt+ f(x) ≥ 0} : α ∈ R, f ∈ F̂}.

(5.52)

If F̃ is a vector space with dimension r, then

{αt+ f(x) |α ∈ R, f ∈ F̃} =
{
αt+

r∑
i=1

βiϕi(x) |α ∈ R, β ∈ Rr
}

(5.53)

is a vector space of Rd × R → R type functions with dimension r + 1. For all (t, x) ∈ R × Rd
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consider the point (t, ϕ1(x), . . . , ϕr(x)) in Rr+1, then

sign
(
αt+

r∑
i=1

βiϕ(x)
)

= 1⇔ αt+
r∑
i=1

βiϕ(x) ≥ 0 (5.54)

therefore VF++ is at most the VC dimension of the linear homogenous hyperplanes in Rr+1

which equals to r + 1 by the proof of Claim 4.2.1. In conclusion

VG+ ≤ VF̃+ ≤ VF++ ≤ r + 1. (5.55)

To ensure the conditions of Lemma 2.9.3, we translate the functions in G by 1 then divide the
functions by 2, i.e. let G̃ .= {1/2(g + 1) | g ∈ G}. Clearly the VC dimensions are not influenced
by this adjustment, that is VG+ = VG̃+ , and for the covering numbers the following holds:
N1(ε,G, ‖·‖L1(ν)) = N1(ε/2, G̃, ‖·‖Lp(ν)). Then applying Lemma 2.9.3, Theorem 2.9.4 and (5.58)
yields that for all ε > 0 we have

N1(ε/8,G,x) = N1(ε/16, G̃,x) ≤M(ε/16, G̃, ‖·‖L1(PX))

≤ e
(
VG̃+ + 1

)(32e
ε

)V
G̃+

≤ e(r + 2)
(

32e
ε

)r+1

= C2,
(5.56)

where C2 is independent of x. Combining it together with (5.50) yields that for all X1, . . . , Xn

EN1(ε,H, {X1, . . . , Xn}) ≤ C1 · C2, (5.57)

thus (5.46) holds.
By (5.46) and by an → 0 it follows that

lim inf
n→∞

inf
fθ /∈B(f∗,ε),i∈[m−1]

(
Z(0)
n (θ)− Z(i)

n (θ)
)
≥ ε2 > 0 (5.58)

with probability 1.
Let Ω1 be the 1 probablity event where (5.58) holds. For all ω ∈ Ω1 and for ε2/2 there exists

n0(ω) such that for all n ≥ n0(ω), for all i = 1, . . . ,m− 1 and for all fθ /∈ B(f∗, ε) it holds that
Z(0)
n − Z(i)

n (θ) > ε2 − ε2/2, that is Rn(θ) = m for all fθ /∈ B(f∗, ε). Hence B(f∗, ε) ⊇ F (1)
%,n(ω)

for all n > n0(ω) implying that ω ∈ ⋃∞k=1
⋂∞
n=k

{
F (1)
%,n ⊆ B(f∗, ε)

}
, therefore

P
( ∞⋃
k=1

∞⋂
n=k

{
F (1)
%,n ⊆ B(f∗, ε)

} )
= 1. (5.59)

The theorem is proved.

5.4 Numerical Experiments I
We carried out numerical experiments on synthetic datasets to illustrate this algorithm. The

linear model class was spanned by ϕ1(x) = exp(−(x + 1)2/2) and ϕ2(x) = exp(−(x − 1)2/2),
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(a) Algorithm I (n=100) (b) Algorithm I (n=100)
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(c) Algorithm I (n=500) (d) Algorithm I (n=500)

Figure 5.1: The ranks of the reference variables are indicated with the color for the parameters in figures (a) and (c), and for the
models in figures (b) and (d), thus darker points and models indicate reference variables with lower ranks. The true parameter was
θ∗ = (α∗, β∗), where α∗ = 1 (x-axis) and β∗ = −1 (y-axis).

i.e. the model class was part of the linear space

F̄ = {f(x) = αϕ1(x) + βϕ2(x) |α, β ∈ R}. (5.60)

The true regression function was f∗(x) = exp(−(x+ 1)2/2)− exp(−(x− 1)2/2), so we wanted
to estimate the true parameters α∗ = 1 and β∗ = −1. In this simple example the marginal
distribution was uniform on [−2, 2]. The results of these tests can be seen in figure 5.1. The
ranks of the reference variables are indicated with the color. The confidence regions are evaluated
in the parameter space, see (a) and (c), and in the corresponding model space, see (b) and (d).
The sample size was n = 100 for figures (a) and (b) and n = 500 for figures (c) and (d).
We can see that the regions shrink around the true model as the sample size increases. We
used m = 40 samples including both the original and the alternative ones. In conclusion when
the parameterization is linear the constructed confidence regions provide us non-asymptotic
guarantees for finding the true regression function, that can be used in practice.
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5.5 Algorithm II (Local Averaging Based)
The second algorithm is based on local averaging kernel estimates. We want to generalize

Algorithm I for more complex model classes, because the linear form is often too restrictive for
a regression function. Notice that when F is not parameterized linearly then application of the
ERM principle can become computationally demanding, therefore instead of the least squares
solution we are going to use a local averaging estimate. For this section we assume that

(B1) X ⊆ Rd, X is compact,

(B2) the support of PX is the whole X space, i.e. suppPX = X,

(B3) PX is absolutely continuous for the Lebesgue measure,

(B4) K : X→ R is a regular kernel.

The kernel estimates for all i = 0, . . . ,m− 1 are defined as in (3.8) with bandwidth hn

f
(i)
θ,n(x) =

∑n
j=1 Yi,jK

(
x−Xj
hn

)
∑n
j=1K

(
x−Xj
hn

) I
( n∑

j=1
K
(
x−Xj

hn

)
6= 0

)
. (5.61)

The reference variables are defined as the L2 errors of these estimates, that is for all
i = 0, . . . ,m− 1

Z(i)
n (θ) .= ‖fθ − f (i)

θ,n‖2. (5.62)

These are well-defined, because fθ and f
(i)
θ,n are both measurable and bounded. The ranking

function and the confidence region are defined similarly as in Algorithm I, see (5.25) and
(5.24), that is

Θ(2)
%,n

.=
{
θ ∈ Θ : Rn(θ) ≤ q

}
. (5.63)

Theorem 5.5.1. Assume that A0, A1, A2, B1, B2, B3 and B4 hold. Then

P
(
θ∗ ∈ Θ(2)

%,n

)
= q

m
, (5.64)

for all sample size n. In addition, if hn → 0 and nhdn → ∞ as n → ∞, and q < m, then
Algorithm II is strongly consistent (5.13).

Proof. From Theorem 5.2.1 the exact coverage probability follows.
For strong consistency we use that kernel estimates are strongly consistent under the con-

ditions of Theorem 5.5.1, see Theorem 3.5.2.
Fix θ 6= θ∗. Because of the injectivity of the parameterization there exists a measurable set

C ⊆ Rd with nonzero measure, such that fθ(x) 6= f∗(x) for all x ∈ C, hence κ .= ‖f∗−fθ‖2 > 0.
Since kernel estimates are strongly consistent

‖f (0)
θ,n − f∗‖P

a.s.−−→ 0 as n→∞, (5.65)

‖f (i)
θ,n − fθ‖P

a.s.−−→ 0 as n→∞ (5.66)
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for all i = 0, . . . ,m−1. Conditions B2 and B3 imply that almost sure convergence occurs when
we use the ‖ · ‖2 instead of the ‖ · ‖P norm. Then

Z(i)
n (θ) a.s.−−→ 0 as n→∞ (5.67)

for all i = 1, . . . ,m− 1. Furthermore, applying the triangle inequality and the reversed triangle
inequality yields

Z(0)
n (θ) = ‖fθ − f (0)

θ,n‖2 ≤ ‖fθ − f∗‖2 + ‖f∗ − f (0)
θ,n‖2

a.s.−−→ κ (5.68)

Z(0)
n (θ) = ‖fθ − f (0)

θ,n‖2 ≥
∣∣∣‖fθ − f∗‖2 − ‖f∗ − f (0)

θ,n‖2

∣∣∣ a.s.−−→ κ (5.69)

as n→∞, therefore Z(0)
n (θ) a.s.−−→ κ.

