

Eötvös Loránd University
Faculty of Science

Parametric search approach for
graph packing problems

Eszter Szabó
MSc in Applied Mathematics

Supervisor:
Alpár Jüttner

Operations Research Department

2021, Budapest

Acknowledgement

I would like to thank Alpár Jüttner, my supervisor for his guidance and helpful
discussions. I am grateful for the valuable time he spent to help me.
I would also like to thank my family for their support.

Contents

1 Introduction 1

2 Preliminaries 3

3 Balanced network problem 6
3.1 Uniform Balanced Network flow problem 7
3.2 Maximum mean cut problem . 8
3.3 Newton’s approach for uniform balanced network flow problem 10
3.4 Balanced network flow problem with general weight 14

4 Balanced sub-modular flow problem 16
4.1 Dual problem . 17
4.2 Minimum mean cut problem with submodular functions 20
4.3 Newton’s approach for balanced submodular network flow problem . . 22
4.4 Balanced submodular network flow problem with intersecting sub-

modular function . 26

5 Packing of T-joins 29
5.1 Problem formulation . 29
5.2 Minimum T -cut problem . 30
5.3 Maximum packing of T -joins algorithm 32

6 Packing of perfect matchings in bipartite graph 36
6.1 Computing optimal value . 36
6.2 An algorithm for solving packing problem 39

7 Problem relations 45

8 Conclusion and future work 49

9 References 50

1 Introduction

This thesis presents some algorithm for combinatorial optimization, based on para-
metric search and Newton’s approach. We consider two topics in graph theory. In the
first part, we describe balanced network and submodular flow problem and related
algorithms. The second part deals with packing problems in graphs.

The first section introduces some fundamental definitions and theorem, that we
will use throughout the paper.

In the third section, we show balanced network flow problem and we describe
Scutellà’s algorithm. Balanced optimization problems model is meant to find equi-
table distribution of resources. Several balanced optimization problems have been
analysed in the literature. Like the balanced spanning tree problem has been studied
by Camerini [4] just like the balanced assignment problem by Martello [14]. Ahuja
proposed a parametric simplex method for the general balanced linear programming
problem [1].
We deal with the balanced network flow problem, the problem of finding a feasi-
ble flow on a given network which minimizes the difference between the maximum
and the minimum weighted flow on single arcs. First we describe parametric formu-
lation of this problem and its dual, which is called maximum mean cut problem.
This can be solved in polinomail time by S.Thomas McCormick and Thomas R. Er-
volina [15]. Then we present Scutella’s algorithm for balanced network flow problem
using Newton’s approach. In the end of this section, we analyse the iteration number
of Newton’s method, that is proposed by Radzik [18].

In section 4, we consider the balanced submodular network problem, that is
more general balanced problem. By using Scutella technique, we show a strongly
polynomial algorithm. It should be pointed out that, being this problem a linear
problem with (0,−1,+1)-matrix, it can be solved in strongly polynomial time by
Éva Tardos [19]. In the beginning of this section, we formulate the problem, then
we examine parametric problem and its dual. We show that the dual parametric
problem is equivalent to minimum mean cut problem than we present an algorithm
for solve this problem. Then we use Newton’s approach to find the optimal balanced
submodular flow and we estimate the number of iterations of the Newton method. In
the end of this section, we consider the same problem with intersecting submodular
function.

The fifth section deals with maximum packing of T -joins problem. T-joins appear
in the solution of the Chinese postman problem by Edmonds and Johnson [5]. They
gave a combinatorial polynomial algorithm to solve maximum packing of T -cuts
problem and its dual [5]. The algorithm of Edmonds and Johnson can be modified
to produce this integer dual optimal solution [2]. There are many other packing

1

problems in the literature, like maximum packing arborescences, that is solved by
Gabow and Manu [8]. In the beginning of this section, we formulate the maximum
packing of T -joins problem, using theory of Blocking Polyhedra [7]. Then we describe
Padberg and Rao’s algorithm for finding a minimum T -cut [17], and thereafter we
give a description and analysis Barahona’s algorithm for T -join packing problem [3].
This algorithm is based on the idea, that we can compute the weight of a given
T -join in the maximal packing. For this Newthon’s approach is used again.

In the sixth section we present a polynomial algorithm for maximum packing of
perfect matching problem in bipartite graphs along Barahona’s algorithm. First we
deal with formulation and we show an algorithm for compute the optimal value of
the problem. Then we examine dual optimal solutions, we give some statement to
them, after that we present an algorithm for maximum packing problem in bipartite
graph, which is very similar to Barahona’s algorithm.

The last section deals with some problem related to previous two sections. In the
beginning, we describe 6 problems corresponding to packing problem, and thereafter
we give their LP formulations. Then we discuss their relationships. We show that
minimum cost perfect matchings problem is reducible to minimum cost 1-packing
of T -joins problem.

2

2 Preliminaries

This section introduces some notations, definitions and fundamental theorem, that
will be used in the sequence.

Throughout the paper, we are concerned with directed or undirected graphs
containing no graph loops or multiple edges. We use the following definition of
network flow problem:

Definition 2.1 (Network flow problem). The input of network flow problem is a
directed graph G = (V,E) and a demand function b = V → R. The goal is to
construct a flow f : E → R+, i.e. each edge receives a flow, such that the difference
between the sum of incoming and outgoing flow for each node v is equal to b(v). If
this equation holds for all v ∈ V , then we say that f satisfies all demands.
Each edge can have a capacity. In this case the amount of flow on an edge can’t
exceed the capacity of the edge. (If there is no capacity constraint, the amounts of
flow can be arbitrary large.)

Newthon method’s is a well-known root-finding algorithm which produces suc-
cessively better approximations to the roots of a real-valued function. Its basic idea
is to start with an initial guess, then to approximate the function by its tangent line,
and thereafter to compute the x-intercept of this tangent line. This x-axis intercept
will be a better approximation than the previous one. The method can be iterated,
until we find our end point. We will use this approach not only to find the root,
but also to determine minimum point of a convex function or first break-point of a
piece-wise linear function.

