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Introduction

Since the appearance of the novel coronavirus SARS-CoV-2 news and theories about

the virus spreading has become part of our daily life. Numerous scientific paper

investigated the spreading dynamics and the effects of the epidemic in any sense.

There are several mathematical models to describe disease spreading phenomena

with the help of differential equations [1] and stochastic processes [2], [3].

The Thesis inspired by the fact, that the field of spreading phenomena on graphs is a

widely studied area in the network science [4], but the models that use hypergraph as

underlying structure are not well discovered. Why using hypergraph models can be

more appropriate? Using networks for modelling the interactions between individuals

is a common tool of network science. The virus spreads through social connections,

so it is convenient to use dyadic links in social networks, where two people can

infect each other if they have a link. However, in the case of airborne diseases

like SARS-CoV-2, the virus spreads through the common air of a place. People

in one place share their common air. It seems reasonable to describe this relation

of the individuals with one multyadic connection rather than many dyadic links.

The hypergraphs are decent structures for representing networks with multiadyc

connections.

Modelling society with hypergraphs raises many questions. Although social network

models using graphs have deep literature, the hypergraph models are not well

described. In the aim of building real representations of the society, we extend some

well-known graph models like Erdős-Rényi, Barabási-Albert models for hypergraphs.

We see the individuals as the nodes and the communities of the society and the events

or occasionally meetings as the hyperedges of the hypergraph representation. It can

be an interesting question how the epidemic spreading on hypergraphs differs from

the well-studied graph models, what we gain from the hyperedge representation of a
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community. The main benefit of this approach that we can handle the different types

of groups together and specify their characteristics. Like in our study of epidemic

spreading, we can create household, workplace and event hyperedges and write down

different spreading dynamics inside them. The second important characteristics of

representing the society with a hypergraph that we can define the sizes of the

communities. This becomes important when we study the recent fight against the

coronavirus when there were active restrictions on the size of the gatherings.

In this Thesis, we are focusing on two main topics, the differences of the disease

spreading on hypergraphs and graph representations, and the effects of the measures

against the virus spreading.

In the first chapter, we introduce some basic definitions and define the extension

of random graph models to hypergraphs. We describe the evolving hypergraph

extension of Barabási-Albert and other real-world hypergraphs. In real-world

networks, the influence of the nodes can be unequally distributed. Some nodes might

have fewer and some have a very high number of connections. In the aspect of the

virus spreading searching for these highly influential individuals is crucial to slow

down the virus. Thus, after the definition of the models, we investigate methods to

calculate node centrality or importance measure for hypergraphs.

In the second chapter, we present well-known epidemic models like the Kermack and

McKernick model [1] and the stochastic model from Tom Britton [2]. These model

definitions serve for a better understanding of our epidemic model.

In Chapter 3, we develop a discrete epidemic on hypergraphs. We make comparisons

between the epidemic dynamics on hypergraph and on its clique expansion graph.

After that, we investigate how the epidemic dynamics depend on the structure of

the underlying hypergraph.

In Chapter 4, our goal is to describe the SARS-CoV-2 virus spreading with our

hypergraph model and investigate the effects of precautions like wearing masks,

social distancing or measures like tests and quarantine and mass vaccination

methods. At the end of the chapter, we fit our model to the last wave of COVID-19

in the Spring of 2021 in Hungary.

ii



Chapter 1

Hypergraphs

1.1 Definition

The theory of finite sets has been studied since the 1930s [5]. These systems were

firstly called hypergraphs in [6] by Berge in 1972 and introduced as the extension

of the graphs. The hypergraphs are decent tools for describing complex networks.

They allow us to interpret not just pair-wise connections, as the graphs could, but

also polyadic linkages.

Definition 1. A pair H = (V,E) is a hypergraph if V is a set and E is a set of

subsets of V . We call V the nodes or the vertices and E the hyperedges or shortly

the edges of the hypergraph H. We also use the notations V (H) for the nodes and

E(H) for the hyperedges of H.

Let H = (V,E) be a hypergraph. If we allow hyperedges only with cardinality

two, then H is a graph. Generally, if H has only edges of size k, then H is called

k-uniform. The degree of a node v means the number of edges incident to v. We

note it with dH(v) or d(v) if it is clear what is the hypergraph. If every node in

the hypergraph has the same degree d, then we call H d-regular. An alternating

sequence P = (u1, e1, u2, e2, . . . , ek−1, uk) is a path of length k − 1 between u1 and

uk in H, if ui ∈ V for i = 1, . . . , k and ei ∈ E and ui, ui+1 ∈ ei for i = 1, . . . , k − 1.

The distance between u, v ∈ V is the length of the shortest path between them and

noted with dist(u, v).

1



1. Hypergraphs

One could make the clique expansion graph of a hypergraph, which can function

as a graph representation of the hypergraph on the same nodes. We will use this

representation to compare epidemic spreading dynamics on graph and hypergraph.

Definition 2. Let H = (V,E) be a hypergraph. We gain the clique expansion graph

GH = (V H , EH) of H, if we set V H = V and for all hyperedge h, we create a clique

on the nodes contained by h. Here we allow multiedges between vertices, there are k

parallel edges between u, v ∈ V , if exactly k hyperedges contain u and v. From now

on, for the sake of simplicity we call the clique expansion graph of a hypergraph as

its clique graph.

v1

v2 v3

v4

v5
v6

v7

v1

v2

v3

v4

v5
v6

v7

Figure 1.1: We presented a hypergraph on the right and its clique graph on the left

side. We coloured the cliques of the graph as they derived from the hyperedges of

the hypergraph.

1.2 Random hypergraphs

The introduction of random graphs is originated from Erdős and Rényi [7]. Since

then, random graphs have encouraged many mathematicians resulting several

interesting pieces of literature in the area and inspired a new field of science called

network science. In this section, we would like to describe some well known random

graph models and extend them to hypergraphs along [8] which is a decent summarise

of the theme.
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1. Hypergraphs

1.2.1 Erdős-Rényi model

There are alternate models, which appeared to be equivalent in many graph

properties. The first was defined in [7] by Erdős and Rényi. Let G[n,m] be a random

graph on n vertices and with m edges. The m edges are chosen independently with

uniform probabilities from the possible
(
n
2

)
edges. In [9] Gilbert described another

random model, we note it with G[n, p]. In this model for a given n and 0 ≤ p ≤ 1

we generate G[n, p] on n nodes creating an edge between every pair of nodes with

probability p. These edge creations are independent from one another. If p
(
n
2

)
= m

then G[n,m] and G[n, p] will be almost equivalent.

The extensions of these models are quite straightforward. Using the definitions from

[8], a random k-uniform hypergraph H[n,m, k] is a hypergraph uniformly chosen

from all possible
((n

k)
m

)
k-uniform hypergraphs having n vertices and m edges. The

extension of Gilbert’s model is denoted by H[n, p, k]. In this scenario for every set

of size k in V we either create a hyperedge with probability p (0 ≤ p ≤ 1) or we do

not with probability 1− p. These creations are independent from one another. Note

that if k = 2 then we get a G[n,m] from the first, and a G[n, p] from the second

model. More generally, H[n,m,≤ k], where m = (m1, . . . ,mk), denotes the random

hypergraph that is a union of theH[n,m1, 1], . . . , H[n,mk, k] hypergraphs. Similarly,

one can define the H[n, p,≤ k] random hypergraph, where p = (p1, . . . , pn).

Figure 1.2: The degree distribution of an Erdős-Rényi hypergraph H[1000, 1000, 5].

Some of the famous problems related to the random graphs can be extended to

hypergraphs like connectivity, but not all of their solution derives easily from the

case k = 2. In [8] one can find a detailed discussion on these problems.
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1. Hypergraphs

1.2.2 A random d-regular hypergraph

We present a way to construct a special type of d-regular hypergraph. Let V be the

nodes of the hypergraph H, where |V | = n. To create the hyperedges, we generate

d random partitions of the nodes, where we sample the size of the subsets in the

partition from distributions F1, . . . , Fd. Let us denote the resulting partitions with

W1, . . . ,Wd. After that, the union of these partitions will be the hyperedges of H,

i.e.
⋃d
i=1Wi = E(H). From now we say simply d-regular hypergraph if we want to

refer to this type of hypergraph and this will not cause any confusions because we

won’t work any other d-regular hypergraphs throughout the document.

1.3 Real-world hypergraphs

Several experimental studies have confirmed that complex networks in real life like

the WWW network, protein networks or social networks differ in many properties

from the random networks [10], [11]. And yet, we have just talked about random

networks. We will collect these properties based on the papers [12] and [13].

Small-world phenomenon: The average distance between two nodes is relatively

small compared to the size of the network. Erdős and Rényi proved that in their

random graph model the average distance depends logarithmically on the size of the

graph.

Clustering coefficient: Let G = (V,E) be a graph. The clustering coefficient of a

node v measures the density of the vicinity of v. Precisely, let’s note the neighbours of

v with N(v) and with G[N(v)] the graph induced by them. The clustering coefficient

of v is

C(v) =
2|E(G[N(v))])|
|N(v)|(|N(v)| − 1)

.

One can compute the clustering coefficient of G by aggregating the clustering

coefficients on every node. Let H = (V,E) be a hypergraph and let us note the

hypergraph induced by the neighbours of v with H[N(v)]. If H is a k-uniform, then

we could define the clustering coefficient of v as follows:

C(v) =
|E(H(N(v)))|(|N(v)|

k

) .
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1. Hypergraphs

If H is not k-uniform, then

C(v) =
|E(H[N(v))]|

2|N(v)| .

One can compute the clustering coefficient of H analogously to the case of graphs.

Watts and Strogatz in their work [12] have pointed out that real networks have rather

a high clustering coefficient and the Erdős-Rényi model leads us small coefficient. So

they proposed a model, which generates a graph with a high clustering coefficient

and small average distance.

Scale-free property: The degree distribution of a real network fits to a power law

distribution. Thus, P(d), i.e. the probability that a randomly chosen node has d

neighbours, is proportionate to cd−α independently from the scale of the network,

where α is positive and c is the constant that normalises the distribution. We call

this graph property as scale-free property and it was demonstrated by Albert and

Barabási in [13]. In this paper, they also proposed a new model, which is called

Barabási-Albert model or Preferential Attachment model.

