


Eötvös Loránd University

Faculty of Science

Boglárka Gál

Algorithmic solutions for logistic
problems

MSc Thesis

Consultant:

Alpár Jüttner

Department of Operations Research

Budapest, 2020



Contents

1 Introduction 4

2 Problem description 5

3 Dividing into subtasks 6

4 Routing in a warehouse 8

4.1 Solving TSP in a Warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Heuristic solutions by using cross aisles . . . . . . . . . . . . . . . . . . . . 16

4.3.1 S-shape heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2 Largest gap heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.3 Combined heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.4 Aisle-by-aisle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Vehicle Routing Problem 23

5.1 What is VRP? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 VRP in a warehouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Examples for solving VRP in a warehouse . . . . . . . . . . . . . . . . . . 25

5.3.1 Branch and Price algorithm . . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 Two-phase heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Batching algorithms 32

6.1 First-Come, First-Served heuristic . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 2-Dimensional spacefilling curve . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 4-Dimensional spacefilling curve . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Sequential minimum distance heuristic . . . . . . . . . . . . . . . . . . . . 35
6.5 Order batching heuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Replenishment methods 40

7.1 Storage Replenishment Problem . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Prioritizing replenishment . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.1 Stock-Needs Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2



7.2.2 Order-Quantity-Based Rule . . . . . . . . . . . . . . . . . . . . . . 49
7.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Summary 53

3



1 Introduction

Nowadays, it is a great challenge of business that how companies are able to serve the
ever-growing needs of this consumer society in the fastest and the most cost-effective way,
as well to gain the biggest profit. To do that, it is obviously required to store goods or
products in huge quantities, which are accessible enough. Therefore it’s not surprising,
that nowadays warehouse management problems get a lot of attention, because the layout
of a warehouse, the improvement of picking out and replenishment methods can result in
a great benefits.

But why is it so complicated to manage warehouse problems effectively? The complex-
ity of questions is clearly seen if you think about that the most effective way of storage
of products (for example on the smallest floor area) may be against to be easy-to-pick in
the storage. For example if the floor area of the warehouse is small, then the products can
fit it only if the shelves are tall enough. But picking out from a very high shelf is almost
impossible. Similarly if the storage area is too large, then the time we need for travelling to
pick the items out will increase significantly. Naturally, even if the sizes of the warehouse
is given, many further problems will be raised, how to execute the picking out of items
in the fastest way, which way the forklifts should go, which products should be collected
together, and what happens if the shelf goes out of stock. The problem has become more
and more serious by the increasing quantity of products, which has to be picked out.

The goal of this thesis is to provide an insight of the algorithmic methods of warehouse
management, and to investigate the solutions of each subtasks by seeking the solution of
a greater comprehensive problem.

During solving warehouse management problems, the interests of business cannot be
ignored and also, current operation of the warehouse, the capability of storage, tools
and the available labor could be essential. These parameters can completely change the
constraints and objectives of the problem, therefore business decisions have a big impact
on what algorithm will be the most suitable to meet demands. Thus we are often unable
to determine the absolute best algorithm, because if a method is appropriate for a certain
environment, it may be not applicable for another one. In this thesis I did not insist on
fitting a certain business demand, but I made an effort to investigate the algorithms more
extensively, and we will discussed which methods for what business needs are suitable.
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2 Problem description

In this thesis I have raised a relatively actual problem, as a task to be solved. But course of
solving the problem, I examined a more comprehensive range of possibilities, and so provide
an insight of a certain part of warehouse management. Namely, I divide the main problem
into smaller subtasks, which are individual problems in the literature. After examination
of the solutions of subtasks, I have proposed how to connect the sub-solutions in order to
give a solution to the main problem.

The problem mentioned in the introduction is that the storage of goods with large
quantities makes picking operations difficult. This is usually tackled by dividing of the
storage area into two parts: to a forward and reserve area. The reserve area is suitable
for storing large quantities of products. Picking out products from here is rare but if it
is necessary, a large amount of products will be picked out. In the forward area we store
a smaller amount of products, usually in a smaller place. In the forward area, picking
operations are frequently performed in a smaller quantity, therefore the idea is to design
this section so that the picking operation can be performed as quickly as possible. By the
division of storage area, it can be solved how to store great quantities of products and
picking them quite quickly in the same time. But the disadvantage of this layout is that we
must frequently replenish products in the forward area from the reserve area, which raises
another logistic problem. Namely, we should perform the replenishment coordinated with
the picking operation, because it would not be well advised to shut off or impede picking
operations to frequently, still we want the access of products to be ensured continuously.

We focus on a certain warehouse where the layout of storage (forward and reserve area),
the location of shelves, the location of products on shelves, and the capacity of locations
are already fixed. The capacity of a location means how many items can be placed on a
given location. It is important to stipulate this in advance, because it plays a major role
in the optimization of warehouse management operations. (If you are interested in this,
you can see more about what size to choose for the forward and reserve area in [5], [4],
[7], [8], how to place the shelves, namely how much aisle and cross aisle are suggested to
create in [10], [11], and how to assign products to item locations and how much quantity
of them should be stored in the forward area in [1], [2], [3], [6], [9].)

There are given a set of products I stored in the warehouse. We refer to these products
as items. Each item can be found both in the reserve and the forward area. The coordinates
of locations of items are given and known. In each area, one item can be found only at
one location, and at each location can be found only one kind of items. All items have a
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known weight and size (i.e. width, height, and depth). Both the size and the load capacity
of the shelves are knows, therefore we can determine what amount of item can be placed
on each shelves (i.e. locations). This is called the capacity of the location.

The items are collected and replenished to the forward storage area by some kind
vehicles (for example forklifts, trolleys and push carts). The vehicles can differ both in
size and load capacity, and they are stored in different places in warehouse depending
on its type. We use different vehicles for replenishment and picking. This is necessary
because the amount of the delivered products can be greater during replenishment than
picking. This constraint that the vehicles used for picking is not involved in replenishment
operations and vice versa.

There are given a set of orders M . An order includes a list of items with their quantities.
For orders, all we enforce is that an order from a product can not contain more than the
location capacity in the forward area. There are given a certain time interval T (i.e. the
planning horizon), in which the items from orders in M can be picked. The main task is
to collect items from each order in the planning horizon in the forward area with vehicles
so that the quantity of products carried by a vehicle must not exceed the capacity of this
vehicle. In order to ensure the availability of items on each order, we have to replenish the
forward area from the reserve area using the charging vehicles. The goal is to minimize
the travel time needed to collect the items, such that one vehicle can be used more than
once. Items have to be shipped to a pre-designated location. In other words, the task is
to collect orders to be served on a given day as quickly as possible. Or the task can be
considered so that we want to serve as many orders as possible within a fixed time interval
(for example one day).

We also have to determine how to deal with the situation if we can not pick as much as
item out we want, because it is sold out in forward area. We may set up a constraint which
guarantees that such a case can not happen or we can make an objective to minimize the
number of situations, when picking can not be performed because of stock out. Both cases
will be discussed later.

3 Dividing into subtasks

Note that our problem is closely related to the Vehicle Routing Problem (VRP). The
most basic type of the VRP is the capacitated VRP (CVRP), where we have to serve
the demands of the costumers from a central depot with vehicles of uniform capacity, and
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then return such that we have to minimize the sum of the travel time. (See more [12],
and in section 5). In our problem, customers correspond to the locations of items, and
the demands of the customers correspond to the amount of items to be picked. Obviously,
it can be seen that our problem to be solved is more complex than a CVRP. Although
many heuristics are known for trying to solve each type of VRP (e.g. [12]), these ones are
still not appropriate for solving warehouse management problems. Namely, these can not
handle the questions in what sequence the orders should be picked, which orders should
be picked together, and how to solve replenishment problems. So, the solutions given for
VRP can be used effectively for warehouse management (see later in chapter 5), but these
solutions are not sufficient to answer all questions in warehouse management. We need to
look for other options.

On the other hand, it can be seen that it is not a good idea to model the complete
task with one IP problem. This is because the size of the IP soon becomes unmanageable.
For example the Vehicle flow models used by [12] even the routing constraints yield expo-
nential number of constraints, and because of the large number of orders, we may expect
a great amount of variables. Because of the complexity of the problem, it seems to be the
best possibility if we divide the problem into several subtasks, and we examine them as
individual problems.

But what kind of subtasks can be identified? Once we have determined what products
a vehicle should collect in each round, then we have to solve a Travelling Salesman Prob-
lem. In this case the only question is in which sequence the items have to be collected,
namely in which sequence the item locations have to be visited in order to minimize the
total travelling time. This will be discussed in Section 4. If the total weight or size of items
corresponding to one order exceeds the vehicle capacity, we have to use more vehicle to
collect them. This is a typical Vehicle Routing Problem, which will be discussed in Sec-
tion 5. If orders are small enough to collect them with one vehicle, we have to determine
which orders should be collected together to pick them as soon as possible. The batching
algorithms that can be used for this will be discussed in the 6 chapter. Finally, the replen-
ishment policies and procedures are described in the 7 Section. It will be discussed how
to link these subtasks together in Chapter 8.
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4 Routing in a warehouse

In this section, we try to solve the following problem: let us given a warehouse with known
layout of the shelves, and the locations of the items. We have a single vehicle, which
we want to use to collect a pre-recorded list of products. We can ignore the capacity of
the vehicle (namely, we can assume that the total weight of items does not exceed the
vehicle capacity). The question is in which sequence the item locations should be visited
to minimize the total travelling time.

The problem described above resembles to a TSP problem. However, we want to solve
a special case of TSP rather than a general TSP. Namely, we can use the fact that the
vehicle can move only between the shelves of the storage and its arrangement is known in
advance. In this special case there is an algorithm with polynomial running time (in fact
it is linear in the number of aisles) which have been proposed by Ratliff and Rosenthal in
1983 [13].

But what is that certain special arrangement that characterizes a storage? Most ware-
houses have a rectangular shape and shelves are arranged side by side in parallel. Products
can be placed on both sides of a shelves, and we can travel on the aisles between these
shelves. It is called pick aisle. Changing pick aisle can take place in horizontally located
corridors, of which there are basically two in the warehouse: one in front of the shelves
and one behind them. It may occur more horizontal aisle in a storage called cross aisle.
(See later is chapter 4.3 and in [11]). There is no picking in the cross aisle, this can only
be used for changing corridors. In the following, it will be described how this arrangement
can help to solve the TSP task.

4.1 Solving TSP in a Warehouse

In this section will be described, how to solve the problem in a warehouse where there are
only two cross aisles: behind and front of the shelves. We assume that the vehicle starts
and arrives at the same place called depot. The procedure presented now comes from [13].
The floor map of the warehouse described above can be seen in Figure 1. The rectangles
are the shelves and the little circles correspond to the item locations to be visited. The
vehicle can move on aisles between the rectangles. The depot is denoted by a hatched
rectangle under the fourth aisle.

Suppose we have to collect an order m items. We can represent the warehouse with a
graph G with vertex set V = {v0, v1, . . . , vm, a1, b1, a2, b2, . . . , an, bn} where v0 denotes the
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Figure 1: Layout of the considered warehouse from [13]

depot, the items to be collected are vi where (i = 1, . . . ,m), and n corresponds the number
of aisles, and aj and bj are the endpoints of the aisle j where j = 1, . . . , n. In this graph
two vertices are connected if they are found on the same aisle and they can be collected
one after the other with the vehicle. The first and last item on aisle j are connected to aj
and bj. In addition, there is an edge between all vertices aj and aj+1 and similarly between
bj and bj+1 where (i = 1, . . . , n − 1). Between the locations there can be quite a lot of
number of edges. The weight of an edge is defined as the corresponding distance between
the two locations in the warehouse. Vertex v0 is placed on that aisle nearest to the depot.
The weight of the corresponding edge is zero. So the resulting graph can be seen in Figure
2.

Thus our task is to find a circle containing all vertices vi at least once. A circle may
contain all edges at most once. Such a circle will be called tour. The goal is to find a tour
of minimum length.