Let us see some definitions:

Definition 2.2. Let S be a finite set and f : 2S → R a set function defined in the
subsets of S. The function f is a submodular function, if the following inequality
holds for every X, Y ⊆ S:

f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y)

We say that X, Y ⊆ S are intersecting, if X ∩ Y 6= ∅

Definition 2.3. Let S be a finite set and f : 2S → R a set function defined in the
subsets of S. The function f is an intersecting submodular function, if the following
inequality holds for all intersecting subsets X, Y ⊆ V :

f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y)

3

Definition 2.4. A set family F is a laminar set family, if each pair of sets are
either disjoint or related by containment. Formally, for all X, Y ∈ F one of the
following holds: X ∩ Y = ∅, X ⊆ Y or Y ⊆ X.

We will use the next fundamental theorem by Hoffman [11].

Theorem 2.1 (Hoffman). Let G = (V,E) be a digraph and b be a demand function
b = V → R, with lower bound l : E → R and upper bounds u : E → R on the arcs,
such that l ≤ u. There exists a feasible flow f satisfying l(e) ≤ f(e) ≤ u(e) if and
only if ρ0(X)− δu(X) ≤ b(X) holds true for all X ⊆ V .

Given an linear optimization problem, the optimal solution is related to the
optimal solution of the dual linear program. More precisely, the concept of comple-
mentary slackness relating the two problems states the following:

Statement 2.1 (Complementary Slackness). If, in an optimal solution, the value of
the dual variable associated with a constraint is nonzero, then that constraint must
be satisfied with equality. Further, if a constraint is satisfied with strict inequality,
then its corresponding dual variable must be zero.

Definition 2.5 (Gomory-Hu tree). Let G = (V,E) be an undirected graph with a
capacity cG along the edges. Let λst denote the minimum capacity of an s-t cut in G
for each pairs s, t ∈ V . Then we say that a tree T = (V,A) with a capacity cT is the
Gomory-HU tree of G, if for each s, t ∈ V the followings hold:

• λst = mine∈Pst c(e), where Pst is the s-t path in T

• cG(Se, Te) = cT (Se, Te), where Se, Te are the two connected components of T−e

Theorem 2.2 (Gomory-Hu tree). For an arbitrary undirected graph G, there exists
a Gomory-Hu tree of G and it can be constructed in |V |− 1 max-flow computations.

Parametric search is frequently used for solving optimization problems, whose
technique invented by Megiddo [16]. This is a method to transforming a decision
algorithm (that decides that the optimal solution less, equal or greater than a given
number) into an optimization algorithm (that computes the optimal value). Its basic
idea is to simulate the decision algorithm as if it is running with the optimal solution
value λ∗. The optimal value is unknown, but each of comparisons or tests needs
to be simulated during the simulation. To make each comparison, the parametric
search applies a second algorithm, that is the decision algorithm with an real known
number. If the simulated algorithm makes a comparison two parametric number,
that are α1 − β1λ

∗ and α2 − β2λ
∗, then all that we have to do is to run decision

algorithm with α1−α2

β1−β2 . There are three possible case:

4

• 1. case, when β1 > β2: α1−α2

β1−β2 ≤ λ∗ if and only if α1 − β1λ∗ ≤ α2 − β2λ∗

• 2. case, when β1 = β2: α1 ≤ α2 if and only if α1 − β1λ∗ ≤ α2 − β2λ∗

• 3. case, when β1 < β2: α1−α2

β1−β2 ≥ λ∗ if and only if α1 − β1λ∗ ≤ α2 − β2λ∗

In the end of the parametric search, we get an interval, that defines the value of the
optimal solution.

5

3 Balanced network problem

In this section, we deal with balanced network flow problem. Then we describe
parametric flow problem and its dual, after that we present Scutellà’s algorithm.

Let a graph G = (V,E) be a directed graph. Let b = V → R be a flow demand
function associated with node and c(e) be a non-negative weight for unit of flow
associated with arc e ∈ E. We would like to find a feasible flow, such that satisfies
the demand condition and the difference between the maximum and the minimum
weighted flow along single arcs (maxe∈E c(e)x(e)−mine∈E c(e)x(e)) be minimized. We
call this problem balanced network flow problem. A strongly polynomial algorithm
is showed for solve this problem by Maria Grazia Scutellà and Bettina Klinz [12].
As a motivation for the problem, assume to have a network: we want to find a flow
in such a way to satisfy all the demands and to distribute the network as “equitable”
as possible. We want to avoid arcs too much void and arcs too much charged.
We use u(e) to denote the reciprocal of c(e), i.e. u(e) = 1

c(e)
.

By introducing z = maxE{x(e)} and y = minE{x(e)} notations, the problem can
be formulated as follows:

min(z − y) (1)∑
e∈ρ(v)

x(e)−
∑
e∈δ(v)

x(e) = b(X) ∀v ∈ V (2)

x(e) ≤ u(e)z ∀e ∈ E (3)

x(e) ≥ u(e)y ∀e ∈ E (4)

x(e) ≥ 0 ∀e ∈ E (5)

Now we give some extra notations:

λ = (Z − y)

k(v) =
∑
e∈ρ(v)

u(e)−
∑
e∈δ(v)

u(e) ∀v ∈ V

g(e) = x(e)− u(e)y ∀e ∈ E

Fixing value of y, we get a parametric flow problem in a parametric graph Gy. Gy

is obtained from G, where parametric flow demands b(v) − k(v)y are now imposed
on each node. In this problem λ denotes the maximum flow value along single arcs.

6

Parametric flow problem is obtained by the following LP formulation:

minλ (6)∑
e∈ρ(v)

g(e)−
∑
e∈δ(v)

g(e) = b(v)− k(v)y ∀v ∈ V (7)

g(e) ≥ 0 ∀e ∈ E (8)

g(e) ≤ u(e)λ ∀e ∈ E (9)

3.1 Uniform Balanced Network flow problem

Hereinafter, we restrict our attention to the uniform case, where c ≡ 1. This implies
that u ≡ 1 and we get the next simplified LP-formulation:

minλ (10)∑
e∈ρ(v)

g(e)−
∑
e∈δ(v)

g(e) = b(v)− k(v)y ∀v ∈ V (11)

g(e) ≥ 0 ∀e ∈ E (12)

g(e) ≤ λ ∀e ∈ E (13)

Where k(v) = |ρ(v)| − |δ(v)|.
We note that being the uniform balanced network flow problem a linear problem

with (0, 1,−1)-constraint matrix, it can be solved in strongly polynomial time by
Tardos algorithm [19].