1.3.1 Hidden parameter model

In this Subsection we present a simple way to generate a hypergraph with a help of

two distributions FV , FE which may control the hypergraph’s degree and edge size

distributions respectively. Let H = (V,E) be a hypergaph with V = {v1, . . . , vn}

nodes and E = ∅. First, sample n values η1, . . . , ηn from the distribution FV . Then

assign the weight wi = ηi∑n
j=1 ηj

to node vi for i = 1, . . . , n. Then add m hyperedges

one by one. To create the hyperedge h first, sample its size kh from the given

distribution FE, then chose the kh incident nodes to build up the hyperedge with

probabilities proportional to their weights. So we add h = {vi1 , . . . , vikh} hyperedge

to the hypergraph, where we chose ij to be l with probability:

P(ij = l) = wl =
ηl∑n
j=l′ ηl′

Let us note if we use the uniform distributions with expected numbers 1 and k for

FV and FE respectively we gain an H[n,m, k] Erdős-Rényi hypergraph. In Figure

1.3 one can see the degree distributions when we used the power law distribution

for FV with parameters α = 2 and α = 5 in the other case and uniform distribution

with mean 5 and 2 for FE in both cases.

5



1. Hypergraphs

1.3.2 Barabási-Albert model

Bollobás and Riordan made the definition of the Barabási-Albert model

mathematically precise in their paper [14]. In their work, the evolution of the graph

starts from a single node v1, and it is considered the graph G1
m. In step t we get Gt

m

from Gk−1
m by adding a new node and m edges to the graph.

First, we define the case of m = 1. In the step t we add the new edge between vt

and vi choosing i randomly according to the following probabilities:

P(i = l) =


d
Gt−1
1

(vl)

2t−1 , if l = 1, . . . , t− 1

1
2t−1 , if l = t

.

If m ≥ 2, then we add m edges one by one counting all the edges what we have

added to the model and the actual new edge as one-half of it has already attached

to vt. Or we could say equivalently, we run the same process as in the case of m = 1

until we get Gtm
1 with nodes v′1, . . . , v′tm. Then we gain Gt

m by contracting v′i1, . . . , v′im
to one node vi for each i = 1, . . . , t. In [14] Bollobás and Riordan have proved that

the diameter of Gn
m is asymptotically log n, if m = 1, and in case m ≥ 2 it is in

Θ(log log n).

The question is, how can one extend the generative model for real-world

hypergraphs? There are several different approaches from the past few years [15],

[16]. We present a model, which generates a k-uniform hypergraph based on the

Barabási graph model. Unlike in the definition of Bollobási and Riordan, we will

not allow loops in the hypergraph, because in our later work we need loop-free

hypergraphs.

Let H1
1 = (V 1

1 , E
1
1) be a hypergraph, where V 1

1 = {v1, . . . , vk} and E1
1 stands from

one hyperedge of size k on the nodes. In the step t we get hypergraph H t
1 from

H t−1
1 by extending the hypegraph with node vt and adding a new hyperedge e =

{vt1 = vt, vt2 . . . , vtk}. We chose vt2 , . . . , vtk randomly proportional to the degrees of

the nodes. Thus

P(ti = l) =
dHt−1

1
(vl)

k(t− 1)
l ∈ {1, . . . , t− 1}. (1.1)

Note that this model will not lead us to a k-uniform hypergraph. In case after

the random choosing, there is a node which appears among vt2 . . . , vtk more than

6



1. Hypergraphs

once, then we add a hyperedge with size less than k. We can generate k-uniform

hypergraph too. If for ti we chose an index which has appeared already in t1, . . . , ti−1

we sample again from the notes with the same probabilities and repeat this while

we get an index that we did not choose before. This repetition will end with a finite

expected number of repeats.

In case m ≥ 2 we proceed analogously to the model of Bollobás and Riordan.

Initially, let the hypergaph be H1
m = H1

1 . Then in the step t we add node vt to the

hypergraph and create hyperedges et1 , . . . , etm , where eti = {vti1 = vt, . . . , vtik} for

i = 1, . . . ,m. We chose tij, according to the following probabilities:

P(tij = l) =
dHt−1

m
(vl) + dli∑t

l′=1 dHt−1
m

(vl′) + dl′i
, t ≥ 2, j ≥ 2, (1.2)

where dli is equal to |{etr |vl ∈ etr , 1 ≤ r < i}|.

Figure 1.3: The degree distribution of Erdős-Rényi hypergraph is from a

H[10000, 10000, 5]. For the two Hidden parameter model hypergraphs we chose FV

to be a power law distribution with parameter α, where α = 5 for the blue and α = 2

for the green one. The Barabási-Albert model is with n = 10000,m = 1, k = 5.

1.3.3 Bianconi-Barabási model

If we have a bias on the degree distribution, of the nodes, like in the example of

social networks we may assume that mid-age people have more connections than

other age groups, then we can fit our model according to this assumption.

7



1. Hypergraphs

We generate the hypergraph H t
m in almost the same way as we did in the case of

the Barabási model. The initial step is the same, but in whenever we add node vt

to the graph (including the initial step), we assign a positive fitness ηt to the node.

In step t we add m hyperedges to the hypergraph to gain H t
m. Let us note these

hyperedges with et1 , . . . , etm , where eti = {vti1 = vt, . . . , vtik} for i = 1, . . . ,m. We

chose tij, according to the probability distribution:

P(tij = l) =
ηl
(
dHt−1

m
(vl) + dli

)∑t
l′=1 ηl′

(
dHt−1

m
(vl′) + dl′i

) , t ≥ 2, j ≥ 2, (1.3)

where dli is equal to |{etr |vl ∈ etr , 1 ≤ r < i}|. Note that, if we set every ηt = 1 for

all nodes we get back the Barabási model.

Our aim in Chapter 4 to represent social networks where not every community has

the same size, so we want to define models where not every hyperedge has the same

size. We need a little manipulation to our existing Bianconi-Barabási hypergraph

model. In each step before we generate a new hyperedge h we determine the size of h,

kh. We can sample this kh from any given distribution and we chose the consisting kh

nodes just after we determined the size. The choosing method is the same as before

but instead of k we use kh. This generalisation can be applied on every model what

we have mentioned before. For requiring the exact kh size, we can use the method

we used for Barabási-Albert hypergraphs to reach k-uniform hypergraphs.

1.4 Important nodes in hypergraphs

Our goal is to define the relative importance of the nodes in hypergraphs, so we

could use that for defining the vaccination order in our SARS-CoV-2 hypergraph

model in Chapter 4. Thus, we aim to find the influence of the nodes in a spreading

phenomenon. Let H = (V,E) be a hypergraph with V = {v1, . . . , vn} and E =

{e1, . . . , em}. The incidence matrix of H is B ∈ Rn×m, where

(B)ij =

1, if vi ∈ hj

0, if vi /∈ hj
∀v ∈ V, ∀h ∈ E

If there is a weight function wV on the nodes, then we represent it with an n × n

real diagonal matrix WV = diag (wV (v1), . . . , wV (vn)). If there is a weight function

8



1. Hypergraphs

wE on the hyperedges, then we represent it with an m × m real diagonal matrix

WE = diag (wE(h1), . . . , wE(hm)).

1.4.1 Degree

A simple way to define a node’s importance is by its degree. This approach is based

on a local measurement and does not concern the global structure of the hypergraph.

For example, two nodes with the same degree have the same measure no matter how

important their neighbours are. If there is a weight function wE defined on the edges,

we can use the weighted degree as importance function.

µd(vi) = (BWE1)i

Where 1 is an all 1, m dimensional vector.

1.4.2 Eigenvector centrality

For graphs, the Perron eigenvector of the adjacency matrix assigns a value for each

node in a graph. This value called the eigenvector centrality of the node. We may use

this node centrality for measure the importance of the nodes. There are two ways

to extend the node centrality for hypergraphs. One is when we just simply calculate

the spectral centrality of the hypergraph using some of its expansion graphs like the

clique graph or the bipartite representation. The other is based on using the higher

dimension adjacency tensor of the hypergraph, but in this case, the hypergraph must

be k-uniform for some k.

One can find these extensions for hypergraphs well described in a recent study [17].

They also presented a new method for calculating the node centrality of hypergraphs

using four nonlinear functions. We will have a brief overlook of these methods.

First, we define the eigenvector centrality for graphs. Let G = (V,E) be a graph on

node V = {v1, . . . , vn} with adjacency matrix AG. For a node, we define its centrality

with the help of its neighbours. Precisely, we calculate the centrality of a node with

a positive linear combination of their neighbours’ centrality. This can be written

down as

AGx = λx λ > 0, xi > 0 ∀i = 1, . . . , n.

9



1. Hypergraphs

Due to the Perron-Frobenius theorem, this eigenvector problem has a unique solution

if AG is irreducible, i.e. G is connected. This way we gain the centrality of a node

vi by taking xi. This idea leads us to measure the importance of the hypergraph’s

nodes by taking its clique graph or its bipartite representation. Using the clique

graph is quite straightforward. We just have to calculate the adjacency matrix of

the clique graph and determine the Perron eigenvector which provides us with the

required centrality of the nodes.

However, if we are talking about hypergraphs we may determine the centrality of

not just nodes but of hyperedges too. To follow the previous reasoning, we could

say that the centrality of the nodes incident to the hyperedge may determine the

centrality of the hyperedge. Like in the example of social networks, if important

people are in one community, that must be a prominent community and vice versa.

Thus, if a person has important companies he or she must be an important people.

So the centrality of the incident hyperedges determines the centrality of the node.

Given this we could write down this relationship with equations for hypergraph

H = (V = {v1, . . . , vn}, E = {h1, . . . , hm}):
∑

hj∈E:vi∈hj yj = λxi ∀i = 1 . . . n∑
vj∈V :vi∈hj xi = λyj ∀j = 1 . . .m

, λ > 0, yj,xi > 0. (1.4)

The centrality of the node vi is xi and the centrality of the hyperedge hj is yj. To

write the equation system in matrix form we use B, the incidence matrix of H.By = λx

BTx = λy

λ > 0, x,y > 0. (1.5)

If we want to write down this with one matrix then we get the matrix of the bipartite

graph’s adjacency matrix which represents the hypergraph.

 0 B

BT 0

x

y

 = λ

x

y

 λ > 0, x,y > 0 (1.6)

This means that the Perron eigenvector of the bipartite representation of a

hypergraph can define the centrality of the nodes and the hyperedges.