Definition 4.1. We call a subgraph T ⊂ G spanning all vertices vi a tour subgraph if it
contains a tour as subgraph.

Theorem 4.2. A subgraph T ⊂ G is a tour subgraph if and only if the following statements
are true.

• All vertices vi have a positive degree in T where (i = 0, . . . ,m)

• T has only one component, which is not an isolated point.
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Figure 2: Graph representation of the warehouse from [13]

• All vertices in T have an even number of degrees (it means zero, too).

Indeed, correctness of the theorem can easy be seen, because it is a special case of
the Euler theorem for graphs (see more in [14]). Later we will prove if we find a minimal
length tour subgraph then we can construct easily a minimal length order-picking tour
what we are looking for. Therefore, in the following we will construct a minimal length
tour subgraph to get a minimal length order-picking tour.

Corollary 4.3. A tour subgraph with minimal length does not contain more than two
edges between each pair of vertices.

Theorem 4.4. If we take a (P, P ′) partition of vertices of a tour subgraph, there exists
an even number of edges, which has an endpoint in P and another endpoint in P ′.

We will use the following concepts

Definition 4.5. For a fixed subgraph L ⊂ G we call a Tj ⊂ L subgraph L partial tour
subgraph (L PTS for short), if there exists a Cj ⊂ G − L such that Tj ∪ Cj is a tour
subgraph in G. We call the subgraph Cj the completion of Tj.

Let L−j denote the subgraph of G which contains vertices aj and bj and includes all
points of G, which can be found left to aj and bj. Let Aj be the subgraph of G, which
contains both aj and bj together with all vertices between them. Furthermore let L+

j to
be equal to L−j ∪ Aj. The use of notation Lj in the statements below means it is true for
both L+

j and L−j .
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Theorem 4.6. A Tj ⊂ Lj is a Lj PTS if and only if the following assumptions hold:

• All vertices vi in Lj have a positive degree in Tj.

• All vertices of Tj (maybe except for aj and bj) have an even degree or zero degree.

• Except for the vertices with zero degree Tj does not have connected component, or it
has one connected component, which contains at least one of aj and bj, or it has two
connected component where the one contains aj and the other contains bj.

Proof.

Note that the total degree of Tj is even, thus if either of degree of aj or bj is odd, then
both have odd degree.

First we show sufficiency. Suppose that aj and bj have odd degree in Tj. Let Cj be that
subgraph, which contains all vertices ofG−Lj, and has exactly two edges between each pair
of vertices in Ak, where k = j, j+1, . . . , n−1 (in case of L+

j : k = j+1, j+2, . . . , n−1), and
has exactly one edge between each pair of vertices in An, and contains one edge between
both ak and ak+1, and bk and bk+1 (where k = j, j + 1, . . . , n − 1). In this case T ∪ Cj
satisfies the constraints of , so we have found an appropriate Cj, therefore the definition
of Lj PTS fulfills for Tj.

Now suppose that aj and bj both have even degree, or they have zero degree or the one
has even degree and the other has zero degree. Let Cj be that subgraph, which contains
all vertices of G − Lj, and all points of them are connected with exactly two edges. In
this case Tj ∪Cj satisfies the constraints of , and so the theorem has fulfilled based on the
definition of Lj PTS.

Let see necessity. Let Tj = T −T ∩ (G−Lj) for a T tour subgraph. Note that there are
no edges between vertices of Tj and T ∩ (G− Lj), maybe except for aj and bj. Since the
first two constraints hold for T , then they have to hold for Tj, too. Except for the vertices
with zero degree, T is connected, hence Tj does not have such a connected components,
which do not contain aj or bj. �

Definition 4.7. Two Lj PTS’s, T 1
j and T 2

j are equivalent if any Cj ⊂ G−Lj is such that
if T 1

j ∪ Cj is a tour subgraph, then T 2
j ∪ Cj is also a tour subgraph.

The next theorem will be stated without proof. (The proof can be found in [13].)

Theorem 4.8. Two Lj PTS T 1
j and T 2

j are equivalent if the following statements hold

• The degree parity of aj is the same in both, and the degree parity of bj is the same,
too.
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• Except for the zero degree vertices T 1
j and T 2

j do not have connected component, or
they have one connected component, which contains at least one of aj and bj, or they
have two connected component so that the one contains aj and the other contains bj.

Based on this theorem we can construct equivalence classes of Lj PTS’s according to
the degree parity of aj and bj and according to the connectivity. To identify equivalence
classes we use the following notations: we denote zero degree with 0, even degree with E,
and odd degree with U , which corresponds to "uneven". Denote the single component 1C,
and two component 2C. For example if we take an equivalence class in which both aj and
bj are odd degree, and the Lj PTS consists of only one component except for the zero
degree vertices, then this equivalence class will be referred to (U,U, 1C).

Corollary 4.9. The all possible equivalence classes of Lj PTS’s are (U,U, 1C), (0, E, 1C),
(E, 0, 1C), (E,E, 1C), (E,E, 2C), (0, 0, 0C), (0, 0, 1C).

Note that (0, 0, 0C) is possible only if none of the aisles in Lj contains any item to be
picked, and (0, 0, 1C) is possible only if none of the aisles in G− Lj contains any item to
be picked.

Corollary 4.10. If T 1
j is a minimal length Lj PTS in i. equivalence class, and its minimal

length completition is Ci
j, then the minimal length tour subgraph of G is the shortest

T ij ∪ Ci
j where i = (1, 2, . . . , 7).

Note that in L+
n the minimal length completion of PTS’s in equivalence classes (0, E, 1C),

(E, 0, 1C), (E,E, 1C), (0, 0, 1C) is an empty graph, namely this PTS’s are tour subgraphs.
In this case the remaining equivalence classes do not have any completion, so it is enough
to examine these equivalence classes to find the optimal tour subgraph.

In the following, a minimum length tour subgraph is constructed. To do this, take
j = 1, 2, . . . , n aisles, and if we find a minimum length L−j PTS for all equivalence classes,
then we can create an L+

j PTS. From this, we can construct an L−j+1 PTS, and so on.
Finally we determine the minimum length L+

n PTS for all equivalence classes, and the
minimum length tour subgraph will be the minimum length L+

n PTS from equivalence
classes (0, E, 1C), (E, 0, 1C), (E,E, 1C), (0, 0, 1C).

Let us consider aisle j. Because between any two vertices at most two edges will be
needed, the edges correspond to aisle j can be placed in a tour subgraph in six ways, which
is shown in Figure 3.

It can be shown that if the pick aisles and cross aisles have the same length, then the
cases (v) and (vi) are not to be considered, because if an aisle does not contain any item to
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Figure 3: Possibilities of edges correspond to an aisle used by a tour subgraph from [13]

be picked, we can omit it. Case (vi) is possible only if there is no item to be picked on the
aisle. The fourth case can be of several types depending on where we place the "hole". It
is enough to take only the minimal case, namely if the hole is placed between two vertices
where these two vertices are as far as possible to each other.

If we add a case depicted In Figure 3 to a partial tour subgraph, which belongs to a
L−j equivalence class, then we get a case which belongs to equivalence class L+

j . So if we
determine the minimal length L−j PTS for every classes, we can determine the minimal
length L+

j PTS for every classes, too, which may result in a subgraph belonging to another
equivalence class. The minimal length L−j+1 PTS can be determined by adding some edges
belonging to the corresponding cross aisles are added to the minimal length L+

j PTS. The
options for adding these edges are illustrated in Figure 4.

If we fit a partial tour subgraph one of the five cases, it may happen that the PTS will
belong to an other equivalence class. But this can be determined in advance and we can
record it in a data table. So if we know the minimal length L+

j PTS’s for every equivalence
classes, then we can construct the minimal length L−j+1 PTS’s, so that we choose an option
from our data table which results the shortest PTS for all equivalence classes.

As described above, we can construct for all equivalence classes the minimal length L−j
PTS’s, and then L+

j PTS’s in cases j = 2, 3, . . . , n. In case j = 1, the six ways of layouts
of edges in the aisles correspond to the six equivalence classes. The minimal length L+

1

PTS is straight forward determine for each equivalence class. Finally, we can choose from
the shortest L+

n PTS’s the minimal length PTS, which corresponds to the minimal length
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Figure 4: Possibilities of edges corresponding to a cross aisle used by a tour subgraph from
[13]

order-picking tour subgraph.
It will be presented how to construct a minimal length order-picking tour in T from a

minimal length tour subgraph. This can be done by the following algorithm:

Step 1. Start by visiting v0

Step 2. Let the corresponding vertex be v∗.

Step 3. If there is an unused pair of edges incident to v∗, then use one and GO TO Step
2.

Step 4. If there is an unused single arc incident to v∗, then use it and GO TO Step 2.

Step 5. If there is a pair of edges, so that one of them is used and one is unused, then
use it and GO TO Step 2.

Step 6. STOP.

Since all vertices of tour subgraph have even degree, the tour ends at v0 so that all edges
incident to v0 are used. According to [13] it can be seen that the resulted tour includes all
vertices of T .
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4.2 Conclusions

In order to really apply the method described above, we have to adapt to the shaping and
layout of the storage, and we have to modify the algorithm based on this. The process
must be slightly modified if the depot vertex is located elsewhere. Recall that the method
described above will not be changed essentially by changing the location of depot vertex.
Depot vertex can be placed on any aisle. If this vertex is located on a cross aisle, for
example between bj and bj+1, then only the cases should be considered in the construction
of L−j+1 PTS where bj and bj+1 are used, and so fit them "artificially" into the solution.
Alternatively, if we use a fictitious aisle by v0 whose length is chosen to be so large that it
will be not included into the tour.

The method is applicable even if the start and destination point are not the same. In
this case we have to modify the concept of tour subgraph, so that we require that the
degree of the start end destination vertices have to be odd (let v0 and vm+1). This change
affects our algorithm that in aisles where v0 and vm+1 can be found, we have to choose
from other options instead of the cases seen in Figure 3. In this case v0 and vm+1 can be
found at the end of the aisle, so the edges of the pick-aisles have to be chosen from the
cases illustrated in Figure 5, which correspond to the cases in Figure 3.

Figure 5: Possibilities of edges correspond to an aisle used by a tour subgraph

Warehouses are often designed in a way that not only are there two cross aisles per-
pendicularly to the pick aisles, but also there are more, in the middle of the pick aisles.
In this case the method described above is still applicable, but the running time of the
algorithm increases significantly, because the equivalence classes will include a lot more
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elements [13]. Namely, if we have p cross aisle inside of the pick aisle, we have to examine
p + 2 degree combination. In addition, the number of connectivity classes will increases,
too, and we have to keep track of, which vertices are in the same component. The next
chapter will deal with the management of cross aisles.

4.3 Heuristic solutions by using cross aisles

In the case where the warehouse has more cross aisles, the method described above will
become too complicated and unmanageable, therefore more heuristic methods have been
proposed to solve this, for example in [11] and [15]. Note that there is heuristic solution
for the case without cross aisle in [16], which can replace the methods described above.

From now on, let us suppose that the depot is located in the lower left corner. Let the
names of aisles be similar to the above, the vertical aisles are pick aisles (where picking
happens), and the horizontal aisles are the cross aisles where picking does not happening.
The area between two cross aisles is called block.

4.3.1 S-shape heuristic

In this section a method from [11] will be described. After starting at the depot, let us go
to the first pick aisle which contains any item from the order. On this aisle go through the
"upper" side of the last block, which contains item to be collected. Then go right until
reaching an aisle of the current block containing item to be collected. If this is the only
aisle in the block containing items to be picked, then pick them, and go to the "bottom"
of the block. If there are more aisles in the block containing items to be picked, then go
through the whole subaisle, and so go along aisles in "S" shape. If there are no more items
to be picked in the block, go to the bottom of the block (if we are not there yet).