For compute its optimal solution, let us exploit the dual version of the parametric
flow problem:

max
∑
v∈V

y(v)(b(v)−k(v)y) (14)

y(v)− y(u)− y(uv) ≤ 0 ∀uv ∈ E (15)∑
E

y(uv) = 1 (16)

y(uv) ≥ 0 ∀uv ∈ E (17)

We can rewrite this problem as follows:

max

∑
v∈V y(v)(b(v)− k(v)y)∑

uv∈E y(uv)
(18)

y(v)− y(u)− y(uv) ≤ 0 ∀uv ∈ E (19)

y(uv) ≥ 0 ∀uv ∈ E (20)

7

The optimal solutions of (14)-(17) are equivalent to the optimal solutions of
(18)-(20). Let y∗ be an optimal solution of (14)-(17), then it is a feasible solution
of the rewritten dual problem, whose objective function value is equal to the dual
optimum. (Because of

∑
E y(uv) = 1.)

Let y′ be an optimal solution of (18)-(20), then
∑

uv∈E y
′(uv) > 0.

If
∑

uv∈E y
′(uv) = 0 hold, then there would be a node set X in G, such that ρ(X) =

0 and
∑

v∈X y(v)(b(v) − k(v)y) ≥ 0. If
∑

v∈X y(v)(b(v) − k(v)y) > 0, then the
parametric problem would be infeasible by Hoffman theorem.
Otherwise the objective value of y′ is 0. Then there is a solution of (14)-(17), whose
objective value is 0. This means that there is a trivial feasible flow in G, where
the flow value is same on every arc. (g ≡ 0 is an optimal solution.) In this case
b(v) = yk(v) must hold for each v ∈ V .
Therefore, if b(v) 6= yk(v) and parametric problem is feasible, then

∑
uv∈E y

′(uv) >

0. In this case, y = 1∑
E y
′(uv)

y′ is a feasible solution of (14)-(17) and its objective
value is equal to the value of y′. Thus we have that the optimal solutions of (14)-
(17) are equivalent to the optimal solutions of (18)-(20). Solving the rewritten dual
problem, we get the optimal value of (10)-(13).

3.2 Maximum mean cut problem

Let us consider the rewritten dual problem, which is formulated by (18)-(20). If we
write this LP problem in matrix form, we get a TU matrix. This implies that there
is optimal solution, that has only −1, 0 or 1 entries.

If we can write
∑

e∈ρ(v) g(e) −
∑

e∈δ(v) g(e) ≤ b(v) − k(v)y ∀v ∈ V condition
instead (11), then we get the same problem, because

∑
V b(v)− k(v)y = 0. Thus we

can assume that y(v) ≥ 0. This implies that there is optimal solution, that has only
0 or 1 entries. Then it defines a node set X and an arc set L. (v ∈ X ⇔ y(v) = 1

and e ∈ L ⇔ y(e) = 1.) Because of condition 19, we have to choose y(uv) = 1 if
y(v) = 1 and y(u) = 0. So y(e) = 1 for all e ∈ ρ(X) and we want that |L| is as small
as possible. Thus we can assume that L = ρ(X). This means that the rewritten dual
problem is equivalent to find a cut X in G, that maximize

∑
i∈X(b(i)−k(i)yi)

ρ(X)
. We call

this problem maximum mean cut problem. This problem can be solved in O(mn3)

time by McCormick [15].
We remark that choosing λ = max{

∑
i∈X(b(i)−k(i)yi

ρ(X)
} there is a feasible flow, that

satisfies all demands, because∑
i∈X(b(i)− yk(i)) ≤ ρ(X)λ ⇔ b(X) ≤ ρ(X)(λ+ y)− δ(X)y.
For solving the maximum mean cut problem, first we construct an auxiliary

graph Gλ from G. Let P be the set of nodes, such that b(v) ≤ k(v)y. Let N be the
set of nodes, such that b(v) > k(v)y.

8

P = {v ∈ V | b(v) ≤ k(v)y}
N = {v ∈ V | b(v) > k(v)y}
We define an arc capacity c in Gλ. Every edge e ∈ E let c(e) be λ. Then two extra
nodes s, t are added to Gλ.
Edge s→ v is added to Gλ with capacity −(b(i)− k(i)yi) for each v ∈ P .
Edge v → t is added to Gλ with capacity (b(i)− k(i)yi) for each v ∈ N .
Let X be an s-t cut in Gλ, let us see its capacity:∑
v∈P−X

(−(b(v)− k(v)y)) +
∑

i∈N∩X

(b(v)− k(v)y) + δG(X)λ =

=
∑
v∈N

(b(v)− k(v)y) +
∑

v∈P−X

(−(b(v)− k(v)y))−
∑

v∈N−X

(b(v)− k(v)y) + δG(X)λ =

=
∑
v∈N

(b(v)− k(v)y)−
∑

v∈P∩X

(b(v)− k(v)y)−
∑

v∈N∩X

(b(v)− k(v)y) + ρG(X)λ =

=
∑
v∈N

(b(v)− k(v)y)−
∑
v∈X

(b(v)− k(v)y) + ρG(X)λ

Since
∑

i∈N(b(i) − k(i)y) is constant for a fix y, X is a minimum cut in G′ if it is
maximize

∑
v∈X(b(v)− k(v)y)− ρ(X)λ for an λ.