Let Ω1 be the 1 probablity event where the convergences of Z(i)
n (θ) for i = 0, . . . ,m − 1

occur. Let ε = κ/3. For all ω ∈ Ω1 there exists n0(ω) such that for all n ≥ n0(ω) for all
i = 1, . . . ,m − 1 : Z(i)

n (θ) < κ/3 and Z(0)
n (θ) > 2/3κ, thus θ /∈ Θ(2)

%,n(ω) for all n > n0 implying
that ω /∈ ∩∞k=1 ∪∞n=k {θ ∈ Θ(2)

%,n}, therefore

P
( ∞⋂
k=1

∞⋃
n=k

{
θ ∈ Θ(2)

%,n

} )
= 0. (5.70)

The theorem is proved.

It is clear that {f (i)
θ,n}m−1

i=0 can be computed from the sample and they are piece-wise constant.
The distance ‖f (i)

θ,n − f
(j)
θ,n‖2 can also be calculated from the available data. Nevertheless, one

may use the Monte Carlo approximation

‖f (i)
θ,n − f

(j)
θ,n‖2 ≈

√√√√ 1
`n

`n∑
k=1

(
f

(i)
θ,n(X̄k)− f (j)

θ,n(X̄k)
)2
, (5.71)

where `n is a constant and {X̄k} are i.i.d. random variables having uniform distribution on X.
Note that we know from the strong law of large numbers (SLLN) that the square root of the
sum in (5.71) almost surely converges to ‖f (i)

θ,n − f
(j)
θ,n‖2, as `n →∞. It is relatively easy to see

that using the approximation in (5.71), instead of (5.62), does not affect the exact coverage
probability of the algorithm. Moreover, if `n → ∞ as n → ∞, then one can also show the
strong consistency of the Monte Carlo approximated variant. Hence, the theoretical properties
of Theorem 5.3.3 remain valid even under (5.71), but the sizes of regions are of course affected
by the approximation.

The regular kernel for the local averaging estimator, which is in the core of Algorithm II can
be chosen arbitrarily. The Gaussian kernel is applied in the examples in the end of this chapter.
Notice that kNN estimators also can be used, that are in fact can be seen as kernel estimators
using a variable bandwidth rectangular window. Therefore a natural approach is to apply the
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kNN rule for local averaging, thus we can redefine functions {f (i)
θ,n} for i = 0, . . .m− 1 as

f
(i)
θ,n(x) .= 1

kn

n∑
j=1

Yi,j(θ) I
(
Xj ∈ N(x, nk)

)
, (5.72)

where N(x, nk) denotes the kn closest neighbors of x from {Xj}nj=1 in a given metric, and
kn ≤ n is a constant (window size), which can depend on n. This approach also leads
to alternative confidence region constructions and typically also builds confidence regions
with exact coverage probabilities. Moreover, as kNN estimates are strongly consistent when
kn → ∞ and kn/n → 0 as n → ∞, see Theorem 3.6.1, the modified Algorithm II inherits
these properties, the resulting confidence sets are also strongly consistent. The corresponding
coverage and consistency theorems could be proved analogously to Theorem 5.5.1.

In general arbitrary estimation technique can be applied in (5.61). These local averaging
estimates are usually computationally light and in several cases have universal guarantees for
consistency, therefore when our model class is too complex to find an ERM estimate or we
do not have prior knowlegde about the structure of the regression function the use of these
nonparametric estimates is preferable. On the other hand when the structure of F is known
parametric techniques such as least squares estimates can perform better.

5.6 Algorithm III (Embedding Based)
The core idea of Algorithm III is to embed the distribution of the original sample and that

of the alternative ones in a RKHS using a characteristic kernel. If the underlying distributions
are different, then the original dataset results in a different element than the one the alternative
datasets are being mapped to, which can be detected statistically.

Let S .= X× {+1,−1} be the sample space. Assume that

(C1) H is a separable RKHS containing S→ R type functions,

(C2) the reproducing kernel function, k(·, ·), corresponding to H is characteristic and bounded.

If X = Rd, then S = Rd×{+1,−1}, and we can use, for example, the Gaussian or the Laplacian
kernel, both which are characteristic [17].

Let us introduce the following kernel mean embeddings

h∗(·) .= E
[
k(·, S∗)

]
, (5.73)

hθ(·) .= E
[
k(·, Sθ)

]
, (5.74)

where S∗ and Sθ are random elements from S. Variable S∗ has the “true” distribution of the
observations, while Sθ has a distribution where the output, Y , is generated according to the
conditional probability (5.4), parameterized by θ, while the marginal distribution of the input,
PX, remains the same.
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Since the kernel is bounded, E
[√

k(Sθ, Sθ)
]
<∞ for all θ, which ensures that hθ exists and

belongs to H for all θ ∈ Θ.
We know that hθ = h∗ if and only if θ = θ∗ because the kernel is characteristic. Now, let us

introduce the following empirical versions of the embedded distributions,

h
(i)
θ,n(·) .= 1

n

n∑
j=1

k(·, si,j(θ)), (5.75)

for i = 0, . . . ,m−1, where si,j(θ) .= (Xj, Yi,j(θ)); and recall that for i = 0, we have Yi,j(θ) = Yj.
In other words, si,j(θ) has the same distribution as Sθ for i 6= 0 and its distribution is the same
as that of S∗ for i = 0.

Let Bk be a constant that satisfies | k(s1, s2) | ≤ Bk for all s1, s2 ∈ S. Then, obviously
|hθ(s) | ≤ Bk for all s ∈ S as well. Applying the reproducing property yields the bound

D2( k(·, S) ) = E
[
‖ k(·, S)− h(·) ‖2

H

]
≤ E

[
‖ k(·, S) ‖2

H

]
+ E

[
‖h(·) ‖2

H

]
+ 2E

[
| 〈 k(·, S), h(·) 〉H |

]
≤ E

[
‖ k(·, S) ‖2

H

]
+ ‖h(·)‖2

H + 2E
[
|h(S) |

]
≤ E

[
〈 k(·, S), k(·, S) 〉H

]
+ ‖h(·) ‖2

H + 2Bk

= E
[
k(S, S)

]
+ ‖h(·) ‖2

H + 2Bk ≤ 3Bk + ‖h(·) ‖2
H < ∞, (5.76)

where S is either S∗ or Sθ, and h .= E
[
k(·, S)

]
.

Then, we know from the SLLN for Hilbert space valued elements (Theorem 4.5.1) that
‖h(i)

θ,n−hθ ‖H → 0 (a.s.), as n→∞, for i 6= 0, additionally, ‖h(0)
θ,n−h∗ ‖H → 0 (a.s.), as n→∞.

Now, we can define the reference variables {Z(i)
n (θ)}m−1

i=0 similarly to (5.62) as

Z(i)
n (θ) .=

m−1∑
j=0
‖h(i)

θ,n − h
(j)
θ,n‖2

H, (5.77)

which is the total cumulative squared distance of h(i)
θ,n from all other embedded estimates, and

construct the confidence set as in (5.25).

Theorem 5.6.1. Assume that A0, A1, A2, C1 and C2 hold, then the following is true for the
confidence regions constructed by Algorithm III:

P
(
θ∗ ∈ Θ(3)

%,n

)
= q

m
(5.78)

for all sample size n and hyperparameter % = (q,m). Moreover when q < m and 3 ≤ m hold,
Algorithm III is universally strongly consistent.

Proof. The exact confidence level again follows from Theorem 5.2.1 by noting that the ranking
function satisfies P1 and P2.

The proof of consistency follows the ideas of the proof of Theorem 5.5.1. Namely, let us fix
a false parameter θ ∈ Θ with θ 6= θ∗. Since the parameterization is injective, we know that
D0 and {Di(θ)}i 6=0 have different distributions. As the kernel is characteristic, we know that
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the RKHS embedded distributions h∗(·) and hθ(·) are different. We then apply the SLLN for
Hilbert space valued elements, Theorem 4.5.1, and use the construction of the {Z(i)

n } variables
to get the limits

Z(i)
n (θ)→ κ as n→∞, (5.79)

Z(0)
n (θ)→ (m− 1)κ as n→∞, (5.80)

for i 6= 0, almost surely, where κ .= ‖h∗ − hθ‖H > 0. Thus, Z(0)
n (θ) again tends to take rank m

(a.s.), as n → ∞, which leads to the (a.s.) asymptotic exclusion of the false parameter θ 6= θ∗

(for more details, see the proof of Theorem 5.5.1).