Then the next block will be the one we are at the "top" of. If there are items to be
picked in this block, then check if the first (on the left) or the last (on the right) item to
be picked is closer to the current position. Begin to collect items in "S" shape starting at
the closest item similarly to that is, described above. If the block does not contain any
item to be picked, then go through the closest pick aisle at the next block.

This process has to be continued until all blocks are travelled. Then, after visiting the
last block, return to depot. The route obtained by the S-shape heuristic is shown in Figure
6.
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4.3.2 Largest gap heuristic

Largest gap heuristic [11] begins similarly to S-shape heuristic. Namely, we go to the first
pick aisle containing items to be picked, and go along it to the last block containing any
items. During this method the vehicle goes through any cross aisle, and along a cross
aisle enter each pick aisle, containing any item to be picked. Go along this pick aisle until
reaching the largest gap, then return, and go out on the same side where the vehicle has
entered. Gap means the distance between two items, or between one item and the end of
the aisle. The last aisle, which contains item is travelled whole, and so can be reached the
next block.

The next cross aisle is travelled so that pick aisles of both neighboring blocks are
entered: one side first and the other side backwards, as can be seen in Figure 6. The whole
last aisle containing items is travelled, and so will be reached the next cross aisle. This
process is repeated until all blocks containing items are visited, then return to the depot.

Figure 6: Paths getting by S-shape and Largest gap heuristic from [11]

4.3.3 Combined heuristic

The heuristic from [11] begins in the same way as before: go to the first pick aisle containing
item, and then go through the last block containing items to be picked. The aisles are
visited by one, and they will be entered only once. During this method, a small dynamic
programming algorithm will be executed for all blocks.

Use the following notations: let k be the number of blocks, n is the number of aisles,
aij is the upper end of jth aisle in block i, and bij is the lower end of the jth aisle in
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block i, and finally denote the depot with d. It can be seen that bij = ai+1,j holds for
i = 1, 2, . . . , k− 1. Note that the distance between the middle of a cross aisle and the end
of the pick aisle ending here is considered as the part of the pick aisle.

In case of a fixed block, l denote the first pick aisle containing items, and let r denote
the last pick aisle, which contains item. Let Lj be the subpath visiting all pick locations
from l to j. One can distinguish two types of such subpaths: let Laj be a subpath which
ends on the back (or on the top) of the pick aisle j, and let Lbj be the subpath which
ends on the front (bottom) of the jth pick aisle. There are two transitions from aisle j− 1

to aisle j: behind (above) of the block (denoted by ta) or in front of (under) the block
(denoted by tb).

The picking of the items can be performed in four ways:

• Go through the subaisle to the next cross aisle (t1)

• Do not enter in the aisle at all (t2)

• Enter the aisle from the front of the block, and leave it in the same place (t3)

• Enter the aisle from the back of the block, and leave it in the same place (t4)

Obviously t2 is possible only if the current subaisle does not contain any item to be
picked. Denote Lj + tw the subpath which is constructed from Lj extending it with tw

where w = 1, . . . , 4, a, b. Finally denote the travelling time by c.
Using these notations, the algorithm can be described as follows:
First step. The current block is block i. If block i is the farthest block containing

any item, then start with the following subpaths: Lal is a subpath which starts at point
bil, ends at point ail and contains transition t1. Lbj is the subpath which starts at point
bil and ends here, too (this contains transition t3). If the block i is not the farthest block
containing at least one item, then the starting subpaths are the following. Lal starts at ail
and ends here (this contains transition t4). Lbl starts at point ail, ends at bil and contains
t1.

Second step. For each consecutive aisle j, determine the following values (l < j < r).
If j contains any items to be picked:

Laj =

Laj−1 + ta + t4, if c(Laj−1 + ta + t4) < c(Lbj−1 + tb + t1)

Lbj−1 + tb + t1, otherwise.
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Lbj =

Lbj−1 + tb + t3, if c(Lbj−1 + tb + t3) < c(Laj−1 + ta + t1)

Laj−1 + ta + t1, otherwise.

If aisle j does not contain any item:

Laj = Laj−1 + taL
b
j = Lbj−1 + tb.

Third step. We find the following for the last aisle (r) in the block containing at least
one item:

Lbr =

Lbr−1 + tb + t3, if c(Lbr−1 + tb + t3) < c(Lar−1 + ta + t1)

Lar−1 + ta + t1, otherwise,

because, we want to stay at the bottom of the block after travelling the block, so that we
can easily get through the next block. Then Lbr is used for the order picking tour.

The dynamic programming algorithm described above deals only with a single block.
Then we have to connect the algorithms running on different blocks, and so we can get
the whole order-picking tour as a result. We do this as follows.

1. Determine the first pick aisle and the farthest block containing at least one item.

2. Go to the first pick aisle, and go to the bottom of the farthest block determined in
the previous step. This block is called imin.

3. Let i be equal to imin

4. Check if block i contains any item to be picked and has not been collected in step 2.
If there are no more items to be picked in block i, then go to the next block on the
closest aisle, then GO TO 6. If block i contains any item to be picked, determine
the first and the last aisles (called l and r) containing at least one item to be picked
which has not been collected in step 2. Let jmin be the aisle l or r that one, which is
closer to the current position, and go there.

5. Apply the combined heuristic dynamic programming algorithm on block i. If jmin = l,
then add subpaths to the current route obtained from the dynamic programming al-
gorithm. If jmin = r, then reverse the subpaths obtained from dynamic programming
algorithm, and then add them to the current route. This means that aisles will be
visited not from left to right, but from right to left.
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6. If the current block is the last block closest to the depot, then return to the depot.
Otherwise i = i+ 1, and GO TO Step 4.

Note that this combined heuristic can further be improved. For example, we can return
to the depot after travelling the last block as soon as possible. Namely, if the vehicle travels
in the last block from left to right, then it will finish at the right of the last block, and
it has to travel to left to the depot, which is useless in terms of picking. Therefore the
algorithm can be modified so that jmin will be chosen in step 4 in a way, that the last
block will be travelled from right to left, thus the vehicle can get out from the block on
the left, closer to the depot.

Another improvement is to choose the route section is chosen more efficiently by trav-
elling through the aisle containing the first item, in step 2. Namely, it is not necessary
to travel through the whole distance of the first aisle, aisles can be changed depending
on how the items to be picked are located. It can be done by the time of reaching the
farthest block, the items on the first x aisles are collected, and they can be omitted by
latter phases of the algorithm. The combined heuristic containing improvement methods
will be referred as combined+, as it can be seen in [11].

4.3.4 Aisle-by-aisle

In the method presented in this section, the storage will be travelled by pick aisles instead
of blocks. Namely, all pick aisles will be entered only once, and the cross aisle will chosen,
which is best to go from a pick aisle to another. The principle of this method comes from
[15]. Denote M the number of pick aisles, and let N denote the number of internal cross
aisles. Let T be the length of the whole storage section of a pick aisle, so the length of
storage section between two cross aisles is L = T

N+1
. Let A be the width of a cross aisle,

and Km will be the number of items which has to be picked from each pick aisle, where
m = 1, 2, . . .M . Denote Xm(t) the location of item t in pick aisle m. (0 < Xm(t) < T ,
it increases from top to bottom, and t = 1, 2, . . . Km.) Denote X−m the item which can
be found in pick aisle m on the lowest position, and denote X+

m the item which is at
the top of the aisle. These are not defined if Km = 0. So X−m = maxt{Xm(t)}, and
X+
m = mint{Xm(t)}. Let Cm(i, j) be the whole vertical travel distance, which is travelled

if pick aisle m is entered on cross aisle i, all items are picked in this aisle, and then leave
the aisle on cross aisle j. B1m(i, j) is the length of the route which is travelled if pick aisle
m is entered on cross aisle i, and go to the item which can be found at the top. Similarly,
let B2m(i, j) be the length of route which must be stepped back to the item that can be
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found on the lowest position, before leaving on the cross aisle j. Namely:

B1m(i, j) =


0, if Km = 0

0, if X+
m ≥ min(iL, jL)

2
(

min(iL, jL)−X+
m + A(1

2
+ bmin(iL,jL)−X+

m

L
c)
)
, if X+

m < min(iL, jL),

and

B2m(i, j) =


0, if Km = 0

0, if X−m < max(iL, jL)

2
(

max(iL, jL)−X−m + A(1
2

+ bX
−
m−max(iL,jL)

L
c)
)
, if X−m ≥ max(iL, jL).

Denote the route fm(i) which has the minimal length, needed to pick items on aisles
1, 2, . . . ,m− 1,m, if the pick aisle m is entered on cross aisle i. Namely:

fm(i) = min
j
{Cm(i, j) + fm−1(j)},

where f1(i) = C1(i, N + 1). So to find the minimal length route, fM(N + 1) has to be
determined.

4.3.5 Conclusions

In [11], the authors gave a detailed numerical evaluation of heuristics described above.
During comparison, several cases have been examined. They differ from each other in
length and number of pick aisles and in the amount of items to be picked. It has been
observed, that S-shape heuristic practically never gives the best solution. The intuitive
reason for this is that, compared with combined heuristic, in S-shape heuristic the vehicle
always goes through the subaisle, which is entered, but combined heuristic always makes
a decision whether we should go through or return. It can also be observed that heuristic
combined+ gives almost always the best solution (compared to other heuristics).

To see the difference of the length of route obtained by heuristics, the following tables
are presented [11]. The first table in Figure 7 shows the case when there are two cross
aisles, and the table presented in Figure 8 demonstrates the case of four cross aisles.
The first three columns describe the warehouse layout. The remaining columns shows
heuristics, and the length of route obtained by the corresponding algorithm. In the last
column the optimum values are presented, too. These have been calculated by branch-and
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Figure 7: Length of tours getting by heuristics using 2 cross aisles. Datas are from [11]

Figure 8: Length of tours getting by heuristics using 4 cross aisles. Datas are from [11]

bound algorithm presented in [17]. Bold letters denote the best result obtained to the
corresponding case.

In [11] test cases can be seen for more cross aisles, and it can be observed that for more
than four cross aisles heuristic combined+ always gives the best solution.

But can these heuristics be really applied in practice? If the layout of pick and cross
aisles are similar to the one described above, it is not difficult to customize heuristics for a
actual storage. Namely, an alternative location of depot does not change the methods, is
easily-to-handle, if start location is not the same as the destination. Notice, the processes
described above, -except for aisle-by-aisle- start from top left corner of a rectangle, which
limits the items to be picked. The direction of travel is determined so that the blocks are
examined from top to bottom, so picking ends in a point close to depot. So, if depot is
placed in another corner, the case is analogous to the above, because blocks have to be
visited only in another sequence, for example from bottom to top. Visiting aisles can be
performed from right to left, so aisle-by-aisle can be changed logically.

The answer is not clear if depot is not located in the corner, but somewhere at the edge
of the warehouse. Recall that not the whole storage has to be visited during heuristics,
but also only the rectangle which bounds the items to be picked. The route can start for
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example from the corner of the rectangle which is the closest to the depot, and can end
in the other corner on the edge which is the closest to the depot, or vice versa. It is useful
to choose corner so that when the vehicle reaches the starting corner, it is able to pick
some items on the way. Namely, in the example described above where depot can be found
on the bottom left corner, it seems to be no difference between starting from the bottom
right or from the top left corner. But starting from the bottom right corner, the vehicle
travels through a cross aisle first, which is useless in terms of picking, and by starting the
heuristic there are no picked items yet. Starting from the top left corner, picking can be
started on the way to that corner, and it may happen that at the end of the algorithm the
vehicle does not have to travel through the whole cross aisle by returning to the depot.
(Namely, the "longer" route is preferred on aisle where picking can be performed, than on
such one, where not.)

5 Vehicle Routing Problem

Algorithms and heuristics so far are able to solve problems where only one vehicle is used,
and items to be picked are given in advance, which total weight does not exceed the
vehicle capacity. These were essentially special cases of TSP. In this section the problem
will be further generalized, and it will be examined, which methods should be used, if
more vehicles can be used to collect items where the total weight delivered by one vehicle
is limited. Vehicle Routing Problems deal with such questions, for the solution of which
many algorithmic methods have been developed. There is an extensive collection of these
in [12].