First we guess the value of λ, let its initial value be 0. Then we compute minimum
s-t cut in Gλ.
If its capacity is equal to

∑
v∈N(b(v) − k(v)y), then the actual λ is satisfies∑

i∈X(b(i) − yk(i)) ≤ ρ(X)λ for all X ⊂ V . So λ is a right upper bound for flow
values along arcs in the parametric flow problem with parameter y.
If its capacity is less than

∑
v∈N(b(v) − k(v)y), then

∑
v∈X(b(v) − k(v)y) > ρ(X)λ

holds for minimum cut X. Thus there is no flow in the parametric problem, such
that g(e) ≤ λ for each e ∈ E. So λ must be increased for finding a feasible flow.
In this case we compute the next guess of λ′ =

∑
X(b(v)−k(v)y)

ρ(X)
). We mention that

the right λ can’t be less than λ′, because
∑

v∈X(b(v)− k(v)y) ≤ ρ(X)λ must hold.
Then we repeat this procedure for λ′, until we find a minimum cut with capacity∑

v∈N(b(v) − k(v)y). This last found cut is the optimal solution of the maximum
mean cut problem.

9

Algorithm 1 Max mean cut(G, y)
1: λ = 0

2: construct Gλ

3: compute minimum s′-t′ cut → X

4: while c(δ(X)) <
∑

N(b(v)− k(v)y) do
5: λ =

∑
X(b(v)−k(v)y)

ρ(X)
)

6: construct Gλ

7: compute minimum s′-t′ cut in Gλ → X

8: RETURN λ,X

Let Xj be the minimum cut that the algorithm find at the j-th iteration. Then
ρ(Xj+1) < ρ(Xj) holds, otherwise:

bXj+1 − kXj+1y − ρ(Xj+1)λj ≤ bXj − kXjy − ρ(Xj)λj

b(Xj+1)− k(Xj+1)y

ρ(Xj+1)
− λj ≤

b(Xj)− k(Xj)y − ρ(Xj)λj
ρ(Xj+1)

b(Xj+1)− k(Xj+1)y

ρ(Xj+1)
≤ b(Xj)− k(Xj)y − ρ(Xj)λj

ρ(Xj+1)
+ λj ≤

≤ b(Xj)− k(Xj)y − ρ(Xj)λj
ρ(Xj)

+ λj = λj+1

This is a contradiction, because if the algorithm doesn’t stop at the j+1-th iteration,
then Xj+1 is a cut, such that

∑
Xj+1

(b(v)− k(v)y) > ρ(Xj+1)λj+1. Therefore size of
ρ(Xj) is decrease at every repetition. This implies the following lemma:

Lemma 3.1. The algorithm 1 does at most |E| iterations. Therefore this algorithm
finds the maximum mean cut at most |E| minimum s-t cut computations. Thus its
total running time is O(mn3).

3.3 Newton’s approach for uniform balanced network flow

problem

We consider the classical Newton’s method for find the optimal balanced flow in G.
In the sequel we will use the following notations:
Let h(y) be the optimal value of λ in the parametric flow problem corresponding to
parameter y.
Let XST ∈ {0, 1}|V |+|E| denote the family of incidence vector of cuts (S, T), where
∀v ∈ V xv = 1 ⇔ i ∈ T and ∀uv ∈ E xuv = 1 ⇔ u ∈ S, u ∈ T holds true for all
x ∈ XST .
Let b, k denote |V |+ |E|-length vectors, such that ∀v ∈ V bv = b(v), kv = k(v) and
∀uv ∈ E buv = kuv = 0.

10

Let u ∈ {0, 1}|V |+|E| be the vector, such that ∀v ∈ V uv = 0 and ∀(uv) ∈ E uuv = 1.
Using the notation h(y), what we have thus to do is to minimize function h(y)
for solve uniform balanced network flow problem. Function h is a piece-wise linear,
convex function, that Newton’s approach finds its minimum point y∗. By extending
Radzik’s analysis of Newton’s approach, it is shown that, the method minimizes
function h(y) in a strongly polynomial number of iterations [18]. It needs at most
O(n log3(n)) maximum mean cut computations.

Using above notations, function h(y) can be rewritten as follows:

h(y) = max{ bx
ux
− kx

ux
y | x ∈ XST}

Let describe Newton’s method for find minimum point y∗ of h:
Firstly, let Y = [y1, y2] be an interval, that contains optimal y∗. If y1 = y2, then we
stop and the optimal solution is y1. If y1 6= y2, then we compute and intersect the
tangents to h(y) at end points of Y and we denote its intersection by y3. There are
three possible cases:
1. the slope of tangent at y3 is positive: we replace Y by [y1, y3] and we repeat the
process.
2. the slope of tangent at y3 is negative: we repeat the process with the interval
Y = [y3, y2].
3. the slope of tangent at y3 is zero: in this case y3 is the minimum point of h. We
stop, because we find the optimal solution.
We repeat this process until we find the minimum point of h.
At the beginning of the method, y1 = 0 is a good choose to initialization. The value
of y2 can be chosen as follows: we take an arbitrary feasible flow x in G, such that
satisfy all the demand. Then we compute y2 = maxE{x(e)} −minE{x(e)}.

The convergence of this algorithm isn’t worse than Newton’s method convergence
when h(y) is an increasing function, and we want to find its root.
Let h be the function obtained from h by translating the y-axis such that h(y∗) = 0.
Let us see the increasing lines composing h, that are the lines having a positive
slope:
h(y) = max{ bx

ux
− kx

ux
y − y∗ | x ∈ XST}

We note that the translation only effect to the constant component of b. Let examine
the convergence of Newton’s method to find root of h. Let yi be the parameter in
the beginning of the i-th iteration.
During the algorithm, first we compute hi = h(yi). If hi > 0, then the next approx-
imation parameter yi+1 is computed, that is yi+1 = bxi

kxi

Let si denote the slope in the i-th iteration, such that si = − kxi
uxi

.
By using these notations, we have the following lemma:

11

Lemma 3.2. yi+1 − yi = −hi
si

Proof.

hi =
bxi
uxi
− kxi
uxi

yi

yi+1 − yi =
bxi
kxi
− (

bxi
uxi
− hi)

uxi
kxi

= hi
uxi
kxi

= −hi
si

Lemma 3.3. hi+1

hi
+ si+1

si
≤ 1

Proof. Let Xi be the incidence vector of the cut, that is found in the i-th iteration.

hi =
bxi
uxi
− kxi
uxi

yi ≥
bxi+1

uxi+1

− kxi+1

uxi+1

yi =
bxi+1

uxi+1

− kxi+1

uxi+1

yi+1 + (yi+1 − yi)
kxi+1

uxi+1

=

= hi+1 +
hi
si
si+1

1 ≥ hi+1

hi
+
si+1

si

Because of hi, si are always positive during the Newton’s approach, we get that:

Lemma 3.4. (hi+1

hi
)(si+1

si
) ≤ 1

4

We separately examine the iterations which decrease the slope a lot and those
which not:

Lemma 3.5. Newton’s approach does at most O(log(n)) iterations, such that si+1 ≤
2
3
si.

