
Computing implied volatility via inverse

neural networks

Le Phuong Quynh

MSc Thesis

Consultant: Dr. András Zempléni

Supervisor: Kinga Tikosi

Department of Probability Theory and Statistics

Faculty of Science

Eötvös Loránd University

Budapest, 2021

Contents

1 Introduction 4

2 Preliminaries 6

2.1 What is an option? . 6

2.2 Brownian motion . 8

2.3 The Itô process . 11

2.4 Greek letters . 12

3 Models of asset pricing 15

3.1 The Bachelier Model (1900) . 15

3.2 The Black-Scholes Model (1976) . 15

4 Volatility 19

4.1 Historical Volatility . 19

4.2 Implied Volatility . 21

5 Neural Network 26

5.1 History . 26

5.2 Neuron model and Network architectures 27

5.3 Hyper-parameters . 29

5.4 Optimizers and Learning rate . 32

6 On the inversion of Neural networks 39

6.1 Invertible neural networks . 39

6.2 Mathematical inversion . 39

7 Designing the models 44

7.1 Data sets . 44

7.2 Model selections and performances . 46

7.3 In comparison with Newton-Raphson method 49

8 Conclusion 51

9 Acknowledgments 53

List of Figures

1 Graph of five sampled Brownian motions from [2] 9

2 Historical volatility in comparison with volatility used for trading . . . 20

3 Moneyness versus Vega . 25

4 Example of Neural network architecture [53] 28

5 Change of loss value with respect to number of epochs 29

6 Training loss changed with various choices of the number of layers . . . 31

7 Loss with changing number of neurons in each layer 32

8 Comparison between various learning rates (SGD Optimizer) 34

9 SGD method without and with using momentum 35

10 Using Decay Learning Rate with Stochastic Gradient Descent method . 35

11 Model loss using fixed learning rate and cyclical learning rate (SGD

optimizer) . 36

12 Comparison between various algorithms for MNIST images [49] 37

13 Error density performance on the Training Dataset 48

14 Graph of the actual implied volatility and the neural network forecast

of implied volatility . 50

List of Tables

1 Sample of Apple option trading data fetching from Yahoo Finance . . . 20

2 Results of applying Newton method with 2 input examples 24

3 Dataset 1 including 6 variables {S,K, σ, T, r, C} 44

4 Table of mean and variance of output differences after training with

Dataset 1 . 44

5 Dataset 2 including 5 variables {S/K, σ, T, r, C/K} 45

6 Training and Testing Datasets . 45

7 Model selections . 46

8 Forward training results with Model 1 and Model 2 47

9 Training result with IV-ANN Model . 48

10 Accuracy of predicting implied volatility on training dataset 49

1 Introduction

Volatility is one of the most critical market parameters that governs the price evolu-

tion of financial instruments and derivatives. For decades, scientists and practitioners

have grappled with the issue of determining implied volatility. There have been several

attempts to develop a method or algorithm to calculate uncertainty from option prices.

The main approach for computing implied volatility is to find an explicit or implicit

expression for the volatility which can be derived from the financial option pricing mod-

els. Black - Scholes model for option pricing is one of the most popular financial model

that can be used to extract the implied volatility from European option price formula.

Coming from the nature of Black - Scholes formula, a closed form of implied volatility

can not be found [27] but can only be approached by approximation techniques. A huge

number of work have been developed in seeking for a closed formula approximation [9],

[8], [10] in the 1990s and this effort did not be stamped out even in early 2000s [11].

Raised by Donald in 2001 [12], an extension has been applied for the Chance model

(1996) to get a formula that was simpler and much more accurate. In this article,

the author also pointed out the limitation in existing calculation formula and its low

percentage of accuracy. All kind of methods in reality is limited to only some specified

cases, in other conditions they diverge far from the true values.

A more practical approach is to approximate by numerical iteration methods, which

was mentioned early in 1982 [13]. Iteration procedure might meet difficulties with

inappropriate starting point, dividing by zero derivatives or disability of finding root if

facing local maxima, minima. Several modified extensions and improvements have been

made to minimizes the disadvantage cases. These methods may meet the requirement

of approximated accuracy. In [14], authors summarized and commented about some

different approaches in determining the implied volatility both approximation methods

and numerical approaches.

Nevertheless, the interest for a better method does not seem to decline. With the

development of deep learning, especially deep neural networks [34], neural network

models were built for forecasting the implied volatility. Neural networks can forecast

with low error the realistic trading volatility [54] together with ability to canceling

drawbacks of iteration process. There is a lot of literature research and tests on fore-

casting volatility with the usage of artificial neural networks and the hybrid of neural

network with other models, example of works raised early in 1990s [54], [57] and more

recently [53], [55], [56], [58].

The aim of this study is to propose a literature implementation of a new approach

extending from forward training neural networks. We further investigate the feasibility

of this approach by testing the work process of two simple models with a random gener-

4

ated data set. The accuracy of this new approach is assessed by putting in comparison

with an original forward neural network together with the Newton - Raphson iteration

method.

The rest of this thesis is organized as follows. In the next section preliminaries about

financial terms and mathematical notation including Brownian motion, Ito process are

introduced for the sake of further understanding on financial models’ construction. The

third section and the fourth section are used for understanding and constructing famous

financial option pricing models, the Bachelier model and the famous Black - Scholes

model, and volatility emphasized on implied volatility. Section 5 is devoted neural

networks and the work of me on testing and choosing appropriate hyper-parameters

before the final network construction. The algorithm of the new approach is presented

in section 6. The rest is for numerical results and conclusions.

5

2 Preliminaries

2.1 What is an option?

The most financial term that is close to an option is a contract. One common

example is the forward contract. The two parties of a forward contract agree to buy or

sell an asset for a fixed price at a certain time in the future. An option, like a forward

contract, allows the parties to buy or sell an amount of stocks with a predetermined

price by a certain date. A call option gives the right to buy while a put option allows

its owner to sell the underlying assets. However, different from a forward contract, an

option’s holder is not obligated to buy or sell the assets.

An option or a contract are different types of terminology derivatives. A derivative

can be defined as a financial instrument or a second security whose value is derived

from the values of underlying variables. Like a stock option is a derivative whose value

depends on the price of the stock. Common underlying products can be stocks, bonds,

commodities, currencies, interest rates.

The price in the contract is known as the strike price, the date in the contract is

the maturity. Options can be applied to not only stocks but also other various kinds of

financial instruments like commodities, bonds, foreign currencies. Based on different

criteria, there are several different option styles. American options can be exercised

at any time up to the expiration date. European options can be exercised only on

the expiration date itself. These are the two most common styles and also called

vanilla options. Furthermore, an option can have more complex features and can be

customized based on the needs of the investors, which is called an exotic option. It can

differ from a vanilla option in its expiration date, strike prices or payment structures.

One of the most common types of exotic options is barrier options. A barrier option is

similar to a vanilla call or put option but they only become activated or extinguished

if the underlying asset price reaches a barrier level (knock-out or knock-in price). In

this paper we will only focus on the European call option.

Following are definitions about some concepts that will be used in the whole of this

work.

Definition. A universe is a class that includes all of the entities that one would

like to consider in a given case.

With the concept of universe, we will assume from here that in our universe there

always exists the risk-free interest rate, r. This rate also is referred as the only cost

of holding a stock over a period of time.

Definition. From the assumption of universe and risk-free rate, we derive the

forward price of a stock which is the current price of a stock S0 and an its expected

6

return after time t of holding it. Then the forward price can be computed as

S0e
rt,

where r is risk-free rate.

Definition. We define a risk-neutral universe when for every asset A and period

of time t, the value of asset C(0, A) at t = 0 is the expected value of the asset at time

t discounted to its present value

C(0, A) = e−rtE[C(t, A)].

Before jumping to an important lemma about the mean and variance of log-normally

distributed stock price St, we denote by σ the annual volatility in the percent rise in

the stock price, that is the standard deviation of the percentage change in the price

over one year.

Lemma 1. Let S0 and St be respectively the stock price at initial and at time t.

Assume St is log-normally distributed, i.e ln St
S0

is normally distributed with mean µ

and variance ν and the mean of log-normal distribution is located at the forward price

of the stock. Then, with µ = µ(t), ν = ν(t):

ν = σ2t, (1)

µ =

(
r − σ2

2

)
t. (2)

Proof. It is clear that by the definition of σ, ln St
S0

has variance σ2 after 1 year.

After t− 1 years, ln St
S0

has variance σ2(t− 1) and after t years

ln
St
S0

= ln
St−1St
S0St−1

= ln
St−1

S0

+ ln
St
St−1

,

then has variance σ2(t− 1) + σ2 = σ2t.

To derive result 2 we consider

F (a) = P(St ≤ a)

= P(S0e
xt ≤ a)

= P(xt ≤ ln
a

S0

)

=
1√
2νπ

∫ ln a
S0

−∞
e
−(xt−µ)2

2ν dx.

7

Differentiate both sides with respect to a, getting

f(x) =
1√

2νπx
e
−(ln x

S0
−µ)2

2ν ,

f(x) is the density function of St. By the expected of forward price E[St] = S0e
rt,

E[St] =

∫ ∞
0

1√
2νπx

xe
−(ln x

S0
−µ)2

2ν dx

=
1√
2νπ

∫ ∞
0

e
−(ln x

S0
−µ)2

2ν dx.

Changing variable z =
ln x
S0
−µ

√
ν

, following by dx = dx
x
√
ν

where x = S0e
z
√
ν+µ

E[St] =
S0√
2π

∫ ∞
−∞

e
−z2

2 ez
√
ν+µdz

=
S0√
2π

∫ ∞
−∞

e
−(z−

√
ν)2

2
+µ+ ν

2 dz

=
S0e

µ+ ν
2

√
2π

∫ ∞
−∞

e
−(z−

√
ν)2

2 dz.

Letting x = z −
√
nu

E[St] =
S0e

µ+ ν
2

√
2π

∫ ∞
−∞

e
−x2

2 dx = S0e
µ+ ν

2 . (3)

Due to the fact that the last term is equal to S0e
rt by expected forward price and

ν = σ2t, we get µ =
(
r − σ2

2

)
t. �

2.2 Brownian motion

First we mentioned a more understandable term, a random walk. A symmetric

random walk can be defined as at each time point, variable X has an equal chance of

increasing or decreasing by 1, that is, P(Xi−1 − Xi = 1) = P(Xi−1 − Xi = −1) = 1
2

where i ∈ Z. Now if we can take smaller and smaller steps in smaller and smaller

interval of time, we may get the Brownian motion. That is the scaling limit of random

walk in dimension 1.

Brownian motion (or Wiener process) in physics describes the motion of a particle

suspended in a fluid. It was first noticed as a model by Robert Brown in 1827 [1],

describing ”pollen grains suspended in water perform a continual swarming motion”.

Figure 4 taken from ”Brownian Motion - Draft version of May 25, 2008” [2] shows an

example of Brownian motion.

8

Figure 1: Graph of five sampled Brownian motions from [2]

Definition (Brownian motion).

A one-dimensional (standard) Brownian motion is a real-valued stochastic process Bt,

t ≥ 0 having the following properties:

(a) B0 = 0.

(b) It has independent increments, i.e, if t0 < t1 < ... < tn then Bt1 −Bt0 , ..., Btn −
Btn−1 are independent.

(c) The increment Bt+s−Bt has normally distributed with mean 0 and variance s,

for all 0 < s, t.

(d) With probability 1, the function t→ Bt is continuous in t.

Definition (Filtration).