The squared distance of the empirical versions of the embeddings ‖h(i)
θ,n−, h

(j)
θ,n ‖2

H can be
computed by applying the reproducing property of the kernel and the Gram matrix of sample
si,1(θ), . . . , si,n(θ), sj,1(θ), . . . , sj,n(θ).

Algorithm III has a nice theoretical interpretation as comparing embedded distributions in
a RKHS. However, as the Gram matrices, which are required to compute variables {Z(i)

n (θ)},
depend on θ, this method has a large computational burden, hence the importance of Algorithm
III is mainly theoretical. Nevertheless, motivated by its ideas, in the next section we suggest a
computationally much lighter algorithm.

5.7 Algorithm IV (Discrepancy Based)
Algorithm IV follows the intuitions behind Algorithm III, but ensures that we can work

with the same Gram matrix for all θ. Moreover, it has a simpler construction for {Z(i)
n (θ)},

which also makes it computationally more appealing.
For Algorithm IV we assume that

(D1) (X, d) is a compact, polish metric space, i.e. complete and separable,

(D2) all f ∈ F are continuous,

(D3) H is a separable RKHS containing X→ R type functions,

(D4) H is endowed with a measurable, bounded and universal kernel.

Let us introduce the notation εi,j(θ) .= Yi,j(θ)−fθ(Xj), for i = 0, . . . ,m−1 and j = 1, . . . , n.
Note that if i 6= 0, εi,j(θ) has zero mean for all j ∈ [n], as fθ(Xj) = Eθ

[
Yi,j(θ) |Xj

]
.

The fundamental objects of Algorithm IV are the following variables

Z(i)
n (θ) .=

∥∥∥∥ 1
n

n∑
j=1

εi,j(θ)k(·, Xj)
∥∥∥∥2

H
(5.81)

for i = 0, . . . ,m − 1. Observe that Z(i)
n (θ) can be easily computed using the Gram matrix

Ki,j
.= k(Xi, Xj), as

Z(i)
n (θ) = 1

n2 ε
T
i (θ)K εi(θ), (5.82)
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applying the vector notation εi(θ) .= (εi,1(θ), . . . , εi,n(θ))T.
From this point, we follow the construction of Algorithms I, II and III. Namely, we define

the ranking function as in (5.24), and the confidence region as in (5.63), but we apply our new
reference variables, (5.81), for the definition of the ranking function.

Theorem 5.7.1. Assume that A0, A1, A2, D1, D2 and D3 hold. The confidence regions of
Algorithm III have

P
(
θ∗ ∈ Θ(4)

%,n

)
= q /m (5.83)

for any sample size n; and for q < m they are strongly consistent.

Proof. The exact confidence follows from Theorem 5.2.1.
For the proof of strong consistency, let us fix θ 6= θ∗ and an i 6= 0. To simplify the notations,

introduce ej .= εi,j(θ) and Ȳj .= Yi,j(θ). We first show that ejk(·, Xj) has zero mean

E
[
ejk(x,Xj)

]
= E

[
E[ ejk(x,Xj) | Xj ]

]
= E

[
E[ (Ȳj − fθ(Xj))k(x,Xj) | Xj ]

]
= E

[
E[ Ȳj | Xj ]k(x,Xj)− fθ(Xj)k(x,Xj)

]
= E

[
(fθ(Xj)− fθ(Xj))k(x,Xj)

]
= 0.

(5.84)

About the variance of ejk(·, Xj), observe that

D2
(
ejk(·, Xj)

)
= E

[
‖ ejk(·, Xj) ‖2

H

]
≤ 4Bk, (5.85)

where |k(x1, x2)| ≤ Bk, for any x1 and x2 ∈ X since the kernel is bounded; also note that
‖k(·, x)‖2

H = k(x, x), for any x ∈ X, because of the reproducing property of the kernel.
Therefore, we can apply the Hilbert space valued SLLN to conclude that Z(i)

n (θ)→ 0 (a.s.),
as n→∞, for all i 6= 0.

Now, let e∗j
.= ε0,j(θ) = Yj − fθ(Xj). We will prove that the mean of e∗jk(·, Xj) is not the

zero function. We can again show that

E
[
ejk(·, Xj)

]
= E

[
(f∗(Xj)− fθ(Xj))k(·, Xj)

]
, (5.86)

using similar steps as in (5.84), except in the last one, where in our case we have E[ Yj |Xj ] =
f∗(Xj). We will argue that the term E

[
(f∗(Xj)− fθ(Xj))k(·, Xj)

]
cannot be zero.

Let us introduce f0
.= f∗ − fθ, and assume by contradiction that E

[
f0(Xj) k(·, Xj)

]
is the

zero function. Then, for all x ∈ X, 〈f0, k(x, ·)〉
P

.= E
[
f0(Xj)k(x,Xj)

]
= 0 (note that a RKHS

is a space of functions and not that of equivalence classes of functions). Since the kernel is
universal, X is compact, and f0 is continuous, we know that for all ε > 0, there exists an

f̂(·) =
N∑
k=1

αkk(·, x̄k), (5.87)

with some points {x̄k}Nk=1 and coefficients {αk}Nk=1, such that ‖ f̂ − f0 ‖∞ < ε. Then, clearly∫
X
(f̂ − f0)2 dPX(x) ≤

∫
X
‖ f̂ − f0 ‖2

∞ dPX(x) <
∫
X
ε2 dPX(x) = ε2, (5.88)
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since PX is a probability measure on X. Hence, for all ε > 0,

‖ f̂ − f0 ‖2
P = ‖ f̂ ‖2

P + ‖f0 ‖2
P − 2

〈
f0, f̂

〉
P
< ε2. (5.89)

For all x ∈ X, we know that 〈f0, k(x, ·)〉
P

= 0, thus
〈
f0, f̂

〉
P

=
∫
X

N∑
k=1

αkk(x, x̄k)f0(x) dPX(x)

=
N∑
k=1

αk

∫
X
k(x, x̄k)f0(x) dPX(x) =

N∑
k=1

αk 〈f0, k(x̄k, ·)〉P = 0.
(5.90)

Then, combining (5.89) and (5.90) yields that for all ε > 0 the following holds

‖f0 ‖2
P ≤ ‖ f̂ ‖2

P + ‖f0 ‖2
P < ε2, (5.91)

which implies that ‖f0 ‖2
P = 0. On the other hand, we know from (5.2) that this norm cannot be

zero if θ 6= θ∗. Therefore, we have reached a contradiction, hence E
[

(f∗(Xj)− fθ(Xj))k(·, Xj)
]

cannot be the zero element of the RKHS.
We can use a similar argument to (5.76) to show that D2(e∗jk(·, Xj)) is bounded, also using

that {e∗j} are bounded. Then, applying the Hilbert space variant of SLLN, Theorem 4.5.1,

1
n

n∑
j=1

e∗jk(·, Xj) a.s.−−→ h0 6= 0, as n → ∞. (5.92)

Therefore, summarizing our results, we have

Z(0)
n (θ)→ ‖h0‖2

H as n→∞, (5.93)

Z(i)
n (θ)→ 0 as n→∞, (5.94)

for i 6= 0, almost surely, where ‖h0‖2
H > 0. Thus, Z(0)

n (θ) again tends to take rank m (a.s.), as
n→∞, which leads to the (a.s.) asymptotic exclusion of the parameter θ 6= θ∗.

5.8 Numerical Experiments II
To illustrate Algorithm II-IV we carried out similar numerical experiments as for Algorithm

I. Since the regression functions are not required to be linearly parameterized in these cases we
considered a more general setup. In these presented tests the joint probability distribution of
the data was assumed to be the mixture of two Laplace distributions with different location
parameters, µ1, µ2, but with the same scale parameter λ. It was assumed that with probability
p we observe the “+1” class, and with probability 1 − p we see an element of the “−1” class.
Thus selecting p, µ1, µ2 and λ induces a regression function, see (5.3).