10



1. Hypergraphs

If we have weights on the nodes and the edges we may compute the importance this

way:

 0 BWE

BTWV 0

x

y

 = λ

x

y

 λ > 0,x,y > 0. (1.7)

Until now, we worked with graph representations of hypergraphs. In the spectral

theory of hypergraph, the tensors are the most commonly used objects to represent

hypergraphs. Of course, in this case the hypergraph H = (V,E) what we represent

must be k-uniform. We can describe it with the following k dimensional adjacency

tensor A:

Ai1,...,ik =

wE(h) if (vi1 , . . . , vik) = h ∈ E,

0 otherwise,
(1.8)

where wE is a weight function on the hyperedges. There are several ways to define

the eigenvalues of such tensor, but we are going to use what appears in [17].

∑
i2,...,ik

Ai1,...,ikxi2xi3 . . .xik = λxi1 (1.9)

Instead of trying to solve this, we will use the theorem and the algorithm presented

in the article [17] which uses four nonlinear functions to calculate the eigenvector

problem (1.9). They generalised equations (1.4) to nonlinear equations to calculate

the centrality of the nodes and the hyperedges:g (BWEf(y)) = λx

ψ
(
BTWV φ(x)

)
= µy

x,y > 0, µ, λ > 0, (1.10)

where f, g, φ, ψ are real functions operating element-wise on vectors. The following

theorem is Theorem 3.1 from [17] .

Theorem 1. ([17] Theorem 3.1) Let H = (V,E) be a k-uniform hypergraph with

wV (v) = 1 for all v ∈ V . If x is a positive solution of (1.10) with f(x) = x,

g(x) = x
1
2 , ψ(x) = ex and φ(x) = ln(x), then it is an eigenvector centrality solution

of the tensor eigenvalue problem (1.9).
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1. Hypergraphs

After this theorem they also proved that under the right preconditions, there is a

unique solution for eigenvalue problem (1.10). They derived their proof from the

nonlinear Perron–Frobenius theorem for multihomogeneous mappings. They also

mention that if we use this centrality for nonuniform hypergraphs then it will

generalizes the ZEC eigenvector centrality introduced in [18]. They also presented a

power algorithm that can compute the solution for (1.10) with arbitrary low error.

We included this to Appendix A.

1.4.3 PageRank

The PageRank algorithm is mainly used for ranking websites on the WWW network.

It is a powerful method to categorise the nodes by their influence on the network. The

main idea comes from a process on the WWW network. Let us imagine a random

surfer on the internet, who moves randomly from a website to another through the

links in the current website where he stays. Sometimes he randomly jumps to a

random website from all the websites. Whenever he reaches one site he notes it. The

importance of websites comes from how many times the surfer visited the page. The

algorithm runs on graphs and we use it to calculate the importance of the nodes

in hypergraphs. We will use the bipartite expansion of our hypergraph and run the

PageRank algorithm on that. This way the algorithm ranks both the nodes and the

hyperedges of the hypergraph. See more detailed in [19] or [20].

Figure 1.4: Node importance measures of a 4-uniform Barabás-Albert hypergraph

with n = 80, m = 1 on its clique graph. left: PageRank; right: Node centrality from

Tudisco’s method
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Chapter 2

Epidemic models

In this chapter, we take an overview of the SEIR epidemic model. However, we will

use discrete and stochastic models to simulate virus spreading on hypergraphs later

on. For better understanding, we present continuous and deterministic models in

the first section of this chapter. After that, we will move on to the discrete and

stochastic models in the second section. One can find a decent monograph from

Daley and Gani [21] and a detailed survey from Tom Britton [2] of the theme.

The first epidemic models were proposed by Kermack and McKendrick in [1]. They

grouped the individuals into compartments according to their state of the disease.

Their model is still the base of the modern epidemic modelling systems. For a more

realistic approach, we will investigate some extensions of their model.

2.1 The deterministic SEIR model

Firstly, we present the basic SEIR model on closed population, i.e. the number

of people will be constant N . In this model the population consists of four

compartments: susceptible (S), exposed (E), infectious (I), and recovered (R). We

will use the following notations through the document:

S(t): The number of susceptible individuals at the time t, who have not been

infected by the disease. If an infectious individual makes an infectious contact

with a susceptible one then the susceptible contracts the disease and transitions

to exposed.

13



2. Epidemic models

E(t): The number of exposed individuals at time t, who have been infected by

the disease, but not yet infectious. We call the time latent period, that an

individual spends in the exposed state.

I(t): The number of infectious individuals at the time t, who have been infected

by the disease and capable to infect susceptibles.

R(t): The number of recovered individuals at the time t, who have been recovered

from the disease and gained immunity. Thus they can not be infected by others

anymore.

Therefore,

S(t) + E(t) + I(t) +R(t) = N(t) = N. (2.1)

s(t) + e(t) + i(t) + r(t) = 1 (2.2)

The lowercase letters denote the rate of individuals being in the compartments

respectively. The model rests on the assumption that the population is mixing

homogeneously. That means all individuals have identical rates of making

infectious contacts. And we also assume that the disease has the same process

in every individual, i.e. they have equal susceptibility and infectivity. With these

assumptions, the spreading process can be considered as a mass action mechanism.

The following system of differential equations describes the dynamics of the disease

spreading. 

ds(t)
dt

= −βs(t)i(t)
de(t)
dt

= βs(t)i(t)− λe(t)
di(t)
dt

= λe(t)− γi(t)
dr(t)
dt

= γi(t)

(2.3)

Where the rate of infection is β and the rate of recovery is γ, and λ defines the rate

of the exposed transitions to infectious. It is easy to see, that (1, 0, 0, 0) is the trivial

disease-free equilibrium point of the system, and it is unstable.

More interesting case, when there is a small number of infectious ε in the population,

and the rest of it is susceptible. So let us investigate the model with the initial

problem, s(0) = 1− ε, e(0) = 0, i(0) = ε, r(0) = 0.

14



2. Epidemic models

From reordering (2.2) we get r(t) = s(t) + e(t) + i(t) − 1. Thus s(t), e(t) and i(t)

determine the value of r(t). Therefore, the system (2.3) reduces to


ds(t)
dt

= −βs(t)i(t)
de(t)
dt

= βs(t)i(t)− λe(t)
di(t)
dt

= λe(t)− γi(t)

(2.4)

If we add the last two equation, we get

d(e+ i)(t)

dt
= (βs(t)− γ)i(t). (2.5)

The basic reproductive number is R0 = β
γ
. This means that in average how many

people get infected by one infectious in the early stages of the spread when s(t) ≈

1 and i(t) > 0. If R0 < 1 then the number of exposed and infectious people is

decreasing from the beginning and the virus simply vanishes from the population.

If R0 > 1, then there will be more infection than recovery and the virus will emerge

to an epidemic outbreak.

2.2 The stochastic SEIR model

According to Håkan Andersson and Tom Britton [3], there are several reasons to

model a spreading of a disease as a stochastic process. Firstly, the natural way

to describe an infection between two individual is stochastic. They either make

infectious contact with probability p or not with probability 1−p. The deterministic

models are relying on the law of large numbers. If the population size is small, then a

deterministic model will not describe accurately the process. Another investigation

is that in a large population a disease either causes a minor outbreak or emerges

to an epidemic. The probability of the two outcomes can be computed using the

stochastic model.

One of the first complete stochastic models which have gained significant attention

was introduced by Reed and Frost. They described the spreading process as a

binomial chain. Although, they never published their results, just presented on a

series of lectures. The definition of the model that we included below is from Tom

Britton [2].
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2. Epidemic models

The definition

Let us group the population into four compartments as we did in section 2.1. We

assume that in the population is closed, so S(t) + E(t) + I(t) + R(t) = N for all t.

The process starts at t = 0 from a specified initial vector (S(0), E(0), I(0), R(0)) =

(ns, ne, ni, nr), often (S(0), E(0), I(0), R(0)) = (N − m, 0,m, 0) where m << N .

Then the epidemic evolves as follows: While infectious, an individual has infectious

contacts according to a Poisson process with rate λ. Each contact is with an

individual chosen uniformly at random from the rest of the population, and if

the contacted individual is susceptible he or she becomes infected, otherwise, the

infectious contact has no effect. Individuals that become infected are first latent

(called exposed) for a random duration L with distribution FL, then they become

infectious for a duration I with distribution FI , after which they become recovered

and immune for the remaining time. All Poisson processes, uniform contact choices,

latent periods and infectious periods of all individuals are defined to be mutually

independent. The process ends at the first τ , when there is no exposed or infectious

individual (E(τ) + I(τ) = 0), therefore no infection can occur furthermore.

Let Z denote the number of individuals who have been infected during the epidemic,

also known as the final size of the epidemic. Then Z = N − S(τ) = R(τ)− I(0).
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Chapter 3

Discrete epidemic model on

Hypergraphs

In this chapter we investigate the epidemic spreading on hypergraphs. The definition

of our model is inspired by the work of Bodó, Katona and Simon [22], who have

defined epidemic spreading on hypergraphs using SIS model. The main differences

between the models that we use SIERD model and that we define the way of the

infections differently.

Firstly, we present a definition of the process based on the previous chapter. After

that, we compare simulations running on the model on hypergraph and on its clique

graph. We generate hypergraphs according to the models described in Chapter 1.

Finally, we make some investigation what is the effect of the underlying hypergraph

structure on the epidemic spreading.

3.1 The definition of the model

In this section, we develop the definition of the epidemic model on hypergraphs.

For a given hypergraph H = (V,E) the nodes correspond to individuals and the

hyperedges represent the units of the population such as workplaces, households

or some kinds of communities and gatherings. In this model unlike in the previous

chapter, we take into account the deaths caused by the disease, but we still ignore

the natural deaths.

We group the population into S,E, I, R,D compartments we also call these states.
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3. Discrete epidemic model on Hypergraphs

The S,E, I, R compartments cover the same group as in the previous models, and

D(t) notes the number of deaths caused by the disease until the time t. Let us

note that here we assume that if an individual dies, he or she must be infectious

before that. There are no births and natural deaths or migration in the model, thus

S(t)+E(t)+I(t)+R(t)+D(t) = N for all t. We start from t = 0 with an initial state

distribution (S(0), E(0), I(0), R(0), D(0)) on the nodes. We usually have a small

positive number for the initial infectious individuals and the rest is susceptible. This

case, we chose the initial infectious people uniformly random from the population.