A filtration of the probability space (Ω,F , P) is a family F(t) : t ≥ 0 of sub-σ-algebras

such as F(s) ⊆ F(t) for all s ≤ t and F∞ = σ(∪t≥0Ft).
Recall that a σ-algebra is a family of events including the empty set that is closed under

complementation and countable unions. Let {B(t)} be a Brownian motion. We denote

F0(t) the smallest σ-algebra for that each B(s), 0 ≤ s ≤ t is measurable. Moreover,

denote

F+(t) =
⋂
s>t

F0(s)

9

and by being right-continuous ⋂
ε>0

F+(t+ ε) = F+(t).

Definition (Stopping time).

A random variable T in [0,+∞] is a stopping time with respect to the filtration F(t)t≥0

if

{T ≤ t} ∈ F(t), for all t ≥ 0.

Definition.

Let T be a stopping time with respect to the filtration F+(t)t≥0. Then

F+(T) =
{
A : A ∩ {T ≤ t} ∈ F+(t),∀t ≥ 0

}
.

Theorem 1 (Strong Markov property). Let B(t)t≥0 be a Brownian motion and

T is a finite stopping time of B(t). Then the process

B(T + t)−B(T) : t ≥ 0

is also a Brownian motion starting at 0 and independent of B0, B1, ..., BT .

Definition (Martingale).

A real-valued stochastic process Xt, t ≥ 0 is a martingale with respect to a filtration

F (t) if Xt ∈ F (t) for all t ≥ 0, if E|Xt| < +∞ for all t ≥ 0, and if E[Xt|F (s)] = Xs

almost surely for all 0 ≤ s ≤ t.

Lemma 2. Brownian motion is a martingale.

Proof. Let B(t) be a standard Brownian motion. Then

E[B(t)|F+(s)] = E[B(t)−B(s)|F+(s)] +B(s)

= E[B(t)−B(s)] +B(s)

= B(s)

by the Markov property. Hence Brownian motion is a martingale. �

A random walk, a popular phrase in finance, can be understood as a Brownian

motion. It is widely applied to quantitative models due to its properties. The first

core reason is that both Brownian motion and assumption of stock prices in finance

models have independent movements, that is, the price change does not depend on

the past. In other words, the stock price should be unforecastable even all history

movements information is provided. In Proof that properly anticipated prices fluctuate

10

randomly [3], Samuelson showed the mathematical foundation to prove that ”in well

informed and competitive markets, price changes will essentially be random” (Merton,

2006). Second, the Brownian motion’s paths are continuous and finite - it is almost

certain that it can reach a predetermined target at some time. Moreover, Brownian

motion is a Markov process and also a martingale process, which are associated with the

features of ”efficient markets” mentioned in Farma (1970 [4], 1991 [5]). Markov process

is a random process in which if given information until τ < t then the conditional

distribution of B(t) depends only on B(τ), in the other words, given the present the

future is independent from the past. By Lemma 2, Brownian motion is a martingale,

so the best estimate of the future value is the current value.

However, there also are critics of the usefulness of Brownian motion in mimicking the

stock price in financial models. Based on the core assumptions of the models which use

Brownian motion, namely independence, stationarity and normal distribution, Borna

and Sharma (2011) pointed out features that Brownian-motion-based-models were not

suitable in the real-world markets [6].

2.3 The Itô process

Itô calculus is named after Kiyoshi Itô, it uses the methods of calculus applied to

stochastic processes. Therefore, it plays an important role in mathematical finance and

stochastic differential equations. We, however, will only stress some main points of the

Itô process and Itô’s Lemma.

The Itô process is defined as the integral equation

S(t, w) = S(0) +

∫ t

0

µ[u, S(u,w)]du+

∫ t

0

σ[u, S(u,w)]dW (u,w) (4)

or as a stochastic differential equation

dS(t, w) = µ[t, S(t, w)]dt+ σ[t, S(t, w)]dW (t, w). (5)

The Itô equation is a continuous-time random equation and its domain is [0,∞)×Ω,

where the two arguments t and w represent time and random element respectively. The

equation (5) in finance can be explained as the expression of small change in the stock

price S(t, w) at time t affected by the random element w. The small difference dS(t, w)

is the limit of ∆S(t, w) as ∆t approaches 0, where ∆S(t, w) = S(t+∆t, w)−S(t, w) and

∆t is the difference in time. The drift component µ[t, S(t, w)] computes the expected

change in S(t, w). The term σ[t, S(t, w)]dW (t, w) represents the uncertainty of dS(t, w)

where σ[t, S(t, w)] is used to calculate the standard deviation or the volatility of dS(t, w)

11

and dW (t, w) is Brownian motion with mean 0 and variance dt. A more detailed

explanation about the above uncertain term can be found in Chapter Ito’s Calculus

and the Derivative of the Black-Scholes Option-Pricing Model from the book Handbook

of Quantitative Finance and Risk Management [7]. Also, in this book, the authors give

a detailed introduction and calculation of Itô calculus and how its importance to models

of asset pricing.

Itô’s lemma is the chain rule for stochastic calculus. We can state the Itô’s lemma

as follows:

Theorem 2 (Itô’s lemma). Let W (t) be a Wiener process and S(t, w) be an Itô

drift-diffusion process which satisfies the stochastic differential equation:

dS(t, w) = µ(t, S(t, w))dt+ σ(t, S(t, w))dW (t, w). (6)

If f(t, w) ∈ C2(R,R2) then f(t, S(t, w)) is also an Ito drift-diffusion process, with its

differential given by:

df =

[
∂f

∂t
+ µ

∂f

∂S
+

1

2
σ2 ∂

2f

∂S2

]
dt+ σ

∂f

∂S
dW. (7)

The result (7) can be derived easily by using Taylor expansion of df(t, S(t, w))

df =
∂f

∂t
dt+

∂f

∂S
dS +

1

2

∂2f

∂S2
dS2 + ... (8)

Substituting the stochastic differential equation (6) into Taylor expansion (8)

df =
∂f

∂t
dt+

∂f

∂S
(µdt+ σdW) +

1

2

∂2f

∂S2
(µ2dt2 + 2µσdtdW + σ2dW 2) + ... (9)

Finally, setting dt2 and dtdW be equal to 0, dW 2 be equal to dt (by the quadratic

variance of a Wiener process) we get (7).

More about derivation of this Itô’s lemma and its extension are presented in [17] -

[20].

2.4 Greek letters

Under the Black-Scholes model framework [23], option traders usually use Greek

letters to measure different dimensions to the risk of an option. Often-mentioned Greek

letters of Delta, Theta, Gamma, Vega, and Rho in option pricing are generally defined

as the sensitives of an option price relative to changes in the value of either a state

variable or a parameter (Hull, ”Options, Futures, and Other Derivatives” [15]). Based

12

on our need in this paper, we will only focus on some of the letters. This section has

used materials from [15], [21] and [22].

Definition.

The Delta of an option measure the rate of change of option value to the change in

the underlying asset’s price.

Delta = ∆ =
∂V

∂S0

.

The Vega of an option is the sensitivity of the option price to a change in volatility of

the underlying stock.

Vega = ν =
∂

∂σ
V,

where the parameter V denotes the option’s value, either C for call option or P for

put option, and S0 denotes the current price of the underlying asset.

In the book On Derivatives of Black-Scholes Greek Letters (2013) [21], authors gave

the detailed proof of the following two lemmas.

Lemma 3. From the relationship of d1 and d2

d1 =
ln(S0/K) + (r + σ2/2)τ

σ
√
τ

, and d2 = d1 − σ
√
τ ,

it holds that
∂d2

∂σ
=
∂d1

∂σ
−
√
τ . (10)

Here the parameter τ is the time from current time to the maturity.

Lemma 4. The relationship between the values of the density functions n(d1) and

n(d2) can be expressed as

S0n(d1) = Ke−rτn(d2). (11)

With the two above relationships, the formula of the Vega letter can be derived.

Proposition 1. The expression of Vega letter (Vega function) and Delta letter for

Black-Scholes call options is

∆ =
∂C

∂S0

= N(d1), (12)

ν =
∂C

∂σ
=
√
τS0n(d1). (13)

Proof. To prove this proposition, we will need the formula of the call option price

C = S0N(d1) − Ke−rτN(d2), which is derived from [23] and will be mentioned later

13

in this paper. Taking the derivative with respect to S0 directly gives us the equation

(12).

On the other hand, taking derivative with respect to σ

ν =
∂C

∂σ
=
∂[S0N(d1)−Ke−rτN(d2)]

∂σ

= S0n(d1)
∂d1

∂σ
−Ke−rτn(d1)

∂d2

∂σ

= S0n(d1)
∂d1

∂σ
−Ke−rτn(d2)

[
∂d1

∂σ
−
√
τ

]
=
[
S0n(d1)−Ke−rτn(d2)

] ∂d1

∂σ
+
√
τKe−rτn(d2)

=
√
τKe−rτn(d2),

where the third last equation comes from (10) and from (11) we derive S0n(d1) −
Ke−rτn(d2) = 0 which leads to the last equation. �

The normal density function is given by

n(x) = 1
σ
√

2π
e−

1
2(x−µσ)

2

,

where µ is the mean and σ is the standard deviation of the distribution.

Assume that d1 is standard normal distributed, then

n(d1) = 1√
2π
e−

1
2
d2

1

and Equation (13) becomes

ν =
1√
2π
S0

√
τe−

1
2
d2

1 . (14)

14

3 Models of asset pricing

This section presents two famous developments of option pricing construction and

model. The interesting point is that both models discuss market price behavior in

continuous time and apply stochastic analysis of Brownian motion. The first model

of Bachelier is derived from arithmetic Brownian motion while the second model, the

Black-Scholes model, was built upon the consideration of geometric progression arriving

at geometric Brownian motion.

3.1 The Bachelier Model (1900)

Louis Jean-Baptisete Alphonse Bachelier (1870 - 1946) was the first mathematician

to use Brownian motion as a model to analyze stock and option market prices in 1900

[25].

He modeled the stock price as normally distributed:

St = S0(1 + σWt), Wt ∼ N(0, t).

This is considered to be a good model for interest rates. However, it leads to

non-zero probability for negative stock price.

The Bachelier model for the stock price follows the stochastic differential equation:

dSt = µStdt+ σdWt,

where µ and σ > 0 are constants and Wt is Brownian motion.

3.2 The Black-Scholes Model (1976)

Black-Scholes model (fully Black-Scholes-Merton model) was proposed first in 1973

by Fischer Black, Myron Scholes and Robert Merton [23] - [24].

This model can be applied to determine the price of European options with risk-

less interest rate r, where the underlying is non-dividends. We will discuss in more

details about the assumptions of Black-Scholes model and how much it can be trusted

in actual market later in this section.

In this section, we still use S(t, w) as the notation for the stock price at time t,

uncertain term w and the stock price is assumed to follow the Itô’s stochastic differential

equation (5). Then the stock option at time t can be written as

V (t, w) = V (t, S(t, w)) (15)

15

and satisfies that V (t, w) is twice continuously differentiable.

For simplifying purposes, we only consider the case µ[t, S(t, w)] = µS(t, w) and

σ[t, S(t, w)] = σS(t, w), where µ and σ > 0 are constants. We also simplify the

notation by getting rid of the uncertain term w in the expressions. Thus, the equation

(5) changes into

dSt = µStdt+ σStdWt. (16)

Recall S is the price of non-dividend paying asset, W is a Wiener process, the time

t, the drift parameter µ and the volatility parameter σ.