During the experiments the confidence regions were built for parameters p and λ, while the
location parameters were fixed, µ1 = 1 and µ2 = −1, to allow two dimensional figures. Figure
5.2 demonstrates the obtained ranks {Rn(θ)} for various θ = (p, λ) using Algorithm II with
a Gaussian kernel (a), Algorithm II with a kNN approach (b), Algorithm III with a Gaussian
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kernel (c) and Algorithm IV with a Gaussian kernel. The corresponding confidence regions in
the model spaces can be seen on figures (e), (f), (g) and (h). Darker colors indicate smaller
ranks, that is, the darker the color is, the more likely the parameter and the corresponding
model are included in a confidence region. The true parameters were p = 1/2 (x-axis) and λ = 1
(y-axis). The sample size was n = 500 and m = 40 (original and alternative) samples were
generated. For the Gaussian kernel we chose parameter σ = 1/2. The regions were evaluated on
a fine grid in the parameter space and the corresponding models were indicated in the model
space. It can be seen that the constructed confidence regions are comparable in size and shape.
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(a) Algorithm II (Gauss)
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(b) Algorithm II (kNN)
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(c) Algorithm III (Gauss)
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(d) Algorithm IV (Gauss)

(e) Algorithm II (Gauss) (f) Algorithm II (kNN) (g) Algorithm III (Gauss) (h) Algorithm IV (Gauss)

Figure 5.2: The ranks of the reference variables are indicated with the color for the parameters in figures (a), (b), (c) and (d)
and for the corresponding models in figures (e), (f), (g) and (h), that is darker points and models indicate reference variables with
lower ranks. The true parameter was θ∗ = (p∗, λ∗), where p∗ = 1

2 (x-axis) and λ∗ = 1 (y-axis).

Note that in this special example it is possible to construct individual confidence regions for
parameters p and λ based on standard results. One can use, for example, Hoeffding’s inequality,
see Theorem A.3.1, to derive confidence bounds for probability p, and λ can be estimated based
on the remark that the variance of the inputs of the observations, for both classes, is 2λ2.
Nevertheless, such approaches require the specific interpretations of the parameters, on how
they influence the observations. Furthermore, even in this very special case it is not obvious
how to construct a joint confidence region for the pair (p, λ). Simply intersecting the two
confidence tubes (i.e., if we extend the confidence intervals for p and λ to R2, then they define
two infinite “stripes”, a vertical and a horizontal one) produces a rectangle set with a lower
confidence than those of the original sets, and leads to conservative confidence regions.

On the other hand, the Algorithm II-IV do not presuppose any interpretation of the tested
parameters, apart from the fact that they determine a regression function. They do not need
a fully parameterized joint distribution, indeed, the regression function is compatible with
infinitely many joint distributions having widely different (marginal) input distributions. In
addition, if θ ∈ Rd, then the algorithms automatically construct joint and non-conservative,
exact confidence sets. Hence, another advantage of the presented framework, apart from its
strong theoretical guarantees, is its flexibility.
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Conclusion

In this thesis a general resampling technique was introduced for uncertainty quantification
for the problem of classification and the theoretical background of the applied tools was pre-
sented. The new results provide us strong, non-conservative stochastic guarantees for finding
the estimated model, which are very important in several scientific and industrial applications.

The first part of the thesis contains a general introduction to statistical learning theory,
where a wide range of the most important concepts and algorithms are presented focusing
especially on those materials that are applied in our new results.

The main findings of this thesis are in Chapter 5, where a general framework is intro-
duced for infering non-asymptotic stochastic guarantees in the form of confidence regions
for the problem of classification. The main idea was to test candidate regression function
models by generating alternative samples based on them, and then computing the perfor-
mance of an estimator on all samples. One of our main observations was that if the candi-
date model is wrong, then our algorithms behave differently on the alternatively generated
samples than on the original one, which can be detected statistically by ranking. Four al-
gorithms were introduced, all of which constructs exact confidence region for the regression
function under mild statistical assumptions for any user-chosen rational probability level. The
first method uses empirical risk minimizer estimates, as it compares least squares solutions
to the examined parameters. The second algorithm is based on nonparametric local averag-
ing kernel estimates. The third and fourth constructions are built on the theory of repro-
ducing kernel Hilbert spaces and kernel mean embeddings. It is proved that the presented
algorithms have good asymptotic behaviors, as Algorithm I is strongly uniformly consistent
and Algorithm II-IV are all universally strongly consistent under general conditions. Further-
more, the proposed framework is semi-parametric, because the regression function does not
determine the joint probability distribution of the data, as it does not affect the distribution of
the inputs, and that is why only the labels are resampled. Note that the construction scheme
is not restricted to specific model classes of regression functions. Any such model can be tested
as long as it determines a proper conditional distribution with respect to the inputs.

In conclusion, the presented non-asymptotic, distribution-free methods can provide
auspicious alternatives to those uncertainty evaluating procedures that are based on strong
distributional assumptions or on asymptotic results.

72



Appendix A

Tail and Concentration Inequalities

In learning theory non-asymptotic guarantees are always preferable to asymptotic results,
because in real-world problems datasets always have a finite size. For this reason it is our
interest to obtain high probability statements for fixed sample size n and dimension d. We
used such bounds in the thesis, nevertheless they are also important on their own. In several
cases, we are interested in finding tail bounds for a random variable or to quantify how close a
random variable is to its mean in absolute value. In Appendix A we present the most important
elementary techniques for deriving high probability bounds for both concentration and tail
deviation based on the book of Wainwright [25] and the book of Györfi et al. [11].

We are on a probability space (Ω,A,P), where Ω is the set of all possible outcomes, A is
the σ-algebra of the events and P is a probability measure.

A.1 Deriving the Chernoff Bound
Our starting point is Markov’s inequality.

Claim A.1.1. (Markov’s inequality) Let X be a nonnegative variable. If EX <∞ then for all
t > 0 we have

P(X ≥ t) ≤ EX
t
. (A.1)

When X has a finite second moment, then applying Markov’s inequality to variable
|X − EX|2 yields Chebyshev’s inequality

P
(
|X − EX| > t

)
≤ D2(X)

t2
, (A.2)

where D2(X) is the variance of X. It can be showed that both Markov’s inequality and Cheby-
shev’s inequality are sharp. Generalizing this idea we can say that for a variable X with
EXk <∞ we have

P
(
|X − EX| > t

)
≤

E
(
|X − EX|k

)
tk

. (A.3)
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Similarly we can derive bounds for different functions than polynomials. Assume that X has a
generating function which is finite at least in some neighborhood of zero, i.e. there is a δ > 0
such that E [ eλ (X−EX) ] < ∞ for all λ ∈ [ 0, δ). Let µ = EX. Then for all λ ∈ [ 0, δ) we obtain
that

P (X − µ ≥ t ) = P ( eλ (X−µ) ≥ eλ t ) ≤ E [ eλ (X−EX) ]
eλt

. (A.4)

Hence, the tail bound depends on the growth of the moment generating function. We can
minimize the quantity in the right hand side to obtain the Chernoff bound as

P (X − µ ≥ t ) ≤ inf
λ∈[ 0,δ)

E [ eλ (X−EX) ]
eλt

. (A.5)

It can be showed that a proper choice of k for the previous method always gives at least as
good result as the Chernoff bound. Still Chernoff bound is most widely applied because of the
well-known techniques for manipulating moment generating functions.

A.2 Sub-Gaussian Variables
As an example we derive the Chernoff bound for X when it has a Gaussian distribution

with expected value µ and variance σ2. The moment generating function of a Gaussian variable
is well-known, that is for all λ

E [ eλ (X−µ) ] = eσ
2λ2/2. (A.6)

For the Chernoff bound we need to minimize the following quantity

E [ eλ (X−EX) ]
eλt

= eσ
2λ2/2

eλt
= eσ

2λ2/2−λt. (A.7)

Since the exponential function is strictly monotone increasing we need to minimize function
f(λ) = σ2λ2/2 − λt in variable λ. It is easy to see that a minimum is achieved when λ∗ = t

σ2

and f(λ∗) = − t2

2σ2 . Therefore, the Chernoff bound for a Gaussian X with expected value µ and
variance σ2 is

P (X − µ ≥ t ) ≤ exp
(
− t2

2σ2

)
. (A.8)

The two sided version can be proved easily using that this inequality holds for−X with expected
value −µ implying that the following holds for all t ≥ 0

P ( |X − µ | ≥ t ) ≤ 2 exp
(
− t2

2σ2

)
. (A.9)

Motivated by this example the notion of sub-Gaussianity can be introduced.

Definition A.2.1. (sub-Gaussian variable) Let X be a variable such that µ = EX. We say
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that it is sub-Gaussian with a positive parameter σ if the following holds

E [ eλ (X−µ) ] ≤ eσ
2λ2/2 ∀λ ∈ R. (A.10)

Notice that when X is a Gaussian variable with parameters (µ, σ2) then it is also sub-
Gaussian with parameter σ. Besides, there are a large number of sub-Gaussian variables.