5.1 What is VRP?

Vehicle Routing Problems (VRP) deal with the question how to serve the demands of each
costumer by using a certain number of vehicles so that, the total length of routs traveling
by vehicles should be minimal. Namely, given one or more depot stations, which can be
used as a start or destination point of vehicles. Given the costumers, whose exact location
is known, and it is known what quantity of each product they need. In addition, a certain
number of vehicles is available, which can be used for serving the demands of costumers.
All vehicles have a capacity value, which gives what quantity fits on the vehicle from the
product to be served.

Many types of VRP can be distinguished. Most of the time these differ in that how
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many depots exist, whether it can be distinguished by points of departure and points of
arrival, how many types of vehicles can be used according to their capacity, and whether
a fixed number of vehicles is available, or this number can be changed. It means further
VRP types, if costumers can be visited only in a given time interval (called time windows),
or if during the way vehicles have to deal not only with serving, but also with collecting
products, too. (See more in [12].) The simplest form of VRP is called capacitated VRP
(CVRP), where there is only one central depot, all vehicles’ capacity are the same, and
the demands of costumers are given in advance.

Since the solution of VRP is closely related to TSP, the problem is NP-complete, which
means that there is no polynomial running time algorithm known for solving it. So there
have been many process and heuristic developed to get an approximation of the optimal
solution in relative short time.

In general case, VRP is handled so that, depot and costumers are represent with a
complete graph where vertices correspond to costumers and depot, and the weight of
edges means the distance of two points connected by it. In case of CVRP, the goal is to
find K circle (where K means the number of vehicles) in graph so that, all circles have to
contain the depot, all costumers are included in exactly one circle, all circles must have
the property that the total demand of costumers visiting by them does not exceed the
vehicle capacity, and the total length of circles has to be minimal.

5.2 VRP in a warehouse

During solving a warehouse management problem, it seems to be a good idea to consider
the problem as a VRP task. Since in the current problem there are more available vehicles,
with which locations are to be visited, and products are to be delivered, and these have to
be done so that, the total travel time has to be minimal. The difference is that, products
have to be not served, but also they have to be collected. But this is irrelevant for the
solution, because the amount of products to be served by a single vehicle is limited in
VRP, and the same limit can be used, if we perform picking instead of delivery.

So the map in VRP (namely the complete graph) is mapped now to the floor area of
the storage. Depots correspond to the places in the warehouse where forklifts are stored,
and where the picked products have to be delivered. Costumers in VRP correspond to
item locations in the warehouse, from which products have to be collected with vehicles.
The amount of products to be picked is known for all item location, which corresponds
to costumer demands in VRP. Forklifts have capacity too, so the total weight of products
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picked from item locations, which are visited by a single vehicle can not exceed the vehicle
capacity.

What other differences can be encountered when solving a warehouse management
problem? Obviously, we want to take advantage of the facility coming from the layout
of warehouse, which is described in section 4. In addition, parameters given in section 4
have to be taken into account. Since a more complex problem has to be solved, compared
with CVRP. Weight of items, and the capacity of vehicles, cannot be characterized by a
single value, because a product has width, height, depth and weight, too. All four of them
the vehicle capacity is given, namely multiple capacity constraints have to be determined
during picking. The vehicles used are not the same, they can differ in their capacity.
Vehicles start from different stations, which depends on their type, and they return not
necessarily here, so the destination places can depend on vehicle’s types too.

5.3 Examples for solving VRP in a warehouse

To solve VRP type problems, plenty of methods have been already developed. These
include heuristic solutions, and processes, which start by describing the problem as an IP
model, and try to solve this. In the following sections, some examples will be presented
how to apply these methods, if warehouse management problems are to be solved.

5.3.1 Branch and Price algorithm

In this section, a solution method will be described, which was inspired by the algorithm
from [18]. In the following an overall describing of the algorithm from [18] will be presented,
then this will be transformed into such a method, which can be applied for the solution
of the problem, which is described in section 2.

The article [18] gives an efficient solution method for Vehicle Routing with Demand
Allocation Problem (VRDAP). In this problem there is only one depot, and all vehicle
capacities have the same value (Q). The demand dk is given for all costumers k ∈ K, where
K denotes the set of costumers. Beside that the set of delivery sites S is given, too. The
task is to transport products to delivery sites using the vehicles, and to assign costumers
to delivery sites, in which they can receive their products in amount dk, which they need.
This has to be done that the total weight of products delivered by one vehicle should not
exceed the vehicle capacity Q, one delivery site has to be visited at most by one vehicle,
and to all costumers k should be assigned one delivery site s, in which they can receive
the whole amount of the required products. The objective is to minimize the total weight
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of routes travelled by vehicles and by costumers.
The article [18] describes the above problem as a set partitioning model, which is tried

to solve by the so-called Branch and Price algorithm. During the process, the optimum of
LP relaxation of the original problem will be found by using column generation method.
The main steps of the algorithm are the following:

1. An initial feasible solution is constructed, which gives an upper bound to the optimal
solution.

2. Solve the LP relaxation of the original problem with column generation, which gives
a lower bound to the optimal solution.

3. If the upper bound is equal to the lower bound, then STOP.

4. If the upper bound is not equal to the lower bound, branching will be performed on
the fractional values.

To describe the problem as a set partitioning model, use the following notations. Let
V be the maximal number of vehicles, which can be used, and let N = S∪{0} be, where 0

denotes the depot. The edges corresponding to delivery sites are E = {(i, j) : i, j ∈ N, i 6=
j}, and their cost is cij, and the edges corresponding to costumers are E ′ = {(k, j) : k ∈
K, j ∈ S}, and their cost is fij. Let H be the set of routes (or columns in IP model),
which are feasible tours, namely the total demand of costumers, which are assigned to the
delivery sites visiting by this tour does not exceed the vehicle capacity. Ph denotes the the
0-1 vector, which gives the costumers assigned to h ∈ H, and let Qh be such a 0-1 vector,
which gives the delivery sites assigned to the tour h ∈ H. Let ρh be the cost of the route
travelled by all costumers and vehicles in tour h. The variable corresponding to tour h will
be denoted as zh whose value is 1, if tour h is chosen in the solution, and 0 otherwise. So
the problem can be described as follows:∑

h∈H

P h
k zh = 1 ∀k = 1, . . . , |K| (1)∑

h∈H

Qh
i zh ≤ 1 ∀i = 1, . . . , |S| (2)∑

h∈H

zh = |V | (3)

z ∈ {0; 1} (4)

min
∑
h∈H

ρhzh (5)
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Now the second step of the process will be explained in detail, which is the solving
of LP problem by using column generation. To generate columns, the so-called Pricing
Subproblem will be invoked, by which routes can be constructed, whose reduced cost is
minimal. If one of these routes has negative cost, then that column will be inserted in LP,
which correspond to this route. If such a route cannot be found, then terminate with the
optimum solution.

The essence of the Pricing subproblem is that the routes to be constructed are not
treated together in a common IP model by many constraints corresponding to them,
but they will be determined one by one. Namely, an IP problem will be created whose
constraints apply to which delivery sites will be visited in a certain route, and which
costumers will be served by this. This will be performed so that not only the total weight
of used edges are to be minimized by the objective function, but the number of served
costumers are to be maximized, too. The corresponding variables can be added to the
objective function with negative notation.

The Pricing Subproblem is solved by dynamic programming algorithm. In the process
proposed by article [18], one exact dynamic programming algorithm and more heuristic
methods will be invoked. The goal of this is the improvement in the running time. Since,
if the column with negative reduced cost is obtained during the heuristic methods, then
the running of the algorithm is substantially faster, than it would be solved by the exact
method. Obviously, if none of the heuristic methods gives a column with negative cost,
then it must be found by the exact algorithm.

The substance of the exact dynamic programming algorithm is that the routes con-
structed so far are labelled, and by the extension of routes the labels are dynamic updated.
Before the algorithm a pre-processing method is performed whose goal is to except the
delivery sites and costumers, which would not yield a negative value in the reduced cost.

A label consists of the following: L = (Pl, Al, Cl, Ql) where Pl = (0, v1, . . . , vl) denotes
the set of delivery sites, which are visited by the current tour, Al = (∅, a1, . . . , al) denotes
the set of served costumers (ai is the set of costumers assigned to vi), Cl is the cost of the
route constructed so far, and Ql denotes the demand of costumers, which are served by
this. An L route is called feasible, if Ql ≤ Q,

⋂l
i=1 ai = ∅, and all delivery sites are visited

in Pl by exactly once. Let σl and χl be the set of delivery sites and costumers, which was
visited by L. Let σ̃l and χ̃l be the set of delivery sites and costumers, which is not included
by L, and cannot be inserted later, otherwise they would yield dominated labels. For all
labels L∗ 6= L we say that L∗ dominates L if the followings hold:
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1. Cl∗ ≤ Cl, namely the cost of L is not less than the cost of L∗.

2. Ql∗ ≤ Ql, namely the products delivered on route L take up not less space in the
vehicle than on the route L∗.

3. σl∗ ⊆ σl ∪ σ̃l és χl∗ ⊆ χl ∪ χ̃l, namely which delivery sites and costumers are visited
by L∗, these are visited by L, too, or it does not visit them later.

New labels are constructed by the existing labels by extending them. This will be
performed so that new delivery sites are added to the label of L, and a set of costumers
will be added to them. The assignment of costumers to a delivery site vl is performed so
that the subsets of costumers will be examined, which are not served so far, and whose total
demand is not too large. (Namely, it does not exceed the value Q−Ql.) All assignments of
a subset to vl yield a new label. In order to increase efficiency of the examine of subsets, the
set of possible costumers will be decreased by the removing of costumers, whose assignment
to vl would yield a dominated label. To do this, many methods can be applied, which are
now not discussed. (For details see [18].)

Returning to the original problem, it can be observed that it is a special case of the
VRDAP. So the solution idea described above can be utilized in the current problem,
which is described in 2. This can be done as follows. The locations of items, which are to
be collected, correspond to the delivery sites included in VRDAP. After this, the problem
can be seen as the assignment of costumers to delivery sites would already be performed,
so this part of the problem has not to be considered, only the appropriate amount of
products should be delivered, or more precisely collected. So the modelling of the problem
by set partitioning model can be performed similarly as in the VRDAP. The difference is
that the constraint (1) can be omitted, since the costumers assigned to delivery sites are
now not considered. In addition, the fact cannot be ignored that in the problem examined
now, the capacity of the vehicles are different, and they start and arrive in different places,
depending on their type. Therefore instead of creating the set of feasible tours H, the sets
H1, H2, . . . , Ht are to be constructed where Hi denotes the set of feasible tours according to
ith vehicle, and t denotes the number of vehicle types. Namely, the constraint (2) changes
as follows:

t∑
i=1

∑
hi∈H

Qh
i zh ≤ 1.

Instead of (3) more constraints have to be considered, since only a certain number of
vehicles is available from all vehicle types. If Vi denotes the amount, which can be used
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from vehicle type i, then the following constraints have to be inserted instead of (3):∑
h∈H1

zh ≤ |V1|, . . . ,
∑
h∈Ht

zh ≤ |Vt|.

The solving of Pricing Subproblem is to be changed similarly as above, too. In column
generation method the column with the smallest reduced cost is to be found regardless
of which feasible route corresponds to this according the vehicle type. A constraint corre-
sponding to the feasibility of the routes is included in the conditions of Pricing Subproblem,
which uses the vehicle capacity Q described in VRDAP. But in the current problem there
are more vehicle types with different capacities. Namely, if the Pricing Subproblem will
be described with Qi capacities where Qi denotes the capacity of vehicle i, then the re-
sult will be the route with the smallest reduced cost from the feasible routes according
to vehicle i. But the current problem is to find from all feasible routes that one whose
reduced cost is negative. So the Pricing Subproblem is to be solved starting with i = 1 for
all vehicle types, until a negative cost route is found for one type. If there is no such an i,
the algorithm terminates with the optimum.