After we defined the initial states of the nodes, the epidemic model operates as

follows: In timestep t each susceptible individual may contract the disease through

an incident hyperedge h with probability whf(kth, |h|), where kth is the number of

the infectious in h, f is an R × R → R spreading function with an image set in

the [0, 1] interval, and wh is the spreading rate of the hyperedge. The latent period

and the infectious period are both governed by Poisson processes with parameters

λ and γ, i.e. in every timestep an exposed individual transitions to infectious with

probability λ or stays in the exposed state else. Similarly, an individual ends its

infectious period with probability γ or stays infectious else. Here λ and γ could be

chosen according to the latent period and the infectious period of the disease. After

an individual stops being infectious, then she or he either dies with probability p or

recovers with probability 1− p.

The process ends at the first τ , when there is not any exposed or infectious individual

(E(τ) + I(τ) = 0), therefore infections can not occur furthermore. We call this τ as

end time of the epidemic. Let Z denote the number of individuals who have been

infected during the epidemic. We will call this number as the total infected or final

size. Then Z = N − S(τ) = R(τ) +D(τ)− I(0).

In this model, we could adjust the spreading function f to the disease that we

are aiming to investigate. This level of freedom guarantees that the model is more

flexible than models which use graphs as underlying structures.

Here, we assumed that the disease has identical dynamics within every unit belonging

to the same type. Thus, for example in every unit of size k and spreading rate wh

if there is exactly one infectious individual between the members, then each of the

susceptible member may contract the disease with the same probability from the
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3. Discrete epidemic model on Hypergraphs

unit. What we also assume that in every unit the members create a homogeneously

mixing community. Thus, every person has the same contact rate with one another

inside the community unit. If there are more than two infectious individuals in a

unit then it is not clear who is responsible for an infection inside the unit unlike to

the models using graphs as underlying structures. This is the consequence of using

hypergraphs for the representation of society. Because if there is more than one

infectious in one community, then we can not pick a person who is responsible for

the spreading. The cause is more like the infectious people together. This idea makes

sense in the case of airborne diseases because the people in a community share their

common ground and spend time together in one closed place. We might say they

share their common "air" too, so this is more like polyadic than many separated

dyadic relations.

3.2 The clique graph model

There are numerous studies on epidemic spreading on graphs. But the models that

use a hypergraph as the underlying structure are not so widely used. Our aim is

to investigate the differences of disease spreading dynamics on hypergraphs and on

their clique graphs for some special spreading functions f .

Now the question is, how do we define the spreading process on the clique graph?

While creating the edges, we have to fix the spreading rates of each edge, which

determine the probabilities of the disease transfer through the edges. If e edge was

created due to hyperedge h (i.e. e is in the clique which represents h), then we

|h|−1 is

a reasonable choice for the probability of the disease transfer. And we stick to this

idea throughout the paper.

After this one could say that the clique graph model operates the usual way as we

expect from an epidemic model on graph writing we

|h|−1 weights on the edges. However,

if someone unfamiliar with the epidemic spreading on graphs we could define the

clique graph model using the hypergraph model’s definition. Then we just have to

replace words hypergraph with clique graph and hyperedge with edge. The edge

spreading rates inherit from the hypergraph model as follows: If e edge was created

due to hyperedge h, then we = wh
1
|h|−1 .
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3. Discrete epidemic model on Hypergraphs

3.3 Comparison between the models

We focus on three main topics, where we might find differences between the two

model’s dynamics.

Early stages:Which is the lowest initial number of infectious for given parameters

that could lead to an epidemic outbreak? What is the basic reproductive

number? Is there any difference in these between the two models?

Peak height: Which model has a higher peak in the number of infectious?

Final stages: Is there any asymptotic difference between the models? Which leads

to a larger total number of infection? Is there any difference in the decrease of

the infectious number?

Let Atvh note the event that a susceptible individual v gets the disease through an

incident hyperedge h in timestep t. The probability of Atvh depends on two factors,

the spreading rate of h, wh and the function of the edge size and the number of

infectious individuals at timestep t in h, f(kth, |h|). Let’s denote this event with Atvh,

then

P(Atvh) = whf(kth, |h|).

Let us consider a similar process in the clique graph model. Let’s note the event with

Bt
vh that in timestep t a susceptible individual v gets the disease from a particular

clique which is originated from hyperedge h in its hypergraph. The probability of

Bt
vh calculated as follows:

P(Bt
vh) = 1− P(Bt

vh) = 1−
(

1− wh
1

|h| − 1

)kth
,

where kth is the number of infectious individuals in the clique a timestep t. Thus,

the choice of the function f may determine the differences between the hypergraph

and its clique graph model.

The basic reproductive number in the hypergraph model also depends on the choice

of f , while in the clique graph it is known that

R0 ∼
dw

γ
,
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3. Discrete epidemic model on Hypergraphs

where d is the average degree and w is the average spreading rate of the hyperedges.

We picked some reasonable choices for the spreading function f . First, we use

the f(kth, |h|) =
kth
|h|−1 and then we use f(kth, |h|) =

√
kth

|h|−1 for our investigations.

Before presenting numerical results and analysis, let us take a brief overlook of our

implementation.

3.3.1 Implementation

Our Python implementation of the model described in Section 3.1. operates the

following way:

1. It creates the nodes of the hypergraph and sets the initial viral states of the

individuals according to input rates or numbers.

2. It generates the hyperedges of the hypergraph using arbitrary combinations of

the models described in Chapter 1. We can declare the preferred models and

their parameters as inputs to the algorithm.

3. Then it runs a discrete time simulation of the SEIR model described in Section

3.1.

The codes and the data used and generated can be found here [23]. We have to

note, that if we present numerical simulation results throughout the document what

concludes computing averages, then we calculate the average using 80% of the results

cutting down the upper and lower 10% of them.

3.3.2 Epidemic in a closed community

Let us consider the case when there is only one community in the population.

Equally say, the hypergraph in the model consists of only one hyperedge. These

examinations may bring us closer to understanding an epidemic spreading on more

complicated hypergraphs, which we present in the next section. Note that if the

hypergraph stands from one hyperedge then its clique graph is a complete graph

with the size of the hyperedge.
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3. Discrete epidemic model on Hypergraphs

Firstly, let us choose the spreading function f to be the function f(kth, |h|) =
kth
|h|−1 .

Note that now it is easy to see that

R0 ∼
dwh
γ
,

for both models. So we might not experience large difference in the early stage of

the spreading.

Let us suppose that there is a timestep t, when both in the hypergraph model and

the clique graph model the number of infectious is equal to kth. Recall the same

notations for events Atvh and Bt
vh. Atvh is the event that a susceptible individual v

gets the disease through an incident hyperedge h in timestep t in the hypergraph

model. The event Bt
vh is a similar event in the clique graph model, so it notes that a

susceptible individual v gets the disease from a particular clique which is originated

from hyperedge h in its hypergraph in timestep t. If we increase the number of

infectious then the difference between P(Atvh) and P(Bt
vh) also grows with it (see

Figure 3.1a). We can also see that the larger size of the hyperedge leads us to larger

difference, but the correlation is not linear.

(a) P(Atvh),P(B
t
vh) in the function

of kth, where |h| = 30

(b) Maximum difference of P(Atvh)

and P(Bt
vh)) in the function of |h|

Figure 3.1: The differences of getting the infection from a community in the

hypergraph and its clique graph model, if there is kth infectious.
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3. Discrete epidemic model on Hypergraphs

Precisely, if the size of hyperedge is |h| and kth is the number of infectious in the

community at timestep t, then

P(Atvh)− P(Bt
vh) = wh

kth
|h| − 1

−

(
1−

(
1− wh
|h| − 1

)kth)
.

Which has its maximum value when kth = |h| − 1 (because here the kth = |h| does

not make sense in the aspect of the disease transfer probability). So, the maximum

difference between P(Atvh) and P(Bt
vh) is

P(Atvh)− P(Bt
vh) = wh

|h| − 1

|h| − 1
−

(
1−

(
1− wh
|h| − 1

)|h|−1)

= wh − 1 +

(
1− wh
|h| − 1

)|h|−1
.

By taking |h| to infinity,

lim
|h|→∞

(
P(Atvh)− P(Bt

vh)
)

= wh − 1 + e−wh . (3.1)

Which is 0 when wh = 0 and monotone increasing in [0, 1], for wh = 1 is equal to e−1.

Let us choose a relatively large community size |h| and let us fix wh = 1, so we could

expect some differences between the dynamics of the hypergraph and the clique

graph model. We have set |h| = 30 and run 1000 simulations of the hypergraph and

after its clique graph model. We fixed the latent period’s parameter λ = 0.2, the

infectious period’s parameter γ = 0.1, death rate p = 0.1 and spreading rate wh = 1

for the one hyperedge. We started the simulations with being one infectious and the

rest susceptible in the community. A simulation ends at the first timestep τ when

there was no exposed or infectious individual. We call this τ as end time.

One can see in Figure 3.2 that there are only little deviations between the average

values. We can say that the red curve has a larger maximum value than the blue

one. That is the result of the difference between the infection transmission in the

two models that we mentioned before (see 3.1).
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Figure 3.2: Average infectious rates in the function of time running 1000 epidemic

simulations in one community with a size of |h| = 30. Parameters: λ = 0.2, γ =

0.1, p = 0.1, wh = 1 and f(kth, |h|) =
kth
|h|−1 . The blue and the red curves show the

average rate of the infectious individuals in the community at timestep t.

Figure 3.3: The final size distributions of the hypergraph model the clique graph

model running 10000 epidemic simulations in one community with a size of |h| = 30.

Parameters: λ = 0.2, γ = 0.1, p = 0.1, wh = 1 and f(kth, |h|) =
kth
|h|−1 .

In Figure 3.3 one can see the distribution of the final size of the 1000 simulations. In

most cases, when the first infectious could pass the disease to another member in the

community the disease spreading could emerge into an epidemic outbreak infecting

almost everyone in the community. But in some cases, the disease could only infect

one or two individuals in the community and vanished from the population leaving

most of the individuals susceptible.
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In Figure 3.4 there is a column diagram from the end time distributions. One may

say there are not many differences in this aspect of the models.

Figure 3.4: The end time distributions of the hypergraph model and the clique graph

model running 1000 epidemic simulations in one community with a size of |h| = 30.

Parameters: λ = 0.2, γ = 0.1, p = 0.1, wh = 1 and f .