Claim A.2.1. Let X be a bounded variable taking value in [a, b]. It is sub-Gaussian with
parameter σ = (b− a).

The presented proof is from [25].

Proof. Let X be a variable bounded between numbers a and b. Let X ′ be an identically dis-
tributed variable independent of X.

E [ eλ (X−EX) ] = E [ eλ (X−EX′ ) ] ≤ EX,X′ [ eλ (X−X′ ) ], (A.11)

because of Jensen’s inequality. We use a symmetrization principle. Let ξ be a random sign
(Rademacher variable) such that P(ξ = +1) = P(ξ = −1) = 1/2. Notice that ξ(X −X ′) has the
same distribution as X − X ′ , since X and X ′ are independent identically distributed (i.i.d.).
Therefore the following holds

EX,X′ [ eλ (X−X′ ) ] = EX,X′, ξ [ eλ ξ (X−X′ ) ] = E [E [ eλ ξ (X−X′ ) |X, X ′ ] ]. (A.12)

First we compute the conditional expected value

E [ eλ ξ (X−X′ ) |X, X ′ ] = E [ eλ ξ (x−x′ ) ]x=X,x′=X′ . (A.13)

For fixed γ = λ(x− x′) we find that

E [ eγξ ] = 1
2e
−γ + 1

2e
γ = 1

2

∞∑
k=0

(−γ)k
k! + 1

2

∞∑
k=0

γk

k! (A.14)

= 1 + 1
2

∞∑
k=1

(−γ)k + γk

k! = 1 + 1
2

∞∑
k=1

γ2k

(2k)! ≤
∞∑
k=0

(γ2)k

2kk! = e
γ2/2 (A.15)

Substituting it back to equation (A.13) yields

E [ eλ ξ (X−X′ ) |X, X ′ ] = exp
(
λ2(X−X′ )

2
/2
)
. (A.16)

We can finish the proof by applying that (X −X ′)2 ≤ (b− a)2, because both X and X ′ are in
[a, b] almost surely.

E [ eλ (X−EX) ] ≤ E
[

exp
(
λ2(X−X′ )

2
/2
) ]
≤ e

λ2(b−a)2/2 (A.17)

Hence, X is sub-Gaussian with parameter (b− a).

It can be showed with a more thourough reasoning that σ = (b−a)
2 is also a good sub-Gaussian

parameter for bounded variables, see Exercise 2.4 in [25].
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Furthermore, when X is sub-Gaussian then so is −X with the same parameter. Therefore
exactly as in the Gaussian case, one can show that for any sub-Gaussian variable X (A.8) and
(A.9) hold.

A.3 Hoeffding’s Inequality
Now we derive Hoeffding’s inequality which is our main tool to prove several results related

to PAC learnability, uniform convergence and consistency.

Theorem A.3.1. (Hoeffding’s inequality) Let X1, . . . , Xn be independent sub-Gaussian vari-
ables each with EXi = µi and parameter σi for all i = 1, . . . , n, then for all t ≥ 0

P
( n∑
i=1

(Xi − µi) > t
)
≤ exp

(
− t2

2∑n
i=1 σ

2
i

)
. (A.18)

Proof. First, we are going to prove that the sum of sub-Gaussian variables is sub-Gaussian.
Using the independence we can see that

E
[

exp
(
λ
( n∑
i=1

(Xi − µi)
) ) ]

=
n∏
i=1

E
(

exp(λ(Xi − µi ))
)

(A.19)

≤
n∏
i=1

exp
(
λ2σ2

i

2

)
≤ exp

(
λ2∑n

i=1 σ
2
i

2

)
, (A.20)

i.e. ∑n
i=1Xi is sub-Gaussian with parameter

√∑n
i=1 σ

2
i . We argued that for sub-Gaussian vari-

ables the Chernoff bound can be used, see (A.8), from which we obtain the theorem.

The two sided version of this theorem can be stated similarly to (A.9).
Since bounded variables are sub-Gaussian with parameter σ = (b−a)

2 , we can state the
theorem for them as a corollary. The literature often refers to this version as the Hoeffding
inequality.

Corollary A.3.1.1. (Hoeffding’s inequality for bouunded variables) Let X1, . . . , Xn be indepen-
dent variables taking values from [a, b], with expected values EXi = µi for i = 1, . . . , n. Then
for all t ≥ 0 we have

P
( n∑
i=1

(Xi − µi) > t
)
≤ exp

(
− 2t2
n(b− a)2

)
. (A.21)

Repeating the arguments for the negated variables, −X1, . . . ,−Xn, yields similar bounds
which can be used to formulate the theorem for the absolute deviation as

P
( ∣∣∣ n∑

i=1
(Xi − µi)

∣∣∣ > t
)
≤ 2 exp

(
− 2t2
n(b− a)2

)
. (A.22)

An important example is when X1, . . . , Xn are i.i.d. bounded variables and we are interested
in bounding the deviation of the empirical mean from the expectation. Then applying the
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theorem for variables 1
n
X1, . . . ,

1
n
Xn yields

P
( ∣∣∣ 1

n

n∑
i=1

Xi − EX1

∣∣∣ > t
)
≤ 2 exp

(
− 2nt2

(b− a)2

)
, (A.23)

because 1
n
Xi ∈ [a/n, b/n] almost surely when Xi ∈ [a, b] for i = 1, . . . , n.

A.4 Generalization to Martingale Differences
We can apply these tools on martingale differences. In Chapter 3 such results were used to

derive universal bounds for local averaging kernel estimates.

Definition A.4.1. (martingale) Let {Xk}∞k=0 be an adopted sequence of variables to the filtra-
tion {Fk}∞k=0. We call the {(Xk,Fk)}∞k=0 sequence a martingale if for all natural k ≥ 1 we have
E|Xk| <∞ and with probability 1

E (Xk+1 | Fk) = Xk. (A.24)

In addition, we call Dk
.= Xk − Xk−1 the kth martingale difference and the sequence

{(Dk,Fk)}∞k=1 martingale difference sequence. Notice that each Dk has zero mean.

Theorem A.4.1. (Azuma-Hoeffding’s inequality) Let {(Dk,Fk}∞k=1 be a martindale difference
sequence for which Dk ∈ [ak, bk] with probability 1 for all k ≥ 1. Then for all t ≥ 0

P
( ∣∣∣ n∑

i=1
Di

∣∣∣ ≥ t
)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
. (A.25)

Proof. We show that ∑n
i=1Di is sub-Gaussian with parameter

√∑n
i=1(bi−ai)2

4 .

E
(
eλ
∑n

i=1 Di
)

= E
(
eλ
∑n−1

i=1 DiE ( eλDn | F1, . . . ,Fn−1 )
)

≤ E
(
eλ
∑n−1

i=1 Di
)
eλ

2(bn−an)2/8 ≤ exp
(
λ2∑n

i=1(bi − ai)2

2 · 4

) (A.26)

In the first inequality we used that E ( eλDn | F1, . . . ,Fn−1 ) ≤ eλ
2(bn−an)2/8. It holds because

Dn|Fn−1 is in [an, bn] almost surely since Dn ∈ [an, bn] with probability 1, therefore the stronger
version of Claim A.2.1 can be applied. Then the two sided Hoeffding’s inequality yields the
theorem.

A neat application of this theorem results McDiarmid’s inequality.