Proof. Let us consider a sequence of consecutive iterations, that satisfy condition
of lemma. Then there is at least half-length sub-sequence, where si+1 ≤ 4

9
si holds

for all consecutive iterations. We divide this sequence into L-length sub-sequences,
where L = log((m+ 1)2) (m = |E|).
Then it is for i-th elements of every sub-sequence:

−kxL+i
uxL+i

≤ − 1

(m+ 1)2
kxi
uxi

⇔ −kxl+iuxi ≤
1

(m+ 1)2
(−kxi)uxL+i

where i ∈ {0, 1, ..., L− 1} and (−kxi) is positive.
Because of uxi is integer and 0 ≤ uxi ≤ m, we have that uxi ≥ 1 > 1

m+1
uxL+i.

This means that −kxL+i ≤ 1
m+1

(−kxi) must hold. Since −ki ∈ [−n+ 1, n− 1], then
kxi is integer and −kxi ∈ [−n2, n2]. Therefore −kxL+i ≤ 1

m+1
(−kxi) can be true for

constant number of pairs (xi, xi+L).

12

Thus Newton’s method does at mostO(L) = O(log((m+1)2)) = O(n) iterations,
such that si+1 ≤ 2

3
si.

We will use the following lemma, whose proof is reported in Radizk’s work [18]:

Lemma 3.6 (Goemans). Let b ∈ Rp be a real vector and let x1, x2, ..., xq be p-length
binary vectors,such that holds:

0 < bxi+1 ≤
1

2
bxi ∀i ∈ {1, 2, .., q − 1}

Then q = O(p log(p))

Lemma 3.7. Newton’s approach does at most O(n log2(n)) consecutive iterations,
such that si+1 >

2
3
si.

Proof. Let us indicate the sequence of iterations, such that above inequality holds:
s1, s2, .., sr. By lemma 3.3: hi+1

hi
≤ 1

3
. Using lemma 3.2, we have that:

yi+2−yi+1 = −hi+1

si+1

= −hi+1

si+1

si
hi

hi
si

=
hi+1

hi

si
si+1

(
− hi
si

)
≤ 1

3

3

2

(
− hi
si

)
=

1

2
(yi+1−yi)

The difference between the parameters of this kind of iteration reduces fast.

yr+1 − yi+1 = (yr+1 − yr) + (yr − yr−1) + ...+ (yi+2 − yi+1) ≤

≤ 1

2
((yr − yr−1) + ...+ (yi+1 − yi)) =

1

2
(yr − yi) ≤

≤ 1

2
(yr − yi) +

1

2
(yr+1 − yr)

1

2
(yr+1 − yi)

yi+1 = bxi
kxi

implies that: (−b + kyr+1)xi = −bxi + kxiyr+1 = −yi+1kxi + kxiyr+1 =

(yr+1 − yi+1)kxi

Then for all this kind of iterations the following relation holds:

(−b+ kyr+1)xi+1

uxi+1

=
(yr+1 − yi+2)kxi+1

uxi+1

≤ 1

2

(yr+1 − yi+1)kxi+1

uxi+1

=

=
1

2
(yr+1 − yi+1)

kxi+1

uxi+1

==
1

2
(yr+1 − yi+1)si+1 ≤

≤ 1

2
(yr+1 − yi+1)si =

1

2
(yr+1 − yi+1)

kxi
uxi

=
1

2

(−b+ kyr+1)xi
uxi

In similar way to the proof of previous lemma, we divide this sequence into L-length
sub-sequences. Then we get that the following has to hold true:

(−b+ kyr+1)xi+L
uxi+L

≤ 1

(m+ 1)2
(−b+ kyr+1)xi

uxi
∀i = 0, 1, 2..., L− 1

13

Similarly, this implies that: (−b+ kyr+1)xi+L ≤ 1
m+1

(−b+ kyr+1)xi || Now we apply
Goemans lemma for b′ = (−b+kyr+1), x

′
j = xi+jL j = 0, 1, 2, .., r

L
. This implies that

r
L

= \ log(\). Because of O(L) = O(n), the length of the sequence of consecutive
iterations is O(n log2(n)), such that si+1 >

2
3
si.

Above lemmas implies the number of iteration of the Newton’s approach to find
h root the following:

Theorem 3.1. Newton’s method finds the root of h(y) by performing O(n log3(n))

iterations.

As we mentioned, the number of iteration when root has to be found is greater
than or equal to the number of iterations performed by the Newton’ approach to
find minimum point of h. In consequence, we get the following theorem:

Theorem 3.2. Newton’s method solves uniform balanced network flow problem by
performing O(n log3(n)) maximum mean cut computations, that is O(nm log3(n)) =

O(n3 log3(n)) max-flow computations.