5.3.2 Two-phase heuristics

For solving the CVRP problem, many heuristics have been developed, and a significant
part of these ones are the two-phase heuristics. The basic idea of the two-phase heuristics
is that they try to solve CVRP such that they part the problem into two subproblems. One
of them is that the costumers will be distributed into groups so that costumers belonging
to one group will be served by one vehicle. The other subproblem is to determine for all
groups, in which sequence the vehicle should visit the costumers, namely a TSP problem
will be solved for all vehicles.

In this thesis this type of heuristics is highlighted, because if this type of heuristics will
be chosen for solving warehouse management problems, then the techniques described in
section 4 and the heuristic methods given for VRP can be combined. It can be observed, if
in the first phase of the heuristic the groups of item locations are determined, which have
to be collected by a single vehicle, then the only remaining task is to solve TSP problem,
for all vehicles, and that problem is exactly the same, which have been already discussed.

To find a feasible solution of the examined problem, a heuristic developed for a CVRP
problem, the petal algorithm is analyzed, whose basic idea came from [19]. The main steps
of the petal algorithm are the following:
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1. The products are arranged according to their angle of rotation around the depot
station.

2. In the ordered sequence of products the ith item will be assigned to the vehicle and
then the next items after product i will be examined in turn, and we will find the
latest of them, which can already fit on the vehicle. Let j be the first product, which
cannot fit on the vehicle.

3. For all i, store the products between items i and k where i ≤ k < j (including i and
k, too). These will be called feasible petals.

4. Feasible petals will be represented by a graph. All products correspond to a vertex
in the graph. Vertices will be placed in a circle. Two vertices i and j are connected
if and only if i, . . . , j − 1 products fit on the vehicle together. The cost of an edge is
the length of the cheapest TSP tour between the corresponding products.

5. Designate a vertex k, which will be splitted: from ks all arcs start, which have k as a
source point, and in kd all arcs arrive, which have k as target. Then find a minimum
length route between ks and kd. So a petal solution can be obtained. Then the vertex
k is to find, for which this petal solution is the cheapest.

6. It can be seen, if there is no arc between point i and i + j, then the optimal petal
solution can be obtained from solving i+ j − 1 minimal path problem. (See more in
[19])

Obviously the process has to be changed so that it should give a feasible solution for
the problem described in section 2. In the first steps of the petal algorithm, it can be
decisive, which sequence of products will be chosen for running the algorithm. Probably
the start and destination places of vehicles are not in the centre of the warehouse, but it
can be conjectured if two products are placed near each other, then they will be picked by
different vehicle with low possibility. So intuitively it can be thought that initially such a
sequence should be chosen, which is obtained by Nearest Neighbor heuristic for the TSP
problem. At this point a thought arises, whether a heuristic gives a better solution for
TSP, then the sequence corresponding to them would yield a better solution for problem
examined now. Therefore finding the best sequence can give a further research direction,
which can be answered by testing the algorithm.

The next question is how to handle the case, if the start and destination points of the
vehicle are different. This is not relevant by searching for feasible petals in petal algorithm,
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only the calculation of the cost of the arcs corresponding to petals have to be changed,
because the length of routes travelled by each vehicle changes. Therefore only the TSP
heuristic used for products including by each petal has to be changed. For example, if we
chose the Farthest Insertion heuristic for TSP, in which a circle tour is to be found (since
the start and destination point are the same in CVRP), then this heuristic can be used
now, if for a circle tour is searched where the start and destination points are placed next
to each other. This can be reached so that the algorithm is initialized by a tour consisting
only these two points, and by inserting the next point, a constraint regulates that the new
point cannot be inserted between the start and destination point.

Finally, it will be discussed how to treat the case, if more types of vehicle are used.
To do this, it has to be determined for all vehicle types, which petals are feasible. This
can be represented in the graph so that for all feasible petals correspond an arc, whose
color denotes, for which vehicle type it is a feasible petal. Similarly to the original petal
algorithm, minimal length routes are to be found in the graph. But now it should be done
so that the minimal route has to be chosen only from the feasible routes. We call a route
feasible, if it uses from all colors no more as a upper bound given in advance. This upper
bound means what amount is available from each vehicle types. Obviously such a solution
is to be found, which uses no more vehicle from a type than it is available. To do this, a
basic Dijkstra algorithm is run on the graph with the addition that if a minimal route to
vertex v is found, then it has to be fixed how much arcs are used from each color in this
route. If it has used from a color (for example red) a maximal amount, then the red arcs
will be removed from the graph, which are incident to v and which are different from arcs
on which vertex v is reached. So it can be seen that a minimal route leading to a given
point is feasible, if it exists.

But why is it a minimal route between the feasible routes? Obviously, if the route
leading to a given vertex was feasible in the original graph, then the changed Dijkstra
algorithm will find this route, too. By removing an arc uv, a feasible minimal route cannot
be "made ruined", since all routes using arc uv goes through u. If the arc uv was removed,
this was the reason for that all arcs are already used from the color of uv, if u was reached.
In the minimal length routes using arc uv, the subpaths before u are also minimal, and all
minimal length routes using uv use of all arcs with the same color as uv before reaching
u. Therefore non of the minimal length routes using uv can be feasible. Finally, it follows
from the correctness of Dijkstra algorithm that a route leading to a given point, which is
obtained by the algorithm, is minimal in the truncated graph.
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6 Batching algorithms

As described in Chapter 2, items to be picked are given in orders as the input of the
problem to be solved. An order is a fixed list of items to be picked. The set of orders to be
collected during a planning horizon is known in advance. During picking, orders need to be
considered, which means that the items contained by orders cannot be handled together
in bulk, and consider only this great set. Picking has to be performed so that, by handing
down the picked items, bags determined by orders should be collected easily. Namely, if
items fit on a single vehicle, it is preferred to collect them by a single vehicle.

Method given for VRP described above can be applicable, if items from one order do
not fit on a single vehicle. In such case the input of the problem, namely the set of items
to be picked, is the content of a actual order, which should be collected by more vehicles.
In this section the case will be examined when contents of more orders can fit on a single
vehicle. The goal is to group orders, and assign them to vehicles, namely to determine
for each vehicle, which of the orders should be collected. Such a group of orders will be
called as batch. Constructing of batches has to be done so, that the total length of routes
traveling by vehicles has to be minimal.

In the next, suppose that all orders are small enough to fit on a single vehicle. Each
order can be included by exactly one batch, and each batch can contain only so much order
to the total content of which does not exceed the vehicle capacity. In the following some
heuristic solutions will be presented, which can support the solution of batching problem.

6.1 First-Come, First-Served heuristic

The Fist-Come, First-Served heuristic (FCFS) from [20] is a naive batching algorithm.
The implementation of this is easy, and it can be used for measure of the quality of other
heuristics.

The heuristic is the following: sort the first n orders into a batch so, that the weight of
batch is close enough to the upper limit of batches. Then take the next m order, and sort
them into batch so, that the weight of batch is close enough to the upper limit of batches.
This will be repeated, until all orders are in a batch.

6.2 2-Dimensional spacefilling curve

The basic idea of the heuristic described in [20] comes from the article [21]. [21] presents
a heuristic process to solve TSP. The basis of the method is the creation of a continuous
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mapping between the points of a unit circle, and the internal points of a unit square. This
mapping will be called spacefilling curve. The internal points of the unit square will be
visited in such sequence, in which the corresponding points are in the unit circle.

Let the point of the circle be clockwise: C = {ϑ | 0 ≤ ϑ < 1}. And let the internal
points of the unit square be: S = {(x; y) | 0 ≤ x ≤ 1; 0 ≤ y ≤ 1}. Let Ψ be a continuous
mapping from C to S. This mapping comes from Peano and Hilbert from 1890, see more
in [22]. It is claimed for Ψ that limϑ→1 Ψ(ϑ) = Ψ(0). So if ϑ goes from 0 to 1, Ψ(ϑ) makes
a tour on points of S. Namely, if there are given N points in S, which have to be visited,
this can be done in such sequence, in which they are in tour Ψ(ϑ). So they can be sorted
based on the inverse of Ψ.

Ψ has to be chosen so that it must have the following properties:

(P1) The inverse of Ψ has to be easily calculated. Namely, if x and y have k bit binary
representation, then ϑ, which satisfies (x, y) = Ψ(ϑ), and has to be calculated from
O(k) operations.

(P2) There is a concave function f on interval [0, 1] that

– f(0) = 0,

– f(∆) = f(1−∆), and

– ‖Ψ(ϑ)−Ψ(ϑ′)‖ ≤ f (|ϑ− ϑ′|),

where ‖ · ‖ denotes the metric on S that the tour should be minimized.

The objective is to solve the problem on C instead of S. Using the properties described
above, it can be seen that the following statements hold (see more in [21]).

Theorem 6.1 (Triangular inequality). In case of ϑ1 ≤ ϑ2 ≤ ϑ3

f(ϑ2 − ϑ1) + f(ϑ3 − ϑ2) ≥ f(ϑ3 − ϑ1).

Theorem 6.2 (Crossing elimination). In case of ϑ1 ≤ ϑ2 ≤ ϑ3ϑ4

1. f(ϑ3 − ϑ1) + f(ϑ4 − ϑ2) ≥ f(ϑ2 − ϑ1) + f(ϑ4 − ϑ3)

2. f(ϑ3 − ϑ1) + f(ϑ4 − ϑ2) ≥ f(ϑ3 − ϑ2) + f(ϑ4 − ϑ1).

So from this properties follows that the optimal tour on C according to metric f can
be obtained, if the points are visited in a row from the smallest ϑ value to the largest.
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The spacfilling curve will be constructed similarly to the Sierpinski curve in a recursive
way. The square will be partitioned in four part, and all of them will be full with a curve,
which will be oriented so that they form a circle, see in Figure 9. Intuitively it will be
appropriate, because if a point has been visited, then their neighbours will be visited, too,
before going to the next region.

Figure 9: Construct spacfeilling curve from [21]

The corners of the square can be denoted as q0 = (0, 0); q1 = (0, 1); q2 = (1, 1);
q3 = (1, 0). The curve crawls around the internal points of the square so that Ψ(ϑ) covers
the subsquares, which include points qi. The sequence of the points is Ψ

(
i
4

)
= qi, i =

0, 1, 2, 3, if |ϑ − i
4
| ≤ 1

8
, and in case i = 0, |ϑ − i

4
| ≥ 7

8
. The curve has to be oriented in

all squares so that it starts from the center of S, and returns here, too. So Psi can be
determined as follows:

Ψ(ϑ) =
1

2

[
Ψ

({
4ϑ+

6− i
4

})
+ qi

] ∣∣∣∣∣
i=b4ϑ+ 1

2
cmod4

,

where {·} denotes the fractional part, and b·c denotes the floor. So the set of point on S
are to be visited by using spacefilling curve, which can be done by evaluating of Ψ−1.

The idea from [20] is that the spacefilling curve method summarized above can be used
to create a batching algorithm. This can work intuitively, because points whom ϑ values
are close enough to each other are located in the warehouse close to each other, too, so it
can be used to determine a batching. Namely, products are proposed collecting together,
which can be found relatively close to each other, so hopefully the vehicle has not to travel
the whole warehouse.

Namely, the algorithm can be described as follows:

Step 1. Determine ϑ values for each item (this will be called as item ϑ values).

Step 2. For all orders determine locations whom have the smallest and larges ϑ value.
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Step 3. For all item ϑ values of each order determine the smallest and the largest one. These
two values are considered as coordinates of a point, and the ϑ value of this point is
to be determined (this will be called as order ϑ values).

Step 4. Order the orders according there ϑ values in increasing sequence.

Step 5. According to the sequence obtained by Step 4, orders can be sorted in batches, as it
was done in First-Come, First-Served heuristic.