Theorem A.4.2. (McDiarmid’s inequality) Let X1, . . . , Xn be independent variables from a set
A and f : An → R be a function with the following property

sup
x1,...,xn,y∈A

| f(x1, . . . , xn)− f(x1, . . . , xi−1, y, xi+1, . . . , xn) | ≤ ci i ∈ [n], (A.27)
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where [n] .= {1, . . . , n}. Then for all t ≥ 0

P
(
| f(X1, . . . , Xn)− Ef(X1, . . . , Xn) | ≥ ε

)
≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
. (A.28)

Proof. Let X0 = 0 and X
.= (X1, . . . , Xn). It is easy to show that from (A.27) it follows

that f is bounded, because let a1, . . . , an be fixed each in A. Then for all x1, . . . , xn ∈ A we
have |f(x1, . . . , xn)| ≤ |f(a1, . . . , an)|+∑n

i=1 ci. Therefore E|f(X)| <∞ and we can define the
martingale differences as

Dk = E(f(X) |X1, . . . , Xk)− E(f(X) |X1, . . . , Xk−1). (A.29)

We are going to prove that Dk is in an interval with at most width ck. Let

Ak
.= inf
x∈A

E(f(X) |X1, . . . , Xk−1, Xk = x)− E(f(X) |X1, . . . , Xk−1), (A.30)

Bk
.= sup
x∈A

E(f(X) |X1, . . . , Xk−1, Xk = x)− E(f(X) |X1, . . . , Xk−1), (A.31)

then it is clear that Ak ≤ Dk ≤ Bk almost surely. Therefore it is enough to show that
Bk − Ak ≤ ck with probability one to apply Theorem A.4.1. Let Ek+1 denote the
expectation with respect to variables Xk+1, . . . , Xn. Because of the independence

E(f(X) |X1 = x1, . . . , Xk = xk) = Ek+1(f(x1, . . . , xk, Xk+1, . . . , Xn). (A.32)

Using the bounds on the differences yields almost surely that

Bk − Ak ≤ sup
x∈A

Ek+1(f(X1, . . . , Xk−1, x,Xk+1, . . . , Xn))

− inf
y∈A

Ek+1(f(X1, . . . , Xk−1, y,Xk+1, . . . , Xn))

≤ sup
x,y∈A

∣∣∣Ek+1[(f(X1, . . . , Xk−1, x,Xk+1, . . . , Xn))− (f(X1, . . . , Xk−1, y,Xk+1, . . . , Xn)]
∣∣∣,
(A.33)

which is at most ck. Then by Theorem A.4.1 we obtain the inequality.

There are other generalizations of these concepts. For sub-exponential variables Bernstein’s
inequality provides similar bounds. For further results see Chapter 2 in [25].
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Appendix B

Proofs

B.1 A Bayes Optimal Classifier
Claim 1.1.2. The following function, g∗, with domain X

g∗(x) = sign( 2η(x)− 1 ) = sign
(
E
[
Y |X = x

] )
(B.1)

is Bayes optimal in case of the 0/1 loss.

Proof. We are going to show that for an arbitrary classifier g : X → {+1,−1} the following
holds

P ( g∗(X) 6= Y ) ≤ P ( g(X) 6= Y ). (B.2)

First, consider the conditional probability P ( g(X) 6= Y |X = x):

P ( g(X) 6= Y |X = x) = 1− P ( g(X) = Y |X = x)
= 1−

(
P ( g(X) = 1, Y = 1 |X = x) + P ( g(X) = −1, Y = −1 |X = x)

)
= 1−

(
I(g(x) = 1)P(Y = 1|X = x) + I(g(x) = −1)P(Y = −1|X = x)

)
= 1−

(
I(g(x) = 1)η(x) + I(g(x) = −1)(1− η(x)

)
.

(B.3)

Furthermore, for all x ∈ X we have that

P ( g(X) 6= Y |X = x)− P ( g∗(X) 6= Y |X = x)
= η(x)

(
I(g∗(x) = 1)− I(g(x) = 1)

)
+ (1− η(x))

(
I(g∗(x) = −1)− I(g(x) = −1)

)
= (2η(x)− 1)

(
I(g∗(x) = 1)− I(g(x) = 1)

)
≥ 0,

(B.4)

where we used that (2η(x) − 1) is nonnegative if and only if the
(
I(g∗(x) = 1) − I(g(x) = 1)

)
quantity is nonnegative. We have seen so far that for all conditions X = x:

P(g∗(X) 6= Y |X = x) ≤ P(g∗(X) 6= Y |X = x). (B.5)

Integrating out both sides with respect to PX and applying the monotonicity of the integral
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yield that P ( g∗(X) 6= Y ) ≤ P ( g(X) 6= Y ).
The second half of the claim can be proved easily starting from the definition of η

2η(x)− 1 = 2P(Y = 1|X = x)− 1 = P(Y = 1|X = x)− (1− P(Y = 1|X = x))
= P(Y = 1|X = x)− P(Y = −1|X = x) = E

[
Y |X = x

]
.

(B.6)

The proof of the claim is finished.

B.2 A Uniform Exponential Bound
Theorem 2.9.2. Let F be a set of functions f : X→ [0, B] and X = {Xi}ni=1 an i.i.d. sample
taking values from X. For any n ∈ N, and any ε > 0,

P
(

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(Xi)
∣∣∣∣ > ε

)
≤ 8EN1(ε/8,F ,X) e−nε2/(128B2). (B.7)

Proof. The proof is very similar to the proof of Theorem 2.7.2. In fact let X′ = {X ′1, . . . , X
′
n}

be an i.i.d. sample distributed as X, but independent of X. Furthermore, let f̃ be a function
such that ∣∣∣∣ 1n

n∑
i=1

f̃(Xi)− Ef̃(X1)
∣∣∣∣ > ε (B.8)

holds, dependent of X. If such function does not exist, then let f̃ be arbitrary (fixed). Assume
that n ≥ 2B2

ε2 , otherwise the bound is trivial.
In the first step we show that similarly to (2.40) the following holds

P
(

sup
f∈F

∣∣∣∣ 1
n

n∑
i=1

f(Xi)− Ef(X1)
∣∣∣∣ > ε

)
≤ 2P

(
sup
f∈F

∣∣∣∣ 1
n

n∑
i=1

f(Xi)−
1
n

n∑
i=1

f(X ′i)
∣∣∣∣ > ε/2

)
. (B.9)

Applying Chebyshev’s inequality yields

P
( ∣∣∣∣ 1n

n∑
i=1

f̃(Xi)− E
(
f̃(X ′1) |X

) ∣∣∣∣ > ε

2

∣∣∣∣X) ≤ D2(f̃(X ′1) |X)
n ε2/4

≤
B2/4
nε2

4
≤ 1

2 , (B.10)

where in the second inequality we used that

D2(f̃(X ′1) |X) = D2(f̃(X ′1)− B/2 |X) ≤ E
(∣∣∣f̃(X ′1)− B/2

∣∣∣2 ∣∣∣∣X) ≤ B2

4 , (B.11)

because f̃(X ′1) ∈ [0, B]. Similarly to (2.41) we have

P
(

sup
f∈F

∣∣∣∣ 1
n

n∑
i=1

f(Xi)−
1
n

n∑
i=1

f(X ′i)
∣∣∣∣ > ε/2

)
≥ P

( ∣∣∣∣ 1
n

n∑
i=1

f̃(Xi)−
1
n

n∑
i=1

f̃(X ′i)
∣∣∣∣ > ε/2

)

≥ P
( ∣∣∣∣ 1

n

n∑
i=1

f̃(Xi)− E
(
f̃(X ′1) |X

)∣∣∣∣ > ε,

∣∣∣∣ 1
n

n∑
i=1

f̃(X ′i)− E
(
f̃(X ′1) |X

)∣∣∣∣ ≤ ε/2

)
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= E
[
I
( ∣∣∣ 1

n

n∑
i=1

f̃(Xi)− E
(
f̃(X ′1) |X

)∣∣∣∣ > ε
)
P
( ∣∣∣ 1
n

n∑
i=1

f̃(X ′i)− E
(
f̃(X ′1) |X

)∣∣∣ ≤ ε/2 |X
) ]

≤ 1
2P

( ∣∣∣∣ 1
n

n∑
i=1

f̃(Xi)− E
(
f̃(X ′1) |X

)∣∣∣∣ > ε
)

= 1
2P

(
sup
f∈F

∣∣∣ 1
n

n∑
i=1

f(Xi)− Ef(X ′1) | )
∣∣∣ > ε

)
(B.12)

In the second step we introduce random signs exactly as before (2.7). Again,
notice that supf∈F

∣∣∣∣ 1
n

∑n
i=1 σi(f(Xi) − f(X ′i))

∣∣∣∣ has the same distribution as

supf∈F
∣∣∣∣ 1
n

∑n
i=1(f(Xi)− f(X ′i))

∣∣∣∣, therefore
P
(

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(f(Xi)− f(X ′i))
∣∣∣∣ > ε

2

)
= P

(
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σi(f(Xi)− f(X ′i))
∣∣∣∣ > ε

2

)

≤ P
(

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σi(f(Xi))
∣∣∣∣ > ε

4

)
+ P

(
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σi(f(X ′i))
∣∣∣∣ > ε

4

)

= 2P
(

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σi(f(Xi))
∣∣∣∣ > ε

4

)
.