Applying Theorem 2 (Itô’s lemma) to equations (15) and (16), we have

dV =

[
∂V

∂t
+ µSt

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2

]
dt+ σSt

∂V

∂S
dWt. (17)

Now we will apply a technique called Delta-Hedging. In this technique, we denote

the quantity of the asset ∆. Hence, the change of a mixture of option value and

quantity of assets in time is

d(V + ∆St) =

[
∂V

∂t
+ µSt

∂V

∂S
+

1

2
σ2S2

t

∂2V

∂S2
+ ∆µSt

]
dt+ σSt

(
∂V

∂S
+ ∆

)
dWt (18)

Choose ∆ = −∂V
∂S

(t, St), equation (18) becomes

d(V + ∆St) =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt. (19)

This technique provides us with a portfolio that does not contain the random term

Wt. Hence, the growth rate of this delta-hedging portfolio (19) is equal to the compound

risk free rate r. Thus(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt = r(V + ∆St) = r

(
V − St

∂V

∂S

)
. (20)

Rearrange the equation (20) we get the famous Black-Scholes PDE

∂V

∂t
+

1

2
σ2S2

t

∂2V

∂S2
+ r

∂V

∂S
− rV = 0. (21)

A very nice and proper approach to Black-Scholes PDE from portfolio value equa-

tion can be seen at [7].

Theorem 3 (Black Scholes formula). Consider in a risk-neutral universe with S0

and St are stock price at initial and at time t respectively, St is log-normal distributed.

At time t = 0, with maturity time T , strike price K and risk-free rate r, a Vanilla

European call option price is given by

C = S0N

(
log S0

K
+ (r + σ2

2
)T

σ
√
T

)
−Ke−rTN

(
log S0

K
+ (r − σ2

2
)T

σ
√
T

)
, (22)

16

with the cumulative normal distribution

N(x) =

∫ x

−∞

1√
2π

exp
−z2

2
dz.

Other notations are often used d1 =
log S

K
+ (r + σ2

2
)T

σ
√
T

and d2 = d1 − σ
√
T . Then

in short,

C = S0N(d1)−Ke−rTN(d2). (23)

To prove the call option pricing formula we will calculated the expected option

value. In fact, it is not the original method that derived from [23].

Recall that the stock price St is log-normally distributed means that logSt is nor-

mally distributed.

Proof. We know that

C(T, S) = ST −K if ST > K

= 0 if ST ≤ K

By the definition of a risk-neutral universe,

C(0, S) = e−rTE[C(T, S)]

= e−rTE[max(ST −K, 0)]

= e−rT
∫ ∞
K

1√
2πTσx

(x−K)e
−(ln x

S0
−µ)2

2σ2T dx

= e−rT
1√

2πTσ

∫ ∞
K

e
−(ln x

S0
−µ)2

2σ2T dx− e−rT
∫ ∞
K

1√
2πTσx

Ke
−(ln x

S0
−µ)2

2σ2T dx.

The first integral we encountered in Lemma 1, thus it can be written as

e−rTS0e
µ+σ2T

2

∫ ∞
ln K
S0
−µ−σ2T

σ
√
T

1√
2π
e
−z2

2 dz.

Substitute equation (2) for value µ and see that it is indeed the cumulative normal

distribution for variable
ln K
S0
−rT−σ

2T
2

σ
√
T

. Then

S0

(
1−N

(
ln K

S0
− rT − σ2T

2

σ
√
T

))
= S0N

(
−

ln K
S0
− rT − σ2T

2

σ
√
T

)

= S0N

(
ln S0

K
+ (r + σ2

2
)T

σ
√
T

)
,

which is also the first term of (22).

17

For the second term, we use change of variable y =
ln x
S0
−µ

σ
√
T

, dy = dx
xσ
√
T

and let

A =
ln K
S0
−µ−σ2T

σ
√
T

. Then

−e−rT
∫ ∞
K

1√
2πTσx

Ke
−(ln x

S0
−µ)2

2σ2T dx = −e−rT
∫ ∞
A+σ

√
T

1√
2π
e
−y2

2 dy

= −e−rTK
(

1−N
(
A+ σ

√
T
))

= −Ke−rTN
(
−A− σ

√
T
)

= −Ke−rTN

(
ln S0

K
+ (r − σ2

2
)T

σ
√
T

)
,

which is what we need. �

Despite this model is used widely, Black-Scholes model does not exactly follow the

actual market. Following are assumptions of this model

• The model only examine the European-style options which can only exercised on

the expiration date.

• No dividends: The model assumes that the stocks do not pay any dividends or

returns.

• Frictionless market: There is no transaction cost or services cost of buying or

selling options.

• Normal distribution: The returns on the underlying stock is normally distributed.

It implies that the volatility of the market is a constant.

• Risk-free interest rate: The short-term interest rate is known and constant.

• No arbitrage: There is no arbitrage. It avoids the opportunity of making a riskless

profit.

Due to some of those impractical assumptions, the Black-Scholes model has to face

with certain limitations in its ability to predict option prices. In [30], Krznaric presents

a project that analyzes the price movement of 480 stocks during the year 2014 to de-

termine the effectiveness of Black-Scholes model. Also in [31] authors criticize the

unrealistic of applying Black-Scholes formula.

18

4 Volatility

Portfolios are designed with the understanding that risk and return are closely cor-

related. This implies that the higher the yield an investor seeks, the higher the risk

they must take. One of the main principles of modern portfolio theory is that financial

results can be taken in account in terms of mean (the return) and standard deviation

of the return (the risk) of a given security. One of the biggest difficulties that investors

face is determining how much risk they are taking on as they accept an investment.

That means it is important that people somehow can define the future trends of port-

folio components. To have information about the future, in many aspects of life, one

efficient way is to investigate the historical statistic performance. However, in social

sciences such as finance, making this inference regarding past results might not be the

safest way for an investor to estimate risk. There is a possibility that past forecasts will

result in either too much or far too little risk for a specific investor. Volatility is one

estimator often used to evaluate how well one portfolio performs and in this section,

we will approach this term in two aspects: historical volatility and implied volatility.

4.1 Historical Volatility

Historical volatility is based on historical data like prior price movement. Therefore,

it is based on actual documentation of the stock’s past performance. To compute

historical volatility, we need the asset price data at times ti with ti − ti−1 = ∆ and

Yi = lnSti − lnSti−1
(log-return). Estimated historical volatility is σ̂hist = σ̂∆√

∆
where

σ̂∆ =

(
1

N − 1

N∑
i=1

(Yi − Y)2

) 1
2

and Y =
1

N

N∑
i=1

Yi.

Historical volatility is a statistical term to measure how far the stock price moves

away from the average price in a given period of time. In general, historical volatility

is simply based on the collected observations, it provides the trader the information

about the past trends rather than a future expectation movements. A high historical

volatility may indicate that the price of the financial commodity has been rapidly rising

and falling over time but has not changed dramatically from its initial price. Similarly,

low historical volatility may mean that the price of a financial product has not moved

much but has moved slowly in a direction. By this definition, we can see similarity

between historical volatility of stock price and standard deviation. Therefore, using the

formula of standard deviation is the most common way to compute historical volatility,

however, not the only way.

19

Table 1: Sample of Apple option trading data fetching from Yahoo Finance

Table 1 shows a sample of Apple options market that we can fetch from Yahoo

Finance. Call option prices are collected, here we use the ask price, together with data

of strike price strike, time to maturity maturityTime, date of option trading Date and

the closing stock price on that date which in the column Close.

To compute the daily historical volatility we use the log-return price sample of size

21 days (average number of trading days in one month) and compute for each trading

day. To compute annual historical volatility we simply take daily volatility multiply

with square root of 252. This annual historical volatility will be compared with the

volatility that traders used in reality for the in the money call options that expir-

ing within one year, which is provided by Yahoo Finance in column impliedVolatility.

However, the volatility differed in various contracts even those contracts had the same

trading time. We, among different data in one same day, only consider the lowest

volatility which is greater than 10−5.

(a) Historical volatility (b) Implied volatility

Figure 2: Historical volatility in comparison with volatility used for trading

The statistical description of historical volatility and realistic trading volatility is

20

given in Figure 2. As we can observe, the historical estimate significantly underesti-

mates the volatility used by most traders. The maximum value of annual historical

volatility in this sample is slightly below the first quartile of realistic volatility. The

difference of mean absolute deviation (MAD) of historical and realistic volatility is

0.11. Since historical volatility is the standard deviation of log returns from the pre-

vious year, it is not shocking that the calculation smoothes out the peaks, resulting in

a value for each day that is less volatile and thus less sensitive to daily market move-

ments. Thus, traders need a different method to calculate volatility which generates

values only from trading information on that day but not a previous time period. That

alternative variable is implied volatility.

4.2 Implied Volatility

Black-Scholes Volatility

Unlike historical volatility, implied volatility is the estimated volatility of a stocks

calculated by the price of an option on that stock. Hence, the volatility is implied by the

financial model. Recall the Black-Scholes model, the volatility coefficient is assumed

to be constant with respect to the strike price and the maturity. In reality, it is also a

limitation of Black-Scholes volatility. In [15], there is discussion that implied volatility

varies with strike price (creating a volatility smile) and maturity (creating a volatility

term structure). One other way to avoid that limitation is to model the volatility as a

diffusion process - the stochastic volatility models [26] or the autoregressive conditional

heteroscedasticity (ARCH) model.

While most of the literature consider implied volatility being better than historical

volatility, author Isaac Faber from Stanford University used hypothesis testing on S

& P 500 index to conclude the failure to reject the hypothesis that the two kinds of

volatility are the same [59]. Basically, when it put into practice, we may assume that

implicit volatility acts better at times and worse at others, but which times are which

is unclear.

Let us consider a call option of value C(t, S) with strike price K and maturity T

is traded at time t and at a give stock price (St). Assume that the option value is

calculated by the Black-Scholes model. Then the implied volatility σ̂imp is given by the

solution of equation

CBS(St, σ̂imp, K, T) = C(σ̂imp). (24)

It is well known that there is no expression for the Black - Scholes implied volatility.

In the paper Can there be an explicit formula for implied volatility?, authors considered

21

the implied volatility as a function of underlying, strike and call price and proved that

this function did not belong to the class of D-finite functions.

Using the same notations as above, assuming a fixed maturity T > 0 throughout,

we omit T then the implied volatility is considered as the function I which satisfies

CBS(St, I(St, K, C), K) = C(t, S) (25)

and is defined on the open set

DI :=
{

(St, K, C) ∈ R3 : S,K > 0, (S −K)+ < C < S
}
.

Since the Black - Scholes call price is real analytic for S,K, σ > 0 and the Black

- Scholes Vega is positive, the implicit function theorem shows that I is real analytic

on DI . The question is concerned is that whether the function I admits a closed form.

To give a partial answer, author contributed Theorem 4 as follow

Theorem 4. The function I: DI ⊂ R3 → (0,∞) defined by (25) is not D-finite.

To prove the theorem, author used the closure under algebraic substitution of D-

finite functions. Suppose that a C∞-smooth function f is defined on an open set

Df ⊂ Rn. It is called D-finite if it satisfies PDEs

P1,d1(x)
∂d1f(x)

∂xd1
1

+ P1,d1−1(x)
∂d1−1f(x)

∂xd1−1
1

+ ...+ P1,1(x)
∂f(x)

∂x1

+ P1,0(x)f(x) = 0,

...

Pn,dn(x)
∂dnf(x)

∂xdnn
+ Pn,dn−1(x)

∂dn−1f(x)

∂xdn−1
n

+ ...+ Pn,1(x)
∂f(x)

∂xn
+ Pn,0(x)f(x) = 0,

valid for x = (x1, x2, ..., xn) ∈ Df , where di ≥ 1 for i = 1, ..., n and the Pij are

polynomials such that Pi,di is not identically zero on Df for i = 1, ..., n. If f is real

analytic, fix an arbitrary point x0 ∈ Df and consider the Taylor expansion of f at

x0. If we view f as formal power series, then the above PDEs shows that its partial

derivatives generate a finite dimensional vector space over the field of rational functions.