Now, let us choose the f(kth, |h|) =

√
kth

|h|−1 function for f . We ran 1000 simulations with

the same parameters as before with the previous function. One can see in Figure

3.5 that using this spreading function the epidemic spreading slows down as it is

expected. The average rate of infectious peaks later and smaller than when we used

the f(kth, |h|) =
kth
|h|−1 function or in the clique graph model.

Figure 3.5: Infectious rates in a closed community of size 30 using
√
kth

|h|−1 for spreading

function f .
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This indicates that the choice of the function f has a significant effect on the

dynamics of the spreading. If a spreading function f is above another spreading

function g for all possible kth for a fixed |h| then we expect that using f we gain

faster epidemic dynamics and a higher peak in the infectious rate. To demonstrate

this we used spreading functions fr(kth, |h|) =
(1+r)

kth
|h|

2r
kt
h
|h|−r+1

, for r = 0, 0.3, 0.6, 0.9 (see in

Figure 3.6).

(a) The spreading functions fr

dependence on kth if |h| = 30, and

we use different parameters for r.

(b) Average infectious rates using

four different parameter for r in

spreading function fr.

Figure 3.6: The dependence of the epidemic dynamics on the spreading function in

one community of size 30. In the left Figure, one can see the dependence of the

spreading function on kth. On the right side, we present the average infectious rates

belonging to them in the function of time. Here we ran 1000 simulations for every

value to be tested to r. Parameters: λ = 0.2, γ = 0.1, p = 0.1, wh = 1 during all

simulations.

From now in the document, we will use our first choice the function f(kth, |h|) =
kth
|h|−1

for spreading function.

3.3.3 Epidemic on d-regular hypergraph

In this subsection, we investigate epidemic processes on random d-regular

hypergraphs, which we have described in Subsection 1.2.2. We make comparisons

between running epidemic simulations on d-regular hypergraphs and on their clique

graphs. The special type of d-regular hypergraphs what we have described in
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Subsection 1.2.2 can be seen as d partitions of the nodes, i. e. of the population

in our case. Thus, everyone in the population has d communities which he or she is

a part of.

Let us investigate how the epidemic dynamics depend on the size of the hyperedges

on a random k-uniform 3-regular hypergraph. Recall that we have fixed the function

f to be f(kth, |h|) =
kth
|h|−1 . We generated 50, 3-regular hypergraphs on 10000 nodes

from each 3-uniform, 5-uniform, 8-uniform and 10-uniform hypergraphs. We ran an

epidemic simulation process on each hypergraph and on their clique graph model.

We started every simulation with one infectious individual and the rest susceptible.

In all simulations we chose the same values λ = 0.2, γ = 0.1, p = 0.1 and spreading

rate wh = 0.1 for all hyperedge in the hypergraph. We ended the simulations in

timestep 200.

Figure 3.7: The average rate of the infectious in the function of time running 50

epidemic simulations on random k-uniform 3-regular hypergraphs (continuous lines)

and on their clique graph (dashed lines).

If we look at the shared plot in Figure 3.7, as one could expect that the maximum

of the average rate of infectious individuals is increasing as we increase k. One can

also observe that the difference between the runs on the hypergraph and its clique

graph model are more visible with smaller edge sizes.
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3.4 Epidemic spreading on different hypergraph

structures

In this subsection, our aim is to investigate what are the effects of the

underlying hypergraph structures on the dynamics of the epidemic spreading. We

make a comparison between epidemics on Erdős-Rényi(ER), Barabási-Albert(BA)

hypergraph and d-regular hypergraphs. We have described how to generate these

structures in Chapter 1.

First of all, let us investigate how the epidemic dynamics change as we increase

the degree of a regular hypergraph. We ran 50 simulations on 4-uniform d-regular

hypergraphs for d = 2, 4, 6, 8 . We generated new hypergraphs with size 1000 for

every simulation. One can see the way of the generations in Subsection 1.2.2. We

started all simulations from the initial vector (999, 0, 1, 0, 0), so with one individual

being infected and the rest being susceptible. We used the same parameters for

λ = 0.2, γ = 0.1, p = 0.1 and spreading rates wh = 0.2 in every run.

Figure 3.8: The average rates of the infectious in the function of time running 50

epidemic simulations on 5-uniform d-regular hypergraphs with size 1000 (continuous

lines) and on their clique graph (dashed lines).

As one could have expected the raise of the degree leads us to faster spreading

dynamics. The maximum of the average infectious rate gets larger as the degree

grows (see in Figure 3.8). This phenomenon seems to be a trivial consequence of

the rise of the number of edges in the hypergraph. In Figure 3.9 one can see the
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3. Discrete epidemic model on Hypergraphs

maximum rate of the average infection in the function of d. So from this and from the

simulations in Subsection 3.3.3, we may conclude that the number of the hyperedges

has an impact on the spreading dynamics of the disease.

Figure 3.9: The maximums of the average rates of the infections in the function of

d the degree of the regular hypergraph

What is the difference if we use different methods for generating the hypergraph

but restrict the number of edges to be equal in every model? What kind of graph

properties could predict faster or slower epidemic spreading dynamics? In the

following subsection, we investigate epidemic simulations when we fix the number of

the hyperedges and their sizes to be constant, and the only difference between the

underlying hypergraphs is the model how we choose the incident nodes to create the

hyperedges.

3.4.1 Hyperedge spreading rate

We investigated how the epidemic dynamics depend on the edge spreading rate

w in different hypergraph structures. By different hypergraph structures, we mean

the 4-uniform Barabási-Albert(BA), the Erdős-Rényi(ER) and random 4-regular

hypergraphs. For one hypergraph we fixed the same spreading rate for all hyperedge.

If we take a look at Figure 3.10a then we can see that the BA model leads to fast

dynamics, but the size of the epidemic is smaller than in the case of ER hypergraphs

as the underlying structure. However, we can see in Figure 3.10b that the Barbási

model leads to a small epidemic, but when we use ER hypergraphs or 4-regular

hypergraphs for underlying structure and lower spreading rate then we get no large

epidemic outbreaks.
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(a) wh = 0.1 for every hyperedge in

all hypergraphs.

(b) wh = 0.02 for every hyperedge

in all hypergraphs.

Figure 3.10: Average infectious rates using three different hypergraph structures.

We set different weights for the hyperedges in the left and the right simulations.

We gained both plots from performing epidemic processes on 500 different

4-uniform hypergraphs for each type of hypergraph. Every hypergraph had the 1000

hyperedges. We started each simulation with 10 infectious and the rest susceptible

in the population. We used the same parameters as we did before in the previous

cases except for wh. For the simulations which aggregate values can be seen on the

left, we used wh = 0.1 and for the right side, we used wh = 0.02. It seems that with

different underlying structures the change in the spreading rate of the hyperedges

has different impacts in the dynamics of the epidemic.

Now let us investigate what happens with the models if we change the hyperedge

spreading rates ranging from 0 to 0.2. As it can be seen in Figure 3.11, we chose

the hyperedge spreading rates from the interval [0, 0.2] with step size 0.005, so

we ran simulations for 40 different spreading rates. We generated 30 hypergraphs

on 10000 nodes for each hypergraph model with 10000 hyperedges for each value.

All hyperedges had size 4. Then we ran an epidemic simulation on the generated

hypergraphs started from being 10 infectious individuals in the population and the

rest susceptible. We fixed the parameters λ = 0.2, γ = 0.1 and p = 0.1. Thus,

for example, we ran 30 simulations on BA hypergraphs with 10000 nodes and 10000

hyperedges using the hyperedge spreading rate w = 0.005 and the parameters above.

We used four numbers to characterise an epidemic simulation, the maximum of the
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infectious rate during the epidemic, the peak time of the infectious rate the timestep

when the maximum occurs, the total infected and the end time of the epidemic. One

can see the dependence of these numbers on the hyperedge spreading rate in Figure

3.11.

(a) (b)

(c) (d)

Figure 3.11: The maximum of the infectious rate, the final size and the end time

of the epidemic on 4-uniform BA, ER and random 4-regular hypergraphs in the

function of the spreading rate of the hyperedges. A point represents an average value

from 30 simulations on different hypergraphs from one model. For example, the red

curve derived from the 30 simulations on BA hypergraphs for each investigated

hyperedge spreading rate.

From the simulations, we could say that the three models depend differently on the

spreading rate of the hyperedges. The epidemics on the BA model deviates the most

from the other two. If we look at Figure 3.11, then we may recognise that on Plot
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3.10a and Plot 3.10b curves of the average epidemic numbers related to the BA

model for low hyperedge spreading rates are above the ones which are related to the

ER and the 4-regular hypergraphs. One might ask what is the explanation behind

that. As in the case of graphs, Barabási says in his book [24] in Chapter 10, that

the hubs are responsible for the deviation. By hubs, he means nodes with relatively

high degrees. These nodes could function as "centres" of a graph. On scale-free

graphs, such as we gain from the BA model, an epidemic spreading can emerge to

an outbreak even if the transmission probability between the nodes is relatively low.

That is because, if one of the hubs gets infected, then the node could infect a large

number of nodes from its neighbours and become a super spreader of the disease.

In the BA hypergraph model because these hubs are well presented (see its degree

distribution in Figure 1.3), the same reasoning may standstill. The ER and d-regular

hypergraphs are lacking of hubs so we can not see the same process on them.
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Chapter 4

Modelling COVID-19 epidemic

spreading on hypergraph

In December of 2019, there were some reports that a novel virus, later known as

SARS-CoV-2, started rapidly spreading amongst the people of Wuhan. The most

alarming property of this airborne virus was its high reproductive number [25]. Since

then, all of the world effected by the virus, it became a pandemic and the human

world’s most important issue to battle with. Because of the extremely rapid spread of

the virus, a huge number of people became ill and needed hospitalization. The wards

got overcrowded and the hospitals themselves became the hubs of the spreading. It

is one of the most researched questions how can we tackle the virus. Precautions like

quarantines, wearing masks, and social distancing was the primary solution when

there were not any vaccines available. Now when the vaccination is reachable on

large scale, mass vaccination campaigns have been launched in most of the countries

all over the world.

In this chapter in Section 4.1, we aim to build a stochastic model for the spread

of SARS-CoV-2. Here, we stratify the population into five age groups. For now, it

is clear, that the virus is more dangerous to older people [26], so we may consider

this into our model. If they contract the virus they have a higher chance to develop

symptoms and have more serious effects like heavy illness, need of medical support

or even death.

Another aspect of the age groups the individual’s number of connections in them.

We will assume that the number of communities that a people part of depends on
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his or her age. Young adults may part of more and old people may part of fewer

communities in the society.