(B.13)

In the third step we bound the probability P
(

supf∈F
∣∣∣∣ 1
n

∑n
i=1 σi(f(Xi))

∣∣∣∣ > ε
4

)
by conditioning

on X, which is equivalent to fixing x. Let Fε/8 be an ε/8-cover of F with minimal size with
respect to the L1(Pn) norm. For all f ∈ F there is an f̄ ∈ Fε/8 such that ‖f − f̄‖L1(Pn) < ε/8,
therefore∣∣∣∣ 1n

n∑
i=1

σif(xi)
∣∣∣∣ ≥ ∣∣∣∣ 1n

n∑
i=1

σif̄(xi)
∣∣∣∣+ 1

n

n∑
i=1
|σi| · |f(xi)− f̄(xi)| <

∣∣∣∣ 1n
n∑
i=1

σif̄(xi)
∣∣∣∣+ ε

8 . (B.14)

Furthermore,

P
(

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

σi(f(xi))
∣∣∣∣ > ε

4

)
≤ P

(
sup
f∈Fε/8

∣∣∣∣ 1n
n∑
i=1

σi(f̄(xi))
∣∣∣∣+ ε/8 >

ε

4

)

≤ |Fε/8| max
f∈Fε/8

P
(∣∣∣∣ 1n

n∑
i=1

σi(f̄(xi))
∣∣∣∣ > ε

8

)

≤ N1
(
ε/8,F ,x

)
max
f∈Fε/8

P
(∣∣∣∣ 1n

n∑
i=1

σi(f(xi))
∣∣∣∣ > ε

8

)
.

(B.15)

The last step is a simple application of Hoeffding’s inequality for the bounded random variables
σif(xi) ∈ [−B,B] for i ∈ [n]. It yields

P
( ∣∣∣ 1

n

n∑
i=1

σif(xi)
∣∣∣ > ε

8

)
≤ 2 exp

− 2n
(
ε/8
)2

4B2

 = 2 exp
(
− nε2

128B2

)
(B.16)

Averaging out on the condition yields the theorem.
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B.3 Stone’s Theorem
Theorem 3.2.1. Let {(Xi, Yi)}ni=1 be the given i.i.d. sample, fn(x) = ∑n

i=1wn,i(x)Yi be a local
averaging estimate, see (3.2), and X be identically distributed as X1 independent of the given
sample. Assume that for all possible distributions of X:

i There exists a constant c such that for every (measurable) nonnegative function f

satisfying Ef(X) <∞ and any n ∈ N the following holds

E
( n∑
i=1
|wn,i(X) | f(Xi)

)
≤ cEf(X). (B.17)

ii There is D ≥ 1 such that for all n ∈ N

P
( n∑
i=1
|wn,i(X) | ≤ D

)
= 1. (B.18)

iii For all a > 0,
lim
n→∞

E
( n∑
i=1
|wn,i(X) | I( ‖Xi −X‖ > a)

)
= 0. (B.19)

iv
n∑
i=1

wn,i(X) p−→ 0 (B.20)

v
lim
n→∞

E
( n∑
i=1

w2
n,i(X)

)
= 0 (B.21)

then the corresponding local averaging estimate, fn, is universally consistent.

Proof. Using that (a+ b+ c)2 ≤ 3(a2 + b2 + c2) we have

E
[
(fn(X)− f∗(X))2

]
≤ 3E

[( n∑
i=1

wn,i(X)Yi −
n∑
i=1

wn,i(X)f∗(Xi)
)2]

+3E
[( n∑

i=1
wn,i(X)f∗(Xi)−

n∑
i=1

wn,i(X)f∗(X)
)2]

+ 3E
[( n∑

i=1
wn,i(X)f∗(X)− f∗(X)

)2]
.

(B.22)

We are going to deal with these three terms separetaly. First, we bound the second term by
the Cauchy–Shwartz inequality and condition ii

E
[ ( n∑

i=1
wn,i(X)f∗(Xi)−

n∑
i=1

wn,i(X)f∗(X)
)2]

≤ E
[ ( n∑

i=1

√
|wn,i(X) |

√
|wn,i(X) || f∗(Xi)− f∗(X) |

)2]
≤ E

[( n∑
i=1
|wn,i(X) |

)( n∑
i=1
|wn,i(X) | | f∗(Xi)− f∗(X) |2

)]
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≤ DE
[ n∑
i=1
|wn,i(X) | | f∗(Xi)− f∗(X) |2

]
. (B.23)

Because of the denseness result that we mentioned above, for an arbitrary ε > 0 there exists a
bounded uniformly continuous f̄ such that

E
[

( f∗(X)− f̄(X) )2
]
< ε. (B.24)

Applying the same algebraic inequality as before yields

E
[ n∑
i=1
|wn,i(X) | | f∗(Xi)− f∗(X) |2

]
≤ 3E

[ n∑
i=1
|wn,i(X) | | f∗(Xi)− f̄(Xi) |2

]
+3E

[ n∑
i=1
|wn,i(X) | | f̄(Xi)− f̄(X) |2

]
+ 3E

[ n∑
i=1
|wn,i(X) | | f̄(X)− f∗(X) |2

]
≤ 3A1 + 3A2 + 3A3.

(B.25)

We show that A2 → 0. Since (a− b)2 ≤ 2(a2 + b2) for all δ > 0

A2 ≤ E
( n∑

i=1
|wn,i(X) | | f̄(Xi)− f̄(X) |2 I( ‖Xi −X‖ > δ )

)
+E

( n∑
i=1
|wn,i(X) | | f̄(Xi)− f̄(X) |2 I( ‖Xi −X‖ ≤ δ )

)
≤ E

( n∑
i=1
|wn,i(X) |

(
2 | f̄(Xi) | + 2 | f̄(X) |

)
I( ‖Xi −X‖ > δ )

)
+E

( n∑
i=1
|wn,i(X) | | f̄(Xi)− f̄(X) |2 I( ‖Xi −X‖ ≤ δ )

)
≤ 4 sup

x∈X
| f̄(x) |E

( n∑
i=1
|wn,i(X) | I( ‖Xi −X‖ > δ )

)
+D sup

u,v,‖u−v‖≤δ
| f̄(u)− f̄(v) |.

(B.26)

Because of condition iii and the uniform continuity of f̄

lim sup
n→∞

A2 ≤ Dε, (B.27)

for all ε > 0, hence A2 → 0. From condition ii it follows that

A3 ≤ Dε. (B.28)

By condition i
A1 ≤ cE

[
(f∗(X)− f̄(X))2

]
≤ c ε. (B.29)

Hence we showed that the second term, E
(∑n

i=1 |wn,i(X) | | f∗(Xi)− f∗(X) |2
)
, tends to zero.

For the first term let σ2(x) .= E
(
(f(X) − Y )2 |X = x

)
. From EY 2 < ∞ it follows that
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Eσ2(X) <∞. Clearly

E
[( n∑

i=1
wn,i(X)Yi −

n∑
i=1

wn,i(X)f∗(Xi)
)2
]

= E
( n∑

i=1

n∑
j=1

wn,i(X)wn,j(X)(Yi − f∗(Xi))(Yj − f∗(Xj))
)
. (B.30)

For i 6= j we have

E
[
wn,i(X)wn,j(X) (Yi − f∗(Xi)) (Yj − f∗(Xj))

]
= E

[
E
(
wn,i(X)(Yi − f∗(Xi))wn,j(X)(Yj − f∗(Xj)) |X1, . . . , Xn, Yi

) ]
= E

[
wn,i(X)(Yi − f∗(Xi))wn,j(X)E

(
(Yj − f∗(Xj)) |X1, . . . , Xn, Yi

) ]
= E

[
wn,i(X)(Yi − f∗(Xi))wn,j(X)(f∗(Xj)− f∗(Xj))

]
= 0.

(B.31)

From which it follows that

E
( n∑

i=1

n∑
j=1

wn,i(X)wn,j(X)(Yi − f∗(Xi))(Yj − f∗(Xj))
)

= E
( n∑

i=1
w2
n,i(X)(Yi − f∗(Xi))2

)
= E

( n∑
i=1

w2
n,i(X)σ2(Xi)

)
.