6.3 4-Dimensional spacefilling curve

An improved version of method described above is expounded in [20], too, which is called
4-Dimensional spacefilling curve heuristic. This differ from the previous method that the
spacefilling curve maps the points from four dimensional space to the unit circle (see more
in [23]). This can be used, if the minimal and maximal x and y points are determined from
the coordinates of items in all orders, denote them as xmin, ymin, xmax, ymax. In this case
the rectangle determined by points (xmin, ymin) and (xmax, ymax) includes all items from
the order. By using four dimensional mapping method calculate the ϑ values of points
(xmin, ymin, xmax, ymax), this number will be the order ϑ value of the order. So the same
process can be used as described in two dimensional case.

6.4 Sequential minimum distance heuristic

This heuristic, which comes from [20], based on the definition of the distance between two
orders. Let (xim, yim) be the coordinates of the item i in order m. Furthermore:

Limn = min
j

[
(xim − xjn)2 + (yim − yjn)2

] 1
2 .

Limn denotes the distance between the i. item of the order m, and the item from order n,
which is closest to it. Define the distance between order m and order n as

d(m,n) =
∑
i

Limn.

Such a definition of the distance is not necessarily unique, and not necessarily symmetric.
Namely, d(m,n) 6= d(n,m) can occur.

To define the distance of orders it is another possible way, if there will be only measured
that how much has to be travelled on cross aisles. The definition of distance in such a way
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promotes creation of such batches, in which products from same pick aisles will be included
in one tour. In this case define:

Limn = min
j
|aim − ajn|.

The value of d(m,n) can be defined in the same way described above.
After selecting, which distance definition will be applied, the following algorithm can

be used:

Step 1. Take the first order, it will be the "seed" of the first batch.

Step 2. Calculate the distance of each order and the seed.

Step 3. Orders, which are closest to the seed, will be inserted into the batch. So much orders
can be inserted that the capacity of the batch should not be exceeded.

Step 4. From the remaining orders choose a seed for the next batch, and GO TO Step 2. If
all orders are grouped in batches, then STOP.

6.5 Order batching heuristic

The next process proposed by [24] uses the idea of the heuristic saving algorithm of Clarke
and Wright from [25]. The saving algorithm is developed for VRP. Tha basic idea of this
is that it is initialized by many short tours (namely all vehicles visit only one costumer,
and return to the depot), and it examines in all steps, which two short tours are worthy
to connect, and connect them. So if two subtours can be connected (namely capacity
constraints are not violated), then that one has to be connected from these pairs of tours,
which results the shortest tour.

Let Aj be the set of pick aisles, which are to be visited in order to collect items from
order j. Suppose that items are sorted in an order in such a sequence that the distance
of them from the depot is monotone increasing. Suppose that items are collected in "S"
shape, and there are only two cross aisles (front and back).

A pick aisle is to be travelled, if it contains at least one item, which is included by one
order, whose content is to be picked in the current tour. Let L be the length of the pick
aisle, so the length of the route, which has to be travelled to collect order j, is L|Aj|+ 2bj,
where bj denotes the distance of the farthest pick aisle and the depot.

If the content of orders i and j are to be picked, then treat the items mixed together,
and sort them in increasing order starting from the depot. By merging orders i and j,

36



the distance travelled has grown by the number of aisles to be visited compared collecting
order i, and i and j together. This difference is to be minimized. If Ai ⊆ Aj, then there
are no aisles, which have to be added to order j. The distance of two orders can be defined
as follows (called minimum additional aisle distance):

sij = min
{
|(Ai ∪ Aj)\Ai|, |(Ai ∪ Aj)\Aj|

}
.

Another way to define the distance is the principle of "centre-of-gravity", which comes
from Golden 1987 [26]. Define the gravity centre of order i as follows:

gi =
∑
k∈I

ak
I
,

where I denotes the list of items contained by order i, and ak denotes the index of pick
aisle, which contains item k. The distance between orders i and j can be defined as follows:

sij = gi − gj.

Each distance definition has that property if the items of two orders are scattered, then
the distance of them is greater, and it is smaller, if items of the orders can be found close
to each other.

The heuristic algorithm can be described as follows:

Step 1. Initially each order is contained by exactly one tour, namely it is supposed that
all orders are collected in different turn. B denotes the set of orders. Calculate
each sij value according to one distance definition for all i = 1, 2, . . . , |B| − 1 and
j = i+ 1, i+ 2, . . . , |B|. Then GO TO Step 3.

Step 2. Evaluate sij′ according to one distance definition for all i ∈ B−{j′} where j′ denoted
the large order obtained in Step 4.

Step 3. Let i and j be the pair of orders, which fulfills the constraint wi + wj ≤ C, and
between pairs fulfilling this, the value of sij is minimal. Here wi denotes the weight
of the order i, and C denotes the capacity of the vehicle. If there are more minimum,
the pair of orders has to be chosen as i and j, which is equal to the following
maximum value:

max{wi + wj | (i, j) is minimal between pairs, where wi + wj ≤ C holds}.
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Step 4. If there is no such a i and j pair, then STOP. Otherwise connect i and j as a larger
j′ batch. Expand the set B with j′, and remove i and j from this. If wj = C, then
GO TO Step 3, namely j′ tour is finished. Otherwise wj < C, and in such a case j′

is still a subtour, and GO TO Step 2.

Note that if in step 3 the minimum value is taken on more pairs, then the process
described above is recommended, because if the order with smaller weight is added to the
batch before the larger one, then the larger can not be added to some batch easily later.
Namely, in the algorithm, if an order is classified to one batch, then it cannot be taken
out later.

6.6 Conclusions

To compare the heuristics described above, Gibson and Sharp performed experiments,
whom results can be found in [20]. This does not include the Order batching heuristic,
namely it is developed later by Rosewein. To test the latter heuristic, experiments have
been performed, too, whom results can be found in [24]. During these tests the Order
batching heuristic have been compared essentially with the heuristics proposed bay Gibson
and Sharp.

It is clear that by comparing batching heuristics, more parameters play a role, not only
the heuristic, which have been chosen. Since the goal is to create such batches that the
total length of travelled tour needed to collect all items is minimal, it is necessary to treat
TSP heuristics with batching heuristics together during experiments. In fact, according
to [20] a lot more parameters play a role in what results can be obtained. In this article
Gibson and Sharp took into account the following parameters:

1. Batching heuristic

2. Travel metric: it plays a role in solution of TSP. During experiments more metrics
have been applied to measure the distance between two items:

• Euclidean distance: dE = [(x1 − x2)2 + (y1 − y2)2]
1
2 (it is rarely used in ware-

houses).

• Rectilinear distance: dR = |x1 − x2|+ |y1 − y2|.

• Chebyshev distance: dC = max
{
|x1 − x2|, |y1 − y2|

}
.
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3. Storage region representation: there are two different cases. The items to be picked
are in a continuous way located anywhere, which yield an infinite number of possible
item locations, or the items to be picked can be placed only on finite number of item
locations, which are known in advance.

4. Item location assignment: it is the fixing of information, with what probability can
be found items to be picked on the item locations. This probability distribution can
be uniform or arbitrary skewed.

5. Fixed or variable number of items on one order: in case of fixed number of items all
orders include the same number of them. In case of variable number of items it was
assumed during experiments that items follow positive geometric distribution.

6. Number of orders

7. Number of replications to miminize random bias.

During experiments it turned out that FCFS heuristic does not result essential improve-
ment in length of tours. Using aisle travel metrics and uniform item location assignment,
it performs the worst solutions. In case of skewed distribution, which is given by [20],
significant improvements can be achieved (according to experience 15-19%). But the ap-
plication of Spacefilling curve and Sequential minimum distance heuristics resulted a more
remarkable improvement in case of skewed distribution. (This can be result even 27-44%
improvement in case of skewed distribution, see more in [20].)

In [24] the comparison of Order batching heuristic with heuristics of Gibson and Sharp
has been performed. Here it was assumed after constructing batching that the aisles are in
"S" shape travelled, so the comparing of obtained tours can be performed by the number
of aisles, which has been travelled. The length of routes travelled on cross aisles was
separately observed, namely it is the distance between the farthest visited aisle, and back
to the depot, and this value was kept count for all obtained tour, which supported the
comparison.

It was observed, what distance metric should be used to get a better performance of
the Order batching heuristic. According to experiments it turned out that more shorter
tours can be obtained by using minimum additional aisle distance, in fact by using the
principle centre of gravity Order batching heuristic gives no better solutions in practice
than heuristics of Gibson ans Sharp. The table in Figure 10 is trying to show the difference
between Order batching heuristic and the heuristics from Gibson and Sharp, which can be
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experienced. The table summarizes the average of the results, concerning to the obtained
picking tours, the number of travelled pick aisles, the distance travelled on cross aisles,
and the running times of the CPU.

Figure 10: Comparison of Order batching (OB) and Gibson and Sharp heuristics (GS)
from [24]

7 Replenishment methods

As it has already been mentioned in section 2, the problem to be solved consists not only
of the carrying out of picking in the warehouse using the appropriate methods, but taking
care of the storage replenishment. To do this, a reserve storage area is available, and a
forward area where picking can be performed and, which has to be replenished from the
reserve area.

Logically a replenishment procedure is appropriate, if during picking no product will be
out of stock, namely no such case occurs that at the moment of performing picking, in which
the vehicle has just reached the item location, where there are not enough products on the
shelf, therefore the vehicle cannot pick the needed amount. So the precise harmonization
of the picking and replenishment procedures are indispensable, and the appropriate timing
of replenishment is also necessary. But even if the picking is precisely planned, it cannot
be determined exactly, when each vehicle will reach a given item location, namely what is
the moment of time, for which replenishment has to be performed. The reason of this is
that the vehicles are leaded by peoples, which results unpredictability in speed of vehicles
and in time of the departure, and the probability of mistakes cannot be neglected. In
addition, applying the methods described above the case of congestion cannot be excepted.
This is the case when more vehicles reach the same location in the same time, therefore
picking cannot be performed in the planned time, because vehicles have to wait for each
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other. Therefore the strategy of harmonisation picking and replenishment has to be chosen
appropriately, depending on what are the business needs, and what kind of information is
available.

If from business aspect it is required that stock out (namely 0-pick) can never occur,
then it seems the best solution to perform picking and replenishment in waves. This means
that time intervals (for example an hour long) will be determined so that in one hour only
picking can be performed in forward area, and in the other hour only replenishment will
be executed. So the picking procedures performed in an hour can be planned so that at
most so many items should be picked in one wave, which can fit on a shelf. Obviously the
dividing of picking and replenishment procedures in waves can significantly increase the
total time of picking, since picking process must be again and again stopped in order to
execute replenishment. So it is important to make effort to optimize the replenishment
processes. In case of such problems the one objective can be to perform replenishment as
soon as possible in order to minimize the length of time period breaking of the picking
procedure. Another goal can be to increase efficiency of replenishment, so picking should
be only rarely interrupted, namely such an amount should be delivered to shelves, which
is enough to increase the length of picking period.

If because of business aspects using waves cannot be allowed, since picking process
cannot be interrupted, it is necessary to execute picking and replenishment in the same
time. But in this case the probability of 0-picks will be positive because of arguments
described above. In this method the objective can be to perform replenishment so that
the expected value of number of 0-picks should be minimal. For this, and for case of using
waves, examples will be presented in the next sections.

7.1 Storage Replenishment Problem

In this section a method is proposed for solving the problem, when picking and replen-
ishment are in waves performed. For the time of replenishment an upper limit can be
determined, which has to be observed, and beside that the travelling costs should be mini-
mal. The Storage Replenishment Problem (SRP) deals with two questions: when and how
many should be replenished from each item, if it has to be available in the next wave, and
what ways the vehicles should travel during replenishment.