Another important characteristic of SARS-CoV-2, that most people contracts the

virus without feeling any sign of the disease. So, without knowing it they carry and

spread the virus. In light of these, we split the infectious state into symptomatic and

asymptomatic infectious states besides the basic known states from Chapter 3.

After that in Section 4.2, we investigate the effectiveness of precautions, quarantines

and testing. Then in Section 4.3, we make observations of different types of

vaccination campaigns. Our goal to find the best order for a vaccination campaign

if several types of precautions are active in the society.

4.1 The model

This model will be similar to what we used in Chapter 3, but we make further

refinements with the aim of a more realistic model. We see the population as a

hypergraph. The nodes are the individuals and the communities and gatherings are

the hyperedges.

4.1.1 Underlying hypergraph structure

The airborne SARS-CoV-2 spreads through face to face social interactions. With

the underlying hypergraph structure, we try to make a good model of them. The

hypergraph H = (V,E) what we use from now has n = |V | nodes. There is an ’age’

function on the nodes g : V −→ [1, . . . , l] which categorises the individuals to age

groups. For the sake of simplicity, we will note g(v) with gv for a v ∈ V . We usually

stratify the population into 5 age groups, so if we do not say otherwise l will be 5.

We generate three types of hyperedges which consist E. We call them households

Ehh , workplaces Ewp and events Eev. We require from Ehh and Ewp hyperedges

to be two partiotions on the nodes. Thus, the subhypergraph (V,Eh ∪ Ew) creates

a 2-regular hypergraph. So we genrate these hyperedges as we have described in

Subsection 1.2.2. We sample the size of the edges in Ehh and Ewp from distributions

Poisson(2.57) and Bin(30, 0.3) respectively. In Figure 4.1 one can see the probability

mass functions of these distributions.
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Figure 4.1: The probability mass function of Poisson(2.57) for the hyperedge sizes

in Ehh on the left and Binomial(30, 0.3) for the hyperedge sizes in Ewp on the right

side.

We generate the event hyperedges Eev following the Bianconi-Barabási model (see

Subsection 1.3.3). We assign the same fitness for every node in the same age group.

This way we can adjust the number of social connections per individual for an

average person in the groups. We assumed in every model from now that mid-age

people in the age group 2 has the most connections from all of the age groups. Every

node v with age gv has fitness ηgv in the model. The proportions of the age groups

presented in Table 4.1 is based on real data from [27]. The fitness numbers belonging

to the groups will be η1 = 0.3, η2 = 0.4, η3 = 0.2, η4 = 0.15, η5 = 0.05.

age group age % of the pop ηi

1 0-24 25.2 0.3

2 25-49 35.8 0.4

3 50-64 19.6 0.2

4 65-79 14.9 0.15

5 80+ 4.4 0.05

Table 4.1: The proportions of the age groups and their fitness parameters.

In figure 4.2, one can see a hypergraph’s degree distribution generated according to

the model above on 10000 nodes. We can freely decide the distribution what we use

during the generation of event hyperedge sizes. Here we use Pareto(2.3), which is

a fat tailed distribution, so it allows hyperedges with relatively large sizes. These

may represent concerts, festivals or some events with many participants. If we do
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not say otherwise we will use these parameters and distributions for the creation of

the underlying hypergraph structure of the epidemic model. These event hyperedges

Figure 4.2: The degree distribution in the different age groups

are not always active during the spreading process as we do not meet our friends

every single day or go to a concert. We define precisely what we mean by hyperedge

activation in the next Subsection.

4.1.2 The discrete model with asymptomatic infectious

individuals

In this model an individual can be classified into six different viral state,

susceptible (S), exposed (E), asymptomatic infectious (A), symptomatic infectious

(I), recovered (R) and dead (D). The S,E, I, R,D have the same definitions

in the models before. We note the number of asymptomatic infectious at

timestep t with A(t). We call the union of the symptomatic and asymptomatic

infectious as infectious. We start our simulation from an initial state distribution

(S(0), E(0), I(0), A(0), R(0), D(0)) on the nodes. We usually have a small positive

number for the initial infectious individuals and the rest is susceptible. In this case,

we chose the initial infectious people uniformly random from the population. After

we defined the initial states of the nodes, then the epidemic model operates as

follows: In timestep t we decide for every hyperedge if it is active or not. Every

household hyperedge and workplace hyperedge is active for all t. For each event

hyperedge, we flip an unfair coin. It will be active with probability ζ and non-active

with 1 − ζ in timestep t. After that, each susceptible individual may contract the
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disease from every active incident hyperedge h with probability wh
kth
|h|−1 , where

kth is the sum of infectious in h. We fix the spreading rate wh differently for the

three different types of edges. After contracting the disease the individual becomes

exposed, so not immediately infectious, and stays exposed at least for fixed exposed

timesteps τE. In every timestep t, an exposed individual in age group gv = i,

who had been exposed for at least τE, transitions to symptomatic infectious with

probability λIi or asymptomatic infectious with probability λAi or else stays in the

exposed state. An individual ends its symptomatic period with probability γI , or

else stays symptomatic or asymptomatic infectious states. After an individual in

age group gv = i stops being symptomatic infectious, then she or he either dies

with probability pi or recovers with probability 1− pi. An asymptomatic individual

recovers with probability γAi or gets symptomatic infectious with βi or keeps its viral

state else. We can also define fix period times τA and τ I for being in the infectious

states respectively as we did in the case of exposed.

Si Ei Ai

Ii

Ri

Di

λIi
βi

λAi

γIpi

γI(1− pi)

γAi

Figure 4.3: Compartmental model for the nodes gv = i

The process ends at the first τ , when there is not any exposed or infectious individual

(E(τ) + I(τ) + A(τ) = 0), therefore infections can not occur furthermore. We call

this τ as the end time of the epidemic. Let Z denote the number of individuals who

have been infected during the epidemic. We will call this number the total infected

or final size. Then Z = N − S(τ) = R(τ) +D(τ)− I(0).

Henceforth, we investigate this model for given parameter settings, while different

precautions and measurements are active in the population. If we don’t fix a

parameter from the model above for a simulation, then we use our basic parameter.

We included these basic parameters in Section 4.4 in Table 4.3. We describe the

reason why we chose these parameter settings in that section.
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Social distancing and wearing masks

One of the essential ways to protect us against the virus is wearing masks in public

areas and during work and keep a safe distance from others. Here we investigate

how effective is that according to our model. In Figure 4.4 one can see two epidemic

simulation on the same hypergraph model with a population size 10000. We stratified

the population into 5 age group as we described in Subsection 4.1.1. The event

hyperedges were generated according to the Bianconi-Barabási hypergraph model

(see Subsection 1.3.3) with its hyperedge size distribution sampled from distribution

Pareto(2.3). The fitness of the nodes was distributed according to their age, so

the mid-age people had a higher chance to have more connections than the others

(see more detailed in Subsection 4.1.1). We set parameters of the spreading process

according to our basic settings described in Section 4.4. We started the simulations

by being 5 infectious in the population and the rest susceptible.

Figure 4.4: The effects of wearing masks and social distancing.

In Figure 4.4 we illustrated with the continuous lines how the infectious and death

rates behave if people don’t take any precautions. We set the spreading rates of the

workplace and event hyperedges rather high to 0.5, this means if a susceptible person

meets with 3 of his friends then he gets the virus with probability 1/6 if exactly one

of them is infectious. We fixed the event hyperedge appearance probability ζ to 0.05.

With the dashed lines we presented the epidemic dynamics on the same hypergraph

with different hyperedge spreading rate and appearance probability. Let us say by

the right hygienic precautions, social distancing and wearing masks, we can half the
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probability of getting the disease from our workplaces and events, so we set wwp and

wev to 0.25. At the same time by making responsible decisions the population avoids

the events by half-chance than in the model presented on the right side, so we set

ζ = 0.025.

From these two runs, we may say that reducing the spreading probability is an

effective method for flatten the infectious curve. Which is crucial from the point

of the healthcare capacity. Now let us estimate the rate of symptomatic infectious

individuals who need hospitalisation. From the Our World in Data database [28]

gained that on average 15.92% of the confirmed cases were needed hospitalisation

in the time period from 14.02.2021 till 16.05.2021 in Hungary. In Section 4.4 we

used this period for fitting our parameters. Thus, we may at this first time calculate

the hospitalised people from the 15.92% of the symptomatic infectious. After that,

we can draw the rates of the hospitalised individuals in the population for both

epidemic spreads, see in Figure 4.5.

Figure 4.5: The effects of wearing masks and social distancing on the healthcare

system. Here we present the same runs as in Figure 4.4 but different rates. The

simple lines come from the case when there is no any precaution against the virus

and the dashed ones when people wear masks and keep a safe distance.

Surprisingly, the number of deaths did not decrease after lowing the spreading

rates and appearance probabilities. This could happen because the virus reached

almost everyone in both cases so it ran through the population despite the active

precautions. The most welcomed effect is the delay in the peak of infectious and the
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lower maximum number of hospitalised people in one timestep. These two outcomes

crucial to healthcare efficiency, because the later comes the peak the more time they

have for preparations and if there are fewer people in the hospitals they have a better

chance for recovery because of the supplies.

Restrictions for the number of people in one place

What if there are not any precautions like wearing masks or distancing, just

restrictions for the size of the number of people in one place? In Figure 4.6, we can

see the effects of prohibition workplaces and events larger than 10. We generated a

hypergraph model with a population size 10000 and simulated epidemic spreading

on the same hypergraph twice. First, we allowed hyperedges with arbitrary sizes,

but in the second run, we removed the hyperedges with size above 10. The size of

the workplace hyperedges sampled from Bin(0.3, 30) and the event hyperedges from

Pareto(2.3). The Pareto(2.3) distribution is a fat-tailed distribution so it allows the

creation of hyperedges with relatively large sizes.

Figure 4.6: The effects of prohibition workplaces and events with sizes above 10: We

can see how the epidemic evolves if there are not any restrictions on the size of the

events and workplaces. This time we generated the event hyperedges with the BB

model using Pareto(2.3). So there were some event hyperedges with large size.

The curves with the dashed lines represent an epidemic run on the same hypergraph,

but this time we removed all workplace and event hyperedges larger than 10. This

caused a minor reduction in the peak height of the symptomatic infectious.
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We could conclude the similar outcomes of the prohibitions as we did in the case

of wearing masks and social distances. From both precautions it seems that if we

do not take into account the effects of the number of hospitalised people in one

timestep, i.e. we assume that the healthcare has a decent capacity to handle the

virus, then we can not observe improvements in the death rates. We may need other

precautions or other actions to lower the deaths.