3.4 Balanced network flow problem with general weight

In this subsection, we return the general balanced network flow problem. We can
solve this more general problem very similar way, than in the uniform case. The dual
problem of (6)-(9) can be reformulated as follows:

max

∑
v∈V y(v)(b(v)− k(v)y)∑

uv∈E u(uv)y(uv)
(21)

y(v)− y(u)− y(uv) ≤ 0 ∀uv ∈ E (22)

y(uv) ≥ 0 ∀uv ∈ E (23)

This problem is called maximum mean weighted cut problem. It is equivalent to
compute the root of the next function:

Hy(λ) = max{bx− kxy − λux}

We can compute value of Hy(λ) for any positive λ by constructing an auxiliary
graph Gλ. Let P be the set of nodes, such that b(v) ≤ k(v)y. Let N be the set of
nodes, such that b(v) > k(v)y. Each arc of G has an capacity λu(e). Let us enlarge
Gλ by adding a source s and a destination t. Edge s → v is added with capacity
−(b(i)−k(i)yi) for each v ∈ P and edge v → t is added with capacity (b(i)−k(i)yi)

for each v ∈ P . We can claim a statement of the minimum s-t cut of Gλ like in the
uniform case. The minimum cut in Gλ is defined the value ofHy(λ). Then all we have

14

to do is to find the root of Hy with a typical Newton’s iteration, until reaching the
required flow feasibility. The value of the next iteration can be computed starting
from the maximum flow computed at the previous iteration of Newton’s approach.
Scutellà proved that it does at most |E| iteration [12].

Then, we can define same function h(y) like in the previous section and find its
minimum point with Newton iteration. This is obtained an O(n5m3) time algorithm
for solve balanced network flow problem. [12]

15

4 Balanced sub-modular flow problem

In this section we deal with balanced submodular network problem. We consider LP
formulation of the parametric problem and its dual problem and we show an method
to compute optimal value of the parametric submodular flow problem. Then we show
a polynomial time algorithm for the balanced sub-modular flow problem based on
Scutella’s network flow algorithm.

Given a directed graph G = (V,E), there is given a fully submodular function
b(X) for all X ⊆ V node set. We call a flow in the graph submodular flow, if∑

e∈ρ(X) xe −
∑

e∈δ(X) xe ≤ b(X) holds for all X ⊂ V . (The difference between
indegree and outdegree of X is less than b(X).) We would like to find a submodular
network in graph G, such that the difference between the minimal and maximal
amount of the network is minimal.

This problem is formulated the following way:

min(max{xe} −min{xe})∑
e∈ρ(X)

xe −
∑
e∈δ(X)

xe ≤ b(X) ∀X ⊂ V

x ≥ 0

We will use next notations:

y = min
E
{xe}

z = max
E
{xe}

δ = z − y

Then there is a fundamental y-flow on all edge, where y is the minimum amount of
flow that can pass through an edge. This defines a new b′(X) = b(X)−ρ(X)y+δ(X)y

demand function for every X ⊆ V node set.
b′(X) is also fully submodular:

∀X, Y ⊂ V :

b′(X) + b′(Y) = b(X)− ρ(X)y + δ(X)y + b(Y)− ρ(Y)y + δ(Y)y =

= b(X) + b(Y)− ρ(X ∪ Y)y − ρ(X ∩ Y)y + δ(X ∪ Y)y + δ(X ∩ Y)y ≥

≥ b(X ∪ Y) + b(X ∩ Y)y − ρ(X ∪ Y)y + δ(X ∪ Y)y − ρ(X ∩ Y)y + δ(X ∩ Y)y =

= b′(X ∪ Y) + b′(X ∩ Y)

16

The problem can be reformulated as follows:

max− δ (24)∑
e∈ρ(X)

xe −
∑
e∈δ(X)

xe ≤ b′(X) ∀X ⊂ V (25)

x ≤ δ (26)

x ≥ 0 (27)

4.1 Dual problem

Let us consider the dual problem of the rewritten balanced submodular network flow
problem:

min
∑
Z⊂V

yZb
′(Z)∑

e∈ρ(Z)

yZ −
∑
e∈δ(Z)

yZ + ye ≥ 0 ∀e ∈ E

∑
e∈E

−ye ≥ −1

ye, yZ ≥ 0 ∀e ∈ E,Z ⊂ V

y ≡ 0 is a feasible solution of this problem, for this the optimum isn’t positive.
Dual optimal solutions are equivalent to optimal solutions of the following mod-

ified problem:

min

∑
Z⊂V yZb

′(Z)∑
e∈E ye

ye ≥
∑
e∈δ(Z)

yZ −
∑
e∈ρ(Z)

yZ ∀e ∈ E

∑
e∈E

ye > 0

ye, yZ ≥ 0 ∀e ∈ E,Z ⊂ V

We denote the dual optimal solution by y∗. Then we make a feasible solution
of the modified problem, whose value of the objective function is equal to the dual
optimum.
As
∑

e∈E y
∗
e = 0 holds for y∗, then increasing the value of y∗e on an arbitrary edge

e by 1 we get an same-valued feasible solution. This y∗ is feasible solution of the
modified problem.

17

If 0 <
∑

e∈E y
∗
e ≤ 1 holds for y∗, then we can make a new feasible solutions by

dividing vector y∗ by
∑

e∈E y
∗
e . The objective function value of this new solution isn’t

greater than original y∗. Because of y∗ is an optimal solution, the new solution is also
optimal. So we get a solutions of the modified problem, whose objective function
value is equal to the optimum of the original problem. (Since

∑
e∈E ye = 1.)

Let us see the other direction. We use y′ to denote an optimal solution of the
modified problem. Then we make a feasible solution of the original dual problem,
whose value of the objective function is equal to the modified optimum.
Vector y′ is multiplied by 1∑

e∈E ye
, than we get the feasible solution of both problem

and their objective values are equals.
By following the above, we assume that

∑
e∈E y

∗
e = 0 or

∑
e∈E y

∗
e = 1 holds for

the dual optimal solution. If 0 <
∑

e∈E y
∗
e < 1, then dividing it by

∑
e∈E y

∗
e we get

a not worse solution, such that
∑

e∈E y
∗
e = 1.

If
∑

e∈E y
∗
e = 0 and y∗b < 0, then the dual problem is unbounded. In this case,

we can choose some node sets S1, S2, ..., Sk ⊂ V , that their total weight is negative
(
∑k

i=1 b
′(Si) < 0) and ∀e ∈ E-re y∗e = 0. Having multiplied y∗ by c > 0 arbitrary,

positive scalar, we get also an feasible solution, whose objective value is c times the
value of original y∗. This way we can make an dual feasible solutions with arbitrary
small objective value.
In this case the primal must be infeasible, that is to say there is no submodular
network in G with b demand function. Let us see the union of above-mentioned
node sets. There is no outgoing edge of the union set, otherwise y∗e > 0 holds for
that edge, that is impossible because of condition

∑
e∈E y

∗
e = 0.