The article [27] deals with the solution of SRP. It assumes that only one vehicle is used
for replenishment, which does not have capacity, and the initial inventory levels in forward
and reserved storage area and the amounts to be picked from each item in a given wave
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are known in advance, except for the layout of the storage, the location, weight and size
of items. The objective is to minimize the total travel time. SRP is an NP-hard problem,
whom proof can be found in [27]. Because of NP-hardness the computational time can
significantly increase, if the size of the problem become large, therefore it is recommended
to search heuristic solutions.

The heuristic proposed by [27] is the A Priori Route-Based Heuristic. The first step
of heuristic is the constructing of a tour so that it can be seen in [13], and was presented
in section 4, or it can be obtained by heuristic way based on [16]. The depot vertex
corresponds to the place in the warehouse where the replenishment starts, and where the
vehicle arrives after replenishment (namely the place where forward area can be reached
from reserved area). After constructing the a priori route, fix the sequence of the items
to be picked according to this. For all items i, the sets αi and βi can be defined where αi
contains items, which precede i on the a priori route, and βi contains items, which follow
i on this route.

In the following it will be tried to answer the question, which items should be replen-
ished in each wave. Obviously, if it is fixed when and what should be replenished, then
the only remaining task is to find the shortest path to load this.

Use the following notations:

• M : set of item locations

• M ′ = M ∪ v0 where v0 denotes the depot vertex

• T : set of waves

• T ′ = T ∪ {|T |+ 1}

• T ∗ = T ∪ {0}

• cij: the travel time needed to go from i ∈ M ′ to j ∈ M ′. It contains the time of
replenishment, too.

• pit: the amount of products i ∈ M , which arrives to reserve storage area in wave
t ∈ T .

• bikt: the amount of product i ∈ M to be delivered in wave t ∈ T ′ to shelves, if the
last replenishment was in wave k ∈ T ∗ performed.

• rit: the amount of product i ∈M , which has to be picked in wave t ∈ T .

42



• πit: the first wave for i ∈M , for which the demand between πit and t can be satisfied.

• µik: tha last wave for i ∈M , whom demand can be satisfied from wave k ∈ T .

• C: time limit for all waves.

• Ii1: initial inventory level from product i ∈M in forward strage area.

• I ′i1: initial inventory level from product i ∈M in reserve storage area.

Use the following decision variables:

• zit: binary variable, which gives whether a location i ∈ M ′ will be visited in wave
t ∈ T .

• ŷtit: binary variable, which gives whether a location j ∈ M ′ follows the location
i ∈M ′ on the route for wave t ∈ T .

• Iit: the amount of product i ∈M stored in forward area in wave t ∈ T ′.

• I ′it: the amount of product i ∈M stored in reserve storage area in wave t ∈ T ′.

• wikt: binary variable, which gives whether product i ∈ M is replenished in wave
t ∈ T ′, if the last replenishment was performed in wave k (where πit ≤ k ≤ t− 1).

If the amount of product i currently stored in forward area (order-up-to level) is denoted
by Ui, then the values of bikt satisfies the following equations:

bi0t = Ui − Ii1 +
t−1∑
j=1

rij, (6)

bikt =
t−1∑
j=k

rij for all k ∈ T, (7)

and the values of πit and µkt can be described as follows:

πit = max
0≤k≤t−1

{k : bikt ≤ Ui}, (8)

µkt = max
k+1≤t≤|T |+1

{t : bikt ≤ Ui} (9)

For a fixed item i according to values wikt can be determined, in which waves the
product was replenished. In fact, the possibilities when the item i can be replenished,
can be represented by a graph. The vertices of a graph correspond to each wave, and the
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vertex l is connected by an edge to vertex n (where l < n), if it is possible that item i

was replenished in wave n, and before it, it was replenished last in wave l. So the edge
connecting vertices l and n corresponds to variable wiln. The fact, whether there is an
edge between l and n, depends on the values of πin and µil. The replenishment strategy
of item i, namely in which waves i will be replenished, can be represented in the graph
as a route between the 0th and last waves. The Figure 11 shows an example for a graph
representation coming from [27] where the initial inventory level from item i is 20 units,
the capacity of shelves is 45 units, and 20 units will be picked in every waves.

Figure 11: Example for graph representation of replenishment item i from [27]

To determine, which products should be replenished in each wave, the following prob-
lem should be solved.

min
∑
i∈M ′

∑
j∈M ′

∑
t∈T

cij ŷ
t
ij (10)

such that I ′i,t+1 = I ′it + pit −
t−1∑
k=πit

biktwikt ∀i ∈M, t ∈ T (11)

I ′it ≥
t−1∑
k=πit

biktwikt ∀i ∈M, t ∈ T (12)

Ii,t+1 = Iit +
t−1∑
k=πit

biktwikt − rit ∀i ∈M, t ∈ T (13)

µi0∑
k=1

wi0k = 1 ∀i ∈M (14)

µit∑
k=t+1

witk −
t−1∑
k=πit

wikt = 0 ∀i ∈M, t ∈ T (15)
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|T |∑
k=πit

wi,k,|T |+1 = 1 ∀i ∈M (16)

t−1∑
k=πit

wikt = zit ∀i ∈M, t ∈ T (17)

zit ≤ z0t ∀i ∈M, t ∈ T (18)∑
j∈αi

ŷtij = zit ∀i ∈M ′, t ∈ T (19)

∑
j∈βi

ŷtji = zit ∀i ∈M ′, t ∈ T (20)

∑
i∈M ′

∑
j∈M ′

cij ŷ
t
ij ≤ C ∀t ∈ T (21)

wikt ∈ {0; 1} ∀i ∈M, t ∈ T ′, πit ≤ k ≤ t− 1 (22)

ŷtij ∈ {0; 1} ∀i ∈M ′, j ∈M ′, t ∈ T (23)

zit ∈ {0; 1} ∀i ∈M ′, t ∈ T (24)

Iit, I
′
it ≥ 0 ∀i ∈M, t ∈ T (25)

The value cij ŷtij included in expression 10 gives the cost of the route between items i
and j, provided that they follow each other in the solution. The objective is to minimize
the total length of travelled route during replenishment, which is expressed by 10. The
condition 11 fixed that the amount of item i stored in reserve storage area after wave
t + 1 can be obtained, if the arriving amount in reserved storage area in wave t is added
to the amount stored after wave t, and the value is subtracted, which was delivered after
wave t. The constraint 12 requires the availability of products in reserved storage area
in all waves, which has to be delivered to forward storage area. Because of 13 so many
products will be delivered into the forward storage area from item i for wave t, which are
enough to perform picking in wave t. The constraints 14, 15 and 16 regulate that values
wikt indeed give the loading strategies of the ith item, namely the variables wikt with value
of 1 determine a route in graph representation described above, which starts from wave 0,
and ends at the last wave. The values of variables zit should be harmonized to this, which
is required by 17 and 18. In the case, where the item i is visited in wave t, exactly one item
appears before and after i in the sequence of visiting, this is described by constraints 19
and 20. Finally 21 corresponds to observe time limits of the wave, and constraints 22-25
regulate the possible values of variables.

The values of wikt can be determined by using the model described above, namely
considering the constraints it can be decided, which edges of the graph will be used. After
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determining, which items will be replenished in each wave, the only remaining task is to
find the routes travelled by vehicles, which can be done according to some method from
section 4.

According to [27] the process described above ran on more cases, which were different
in the applied heuristic used for constructing a priori route, in the size of the problem, in
the probabilities whether an item is included by an order (it can be uniform or skewed),
and in the distribution of waves (namely how many days are included by the planning
horizon, and in how many waves a day is divided). The test cases came from articles [28]
and [29]. The running time of the algorithm stayed under 5 minutes in all cases on a
computer used nowadays (for the details see [27]). The results of comparing the test cases
are presented in Figure 12.

Figure 12: Experimental differences between instances from [27]

The examination, how this method can be applied for the problem described in section
2, will be discussed in section 8.

7.2 Prioritizing replenishment

In this section the case will be discussed, when the replenishment should be performed par-
allel with picking process, namely picking will be not stopped for the sake of replenishment.
In [30] suggestions can be found, in which sequence the products should be replenished to
minimize the number of 0-picks.

The article [30] assumes that only one "wave" is examined, namely the whole planning
horizon. This can be for example one day. About planning horizon only one assumption is
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made, namely the orders, which have to be picked in this period, and the items included
by them are known, so it can be determined in advance, how many pieces from each item
will be picked in that period. However it is not supposed that so many products fit on the
shelves in the forward storage area, that picking can be performed. In fact it cannot be
determined in advance, which product in exactly what time will be run out on the shelves.

For this type of problems the (S, s) rule can be applied, which means that a product
will be replenished, if the amount on the shelves has decreased under value s, and in this
case the shelf will be replenished to S pieces of items (S can be meant as the capacity
of shelves). To do this, a warehouse management system is needed, which automatically
gives actually reports about the inventory levels of products. So if it can be detected that
the inventory level has decreased under s, then this item will be put on the top of the
list to be replenished, and it will be replenished according to principle first-in-first-out.
However applying this rule is not enough to avoid 0-picks (although by proper determining
S and s can increase the chances), especially in cases, from which a greater amount will
be picked often. Besides the fact, that a product will run out of stock sooner or later, it
can be easily noted, because the currently inventory level of warehouse and the amounts
to be picked in the current period are already known. So intuitively it can be seen as a
good solution, if these items are "out of turn" replenished, and such replenishments have
to be well prioritized.

In the following, as "replenishment order" will be called the replenishment of one
item in one time. The products will be called "emergency products", from which it was
determined that they will run out of stock in the planning horizon, these items have to
be replenished urgently. Replenishment orders can be determined continuously, according
to the current states, or they can be determined for all planning horizons periodically,
namely they can be fixed for the examined time period, and cannot be changed later. In
the continuous case the probability of 0-picks is less, however this case can be implemented
harder, and it would often cause changes in replenishment processes, which yield more
stress for the workers. So in the following, cases will be examined, in which priorities can
be determined in advance.

In that case, if it can be known what amount will be replenished in each product in
the next period, and it is known in what time each replenishment will be performed, then
the problem in which priorities have to be assigned to emergency product is the same with
that one where emergency products have to be assigned to each replenishment (since the
most urgent product has to be replenished first, the second most urgent product has to
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be replenished second time, etc.)
In the next the following notations are used:

• T : length of planning horizon,

• H: set of emergency products. The element are: h ∈ {1, 2, . . . , |H|},

• Nh: the number of picking orders, which includes product h,

• Πh: the set containing all possible sequences, in any way the Nh orders containing h
can be collected. This means Nn! opportunities, and an element of the set is: πh.

• Qh(k): The requested amount of product h, if the product is picked for the kth time
(1 ≤ k ≤ Nh). Obviously this depends on value πh.

• Sh(k): The inventory level of product h, before it is picked for the kth time. Obviously
this depends on value πh.

• I: set of replenishment orders, and its elements: i ∈ {1, 2, . . . , |I|}.

• ti: the time at which the replenishment order i is performed.

• Xh(ti): the number of 0-picks applied to product h, if product h is replenished at
time ti.

• fhi = E(Xh(ti)): the expected value of number of 0-picks applied to product h.

• Yh(ti): The number of picks from product h before time ti, including 0-picks, too.

In addition, the following decision variable is used:

zhi =

1, if emergency product h is is assigned to replenishment order i

0, otherwise

In the following some proposals will be presented for prioritizing emergency products,
which came from [30].
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7.2.1 Stock-Needs Rule

During this process priorities will be assigned to products according to the following: the
lower the inventory level of the product on the shelve is compared to the further demands,
the larger the possibility of 0-picks is. So the value

stock
needs

=
Sh(1)∑Nh

k=1Qh(k)

is used for determining priorities of emergency products. The product, for which the value
of the fraction is the smallest, gets the largest priority, the second smallest gets the second
largest priority, etc. Priorities are determined for the planning horizon, and they cannot
be changed later. Replenishment orders are ordered in batches, and replenishment will be
performed so. After loading all emergency products, the replenishment according to (s, S)

rule can be continue.