4.2 Tests and quarantine

In the early stage of the virus before vaccines have become available the best-known

way to fight against the virus was tests, quarantines and contact tracing. Most of

the tests were able to detect the virus when its latent period has ended already. So

we follow the assumption that an exposed individual can not be tested as positive.

From country to country the procedures after a positive coronavirus test can still

differ. In our model, if a person performs a positive test (so she or he is either

asymptomatic or symptomatic infectious), then we isolate her or him and her or

his household from their workplaces and events for q timestep. This means that we

remove them from their workplace and event hyperedges, and after q timestep, we

place them back. We will set this q equal to 14.

We compare two testing method and the basic case when there are not any testing

procedures in progress. The first method if we test randomly, so we test every

individual with the same probability ptest not paying attention to their viral state.

We call the second method targeted testing. We assume in this scenario that the

individuals are well aware of the virus. Thus, if a person feels any of the symptoms,

he or she goes for a test with a higher probability. So, we test the symptomatic

infectious individuals with a higher probability than the others.

We generated 20 hypergraphs according to the model described in Subsection

4.1.1 on 10000 nodes. We set the hyperedge spreading rates whh = 0.9 and

wwp = 0.5, wev = 0.5 and ζ = 0.05 as we did when we assumed that there

are not any precautions like wearing masks or social distancing. We ran three

simulations on each hypergraph one without tests, one with random testing scenario

where ptest = 0.01, and one with targeted testing scenario using the probabilities
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pS = 0.005, pE = 0.005, pI = 0.3, pA = 0.005, pR = 0.005, pD = 0.005 for the tests.

Here pS means the probability that we test a susceptible individual, we noted the

other probabilities analogously. As for the other parameters of the model we used

the parameters presented in Section 4.4 in Table 4.3.

Figure 4.7: The average rates of the symptomatic infectious in the function of time

running 20 epidemic simulations, investigating the impact of testing and quarantines.

If we look at Figure 4.7, we see that using targeted testing and quarantines could

flat the average infectious curve. What does this mean in the number of death

or hospitalised individuals? In Figure 4.8 one can see the estimated hospitalised

numbers that we gain by taken 10% of the symptomatic infectious. If we use targeted

tests and quarantines without any other actions like wearing masks or distancing

then we can not see a reduction in the final death rate of the epidemic. However,

if we combine the two methods the targeted tests and wearing masks, then we see

that the final death rate has decreased.
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Figure 4.8: On both sides, we see the average death rates and the average rates of

the estimated hospitalised individuals using different testing methods. On the left

the testing methods launched without wearing masks in the population, so we set

whh = 0.9, wwp = 0.5, wev = 0.5 and ζ = 0.05. On the right we assumed wearing

masks and distancing population, so whh = 0.9, wwp = 0.25, wev = 0.25 and ζ =

0.025.

4.3 Vaccination methods

In this section, we assume that it is possible to vaccinate individuals. Our goal here

is to find the best method for the vaccination process. First, we need to write about

what do we mean by "vaccination" and what is the "best". By vaccination we mean,

if we vaccinate a susceptible individual at timestep t, then after ν steps he or she

becomes immune to the virus. So he or she transitions to the recovered state at

timestep t+ ν no matter, what states he or she had been unless he or she has died

during the ν steps. In this case, he or she stays dead any other case, so we assume

that the vaccination has 100% efficiency.

We have to pay attention to the limits of mass vaccination. We assume that in

one timestep we can choose a constant z individuals to be vaccinated. We call this

z vaccination capacity. Obviously, we won’t vaccinate dead people and also those

who have been tested positive before. In these cases, the vaccination does not affect

the individuals. We are aiming to find the best vaccination method which means

minimising the number of deaths until the end time of the epidemic. So the goal is

for the hypergraph model described in Section 4.1, fix a vaccination order for the
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individuals that minimise the deaths.

We can follow two main tactics. One when we choose the individuals for vaccination

according to their age. Because if we vaccinate old people first who has a lower

chance to live after being infectious, that way we might reduce the death tolls. We

will call this type of vaccination age based vaccination.

The other scenarios come from slowing the virus by vaccinating the potentially super

spreaders or important nodes in the population based on the network’s topology.

This way we might able to prevent the rapid spreading caused by these nodes. We

wrote about the importance of the nodes in hypergraphs in Section 1.4. There we

presented some methods for importance calculation. We will use these methods to

define the importance of each node. After we picked a method and calculated the

importance measures then we sort the individuals for vaccination based on that.

The vaccination campaign efficiency does not depend exclusively on the vaccination

capacity per day, but also on the precaution measurements which active in the

popuation. Yet we have three measurements that can be active besides the

vaccination campaign:

• wearing masks and social distancing: this can be controlled by spreading rates

wwp, wev and appearance probability ζ,

• gathering restrictions: remove every hyperedge with size above 10,

• targeted: tests and quarantines: if this method is active then we use testing

probabilities pS = 0.005, pE = 0.005, pI = 0.3, pA = 0.005, pR = 0.005, pD =

0.005 and quarantine length q = 14.

Firstly, let us assume that there is no measurement active and we can vaccinate from

the first timestep. In this case, we investigated the effectiveness of three different

vaccination methods. The age based method is when we vaccinate in descending

order in the age of the individuals. The degree based method means when we

vaccinate in descending order in the degree of the individuals. The weighted degree

based method is when we have a weight on the hyperedges and we calculate the

degree of the nodes by the weighted sum of the incident hyperedges. We defined

weight function for the hyperedges weightE(h) = wh

|h|−1 for all hyperedges. We

investigated these vaccination methods with different vaccination limits z and all

for fixed immunization time by vaccines ν = 14.
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In Figure 4.9 one can see how the death rates behaved for vaccination capacities 50

and 100 in a population with 10000 size.

We generated 20 hypergraphs using the model described in Section 4.1. For spreading

rates on the workplace and event hyperedges we fixed the parameters that we used

before when there were not any precautions active in the society. Thus we fixed

wwp, wev = 0.5 and the appearance probability of the event hyperedges to 0.05. We

used Pareto(2.3) for the size distribution of the event hyperedges. As for the other

parameters of the model we used the parameters presented in Section 4.4 in Table

4.3. We illustrated the average death rates of these runs in Figure 4.9.

Figure 4.9: The effect of rising the vaccination capacity:

In the left figure belonging to the vaccination capacity 50, we can see that all of the

vaccination methods has small effects on the death rates. This could happen because

with this speed of vaccination and spreading rates the virus spreads too fast, which

the vaccination campaigns can not handle.

In the right figure, we have raised the vaccination capacity to 100. We can see with

these parameters the vaccination methods lead to lower final death tolls.

The fact that a person becomes immune 14 timestep later the vaccination results

that the vaccination might be more effective on slower epidemic dynamics. What

if we can encourage people to wear masks or keep social distance with the aim

of lower the spreading rate of the workplace and event hyperedges. In the next

figure, we investigated the three vaccination methods as before for fix vaccination

capacities in the function of the speed of the epidemic spreading. We controlled the

speed of the epidemic spreading by the spreading rate of the event and workplace
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precaution level whh wwp wev ζ

j 0.9 0.5
j

0.5
j

0.05
j

Table 4.2: Hyperedge spreadig rate for the levels of precautions.

hyperedges. So we could say there are several levels of precautions that can be

active in the society each of them associated with a set of spreading rates on the

hyperedge types and the appearance probabilities of the event hyperedges. In Table

4.2, one can see the assignment for level j, what we used for our investigations. We

made simulations for levels j = 1, . . . , 6.

Figure 4.10: The performance of the age based, degree based and weighted degree

based vaccination methods for different precaution levels when we have restrictions

for gatherings and targeted testing method in the population. The settings of the

levels can be seen at Table 4.2.

For every level, we generated 20 hypergraphs and ran the epidemic simulations for

without vaccination and for applying the three vaccination methods. In all runs,
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we set the parameters except the hyperedge spreading rates to the same values as

we did in the previous runs in this section. As we can see from the three cases in

Figure 4.10, if we lower the hyperedge spreading rate then the vaccination methods

have larger effects on the death rates. We may note the obvious fact that larger

vaccination capacity leads to lower death tolls. We could also conclude that the best

vaccination method relies on the parameters of the model. As we see for vaccination

capacity 100 on precaution level 2 the degree vaccination method came out as the

best according to our simulations, but on level 3 the weighted degree vaccination

proved to be the best.

Heretofore in this section, we have not activated the restrictions on the gathering

sizes and targeted testing. In the following Figure, we see how the death rates behave

if we use these measurements in the function of precaution levels.

Figure 4.11: The effects of the age based, degree based and weighted degree based

vaccination methods for different precaution levels and with targeted testing and

gathering restrictions. The settings of the levels can be seen in Table 4.2.

Let us investigate now when we use node centrality measures for defining the

importance of the individuals. We run our simulations on a hypergraph having
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5000 nodes with the same parameters as before with targeted testing and gathering

restrictions. This time we determined the vaccination order by the node’s importance

measure given by the methods described in Section 1.4.

Figure 4.12: The effects of weighted degree based, and node centrality based

vaccination methods for different precaution levels and with targeted testing and

gathering restrictions. The settings of the levels can be seen in Table 4.2.

As we can see in Figure 4.12, on the method from Tudisco [17] gave the best

vaccination order for these parameter settings and precaution levels in our model.

One can see from all of the figures in this section, that the difference between the

death rates without vaccination and with vaccination is the largest on precaution

levels 2 and 3.

Until now, we assumed that we launch our vaccination campaign in the first timestep

of the epidemic spreading. But what happens if we have a fixed timestep which

defines when we can start sorting out the vaccinations? We run our simulations

with a population size 10000 and with the same parameter settings as before in this

section. We picked the level 2 for precautions and vaccination capacity 100. Our

simulation results can be seen in Figure 4.13.
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Figure 4.13: The effects of age based, weighted degree based, and node centrality

based vaccination methods with targeted testing and gathering restrictions for

different vaccination start time. The precaution level is 2.

From these results, we can say that in mass vaccination campaigns, it is crucial that

we are able to:

• guarantee sufficient amount of vaccines per day,
• make eligible precautions to slow down the virus,
• start the vaccinations in time.