[28], [29]

The class of D-finite functions is closed under addition, multiplication, (in-)definite

intergration and Laplace transform. Division does not preserve D-finiteness in general,

nor does composition unless the inner function is algebraic.

The theorem does not rule out all explicit expressions but it shows that implied

volatility does not belong to a certain large class, which contains many elementary

functions and classical special functions.

22

Therefore, in order to get σ̂imp we normally need to solve the Black-Scholes equa-

tions for implicit roots.

Newton Raphson Method for computing Implied Volatility

One way to solve Black-Scholes formula is to use Newton Raphson method (also

known as Newton method) - an iterative algorithm to estimate the nonlinear equation’s

roots f(x) = 0, where f(x) is assumed continuous and differentiable. If we know the

root we are looking for is near x = x0 then the Newton method tells us that we can do

a better approximation by

x1 = x0 −
f(xi)

f ′(xi)
.

This procedure can be repeated as many times as needed to achieve the desired

precision. Formula for the (i+ 1)− th iteration is given by

xi+1 = xi −
f(xi)

f ′(xi)
.

Newton method is implemented based on the idea that a continuous and differen-

tiable function can be approximated by a straight line tangent to it.

Now assume the function CBS in Black-Scholes equation (24) is continuous and

differentiable with respect to σ̂imp, we can use Newton method to find the root of

equation. Applying to formula (24) to find σ̂imp, we get:

σ̂i+1 = σ̂i −
C(σ̂i)
∂
∂σ̂i
C
,

where C(σ̂i) is the market value of an option, ∂
∂σ̂i
C is the Vega function.

Substituting the expression of Vega function (14) into the above iteration we can

get fully the equation used to update volatility after each iteration.

σ̂i+1 = σ̂i −
(C(σ̂i)− C)

√
2πe1/2d2

1

S0

√
T

where all notations are the same as in Black-Scholes formula and C is the trading call

option.

The Newton - Raphson method needs an initial guess which is σ0 for the first

update. In certain cases, the method’s ability to converge may be influenced by the

choice of initial guess. Newton method may not work if there are points of inflection,

local maxima or minima around σ0 or the root.

We will simply try Newton method which uses exactly the computation above

with 2 examples. The input includes 5 values which are stock price S, strike price

K, maturity time T , risk-free rate r and a predetermined volatility σ, the call option

price is computed by Black-Scholes formula then all variables play role as input of the

23

iteration method with initial guess of σ is 0.9. Newton method will stop computing at

i-th iteration and return σi as an approximation of implied volatility if the difference

between σi and σ is below 1.0e-05 or return Error if the value of vega function at some

iteration reaches 0. The source code to apply the iteration method is generated by the

author and implemented by Python (version 3.8.3).

Input 1 (S,K, T, r, σ) = (100, 100, 10, 0.01, 0.45)

Input 2 (S,K, T, r, σ) = (170, 30, 4, 0.04, 0.71)

Input BS Call option price
Newton Method

Iteration Vega value Volatility

Input 1 147.76

1 43.57 0.19788

2 112.82 0.43059

3 94.92 0.44979

4 92.95 0.44999

Input 2 54.69

1 23.93 6.67536

2 1.1e-08 > 1.0e+10

3 0.0 Error

Table 2: Results of applying Newton method with 2 input examples

Newton method can perform a good convergence process, much faster than other

methods such as bisection method, since it has quadratic convergence. However, it

requires calculating the derivative, in our case is the Vega function. In some of the

cases, this value can be near zero then causes the dividing by zero problem as shown

in the above example. This also shows the instability convergence property of Newton

method. In some cases, the dividing by zero problem can be solved only by choosing

another initial point. But it is not always the case, it depends much on the data.

A call option is called In The Money (ITM) if the current market price is higher

than the strike price predetermined in the option. In the other hand, it is Out of

The Money (OTM) when the current market price is lower than the strike price,

which means the holders can not make any profit by exercising the option. They are

two classes in moneyness, moneyness value can be determined by the ratio between

the strike price and stock price. Figure 3 below shows the relationship of moneyness

and vega. When the data is too deep ITM or OTM, the Vega value can be close to

zero. In 2006, Peter Jackel wrote a paper about problems in methods of solving implied

volatility [68].

Moreover, running time is also an aspect which needs to be concerned, whenever a

sample is improved by updating more new data, Newton method needs to be run the

24

Figure 3: Moneyness versus Vega

whole process again. Even without the cases of Error, this process is still very time

consuming since the large number of data needed.

One method we want to introduce in this thesis is applying neural networks to solve

this situation. At first it seems like to solve the problem when updating data since we

can use the already trained model to apply to predict for other sample so using neural

network is more applicable in this sense.

25

5 Neural Network

People now more and more feel familiar with the terminology machine learning or

deep learning. In general, machine learning uses algorithms on data, to learn and make

informed decisions based on it. Deep learning is more complex. It structures algo-

rithms into layers called artificial neural network that can learn and make intelligent

decisions on its own. In this section, we will focus on neural networks, the neuron we

consider is not biological neuron. In fact, they are artificial models being inspired by

the model of biological neurons and built with ambition of mimicking the way human

brain’s solving cognitive tasks.

5.1 History

The concept and idea about an artificial neural networks had raised from the late

19th centuries by some scientists. Back to this time, scientists emphasized on con-

structing general theories of learning based on physics, psychology and neurophysiology

works, however, did not have any mathematical models.

The modern view of neural networks began in 1940s with the work [34] of Warren

McCulloch and Walter Pitts and was followed by Donald Hebb [35]. The invention of

perceptron network associated with learning rule [36] is known as the first practical

application of artificial neural networks. In this paper, Bernard Widrow and Ted

Hoff introduced a new learning algorithm and used it to train adaptive linear neural

networks. This Widrow-Hoff learning rule is still applicable in some today’s models.

Many important works came after the two pioneers focusing on new aspects that neural

networks can develop such as memories [37] - [38] or self-organizing property [39]. After

a stagnating period because of the lack of new ideas and the limitation of computers,

neural networks increased dramatically again in 1980s with two new concepts.

The first concept was to use statistical mechanics to explain the operation of a

certain class of recurrent network [40]. The second was the backpropagation algorithm

for training multilayer perceptron networks by David R. and James M. [41]. Many

progresses of neural networks had been made based on this two new concepts and

followed by a large number of applications.

Neural networks clearly do not provide solutions to every problem, but they are

essential tools to be used in appropriate situations (Neural Network Design, 2014 [33]).

People can not deny the important position of neural networks in modern science.

However, since our knowledge of human brain is very little, the most advances in neu-

ral networks still have not yet to come.

26

5.2 Neuron model and Network architectures

Neuron Model

A neuron model can be single-input or more typically multiple-input. In case of

multiple-input neuron, assume there are d inputs p1, p2, ..., pd in the form of a vector p.

Each input p1, p2, ..., pd is weighted by corresponding parameters w11, w12, .., w1d which

form the weight matrix W1. The input vector p ∈ Rd×1 is multiplied by the weight

matrix W1 ∈ R1×d then added with the bias b ∈ R, to form the net input:

n = W1p+ b. (26)

The net input n goes through an activation function f to produce the neuron output

x

x = f(W1p+ b) (27)

The sense of weight matrix and activation function will be discussed later after we

review the Network architecture.

Network Architectures

A number d1 of neurons operating in parallel is called a layer (figure below). Then

with an input p ∈ Rd×1 a layer includes the weight matrix W ∈ Rd1×d, a bias b ∈ Rd1 ,

the activation function f and the output after that layer x ∈ Rd1×1. Also the activation

function is applied for each neuron in a layer can be different as well.

From the architecture of one layer, we can easily construct a network with multi-

layer (figure below). The j − th layer will have its own weight matrix Wj ∈ Rdj×dj−1 ,

bias b ∈ Rdj , the activation function fj and the output after that layer xj ∈ Rdj×1.

Only an input can be called input layer. A layer whose output is the network output

is called output layer. The other layers are called hidden layers. For example,

a three-layer network will contain an output layer and other two hidden layers, its

ultimate output can be computed by

x3 = f3(W3f2(W2f1(W1p+ b1) + b2) + b3.

In general,

x(j) = f
(
Wjx

(j−1) + bj
)
, (28)

where x0 = x the input, the matrix Wj ∈ Rdj×dj−1 and vector bj ∈ Rdj are parameters

of j − th layer, and f is the activation function. Equation (28) clearly shows that the

27

output of the previous layer plays a role as an input for the next layer. Also, the ulti-

mate output vector after J layers is xJ and also represented for the prediction function

h(x;w) where w contains all parameters (W1, b1), ..., (WJ , bJ) [32]. When building a

model, our target usually is to minimizing the distance from our model predicted value

h(x;w) and the true value y. This distance is measured by the loss function l, then the

optimization problem with given training set {(x1, y1), (x2, y2), ..., (xn, yn)} leads to

min
1

n

n∑
i=1

l(h(xi, w), yi). (29)

Normally, the choice of loss function directly depends on the activation function

used in the model.

Figure 4: Example of Neural network architecture [53]

If only consider the net input, it can be constructed linearly from given inputs.

However, it can reach arbitrarily high or low values and lead to computational issues

in deep neural network. Then the activation function f is added to give a certain

limitation for a layer’s output before it goes through the next layer. In addition and

also more importance, an activation function gives the ability to add the non-linearity

into network. The certain perceptual tasks, which need the participation of deep neural

networks to solve, in general do not have linear patterns. There are many activation

functions, each solves one feature based on needs of the models. Below are some

examples of activation functions

• The sigmoid function f(x) = 1/(1 + exp(−ax))

• The ReLU (rectified linear unit) function f(x) = max {0, x}

• The Leaky ReLU function f(x) =

{
αx x < 0

x x ≥ 0

28

5.3 Hyper-parameters

To build a good deep neural network model, we need to involve various choices of

hyper-parameters.

Batch size is the number of samples that will go through the network at once, before

update the internal parameters of the model. A training dataset can be separated into

one or more batches. For example, the dataset contains 2000 samples and the batch

size is set up equal to 150. That means, model will take the first 100 samples from

training dataset and train. Next it will take the second 150 samples and train again

the network which has updated all parameters after the first batch, keep doing this

process until all samples go through the network. By this way, our process requires

less memory since each time training network, we only need to use one portion, not

all, of the training dataset. Moreover, the typically model trains faster and updates

parameters more efficiently. On the other hand, dividing training dataset into many

batches may cause less accuracy in computing the gradient.

The number of epochs defines the number of times that algorithm works with entire

training dataset. The number of epochs in general is large, allowing the algorithm to

run until reach some sufficient small loss. As in Figure 5, loss function used is the

mean absolute error (mae), value of the loss has a huge decline only after epoch 40 and

gradually decreasing trend after that.

Figure 5: Change of loss value with respect to number of epochs 1

1All figures in this section are generated by different models using the datasets which will be

described in later section

29

However, the first and foremost challenge is to determine the number of layers -

the depth and the number of neurons in each layer - the width of the model. Every

neural network will require a single input layer and a single output layer. The number

of neurons in input layer and output layer are also easy to determine based on the

number of variables in the data processed. The challenge remains for how to design

hidden layers. Artificial neural network only requires hidden layers if the data must

be separated non-linearly. First proposed in 1989, Cybenko [45] stated theorem of

universal approximation ability for a single hidden layer neural network for sigmoid

activation function. The theorem stated that a feed forward network containing one

hidden layer with finite number of neurons can approximate continuous functions with

mild assumptions on the activation function. Hornik later in 1991 [46] expanded the

work of Cybenko that the multilayer architecture itself of the neural network gives it

the potential of being universal approximations.