7.2.2 Order-Quantity-Based Rule

To apply this method, the following assumptions have to be made:

1. The length of one wave is known in advance.

2. The time at which picking orders are performed has uniform distribution between
the beginning and the end of the planning horizon.

3. The moments are independent to each other, at which picking orders are performed,
which contain a certain product.

4. The batching methods of replenishment orders are independent to the cost of the
replenishment.

5. The moment ti of the loading of the replenishment order i can be determined at the
beginning of the planning horizon, and it is independent to the product, which is
replenished.

6. The stocks of the warehouse are enough to satisfy the picking orders.

7. After loading a product, the inventory level in the forward storage area is enough
for the remaining part in the planning horizon (namely, all products are replenished
only once).
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8. If the inventory level of the product on the shelves is too small to pick the requested
amount, then none of this will be picked.

Between the assumptions there are more (for example 1, 3, ??), which cannot be
provided in the reality, but they have to be assumed to create the model. But most of
them cause no problem in a real case, for example for the length of the planning horizon,
and the moments of the replenishment estimated values can be used. In case of 2 no picking
probabilities are distinguished for all time units. This can be used, if we have only the
information that picking will happen somewhere between the beginning and the end of the
planning horizon. This assumption and ?? can be used in that case, if the length of the
planning horizon is not to large. 4 has to be assumed, because we want to keep minimizing
of the number of 0-picks as a main objective. If beside that the cost has to be minimized,
too, then the process will be too complete, which we want to use.

The problem will be again solved so that instead of assigning priorities to the emergency
products, the emergency products will be assigned to the replenishment phases defined in
advance. This is equivalent to the original problem because of the assumptions described
above, and it can be described as the following assignment problem:

min
∑
h∈H

∑
i∈I

zhifhi (26)∑
h∈H

zhi ≤ 1 ∀i ∈ I (27)∑
i∈I

zhi = 1 (28)

zhi ∈ {0, 1} ∀i ∈ I,∀h ∈ H (29)

If |H| > |I| hold, then the constraint 27 can be replaced by the expression
∑

h∈H zhi =

1, and instead of constraint 28, the expression
∑

i∈I zhi ≤ 1 can be used. The assignment
problem described above is NP hard (see more: [31]), and it is hard to implement, if a
warehouse management system is used. But the following can be observed:

1. In case of |H| ≤ |I|, the emergency products will be assigned to the first H replen-
ishment. So the other replenishment orders can be omitted. Let I∗ be the new set
of replenishment orders, which satisfies |H| = |I∗|. So in 27 the inequality can be
replaced by an equality. So the problem turns into a classic Linear Sum Assignment
Problem (LSAP).
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2. If |H| > |I|, the problem can be modelled as LSAP, too, if |H| − |I| further imag-
inary replenishments are added to the existing replenishment phases. Let I∗∗ be
the new set of replenishments. If this change is applied, then |H| = |I∗∗|, and the
model can become again an LSAP. After determining the assignments, the imaginary
replenishments have to be removed.

In the model described above, the values fhi were used in the objective function, which
is the expected number of 0-picks at product h. These values can be obtained using the
assumptions described above as follows:

fhi = E(Xh(ti)) = (30)

=

Nh∑
j=1

E(Xh(ti) | Yh(ti) = j) · P (Yh(ti) = j) = (31)

=

Nh∑
j=1

E(Xh(ti) | Yh(ti) = j)

(
Nh

j

)
·
(
ti
T

)j
·
(
T − ti
T

)Nh−j

= (32)

=

Nh∑
j=1

∑
πh∈Πh

E(Xh(ti) | Yh(ti) = j, πh) · P (πh) ·
(
Nh

j

)
·
(
ti
T

)j
·
(
T − ti
T

)Nh−j

= (33)

=

Nh∑
j=1

∑
πh∈Πh

E(Xh(ti) | Yh(ti) = j, πh) ·
1

Nh!
·
(
Nh

j

)
·
(
ti
T

)j
·
(
T − ti
T

)Nh−j

= (34)

=

Nh∑
j=1

∑
πh∈Πh

j∑
k=1

1Sh(k) < Qh(k) · 1

Nh!
·
(
Nh

j

)
·
(
ti
T

)j
·
(
T − ti
T

)Nh−j

. (35)

Here, in 31 the possibility P (Yh(ti) = j) can be counted as binomial distribution
because of assumptions 1-3, and so, if Nh test are performed, then ti

T
is the possibility of

successful cases, and T−ti
T

is the unsuccessful ones. In 33 the expected value is limited in
that case, if the orders including by Nh are in sequence πh collected, and it is multiplied by
the probability, by which it can occur. Finally, for fixed Yh(ti) and πh values, the number
of 0-picks can be determined, this is denoted by the indicator function 1Sh(k) < Qh(k).

So it can be stated, by keeping assumptions described above, and after calculating
values fhi, that assignment problem described by 26-29 gives the optimal solution of the
problem.

But it can be observed that the evaluating of values fih needs a larger calculation time.
In the article [30] a proposal can be found how to save time in the calculation, but for
this, it has to be assumed that for all orders, which contain product h, the same amount
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has to be picked, which is estimated by the value

Qh =

∑Nh

k=1Qh(k)

Nh

.

In this case, the counting time of values fih decreases, however the new assumption takes
the problem further to the reality, so it can happen that in a real case, the results are less
satisfying.

7.2.3 Conclusions

The [30] tried to compare the methods described above with each other by running tests.
These were happening in an imaginary warehouse by using such orders, which satisfy the
conditions described above. During experiments the (S, s) rule was also tested, and that
case, too, in which the assumption holds that for all orders containing item h the same
amount will be picked. (This case will be called as Order-Based Rule, and denoted by
OBR.)

From the result it can be clearly detectable that (S, s) rule on its own does not prevent
the 0-picks by emergency products in fact, since in this case the replenishment is not
planned forward, and it can occur that an emergency product will be replenished later
then a not emergency product. According to the results, the Stock-Needs rule (SNR) can
provide significant improvements, but it does not give such a good solutions as the Order-
Quantity-Based Rule (OQBR), and OBR methods. The reason for this can be that the
SNR method is less able to make such decisions, which provide good solutions in long
term.

The difference between these methods are well presented on table in Figure 13, which
came from [30].

Figure 13: Results of comparison from [30]
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8 Summary

In this section, it will be discussed, how to connect the solution methods given for sub-
problems described above, and how to use them in a solution of a greater problem. About
the correlation of the subproblems was already talked by describing the methods, but now
let see the problem from a higher level, and so develop a comprehensive view about the
opportunities.

As it was described in sections 4 and 5, in solution of TSP and VRP can be a tight
connection observed, so the solution methods giving for routing problems, can be effectively
applied in two phases VRP heuristics, and so it can be taken advantage of the facility of
the warehouse, instead of the solving original TSP and VRP problems. Obviously such
a method can be chosen, too, where not all subproblems have to be solved, which was
described above. For example, if the Branch and Prise algorithm described in section 5 is
to be used, it can be done without using some solution method of the routing problems
described in section 4.

Similarly, it can be occured that the business demands need to solve the problem by
a VRP heuristic such that the using of batching algorithms are unnecessary. However
this algorithms can support the replenishment processes, so in this case the batching
subproblem should not to be omitted.

Suppose that the planning horizon is given, and the orders are known, whose items are
to be picked in this planning horizon. The paramters of the problem are given as described
in section 2. In addition, the replenishment processes should not to be omitted in order
to perform the picking. By choosing the solution strategy, it has to be taken into account
among others the size of the orders, the capacity of the shelves in the forward storage area,
and the length of the planning horizon.

In the case, in which the size of the orders are typically small enough to fit more of
them on one vehicle, then it is recommended to organize orders on vehicles using some
batching heuristic, which was described in section 6. Since the vehicles will probably travel
in more turns in the period of the planning horizon, then batches can be considered as
a set of items, which will be picked by a single vehicle in one turn. If in addition the 0-
picks have to be excepted, then such a method should be used for replenishment, in which
loading happens by using waves. In this case the length of a wave has to be chosen so that
the problem can be solved that during the picking period no more products have to be
picked, than the amount, which can be fit on the shelves. The problem, in which batches
are to be assigned to the waves, can be modelled as an IP problem. Since the picking has

53



to be performed during the planning horizon, the picking should be interrupted as rarely
as possible by the loading periods, so let the objective of the problem be the minimizing
of the number of waves.

Denotes I the set of items, B denotes the set of batches, and H will be the set of
waves. Furthermore let the following notations be used: Si denotes the amount, which can
be stored on shelves from the item i, xkj is a variable, which has the value one, if the batch
k will be picked in wave j, and let bik be a parameter corresponding to the amount, which
has to be picked in batch k from item i. In addition, the variable yj has the value one, if
in the wave a picking is performed. So the following IP model can be constructed:

min
n∑
j=0

mjyj (36)

n∑
k=1

xkjbik ≤ Si ∀i ∈ I, j ∈ H (37)

n∑
k=0

xkj − yj ≥ 0 ∀j ∈ H (38)

n∑
k=0

xkj − nyj ≤ 0 ∀j ∈ H (39)

where n is an upper estimation for the number of waves. The parameters mj are constant,
which have a large value for a larger value of j. This have to be used, because so the
picking will be performed in earlier waves, and the later waves will remain "empty". So
it can be determined, which batch should be picked in each wave, and so it will be clear,
what amount has to be picked from item i in each wave. This can be an input data for
the algorithm described in section 7.1.

If the orders have a larger size, and they typically cannot fit on a single vehicle, then
the problem has to be thought in another way. It can be assumed that the collecting items
is performed so that the content of one order can be distributed for more vehicles, but one
vehicle can transport the content of at least one order. On its own by using VRP methods
the problem can be solved, how to collect items including by one order. Obviously it can
happen that not all vehicles are to be used for picking an order, and in this case the
remaining vehicles can perform the picking of other orders. It is to be determined, which
orders should be collected parallelly, and how they can be organized in waves in order to
perform replenishment.

Suppose that it is known for all orders, how many vehicles are needed to collect them.
To do this, such a VRP problem can be solved for all orders, in which the number of vehicles
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is also minimized, or the problem can be treated as a Bin Packing Problem (BPP), too. If
it is determined, how many vehicle will be pick each order, by solving another BPP, they
can be assigned for the available vehicles. So all bins correspond to one turn. These turns
can determine the waves for the replenishment problem, but in this case a new condition
is needed, namely in one turn (or wave) no more product should be collected than the
capacity of the shelves. This can be modelled by a BPP with multiple constraint, where
one group of the conditions corresponds to the requirement that no more order should be
assigned to one turn, as it can be served by the available vehicles, and the other group of
the conditions corresponds to the demand that no moreorder should be assigned in one
turn as it can be picked from the shelves.

Finally let see the case, in which the replenishment and picking should be performed
parallelly. Here, it can be observed that in section 7.2.2 relatively strict assumptions were
determined in order to model the problem easily. Among these there are more assumption,
which can be supposed in reality only in the case, if the planning horizon is small enough.
(for example the distribution of picking times, and the assumption that all items should
be replenished at most once in the period). So a mixed solution can be constructed, which
means that picking will be distributed in waves (whose length is small enough), and the
problem of parallel replenishment will be solved for all waves separately. In this case there
are no replenishment periods, only the assignment of batches to waves have to be well
determined. In this case it has not to be required that in a wave there should be no more
items picked as it fits on the shelves. But it can be a good idea to chose the assignments
so that the congestion should have less probability, which can decrease the probability of
0-picks, too. This can give a further research direction in this topic.

The solution proposals described in this thesis tried to give effective methods for a wider
range of warehouse management problems, so these are suitable for not only to solve a
certain business demand, but also we can get inspiration from this in many different cases.
To do this, the mathematical models and algorithms have to be changed such that they
will be suitable for solving more specific problems. Overall it can say that the warehouse
management problems hide lots of research directions, as far as special business demands
and improvement of algorithmic solutions and finding new ideas are concerned.
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