If one of these conditions is not met, then the vaccination campaign will not have as

large effect as it could have on the final death toll. What we can also conclude, that

in our model the vaccination methods based on the network’s topology could reduce

the final death rates more than the method based on age. So prioritising people for

vaccination according to their position in the social network could lead us to lower

death tolls.

4.4 Model fitting

In this section, our goal is to find a set of parameters for our model described in

Section 4.1 that could lead to similar final epidemic rates to the Hungarian real data.

According to the Our World in Data database [28] in Hungary by the end of May

2021 the number of deaths caused by coronavirus reached 29581, which roughly 0.003

times the Hungarian population. The database also reports that the total number of

confirmed cases was 802510. It is well known, that the reports are under the real the
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total number of infected people through the spreading. So we do not want to fit our

model’s total number of infected to this number. Instead of that we will calculate

the total number of confirmed cases in the model by summing up the first positive

tests provided by our testing method. If we want to fit our simulation to these final

numbers then the total number of positive tests on a 10000 sized population must be

around 1000. We may also require from our model that at the end of the epidemic

the number of deaths is close to 30.

Firstly, we model the whole outbreak with one wave of the epidemic. We have to

consider that in Hungary there have been active precautions and campaigns to slow

down the virus spreading. Thus, we must take account into our model:

• wearing masks, social distancing: spreading rates whh = 0.9, wwp = 0.2, wev =

0.2, ζ = 0.02,

• restrictions for the number of people in one place: remove hyperedges with size

above 10,

• targeted tests, quarantines: pS = 0.005, pE = 0.005, pI = 0.4, pA = 0.005, pR =

0.005, pD = 0.005 and quarantine time q = 14,

• vaccinations from a fixed timestep: age based vaccination from timestep 40

with 100% efficiency.

We made several attempts to get the correct final numbers from the simulations

using brute force. The best settings that we have found is presented below in Table

4.3. Recall the parameters from Section 4.1:

• λIi : E → I transmission probabilities;

• λAi : E → A transmission probabilities;

• γAi : A→ R transmission probabilities;

• βi : A→ I transmission probabilities;

• pi: probability of fatalities from symptomatic infectious state;

• τX : fix time period in state X;

• γI infectious period parameter
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age group age λAi λIi γAi βi pi

1 0-24 0.35 0.05 0.1 0 0.001

2 25-49 0.3 0.1 0.09 0.01 0.012

3 50-64 0.2 0.2 0.08 0.02 0.025

4 65-79 0.1 0.3 0.07 0.03 0.08

5 80+ 0.05 0.35 0.05 0.05 0.16

τE τA τ I γI

3 2 2 0.1

Table 4.3: Parameters for model in Subsection 4.1 with final numbers close to real

data.

We estimated the probabilities of fatalities from the infectious fatality rates (IFR)

which were calculated in [26]. From Table 4.3 we can get the infectious fatality rate,

i.e. the probability of death if a person gets the virus. The IFR in our model for age

group i is given by:

IFRi = λIi pi + λAi βipi.

IFR1 IFR2 IFR3 IFR4 IFR5

0.000125 0.0039 0.015 0.066 0.15

Table 4.4: IFRs by age group in the model.

With these parameter settings, we generated 20 hypergraphs with the model

described in Section 4.1.1. We ran epidemic simulations and got 0.0034 for the

average number of the final death rates and 910 for the average sum of the first

positive tests.

The other way for fitting our model is if we try to reproduce just one wave of the

epidemic. Let us chose the last wave of the epidemic in the spring of 2021 in Hungary.

From database [28] we collected data from 14.02.2021 till 16.05.2021.

Now, if we want to fit our model to this data, then we have to see that the initial

input must be quite special for the simulation. Firstly, we still do not have correct

estimations for epidemic numbers like the number of asymptomatic infectious or

the recovered people. So we may run into miscalculations if we would just use some

guessed initial numbers for these. The only fix points we have are the new reported

cases and the number of deaths. On the other hand, if we would have known the
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exact numbers for the people in each virus state at 14.02.2021 in Hungary, then

we can not just sit back and sample uniformly from the population to set the viral

states according to the initial numbers. Why wouldn’t this easy method help us?

Let us imagine, that we start an epidemic and stop it somewhere in the middle of

the process. Now, if we would colour the people according to their viral states, then

we wouldn’t see a uniformly random colouring. We might see more like colour fronts

and areas with one colour.

Thus, with this knowledge in our pocket, we may search for a better idea than

random initialisation. Let us run a ’pre-wave’ of this wave of the virus to get the

initial state distribution on our hypergraph. We ran this first wave simulation with

a slower and weaker virus on a hypergraph with 10000 nodes generated according

to our model described in Subsection 4.1.1. We set spreading rates whh = 0.8,

wwp = 0.1,wev = 0.1 and appearance probability ζ = 0.015 and for all age group i

the death probabilities p′i = pi/2. The rest of the parameters were the same as in

Table 4.3. We have not used the vaccination method for the first wave as in Hungary

before 14.02.2021 there was not any notable vaccination campaign. However, the

targeted testing and gathering restrictions were active measurements, so we also

used our methods for them with pS = 0.005, pE = 0.005, pI = 0.3, pA = 0.005, pR =

0.005, pD = 0.005 and 10 for the limit of event and workplaces sizes.

We ran this simulation until the first timestep when the rate of the total deaths

was over the rate in Hungary at 14.02.2021. and the rate of infectious was under

0.004. With this move, we found ourselves where we exactly wanted to, in a middle

of an epidemic with the required initial death rates. So, after this we set back the

death probabilities according to the values in Table 4.3 and the spreading rates

wwp = 0.2, wev = 0.2, and appearance probability ζ = 0.02. Then we continued

the simulation with the changed parameters considering one day as one timestep

in our model. We also started vaccinating the population from the first timestep in

this second run. We used our age based method (see Section 4.3) for the order of

the mass vaccination. We set the vaccination capacity for each day according to the

rate of the real 7-day smoothed new vaccinations in the database [28] from Hungary.

So, we vaccinated exactly the same proportion of the population per day as in the

smoothed real vaccination data (see Figure 4.14).
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Figure 4.14: Vaccination proportions in the function of time

If we look at Figure 4.15 then we see the result of the simulation with dashed lines

and the real data with continuous lines. We tried to fit our simulation to these data

gained from the database:

smoothed new cases: This rate comes from a 7-day average of the reported new

cases of the coronavirus in Hungary. This means we sum the confirmed cases before

and after 3 days and the cases on the day and divide it by 7 and also with the size

of the population.

confirmed infectious: This rate comes from summing the smoothed new cases

from days no later than 13 days before the day.

total deaths rate: The sum of total deaths caused by the virus divided by the

size of the population.

Our highlighted simulation rates in Figure 4.15:

smoothed new cases: This rate comes from a 7-day average of the first positive

tests in the simulation. This means we sum the first positive tests before and after 3

days and tests on the day and divide it by 7 and also with the size of the population.

confirmed infectious: This rate comes from summing the smoothed new cases

from timesteps no later than 13 timesteps before the timestep.

total deaths rate: The sum of total deaths caused by the virus divided by the

size of the population.
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Figure 4.15: The continuous lines are representing real data from the last wave of

the COVID-19 in Hungary spring, 2021 from Our World in Data ([28]). The dashed

lines are a simulated epidemic spreading with our model.

If we look on the fitting results in Figure 4.15, we might say that our model with the

right parameter settings and initialisation can simulate almost correctly one wave

of the virus.
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Chapter 5

Summary

In this final chapter, we would like to make some conclusions and mention the

main results and questions of our paper. We had two main goals were to investigate

the differences between epidemics on graph models and hypergraphs, and to create

a simulation environment that we can use to examine the effects of the different

measurements against the virus spreading and not least fit it to real data of an

epidemic spreading.

In Chapter 1, we wrote an introduction about the random hypergraph models.

There we extended some well-known graph model like the Hidden Parameter or

the Barabási-Albert models to hypergraphs. We also implemented these generative

models in Python and used them for our epidemic model later.

In the second chapter, we presented some epidemic models that we used as

inspirations for our epidemic model.

In Chapter 3, we developed our discrete stochastic SEIRD model on hypergraphs.

However, the larger part of the analytical study of the model is still a job for

the future, but we have made empirical experiments from the differences between

the hypergraph and its clique graph model. From our simulation results and our

calculations in the case of one community, we found that the difference between the

epidemic model on hypergraph and on its clique graph depends on the spreading

function of the hypergraph model, the hyperedge size distribution of the hypergraph,

and spreading rates of the hyperedges.

In Chapter 4, we built up and fit an epidemic model which was the refinement of the

model in the previous chapter. With this model, we were able to reproduce the data
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from the final wave of the coronavirus in Hungary. We gained from our empirical

investigations of the precaution levels and measurements in the population that it

is very important to apply these methods against the virus at the same time to get

lower death rates.

As for the future, it would be interesting to implement and use hypergraph models

for epidemic spreads which are not the extension of graph models. These models

may reflect real group networks more accurate. See for example [29] or [30].

In our model for COVID-19 we used appearance probabilities for hyperedges, so

in a typical timestep, the virus cloud not spread through every hyperedge of the

hypergraph just through the active edges. It may be a task for the future to compare

these random hyperedge activations to one with stable hyperedges but the same

probability of infection in one timestep.

Before fitting our model to the Hungarian data, we used a weaker virus to set

the initial distribution of the states on the hypergraph. We have mentioned that

the state distribution on the nodes after or during an epidemic spreading is not

uniformly random distributed in the population. We may suggest that it would be

very interesting to study these epidemic mid-time state distributions.

It is also a job for the near future to fit our model to data of other countries or

different diseases from COVID-19.

56



Appendix A

Algorithm 1: Nonlinear Power method for hypergraph centrality from [17]
Input:Incidence matrix B of the hypergraph; diagonal weight matrices WE

and WV for hyperedges and nodes; nonlinear functions f , g, φ, ψ; desired

vector norm ‖.‖; stopping tolerance tol

Output: Centrality for nodes x and hyperedges y such that ‖x‖ = ‖y‖ = 1

x(0),y(0) > 0

while ‖x(r+1) − x(r)‖/‖x(r+1)‖+ ‖y(r+1) − y(r)‖/‖y(r+1)‖ > tol do
u←

√
g (BWEf(y(r)))

v←
√
ψ (BTWV φ(x(r)))

x(r+1) ← u/‖u‖

y(r+1) ← v/‖v‖
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