Theorem 5 (Universal Approximation Theorem). Fix a continuous function

σ : R → R (activation function) and positive integers d, D. The function σ is not a

polynomial if and only if, for every continuous function f : Rd → RD (target function),

every compact subset K of Rd, and every ε > 0 there exists a continuous function

fε : Rd → RD (the layer output) with representation

fε = W2 ◦ σ ◦W1,

where W2,W1 are composable affine maps and ◦ denotes component-wise composition,

such that the approximation bound

supx∈K ||f(x)− fε(x)|| < ε

holds for any ε arbitrarily small (distance from f to fε can be infinitely small).

However, although this theorem proves that a single hidden layer network can learn

anything, it does not show how easy it can learn. That is why nowadays the multilayer

perceptron becomes more and more popular. Hinton from his research in 2006 [47]

contributed a lot to learning algorithms for deep neural networks with multiple hidden

layers. Empirical practice shows that, one or two hidden layers network can be good to

solve simple tasks, many hidden layers can be fruitful for more complex tasks, image

recognition problems. However, the more hidden layers does not assure the better

performance of the neural network model. While too few layers and neurons can make

the model underfitting, too many parameters can lead to an overfitting model. [48]

Next, we demonstrate some results from empirical experiences to see how the loss

value can vary while changing number of layers and number of neurons in each layer.

30

Decision of these two numbers is even more important when layer type is classic dense

layer, indicating that each neuron of the preceding layer will be fully connected to

every neuron of the next layer. Besides dense layers, modern neural networks also

have dropout, convolutional, pooling or recurrent layers. Type of layer is also one of

hyper-parameter that the creater should consider before construct a network since each

layer type has its own purpose and can raise the efficiency if being used correctly. In

this thesis work, we will only use dense layer because of the regression property of the

problem and with the purpose of reversing network from outputs tracing back to the

inputs.

(a) Model of 4 layers, 4 neurons each (b) Model of 10 layers, 4 neurons each

Figure 6: Training loss changed with various choices of the number of layers 2

In what follows we will use learning curves, see more [50], to illustrate the loss

value during the training of the same data set with two model architectures. In figure

6, the first diagram describes model with only 4 layers and the second is ones having

10 layers, including input and output layers. In both models, each layer contains 4

neurons, that means, we only expand the depth but not the width of models. The fact

shows that even we increase four times the number of layers, general loss after training

100 epochs seems to remain the same. Furthermore, the second try with 10 layers

seems unstable when around epoch 30 loss value of validation set suddenly climbed

up to 1.4. It can be explained by the huge number of trainable weight parameters

which may cause heavy computing then explode some numbers during computation.

Although in this case e − 02 is not a bad result, a considerable improvement can be

made with altering number of neurons in layers. Figure 7 (a) shows model of also 4

layers but having 8 neurons instead of 4 in the second hidden layer. Its training loss is

2.9e− 04 and even can be better with network of 6 layers including two hidden layers

with 8 neurons. At the end of training, we also see some signals of blowing values and

all through the progress validation loss highly fluctuates around model loss. Generally

2Loss value in all figures in this section is measured by mean square error

31

in this case we can raise the number of training epochs to observe the moving trend.

(a) Model of 4 layers, neurons 4-4-8-4 (b) Model of 6 layers, neurons 4-4-8-8-4-4

Figure 7: Loss with changing number of neurons in each layer

One more remark for figures 6 and 7 is that we excluded loss values of from one to

three first training epochs. Because of the stochastic initialization - choosing randomly

the first step to begin gradient descent, loss value of the several first epochs often

considerably higher than the next ones. For example, in the case of model in figure 6 -

(a), loss value of the first epoch is 1.0158 which is 1000 times as much as 0.0016 of the

second epoch. We more want to focus on how the loss varies during training process to

investigate the trend or any uncommon exploding or vanishing values so the first loss

value epoch is not necessary.

There are several more hyper-parameters such as activation function, network

weight initialization, momentum, optimizer or learning rate which will be presented

in the next subsection. Minimizing the loss function is the original target of training

neural network and this target can be achieved by expanding the depth or the width

of network or changing other control model hyper-parameters. However, reducing the

loss function value may need to trade off by complex computation progress or much

longer training time because of increase in number of parameters. Ultimately, the se-

lection of model architecture would come down to trial and error and what our goals are.

5.4 Optimizers and Learning rate

An optimizer of a training model is an optimization method or a strategy used to

control various attributes of the network to reduce loss in an efficient way. Learning

rate is one of the key hyper-parameters in a deep training model. In general, deep

learning neural networks are used the stochastic gradient descent algorithm ([42] - [43])

or some other extension of this method to train model. Therefore, we will demonstrate

the term learning rate with respect to the stochastic gradient descent method.

32

Consider the pair combining by the input x an the corresponding output y: (xi, yi).

The loss function l measure the distance from the prediction h(x,w) to the actual value

y: Q(w) = l(h(x,w), y) or the loss on each pair of data Qi(w) = l(h(xi, w), yi). Over

the training set {(x1, y1), (x2, y2), ..., (xn, yn)}, the empirical risk is measured by

En(h) =
1

n

n∑
i=1

l(h(xi, w), yi) =
1

n

n∑
i=1

Qi(w), (30)

while E(h) denotes the expected risk measuring the general performance - the expected

performance on the future data sets. The statistical learning theory [44] showed that

instead of minimizing the expected risk, it is enough to just minimize the empirical

risk En(h).

Then now it worth to focus on the minimizing problem of an object function:

Q(w) =
1

n

n∑
i=1

Qi(n), (31)

where the weight vector w is the parameter need to estimate to minimize Q(w).

Gradient descent is an iterative algorithm method, each iteration updates the

weight w based on the gradient of En(h):

wt+1 := wt − η∇Q(wt) = wt −
η

n

n∑
i=1

∇Qi(wt), (32)

here η is a chosen gain. Under some assumptions, when the learning rate is small

enough and the initial estimate wt is closed enough with the optimum, the iterative

algorithm can archives linear convergence, that is, log ρ ∼ t where ρ is residual error.

Stochastic gradient descent is a simplification of gradient descent algorithm.

Each iteration will no longer compute exactly the gradient of En(h), instead pick a

random pair (xt, yt) from training set:

wt+1 := wt − η∇Qt(wt). (33)

By this way, stochastic gradient descent method does not require as much memory

as gradient descent since it does not need to store gradient of the whole dataset. On

the other hand, stochastic sample choosing may cause high variance in parameters or

keep recomputing even after achieving global minimum.

Therefore, in short, stochastic gradient descent is an optimization that uses the

error gradient of the current state to update the weights of the model for the next

stage. The amount that the weights updated through each stage is call step size, in

this case step size is equal to learning rate times gradient. Used in neural network

training, the learning rate often has range between 0.0 to 1.0. If a learning rate is too

33

large, the algorithm may converge too quickly to a sub-optimal solution but can not

reach the optimum because of a huge jump thereby missing it. A small learning rate

will require more training epochs and cause stuck sometimes if it is too small.

(a) Learning rate r = 0.1 (b) Learning rate r = 0.01

(c) Learning rate r = 0.001 (d) Learning rate r = 10−5

Figure 8: Comparison between various learning rates

(SGD Optimizer)

Plotting can be a good way to see how impact of learning rate on training loss.

Figure 8 illustrates models trained using Adam optimizer with different learning rates,

said 0.1, 10−2, 10−3, 10−5 respectively. By observation, networks with learning rate 0.01

and 0.001 seem to have acceptable training loss and show the potential of convergence.

Train with rate 10−5 also seems to be gradually convergent however it requires more

epochs to train until when we can get desirable loss value. While with larger learning

rate (r = 0.1) training loss is 1000 times larger and train loss always higher than

validation loss, that means the network is currently underfitting [50].

One extension of stochastic gradient descent is to combine it with momentum

method.

34

Figure 9: SGD method without and with using momentum 3

When using stochastic gradient descent with momentum, the momentum term tends

to speed up the convergence to local minima after each epoch like the ball will roll faster

and faster down the hill. The time to convergence can be improved since we do not

need to oscillate too much up and down the y-axis anymore. More about momentum

will be presented later when we mention Adam method.

It is general that with relatively high learning rate the loss function jump down

rapidly at first but smaller learning rate shows better trend to converge and ability

to find optimum point. The idea then is that we want to start with a high learning

rate then gradually decrease its value during training. One popular form is decay

learning rate which reduces the initial learning rate by a number of percentage after

some training epochs. The percentage and the set of epochs after that the value of

learning rate changed are not necessary constants. With Keras, users can establish

learning rate schedule to define a function updating learning rate with a specific rule.

(a) Learning rate vs Epoch (b) Training loss vs Epoch

Figure 10: Using Decay Learning Rate with Stochastic Gradient Descent method

The model shown in Figure 10 has training loss around 0.3, much better than

value 1.7256 we have when train model with fixed learning rate 0.1 as in Figure 8 (a).

However, it is not always true that decay learning rate is better than fixed learning

rate.

3Source: Genevieve B. Orr

35

Other well-known form of learning rate is cyclical learning rate proposed by

Leslie Smith in [51]. In this form, the learning rate will vary between upper and lower

bounds. There are three update rules presented by the author in the paper: triangular

update rule, triangular update schedule with fixed decay and with exponential decay,

among those triangular update rule is the most popular. The rule to update triangular

cyclical learning rate (CLR) is simple to understand

lr = lrmin + (lrmax − lrmin)(max(0, 1− x)), (34)

defined

x =

∣∣∣∣epochCounterstepsize
− 2cycle+ 1

∣∣∣∣
and

cycle =

⌊
1 +

epochCounter

2stepsize

⌋
,

where lrmin and lrmax are two boundary values, epochCounter is the current training

epoch and 2 stepsize is equal to a cycle. As be seen in the formula, at the beginning

learning rate starts at the base vale lrmin, reaches maximum lrmax at the half of cycle

then goes down and meets the base again.

Figure 11: Model loss using fixed learning rate and cyclical

learning rate (SGD optimizer)

Figure 11 shows an example when we tested the cyclical learning rate to stochastic

gradient descent optimizer in our model. We can see that although the cyclical learn-

ing rate showed advantage at first, eventually it could not perform a better overall

performance in comparison with the fixed learning rate usage. This can be happened

in reality for many reasons. Thus, again, building model is a process of trials and false.

A much more useful way to update the learning rate is to consider it as a variable

of the model and adjust it based on some parameters during training, called adap-

tive learning rate. Three methods AdaGrad, RMSProp and Adam provided in

36

Keras allow us to implement this idea, where Adam [49] combines benefits of both two

preceded methods with the Stochastic Gradient Descent with momentum. Overview

of various optimization algorithms can be seen at [52]. Here we will only show some

short notes of these algorithms.

Adagrad is Adaptive Gradient Algorithm. It performs larger updates for infre-

quent parameters and smaller updates for frequent parameters so it is best suited with

sparse data in large scale. Formula for weight updating in Adagrad is

wt+1 = wt − η
gt√
Gt + ε

, (35)

where Gt is the sum of the squares of the past gradient, gt is the gradient, η and ε are

chosen gains.

RMSProp is Root Mean Square Propagation, in which the learning rate is divided

by the average of the exponential decay of squared gradients.

wt+1 = wt − η
gt√

(1− γ)g2
t−1 + γgt + ε

, (36)

where γ is the decay term having value range of [0, 1].

Figure 12: Comparison between various algorithms for MNIST images [49]

The name Adam is derived from adaptive moment estimation. The steps that

Adam uses to update weight parameters of model is presented as follow. This algorithm

uses the first and second moment estimators of gradient to adapt the learning rate.