If
∑

e∈E y
∗
e = 0 and y∗b = 0, then there is no Z ⊂ V , such that b′(Z) < 0,

otherwise selecting it gives a solution with negative objective value. (This can’t
happen, because the optimal value is 0.) Therefore b(Z)′ ≥ 0 ∀Z ⊂ V , thus x ≡
0, δ = 0 is primal feasible solution of the balanced submodular flow problem.

Now let us consider the modified dual problem, whose optimal solutions are
equivalent to original dual optimal solutions. This problem can be reformulated as
follows: we choose some node sets. The set of nodes Z is selected with weight yZ .
Then we compute ye = (

∑
e∈δ(Z) yZ −

∑
e∈ρ(Z) yZ)+ value for all e ∈ E, where (x)+

denotes the positive part of x. If
∑

e∈E ye = 0, then due to the above reasons the
primal problem is infeasible or has a trivial solution.

Suppose that the primal problem has an non-trivial solution, there is Z ⊂ V ,
such that b′(Z) < 0 and for all ∀Z ′ ⊂ V at least one of the following holds: b′(Z ′) ≥ 0

or δ(Z ′) > 0. We would like to find a family of sets and weight yz, which minimizes
min

∑
Z⊂V yZb

′(Z)∑
e∈E ye

.
Let us see the selected family of node sets:
If there are two intersecting sets X, Y , such that yX , yY > 0 hold, then we can re-

18

place them by their intersection and union. It follows from b′ fully submodularity:
b′(X) + b′(Y) ≥ b′(X ∪ Y) + b′(X ∩ Y) and δ(X) + δ(Y) ≥ δ(X ∩ Y) + δ(X ∪ Y)

Thus weights yX∪Y , yX∩Y are increased by min{yX , yY } and weights yX , yY are de-
creased by the same value. We get a feasible solution and its objective function value
isn’t increased.
We can assume that the family of selected sets F is laminar. (We say that Z is
selected, if yZ > 0.)

If there are two selected, disjoint sets X, Y , then we can replace them by their
union:
b′(X) + b′(Y) ≥ b′(X ∩ Y) + b′(∅)
b′(∅) > 0, otherwise having selected it with arbitrary big weight, we get an arbitrary
small dual solution. (Then the dual problem is unbounded.)
Thus we increase weights yX∪Y , yX∩Y by min{yX , yY } and decrease weights yX , yY
by the same amount. We get a feasible solution and its objective function value isn’t
increased.
Thus we can assume that the family of selected sets F doesn’t contain two disjoint
sets. Since we assumed that the family is laminar, for every two sets of F one contains
the other. (∀X, Y ∈ F : X ⊂ Y or Y ⊂ X.)

For all e ∈ E, ye is equal to number of selected sets of which e is an outgoing
edge. There is no edge, such that leaves an selected set and enters another one.
That is

∑
e∈E ye =

∑
Z∈Z δ(Z).

Let us X, Y ∈ F be two selected sets, Y ⊂ X and we want to proved that one of
the following holds:

b(X)yX + b(Y)yY
δ(X)yX + δ(Y)yY

≥ b(X)yX
δ(X)yX

or
b(X)yX + b(Y)yY
δ(X)yX + δ(Y)yY

≥ b(Y)yY
δ(Y)yY

We will prove it by contradiction. We suppose that the above proposition isn’t true,
thus next two statements hold:

b(X)yX + b(Y)yY
δ(X)yX + δ(Y)yY

<
b(X)yX
δ(X)yX

b(X)yX + b(Y)yY
δ(X)yX + δ(Y)yY

<
b(Y)yY
δ(Y)yY

Multiplying equations by δ(X)yX and δ(Y)yY , we get:

b(Y)yY δ(X)yX < b(X)yXδ(Y)yY

b(Y)yY δ(X)yX > b(X)yXδ(Y)yY

19

This is an contradiction and this shows that the original proposition must be true.
This means that one of two above inequality holds.

Then let Z1 be an arbitrary member of F . Due to the above proposition, one of
the following holds: ∑

Z∈F b(Z)yZ∑
Z∈F δ(Z)yZ

≥ b(Z1)yZ1

δ(Z1)yZ1

or∑
Z∈F b(Z)yZ∑
Z∈F δ(Z)yZ

≥
∑

Z∈F ,Z 6=Z1
b(Z)yZ∑

Z∈F ,Z 6=Z1
δ(Z)yZ

This way F set-family can be replaced by a family, whose size is smaller and
objective value isn’t greater. By repeating this replacing method, we get an 1-element
family.

Therefore, the family of sets can be replaced by its one member, for example by
its minimal mean set. Let us Z ′ be the set, which minimize minZ∈F

b′(Z)
δ(Z)

. By taking
this set Z ′ with weight yZ′ instead of family, we also get a feasible solution and its
objective value doesn’t increase.
In this case the value of weight yZ doesn’t matter, because it doesn’t change the
value of the objective function: b

′(Z)yZ
δ(Z)yZ

= b′(Z)
δ(Z)

.
Now we can assume that the family of sets in the optimal solution contains

exactly one set Z, such that yZ = 1 and ye = 1 for all e ∈ δ(Z). This means that we
have to find a cut Z, which minimize b′(Z)

δ(Z)
. This problem is called minimum mean

cut problem. In our case weight function b′ is submodular. In the next subsection
we show an method for solve this problem in polynomial time.

4.2 Minimum mean cut problem with submodular functions

Let us given a graph G = (V,E) and a weight function b(S) for all subset S ⊆ V .
The minimum mean cut problem is to find a cut S, that minimizes b(S)

δ(S)
.

First we take λ1 = 0,b1(Z) = b(Z) and we minimize the fully submodular func-
tion b1. We denote by Z1 the minimal set.