(B.32)

If σ2 is bounded then E
(∑n

i=1 w
2
n,i(X)σ2(Xi)

)
→ 0 by condition v. For general σ2 we can apply

the denseness result since we saw that σ2 ∈ L1(PX). Therefore for all ε > 0 there exists a
bounded function, σ̄2(x) ≤ L for all x ∈ X, such that

E ( |σ2(X)− σ̄2(X) | ) < ε. (B.33)

We can bound the first term by the triangle inequality and condition ii

E
[ ( n∑

i=1
wn,i(X)(Yi − f∗(Xi))

)2 ]
≤ E

( n∑
i=1

w2
n,i(X)σ2(Xi)

)
≤ E

( n∑
i=1

w2
n,i(X)σ̄2(Xi)

)
+ E

( n∑
i=1

w2
n,i(X) |σ2(Xi)− σ̄2(Xi) |

)
≤ LE

( n∑
i=1

w2
n,i(X)

)
+DE

( n∑
i=1
|wn,i(X) | |σ2(Xi)− σ̄2(Xi) |

)
.

(B.34)

Then we obtain the following by using condition ii and v

lim sup
n→∞

E
[( n∑

i=1
wn,i(X)(Yi − f∗(Xi))

)2
]
≤ cDE ( |σ2(X)− σ̄2(X) | ) ≤ cDε. (B.35)

For the third term we apply the dominated convergence theorem with integrable dominant
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D ·f∗(X). Then by condition iv it follows that

E
[ ( n∑

i=1
wn,i(X)f∗(X)− f∗(X)

)2
]

= E
[ ( n∑

i=1
(wn,i(X)− 1) f∗(X)

)2
]
→ 0. (B.36)

So far we proved that E
[
(fn(X) − f∗(X))2

]
goes to zero. It is sufficient for convergence in

probability, since by Markov’s inequality

P
(( n∑

i=1
wn,i(X)f∗(X)− f∗(X)

)2
> ε

)
≤

E
[(∑n

i=1wn,i(X)f∗(X)− f∗(X)
)2
]

ε
. (B.37)

B.4 Banach–Steinhaus Theorem for Integral Operators
Theorem 3.5.1. Let Kn be Rd × Rd → R type functions for n ∈ N and µ be a probability
measure on Rd. Assume the followings:

i There exists c > 0 such that for all n ∈ N the following holds∫
|Kn(x, z) | dµ(x) ≤ c (B.38)

for µ-almost every z.

ii There exists D ≥ 1 such that for all x ∈ Rd and for all n ∈ N∫
|Kn(x, z) | dµ(z) ≤ D. (B.39)

iii For all a > 0

lim
n→∞

∫ ∫
|Kn(x, z) | I(‖x− z‖ > a) dµ(z) dµ(x) = 0. (B.40)

iv
lim
n→∞

ess supx
∣∣∣ ∫ Kn(x, z) dµ(z)− 1

∣∣∣ = 0. (B.41)

Then for all f ∈ L1(µ)

lim
n→∞

∫ ∣∣∣ f(x)−
∫
Kn(x, z)f(z) dµ(z)

∣∣∣ dµ(x) = 0. (B.42)

Proof. We use the denseness result we mentioned before Stone’s theorem. For all ε > 0 there
exists a uniformly contionuous, bounded function, f̃ , with compact support for which∫

| f(x)− f̃(x) | dµ(x) < ε (B.43)
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holds. Then the quantity in (B.42) can be bounded as∫ ∣∣∣ f(x)−
∫
Kn(x, z)f(z) dµ(z)

∣∣∣ dµ(x) ≤
∫ ∣∣∣ f(x)− f̃(x)

∣∣∣ dµ(x)

+
∫ ∣∣∣f̃(x)

(
1−

∫
Kn(x, z) dµ(z)

) ∣∣∣ dµ(x) +
∫ ∣∣∣ ∫ Kn(x, z)(f̃(x)− f̃(z)) dµ(z)

∣∣∣ dµ(x)

+
∫ ∣∣∣ ∫ Kn(x, z)(f̃(z)− f(z)) dµ(z)

∣∣∣ dµ(x) = I1 + I2 + I3 + I4.

(B.44)

We proceed by bounding these four terms separately. Because of the choice of f̃ the first term
I1 < ε. From condition iv

I2 ≤ ess supu
∣∣∣ 1− ∫ Kn(u, z) dµ(z)

∣∣∣ ∫ ∣∣∣ f̃(x)
∣∣∣ dµ(x)→ 0. (B.45)

Since f̃ is uniformly continuous for ε > 0 let δ > 0 be such that from ‖x− z‖ < δ it follows
that

∣∣∣ f̃(x)− f̃(z)
∣∣∣ < ε. Let B = B(x, δ/2) and B̄ denote its complement. Then

I3 ≤
∫ ∫

B
|Kn(x, z) | | f̃(x)− f̃(z) | dµ(z) dµ(x)

+
∫ ∫

B̄
|Kn(x, z) | | f̃(x)− f̃(z) | dµ(z) dµ(x)

≤ ε
∫ ∫

B
|Kn(x, z) | dµ(z) dµ(x) + 2 sup

x
| f̃(x) |

∫ ∫
B̄
|Kn(x, z) | dµ(z) dµ(x),

(B.46)

where by condition ii the first term is limited by εD and by condition iii the second term tends
to zero. For I4 the following holds by Fubini’s theorem and condition i

I4 ≤
∫ ∣∣∣ ∫ Kn(x, z) dµ(x) | f̃(z)− f(z) |

∣∣∣ dµ(z)

≤ c
∫
| f̃(z)− f(z) | dµ(z) ≤ c ε,

(B.47)

which finishes the proof.

B.5 Covering Lemma
Lemma 3.5.3. Let K be a regular kernel. Then there exists a finite constant % = %(K) such
that for all u ∈ Rd, h > 0 and probability measure µ∫ Kh(x− u)∫

Kh(x− z) dµ(z) dµ(x) ≤ %. (B.48)

In addition, for all δ > 0

lim
n→∞

sup
u

∫ Kh(x− u)I(‖x− u‖ > δ)∫
Kh(x− z) dµ(z) dµ(x) = 0. (B.49)

Proof. Cover the whole Rd with countably many balls with radius r/2 on the following way.
Let the centers of these balls be xk = (k1r/2, . . . , kdr/2) for all k = (k1, . . . kn) ∈ Zd. Then it
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is easy to see that ∪k∈ZdB(xk, r/2) ⊇ Rd. For practical reasons we reindex the centers with the
natural numbers. It can be done since Zd is countable. Notice that we used inifinitely many
balls to cover Rd, but all x ∈ Rd is covered at most 2d + 1 times. Because of the regularity of K

∞∑
i=1

sup
z∈B(xi,r/2)

K(z) =
∞∑
i=1

1∫
B(0,r/2) 1dx

∫
B(xi,r/2)

sup
z∈B(xi,r/2)

K(z) dx

≤ 1∫
B(0,r/2) 1dx

∫ ∞∑
i=1

sup
z∈B(x,r)

K(z)I(x ∈ B(xi, r/2)) dx (B.50)

≤ 2d + 1∫
B(0,r/2) 1dx

∫
sup

z∈B(x,r)
K(z)dx ≤ C,

where we used that B(xi, r/2) ⊆ B(x, r) when x ∈ B(xi, r/2).
The covering property yields that

Kh(x− u) ≤
∞∑
i=1

sup
x∈B(u+hxi,rh/2)

Kh(x− u). (B.51)

In addition, for all x ∈ B(u+ hxi, rh/2) we have∫
Kh(x− z) dµ(z) ≥ bµ(B(x, rh)) ≥ bµ(B(u+ hxi, rh/2)). (B.52)

By these we can proceed as∫ Kh(x− u)∫
Kh(x− z) dµ(z) dµ(x) ≤

∞∑
i=1

∫
B(u+hxi,rh/2)

Kh(x− u)∫
Kh(x− z) dµ(z) dµ(x)

≤
∞∑
i=1

∫
B(u+hxi,rh/2)

supz∈B(hxi,rh/2) Kh(z)
bµ(B(u+ hxi, rh/2)) dµ(x)

≤
∞∑
i=1

µ(B(u+ hxi, rh/2)) supz∈B(hxi,rh/2)Kh(z)
bµ(B(u+ hxi, rh/2)) ≤ 1

b

∞∑
i=1

sup
z∈B(xi,r/2)

K(z) ≤ C

b
,

(B.53)

where C only depends on the dimension and on the kernel function. If we substitute
Kh(z)I(‖z‖ > δ) in the place of Kh(z) we obtain that

sup
u

∫ Kh(x− u)I(‖x− u‖ > δ)∫
Kh(x− z) dµ(z) dµ(x) ≤ 1

b

∞∑
i=1

sup
z∈B(xi,r/2)

K(z)I(‖z‖ > δ/h), (B.54)

which goes to zero as h→ 0 by the dominant convergence theorem.
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