The first momentum of gradient is computed by exponential moving average

E(mt) = E(gt)

mt = β1mt−1 + (1− β1)gt,

37

where β1 is by default equal to 0.9, m0 = 0 and g is gradient of the current epoch.

Using the recursive formula we can get mt = (1− β1)
∑t

i=0 β
t−i
1 gi and

E(mt) = E(gt)

= E((1− β1)
t∑
i=0

βt−i1 gi)

= E(gi)(1− β1)
t∑
i=0

βt−i1 + ζ

= E(gi)(1− βt1) + ζ,

as taking an approximation for E(gi) then we can pull it out the sum and then need

to add an error ζ. Bias corrected estimators for the first momentum will be

m̂t =
mt

1− β1

. (37)

We process proceed similarly for the second moment of gradient, start with

E(vt) = E(gt)

vt = β2vt−1 + (1− β2)g2
t ,

where β2 = 0.999, v0 = 0. Then we get bias correction for the second momentum

v̂t =
vt

1− β2

. (38)

The last step is to use estimators (37) and (38) in updating model parameters. The

way it is done in Adam is simple

wt = wt−1 − η
m̂t√
v̂t + ε

, (39)

where similar to equation of weight update rule in stochastic gradient descent (33), w

is weight parameter, η is a chosen gain also known as the default learning rate and ε

is a small term (usually 10−8) preventing division by zero.

38

6 On the inversion of Neural networks

6.1 Invertible neural networks

In all of the above sections we are talking about how to predict a quantities directly

from given input parameters. However, in reality, when analyzing complex systems,

there are common problems that the parameters of interest can not be computed

directly. A mapping that measures quantities y from the hidden parameters x is called

the forward process. The inverse process can understand simply as tracing back y→ x

for free after well trained forward process. From a mathematical perspective, invertible

architectures enable several unique guarantees:

• guaranteed preservation of mutual information and exact access to invariants of

deep networks [61].

• memory-saving gradient computation [62].

• fast analytical invertibility [63].

By [60], invertible neural networks are characterized by properties:

• the mapping from inputs to outputs is bijective, i.e. its inverse exists,

• both forward and inverse mapping are efficiently computable, and

• both mappings have a tractable Jacobian, which allows explicit computation of

posterior probabilities.

Modeling the conditional posterior of an inverse process is a classical statistical

problem that, in theory, may be handled using Bayesian approaches. Unfortunately,

the inverse problem by Bayesian method is often intractable since some important infor-

mation has been lost during the forward process. Various methods has been established

for a more efficient alternative, we, however, will not go into further details.

6.2 Mathematical inversion

As state at the beginning, implied volatility is an important parameter for traders

and investors that over the years, volatility forecasting becomes a hot research topics

on finance. However, in this work I want to mention a mathematical inversion of

neural network. Basically, mathematical inversion is like normal inversion but instead

of building train model, in the backward direction, we use mathematics, which may help

to reduce unnecessary complexity if applying invertible neural networks to a simpler

problem.

39

From the formula of computing output at each layer in the forward training network

(28)

x(j) = f
(
Wjx

(j−1) + bj
)
.

Now the target is to trace back the input values x(j−1) when we have all information

of outputs x(j), weight Wj and bias parameters bj, activation functions f . Assume that

we can do it in the sense that all function and weight matrices are invertible, we can

find x(j−1) by

x(j−1) = W−1
j

(
f−1(x(j))− bj

)
, (40)

where the exponent (−1) presents the inversion.

However, for the first reverse step, instead of taking model prediction as initial

input of (40) we use the true value of y in the training set.

x(m) = W−1
m

(
f−1(y)− bm

)
, (41)

where the exponent (−1) presents the inversion and m is the number of hidden layers

in neural network, so in that case x(m) presents the hidden layer right before the output

layer.

Inverse of activation functions

First and foremost condition for a neural network being invertible is that it uses all

invertible activation functions. We know that not every function can be invertible. Let

f be a function of domain X and its codomain is Y , to have an inverse, each element

in Y must correspond to no more than one element in X, said injection. If f−1 is a

function on the set Y , each element y ∈ Y corresponds to some x ∈ X then f−1 is

called surjection. To be invertible, a function must be both injection and surjection.

The following are few inversions of often used activation functions:

• Inverse function of Sigmoid activation function is the Logit function f−1(x) =
1
a

ln
(

x
1−x

)
.

• RELU does not have inverse function since the RELU function itself is not an

injection.

• Inversion of LeakyRELU is f−1(x) =

{
1
α
x x < 0

x x ≥ 0

However, we are lucky since we can control the choices of activation functions at

the beginning when ones builds the network architecture. All problem now leaves for

inversion of the weight matrices parameters.

40

Inverse of weight matrices

In linear algebra, an n × n square matrix A is called invertible if there exists an

n× n square matrix B such that

AB = BA = In,

where In denotes the identity matrix and the multiplication used is the ordinary matrix

multiplication. If this is the case, then the matrix A determines uniquely the matrix

B which is also called the inverse of A and denoted by A−1.

A requirement for a square matrix to have an inverse is the determinant of it must

not be zero. A square matrix having an inverse is called non-singular. In the other

hand, a matrix does not have an inverse is called singular matrix. Over the field of

real numbers, the set of singular n× n matrices is a null set, that means has Lebesgue

measure zero. Indeed, singular matrices are the roots of the determinant function.

The determinant is a polynomial in the entries of the matrix. By Richard Caron from

University of Windsor [64]

Theorem 6. A polynomial function on Rn to R, is either identically 0, or non-zero

almost everywhere.

Proof. We will prove the theorem by induction on n.

Denote n-dimensional Lebesgue measure by λn.

If n = 1 and p is polynomial, not the zero polynomial, of degree m then p has at

most m roots so λ1 {x : p(x) = 0} = 0. Suppose the result is true for polynomial with

n− 1 variables.

Since p is continuous then the zero set of p denoted by Z(p) is a measurable subset

of Rn.

Now we present a non-trivial polynomial p with n variables, degree m in xn

p(x, xn) =
m∑
j=0

pj(x)xjn

where x = (x1, x2, ..., xn) and p0, p1, ..., pm are polynomials in n − 1 variables and at

least pm is non-trivial.

Let (x, xn) such that p(x, xn) = 0 then or p0(x) = p1(x) = ... = pm(x) = 0 or xn is

a root of polynomial px(z) =
∑m

j=0 pj(x)zj.

Let A and B be the subset of Rn where the above conditions hold respectively, then

Z(p) = A ∪B

Recall that x is n− 1 vector then by the inductive hypothesis, it is true that A has

measure zero.

41

For a fixed x, the set {z : px(z) = 0} is finite by the fundamental theorem of alge-

bra. Since a finite set has measure zero in R then we can conclude that B has measure

zero. �

Thus in the language of measure theory, almost all n × n matrices are invertible.

In practice, we still have possibility to encounter a singular square matrix or matrices

which are invertible but close to a non-invertible matrix, which may cause problems.

In some sense, it can be said that we will be more lucky to reach our target of reversing

neural network if we construct a network with all weight parameters being square

matrices. That means in a fully connected network architecture, all number of neurons

in input, hidden and output layers should be the same.

Nevertheless, as presented in the previous section, model of neural network can

show much better performance with a small change in number of neurons in layers.

We, therefore, want to test the case that reversing model where weight matrices are

not square.

Moore [65] seems to have introduced the notion of an inverse of a singular matrix

in 1920. Some extension but no systematic analysis of the topic was made until 1955,

when Penrose, ignorant of the earlier work, redefined the Moore inverse in a more or

less different way [66].

Definition - Pseudoinverse for real matrices. For A ∈ Rm×n, a pseudoin-

verse of A is a matrix A+ ∈ Rn×m if satisfies all the following Moore-Penrose condi-

tions:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)> = AA+

4. (A+A)> = A+A

In fact, A+ exists for any matrix A. But when A has full rank then the inverse

matrix can represented as left or right inverse. If matrix A m× n has rank n (n ≤ m)

then A has a left inverse, that is n×m matrix A+ = (A>A)−1A> such that A+A = In.

And if A has rank m (m ≤ n) then it has a right inverse, that is AA+ = In and

A+ = A>(AA>)−1. If the inverse matrix of A exists, then the pseudoinverse will

coincide with it.

There are several methods to compute the pseudoinverse. However, we will mention

here the most famous ones is to use the singular value decomposition, which also is

the method used in programming languages. If A = UΣV> is the singular value

42

decomposition of A, then A+ = VΣ+U> where Σ is a diagonal matrix, U and V are

orthogonal matrices. To get pseudoinverse of Σ, we take the reciprocal of each non-zero

element on the diagonal then transpose the matrix.

The pseudoinverse can give best approximation solution to any system of linear

equations in the sense of least squares. For a given system of equations

Ax = b,

where A ∈ Rm×n, x ∈ Rn, b ∈ Rm. Using Moore-Penrose pseudoinverse will lead to an

approximate solution z = A+b such that ∀x ∈ Rn, ||Ax − b|| ≥ ||Az − b|| where ||.||
denotes Euclidean norm.

In a short discussion about Moore-Penrose inverse and application to solving linear

system [67], a group of authors stated conclusions may be useful in our cases. In the case

over-determined linear system, that means there are more equations than unknowns (or

simply n < m), we can always find a unique solution using the ingenious approach of

least squares. However, in the case of under-determined linear system, more unknowns

than equations (m < n), the solution is not unique and the system may have (n−m)

non-trivial independent solutions. Therefore, if an under-determined system remains

under-determined even in the least square approach, then the solution derived with the

help of Moore-Penrose pseudoinverse can just be considered as a natural solution but

not the unique ones.

So in general, it is not always possible to find the desired input when using the

inversion of rectangle matrices. Especially in the case feeding layer dimension is less

than its of receiving layer (the weight matrix is under-determined), there may exist

infinite solutions that satisfy formula, pseudoinverse can give one solution with least

squares approach but have no information to compute exactly or nearly the input that

we have at the origin.

43

7 Designing the models

7.1 Data sets

As a data-driven approach, the quality of a data set has an impact on the per-

formance of the resulting model. Focusing on the European call options, which price

can be calculated by the Equation (22) so we first generate a random data of 100,000

samples having 6 features {S,K, σ, T, r, C}.

Parameters Range Type

Stock price S [99, 201] integer

Strike price K [19,51] integer

Maturity T (in year) [1,5] integer

Risk free rate r [0, 0.05] float

Volatility σ [0,1] float

Call option price C [49, 185] integer

Table 3: Dataset 1 including 6 variables {S,K, σ, T, r, C}

The first impression can be seen from this dataset is that the ranges of stock prices

and option prices, between 50 to 200, are much higher than the ranges of risk free rate

and volatility which are always below 1.

Method Train loss
Output parameter differneces (mean, variance)

K S T r C

Adam 0.9411 (-0.18, 3e-2) (-0.7, 4.5e-2) (0.34, 0.59) (-0.03, 2.3e-4) (0.3, 3.3)

Table 4: Table of mean and variance of output differences after

training with Dataset 1

In order to test how this dataset can work, we set the input includes 5 variables

{σ,K, S, T, r} and output has also 5 dimensions {C,K, S, T, r} and used a training

model partially similarly to Model 1, which will be described in the upcoming subsec-

tion. In fact, after some training attempts, models result in some undesirable prop-

erties. For instance, when using optimizer Adam or RMSProp, outputs after training

always present a negative risk free rate, which can be unrealistic sometimes and we

want to eliminate this bad prediction. The reason may partially come from too large

distances between ranges of parameters then when training, it is hard to find good

weight parameters that can work well with both small range values and large range

44

values. During complicated computation, some values can be blown up or vanished or

be negative as we have. The negative problem no longer happens when the model uses

SGD optimization. However, this algorithm can not reach optimal situations, training

loss is always high since there is a high variance in Call option price difference between

model predicted value and the true value of training data (see Table 4).

Based on properties of features in this specific dataset, it is reasonable to think

about re-scaling data. In detail, instead of Stock, Strike and Option price our data

will contain only ratio of prices in comparison with Strike price K described in Table

5 below. This dataset is also the one used to test hyper-parameters in the previous

section.

Parameters Train Set Range Type

Stock price (S/K) [1.98, 10.53] float

Maturity T (in year) [1,5] integer

Risk free rate r [0, 0.05] float

Volatility σ [0,1] float

Call option price (C/K) [0.98, 9.72] float

Table 5: Dataset 2 including 5 variables {S/K, σ, T, r, C/K}

Depending on the change of data, the input and output of neural network also

need to be changed to 4 dimension, {σ, S/K, T, r} plays the role of the input and

{C/K, S/K, T, r} the output.

Parameters Train Set Wide Test Set Narrow Test Set

Stock price (S/K) (0.7, 3.4) (0.6, 4.3) (0.9, 2.8)

Maturity T (in year) [2,5] [1,6] [3,4]

Risk free rate r [0.01, 0.05] [0.0, 0.07] [0.02, 0.04]

Volatility σ [0.05, 0.9] [0.01, 1] [0.1, 0.8]

Call option price (C/K) (0.0, 2.8) (0.0, 3.7) (0.07, 2.0)

Table 6: Training and Testing Datasets

Because of the randomness while generating data, we can see some unrealistic points

in Dataset 2, for example, the ratio between stock price and strike price being up to

over 10 is too big. To get rid of these unwanted features in the final data, we change

ranges of value in price and generate data of 100,000 samples for only the training

set (presented in Table 6). Besides the training data set, we also generate two testing

45

data sets of size 10,000 each, one with features in the same ranges as training data

and one with slightly wider ranges to see how the model deals with it since empirical

experiences show that neural networks seem to work less efficient near the border of

the training set and to be able to forecast precisely with a centered data.

7.2 Model selections and performances

In this part, we present three neural network architectures, as well as hyper-

parameter selections based on purpose. Each of the three models is trained using

the specified training datasets listed in the preceding subsection and validated using

both a larger and a smaller testing range.

Parameters Model 1 Model 2

Layers 3 3

Neurons 4 - 4 - 4 4 - 8 - 4

Activation function LeakyRELU LeakyRELU

Optimizer Adam Adam

Loss function MSE MSE

Drop-out rate 0 0

Batch-normalization No No

Kernel Initializer Random uniform Random uniform

Table 7: Model selections

Model 1 and Model 2 were designed to assess the potential of mathematically

reversing the trained neural network, which is the main purpose of this study. Since

the regression form of the model is used, almost all of the hyper-parameters of both

models are similar. Nevertheless, the architecture of neurons differs. Although Model

1 has the same number of neurons in each layer, Model 2 has a significantly different

number of neurons in hidden layers, requiring the use of Moore-Penrose pseudoinverse.

By training and testing, we realize an interesting feature being true for both models

is that it seems like an increase in the number of layers in a model does not mean an

increase in model performance. Both models can work well with only 3 layers, adding

more hidden layers is redundant because of time consuming and the same or even

worse training loss. As this fact is mentioned in the previous chapter when discussing

hyper-parameters of neural networks, we do not need to have more hidden layers to

get good predictions and for regression problem networks can find a good convergence

with a few layers. However, we also know that this is not always the case.

46

The loss function in used for updating parameters of network is the mean square

error (MSE).

MSE =
1

n

n∑
i=1

(yi − ŷi)2.

Otherwise, we use other functions to test model efficiency, such as root mean square er-

ror (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE).

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2

MAE =
1

n

n∑
i=1

|yi − ŷi|

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ ,
where yi stands for observations and ŷi are predictions.

Table 8 illustrates the results in the sense of training loss MSE and other metrics

after forward training Model 1 and Model 2. It succeeds to show that changing a little

in neurons architecture helps slightly to increase performance and both models prove

its incorrectness when predict data point near the boundary, shown in the performance

of the testing-wide set.

Dataset MSE RMSE MAE MAPE

Training
Model 1 3.9638× 10−4 0.0199 0.0085 1.3961

Model 2 5.4659× 10−5 0.0074 0.0031 0.7116

Testing-wide
Model 1 0.0389 0.1972 0.0377 1142.35

Model 2 0.0027 0.0516 0.0155 617.00

Testing-narrow
Model 1 1.5562× 10−4 0.0125 0.0058 0.7814

Model 2 1.9224× 10−5 0.0044 0.0021 0.3636

Table 8: Forward training results with Model 1 and Model 2

On purpose of comparing the precision of training with reverse models and the stan-

dard forward approach, we created a IV-ANN model that takes all other variables

as input and the only output is the corresponding volatility value. This kind of model

had been tested in and brought in very optimistic results. At least we hope we can at

some extent compare between the accuracy of IV-ANN model output and traceback

output of Model 1. Since if we are lucky, the trained Model 1 can be mathematically

invertible then the general function matching input and output can be considered as an

47

bijection, thus, we can easily do backward the process with a little acceptable loss. In

that case, the quality of the backward computation depends a lot on how accurate the

forward training can do. In general, the selection of hyper-parameters for the IV-ANN

model is the same with Model 1 and Model 2 except for the number of layers and

number of neurons in each layer. An initial choice for the IV-ANN model gives us the

below result, in Table 9. Note that these results are not the best performance that we

can achieve because of many reasons such as the efficiency of computers, the choices in

ranges of data sets or the network architecture itself. Good results for applying neural

networks to compute financial volatility can be found in further supporting references

with the hybrid with other models and techniques. Here our purpose is to implement

an example model used for initial comparison the efficiency of mathematical reverse

method.

Dataset MSE RMSE MAE MAPE

Training 9.3484× 10−4 0.0306 0.0206 9.3966

Testing-wide 0.0052 0.0723 0.0440 34.5253

Testing-narrow 7.4781× 10−4 0.0273 0.0187 6.8604

Table 9: Training result with IV-ANN Model

However, we can not yet compare the training losses in Table 8 and Table 9 because

of the difference in output dimension. In order to assess how well each model forecasts

volatility values, we need to look at the volatility error distribution output of each

model, especially IV-ANN model and Model 1.

(a) Model 1 (b) IV-ANN model

Figure 13: Error density performance on the Training Dataset

For IV-ANN model, differences between σ̂ the prediction and σ the true value given

in dataset are considered. To take error of volatility from Model 1 and Model 2 we need

48

to do the mathematical backward process according to formula (40) and formula (41)

getting σ̂ then take σ̂ to minus σ. The IV-ANN model gives us the difference mean

about −0.0147 and 0.00072 variance, mean of absolute difference is 0.0206 while Model

1 having corresponding difference mean, difference variance and absolute difference

mean are 0.0111, 0.00622 and 0.0619. As expected, Model 2 because of doing Moore-

Penrose pseudoinverse can not recompute correctly the input, results in difference mean

of 4.085 and variance up to 7.237.

Figure 13 plots the error histogram and density curve performance of two models

IV-ANN and Model 1 with respect to the training data set. The peak of volatility error

after backward computing is around 0.06-0.07 while its peak of only forward training

model IV-ANN is 0.02-0.03. As can be seen, Model 1 produces a much wider range of

error than IV-ANN model. It is understandable since the IV-ANN model training only

one variable that is volatility then the error can be more concentrated in comparison

with the Model 1 which requires output of 4 dimensions.

7.3 In comparison with Newton-Raphson method

We compare the performance of Model 1, IV-ANN model and Newton-Raphson

method in terms of accuracy in predicting the implied volatility. We define a precision

error ε to evaluate accuracy of methods. A sample is considered as being approximated

correctly if

|σ̂ − σ| ≤ ε.

Depending on the statistical parameters mean absolute difference of IV-ANN model

and Model 1 (in the Table 10 and Figure 14 the name Model 1 is replaced by Reversed

model to emphasize on the method of mathematical reverse the neural network), which

are around 0.02 and 0.06 respectively, we can set 3 values for epsilon ε: 0.01, 0.02 and

0.06.

Newton-Raphson

method

IV-ANN model Reversed model

ε = 0.01 76.173 % 71.616 % 9.175 %

ε = 0.02 77.45 % 87.085 % 18.656 %

ε = 0.06 81.653 % 95.932 % 56.847 %

Table 10: Accuracy of predicting implied volatility on training dataset

As result shown in Table 10, in this case, predicting implied volatility by feed

forward neural network has slightly better performance than Newton iteration method.

49

In this specified experience, we limited the number if iterations in Newton method

down to 10 iterations. Therefore, the accuracy of Newton - Raphson method can reach

much higher level in reality practice. Forecasting by usage of mathematically reversed

network has low accuracy. It does, however, indicate a potential future improvement

of the method. It proves that first, the reverse can be done and second, gives an

acceptable error rate on some loose accuracy criteria. One superior advantage of using

neural network in general rather than iteration method is the less requirement on CPU

and GPU usage since it only requires matrix multiplication or inner product [53]. We

hope somehow we can raise the accuracy percentage by adjusting to a more efficient

network architecture.

Figure 14: Graph of the actual implied volatility and the neural

network forecast of implied volatility

50

8 Conclusion

In this thesis study we have proposed a brand new approach to compute implied

volatility supported by the foremost famous Black-Scholes model combined with deep

neural network technique. Besides, literature of other traditional most used methods

to forecast implied volatility along with their pros and cons are discussed. We realize

some unchangeable drawbacks of Newton numerical iteration methods are often elimi-

nated by applying deep learning into action, particularly using deep neural networks to

train models of high dimensions. Self-organizing learning and least square methods are

used leading to potential high accuracy and more importantly, to resolve problems of

zero derivatives and optimize the usage of CPU and GPU caused by Newton method.

Concerning the very fact that finding implied volatility is indeed finding the root of

the inverse Black-Scholes formula and in some cases the invertible neural network can

predict with high accuracy, we implement a replacement approach that uses literature

of inverse functions and inverse matrices to mathematically reverse a trained neural

network architecture. We considered two cases of mathematical inverse problem, the

first case requires invertible activation functions and all square trainable weight ma-

trices while the second case has looser criteria, does not need square matrices. We

initially developed two models to assess the feasibility of this new approach, and the

first of them showed promise. We tested the forecasting accuracy of this promising

reversed model with other traditional forward networks and Newton method. Our ini-

tially numerical result showed that despite that the new approach did not present a

superior performance to other methods, its accuracy can be acceptable in the sense of

loose criteria.

Future research

Since the topic of research is relatively new and we only did one trial model in this

thesis paper, there is much work that can be done to improve this topic in the future.

a) In the aspect of testing the feasibility of mathematically reversed neural net-

works:

We can implement this approach to other financial models rather than Black-

Scholes model. One potential example is the Heston model, which uses the stochastic

implied volatility instead of constant volatility as in Black-Scholes formula. In fact,

the stochastic volatility shows a superior performance in practical in comparison with

a constant volatility. We will be happy if the inverse neural network can work well

with this parameter.

Furthermore, we can extend this study for other financial parameters rather

than implied volatility.

51

b) In the aspect of improving the existing application with Black - Scholes model:

Concerning the relationship between the forward training and the backward

performance, we hope that improvement on feed forward training can bring about a

better reversed approximation. The way people process input variables may affect the

accuracy of the forecast neural network like the way we have changed from Dataset1

to Dataset2. Input data can be improved when focusing on the difference of the time

value and intrinsic value option price, the way authors in [53] did to enhance their

ANN model loss.

Improvement may be also possible through experimentation with other data

and network architectures. Since the network in use has four input dimensions and

four output dimensions while only one feature of volatility is really concerned, it is

obvious to think about an architecture that reduce the not the overall loss but only

the specified needed dimension error.

52

9 Acknowledgments

References

[1] Robert Brown F.R.S. Hon. M.R.S.E. and R.I. Acad. V.P.L.S. XXVII. A

brief account of microscopical observations made in the months of June, July and

August 1827, on the particles contained in the pollen of plants; and on the general

existence of active molecules in organic and inorganic bodies. The Philosophical

Magazine 1827; 4:21, 161-173.

[2] Peter Mörters and Yuval Peres Brownian Motion - Draft version of May

25, 2008.

[3] Samuelson, P.A. Proof That Properly Anticipated Prices Fluctuate Randomly.

Industrial Management Review 1965; 6, 41-49.

[4] Fama, E. Efficient Capital Markets: A Review of Theory and Empirical Work.

Journal of Finance 1970; 25, 383-417.

[5] Fama, E. Efficient Capital Markets: II. Journal of Finance 1991; 46, 1575-1617.

[6] Shaheen Borna and Dheeraj Sharma How much trust should risk managers

place on ”Brownian motions” of financial markets? International Journal of

Emerging Markets 2011; Vol.6, Issue 1.

[7] George Chalamandaris and A. G. Malliaris Chapter Itô’s Calculus and

the Derivation of the Black–Scholes Option-Pricing Model. Handbook of Quanti-

tative Finance and Risk Management - Volume 1 pp. 447-470.

[8] Brenner, M., Subrahmanyam, M.G. A simple formula to compute the im-

plied standard deviation. Finan. Analysts J. 1988; 44(5), pp. 80–83.

[9] Bharadia, M.A., N. Christofides, and G.R. Salkin. Computing the Black-

Scholes Implied. Volatility. Advances in Futures and Options Research 1996; pp.

15-29.

[10] Don. M. Chance A Generalized Simple Formula to Compute the Implied Volatil-

ity. Financial Review. 1996; 31(4), pp. 859–867.

[11] Li, Steven A New Formula for Computing Implied Volatility. Applied Mathe-

matics and Computation. 2005; 170(1), pp. 611-625.

53

[12] Donald R. Chambers An Improved Approach to Computing Implied Volatility.

The Financial Review. 2001; 38, pp. 89-100.

[13] Steven Manaster, Gary Koehler The Calculation of Implied Variances

from the Black-Scholes Model: A Note. The Journal of Finance. 1982; Vol 37.

No 1.

[14] SGiuseppe Orlando, Giovanni Taglialatela A review on implied volatility

calculation. Journal of Computational and Applied Mathematics. 2017; Vol. 320;

pp. 202-220.

[15] Hull, J. C. Options, Futures and Other Derivatives, 7th Edition. New Jersey:

Prentice Hall 2009.

[16] Hull, J. and A. White The pricing of Options on Assets with Stochastic

Volatilities. Journal of Finance 1987; 42, 281-300.

[17] Gikhman, I., and A. V. Skorokhod Investment to the Theory of Random

Processes. Saunders 1969; 387-389

[18] Arnold, L. Stochastic Differential Equation: Theory and Applications. John

Wiley & Sons 1974; 90-99.

[19] Baxter, M. and A. Rennie Financial Calculus. Cambridge: University Press

1996.

[20] Wilmott, P. Paul Wilmott on Quantitative Finance. John Wiley & Sons 2000.

[21] Xisheng Yu and Xiaoke Xie On Derivations if Black-Scholes Greek Letters.

Research Journal of Finance and Accounting 2013; Vol.4, No.6.

[22] Chen, H.Y., Lee, C.F. and Shi, W.K. Derivations and applications of Greek

letters - review and integration. Handbook of Quantitative Finance and Risk Man-

agement, Part III 2010; 491-503.

[23] Black, F. and Scholes, M. The pricing of options and corporate liabilities.

Journal of Political Economy 1973; Vol.81, 637-659.

[24] Merton, R. C. The theory of rational option pricing. Bell Journal of Economics

and Management Science 1973; Vol.4, pp. 141-183.

[25] Bachelier, L. Theory of Speculation (translation of 1900 French edition). The

Random Character of Stock Market Prices, MIT Press 1964; pp. 17-78.

54

[26] Stephen J. Taylor Modeling stochastic volatility: A review and comparative

study. Mathematical Finance 1994; Vol.4, Issue 2, pp. 183-204.

[27] Stefan Gerhold Can There Be An Explicit Formula for Implied Volatility?.

Applied Mathematics E-Notes. 2013; pp. 17-24.

[28] L. Lipshitz D-finite power series. J. Algebra. 1989; pp. 353-373.

[29] R. P. Stanley Differentiably finite power series. European J. Combin. 1980;

pp. 175-188.

[30] Krznaric, Matthew J. Comparison of Option Price from Black-Scholes Model

to Actual Values. Honors Research Projects 2016; 396.

[31] Espen G Haug and Nassim N Taleb. Option traders use (very) sophisticated

heuristics, never the Black-Scholes-Merton formula. Journal of Economic Behavior

and Organization 2011; 77(2): pp. 97-106.

[32] Léon Bottou, Frank E. Curtis, Jorge Nocedal Optimization Methods

for Large-Scale Machine Learning. arXiv:1606.04838 [stat.ML] 2018.

[33] Martin T. Hagan, Howard B. Demuth, Mark Hudson Beale, Orlando

De Jesus Neural Network Design (Electrical Engineering); 2nd edition, 2014.

[34] W. McCulloch and W. Pitts A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics. 1943; Vol. 5, pp. 115–133.

[35] D. O. Hebb The Organization of Behavior. New York: Wiley. 1949.

[36] F. Rosenblatt The perceptron: A probabilistic model for information storage

and organization in the brain. Psychological Review. 1958; Vol. 65, pp. 386–408.

[37] J. A. Anderson A simple neural network generating an interactive memory.

Mathematical Biosciences. 1972; Vol. 14, pp. 197–220.

[38] T. Kohonen Correlation matrix memories. IEEE Transactions on Computers.

1972; Vol. 21, pp. 353–359.

[39] S. Grossberg Adaptive pattern classification and universal recoding: I. Parallel

development and coding of neural feature detectors. Biological Cybernetics. 1976;

Vol. 23, pp. 121–134.

[40] J. J. Hopfield Neural networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences. 1982;

Vol.79, pp. 2554–2558.

55

[41] D. E. Rumelhart and J. L. McClelland Parallel Distributed Processing:

Explorations in the Microstructure of Cognition. MA: MIT Press. 1986; Vol. 1,

Cambridge.

[42] Ketkar N. Stochastic Gradient Descent. In: Deep Learning with Python Apress,

Berkeley, CA. 2017.

[43] Bottou L. Large-Scale Machine Learning with Stochastic Gradient Descent.

Proceedings of COMPSTAT’2010 2010; pp 177-186.

[44] V. N. Vapnik An overview of statistical learning theory. IEEE Transactions on

Neural Networks. Sept. 1999; Vol. 10, no. 5, pp. 988-999.

[45] Cybenko, G. Approximations by superpositions of sigmoidal functions. Mathe-

matics of Control, Signals, and Systems. 1989; 2(4), pp. 303-314.

[46] Kurt Hornik Approximation Capabilities of Multilayer Feedforward Networks.

Neural Networks. 1991; 4(2), pp. 251-257.

[47] Hinton, G. E.; Osindero, S.; Teh, Y. W. A Fast Learning Algorithm for

Deep Belief Nets. Neural Computation. 2006; 18(7), pp. 1527-1554.

[48] XavierGuyon, Jian-fengYao On the Underfitting and Overfitting Sets of

Models Chosen by Order Selection Criteria. Journal of Multivariate Analysis.

August 1999; Volume 70, Issue 2, pp. 221-249.

[49] Diederik P. Kingma, Jimmy Lei Ba ADAM: A Method For Stochastic Opti-

mization. Published as a conference paper at ICLR. 2015.

[50] Michel Jose Anzanello, Flavio Sanson Fogliatto Learning curve models

and applications: Literature review and research directions. International Journal

of Industrial Ergonomics. September 2011. Volume 41, Issue 5, pp. 573-583.

[51] Leslie N. Smith Cyclical Learning Rates for Training Neural Networks. 2017

IEEE Winter Conference on Applications of Computer Vision (WACV) 2017.

[52] Sebastian Ruder An overview of gradient descent optimization algorithms.

arXiv:1609.04747 Sept. 2016.

[53] Shuaiqiang Liu, Cornelis W. Oosterlee and Sander M. Bohte Pricing

Options and Computing Implied Volatilities using Neural Networks. Risks 2019;

7(1), 16.

56

[54] Mary Malliaris, Linda M. Salchenberger Using neural networks to fore-

cast the S&P 100 implied volatility. Neurocomputing. 1996; pp. 183-195.

[55] F. Gonzalez Miranda & N. Burgess Modelling market volatilities: the

neural network perspective. The European Journal of Finance. 1997; Vol. 3;

Issue 2.

[56] S. D. Bekiros, D. A. Georgoutsos Direction-of-change forecasting using a

volatility-based recurrent neural network. Journal of Forecasting. 2008; Vol. 27;

Issue 5; pp. 407-417.

[57] LIN Yan, YANG Jianhui Option Pricing Model Based on Newton-Raphson It-

eration and RBF Neural Network Using Implied Volatility. Canada Social Science.

2016; Vol.12; No.8; pp. 25-29.

[58] Werner Kristjanpoller, Anton Fadic, Marcel C. Minutolo Volatility

forecast using hybrid Neural Network models. Expert Systems with Applications.

2014; Vol.41; Issue 5; pp. 2437-2442.

[59] Isaac Faber Comparing Historical and Implied Volatility Estimates in Efficient

Portfolios. Journal of Finacne and Investment Analysis. 2013; Vol. 2; No. 4; pp.

57-82.

[60] Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rah-

ner, Eric W. Pellegrini, Ralf S. Klessen, Lena Maier-Hein, Carsten

Rother, Ullrich Köthe Analyzing Inverse Problems with Invertible Neural

Networks. Published as a conference paper at ICLR 2019. 2019.

[61] Jorn-Henrik Jacobsen, Arnold Smeulders, and Edouard Oyallon.

i-Revnet: Deep invertible networks. International Conference on Learning Repre-

sentations. 2018.

[62] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse.

The reversible residual network: Backpropagation without storing activations. In

Advances in Neural Information Processing Systems 2017; pp. 2214–2224.

[63] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear

independent components estimation. arXiv preprint arXiv:1410.8516 2014.

[64] Richard Caron The Zero Set of a Polynomial. Technical Report May 2005.

[65] Moore, E. H. On the reciprocal of the general algebraic matrix. Bulletin of the

American Mathematical Society. 1920; 26 (9): 394–95.

57

[66] Penrose, Roger A generalized inverse for matrices. Proceedings of the Cam-

bridge Philosophical Society. 1955; 51 (3): 406–13.

[67] J. López-Bonilla, R. López-Vázquez, S. Vidal-Beltrán Moore-Penrose’s

inverse and solutions of linear systems. World Scientific News. 2018.

[68] Peter Jackel By Implication. Wilmott 26. July 2006; p. 60-66.

[69] Peter Jackel Let’s be Rational. Wilmott. March 2015; p. 40-53.

[70] Minqiang Li & Kyuseok Lee An adaptive successive over-relaxation method

for computing the Black-Scholes implied volatility. Quantitative Finance, Taylor

& Francis Journals. 2011; Vol. 11(8); pp. 1245-1269.

58