Giving the solution of the i − 1-th iteration (Zi−1), we will use the following
notations in the i-th iteration: λi = b(Zi−1)

δ(Zi−1)
and bi(Z) = b(Z)− λiδ(Z).

20

Algorithm 2 Minimum mean cut with submodular function(G, b)
1: λ1 = 0, b1(Z) = b(Z), i = 1

2: Minimize submodular function b1 → Z1

3: if b(Z1) ≥ 0 then
4: RETURN λ1,Z1

5: if δ(Zi) = 0 then
6: RETURN "Primal is infeasible"
7: while b(Zi) < 0 do
8: i = i+ 1

9: λi = b(Zi−1)
δ(Zi−1)

10: bi(Z) = b(Z)− λiδ(Z)

11: Minimize submodular function bi → Zi

12: if δ(Zi) = 0 then
13: RETURN "Primal is infeasible"
14: RETURN λi,Zi

Let us see that bi is fully submodular:

bi(X)+bi(Y) = b(X)−λiδ(X)+b(Y)−λiδ(Y) ≥ b(X∩Y)+b′(X∪Y)−λi(δ(X)+δ(Y))

≥ b(X ∩ Y) + b(X ∪ Y)− λi(δ(X ∩ Y) + δ(X ∪ Y)) =

b(X ∩ Y)− λiδ(X ∩ Y) + b(X ∪ Y)− λiδ(X ∪ Y) = bi(X ∩ Y) + bi(X ∪ Y)

Indeed, this holds true, since λi ≤ 0 and δ(X ∩ Y) + δ(X ∪ Y) ≤ δ(X) + δ(Y).
We repeat this iterative computation, until the weight of the minimal cut become

non-negative. (If the last iteration is the i-th,then bi(Zi) ≥ 0 and bi−1(Zi−1) < 0.)
Let λ be equal to λi, that we used in the last iteration. For all Z ⊂ V :
b(Z)
δ(Z)
≥ λ, since bi(Z) = b(Z)− λδ(Z) ≥ b(Zi)− λδ(Zi) ≥ 0

Then λ is the optimum value of the problem and the final Zi is the optimal set.
If on any iteration we find a set Zi, such that δ(Zi) = 0, then the algorithm

is stopped. If we find it in the first iteration (i = 1) and b(Zi) ≥ 0, then b is
non-negative and there exist a trivial feasible solution for the balanced submodular
flow problem. Otherwise, the primal problem can’t be feasible, since b′(Zi) < 0 and
δ(Zi) = 0.

The algorithm does at most |E| repetition, because δ(Zi) is decreased at every
iteration. (δ(Zi+1) < δ(Zi))
Due to definitions of λi, Zi and λi−1 > λi:
b(Zi)− λi−1δ(Zi) ≤ b(Zi+1)− λi−1δ(Zi+1)

We can prove it by contradiction:
δ(Zi) ≤ δ(Zi+1) → −(λi − λi+1)δ(Zi) ≤ −(λi − λi+1)δ(Zi+1)

21

b(Zi)− λi−1δ(Zi)− (λi − λi+1)δ(Zi) ≤ b(Zi+1)− λi−1δ(Zi+1)− (λi − λi+1)δ(Zi+1)

b(Zi)− λiδ(Zi) ≤ b(Zi+1)− λiδ(Zi+1)

This can’t be happened, because of the definition of Zi+1:
b(Zi)− λiδ(Zi) ≥ b(Zi+1)− λiδ(Zi+1)

At each iteration the value of λ is always decreased. If there are at least two
repetition, then b′(Zi) < 0 holds true for all found Zi (except in the last iteration).

If there is a set Z in the graph, such that b′(Z) < 0 and δ(Z) = 0, then it is
found during the algorithm. Let us see sets with the property that δ(Z ′) > 0 holds,
whose function values are increased at every iteration. After some repetition, sets,
such that δ(Z) = 0, can stay negative.

4.3 Newton’s approach for balanced submodular network

flow problem

We remind of the reformulated balanced submodular network flow problem:

max− δ∑
e∈ρ(X)

xe −
∑
e∈δ(X)

xe ≤ b′(X) ∀X ⊂ V

x ≤ δ

x ≥ 0

If we fix parameter y in the above formulation, then we obtained a parametric
submodular flow problem. Let us h(y) denote its optimal value corresponding to y.
Then the optimal value of the original problem is equal to the minimum of h(y). So
we have to minimize function h(y).

As we proved, its dual problem is equivalent to the minimum mean cut problem
with a submodular function. In the previous section, we saw a polynomial algorithm
for solving the dual problem. This means that we can compute h(y) in polynomial
time.

h(y) = min
(by(S)
δ(S)
| S ⊂ V

)
, where by(S) = b(S)− ρ(S)y + δ(S)y.

Then h(y) is a convex, piece-wise linear function. We use Newton’s approach to find
the minimum point y∗ of function h.
First we started from an internal [y1, y2], such that contains y∗. We compute the
tangents at endpoints of the internal and we take their intersection of their tangents.
This point y′ splits the internal. If the slope of tangent at y′ is negative, we repeat
the process with the internal [y′, y2] in the same way. If the slope of tangent at y′

is positive, we continue with the internal [y1, y
′]. The convergence of this algorithm

isn’t worse as the convergence the following Newton’s method: h(y) is a decreasing

22

function and we want to find its root. Let h be the function obtained from h by
translating the y-axis such that h(y∗) = 0:
h(y) = h(y)− h(y∗) = min

(by(S)
δ(S)
| S ⊂ V

)
− h(y∗) =

=
(
b(S)−h(y∗)δ(S)−ρ(S)y+δ(S)y

δ(S)
| S ⊂ V

)
This means that it is enough to examine the convergence the Newton’s method for
h(y).

First we choose an initial guess y0, which is certainly less than the root of h.
y0 = 0 is a good choose for this. Then we compute h(y0) and the corresponding cut.
If h(y0) > 0, then we compute the next value of parameter y. Let us see a general
iteration:
Let yi be the actual guess at the beginning of the i-th iteration. Then we run the
minimum mean cut method with submodular function and we get hi = h(yi) with
corresponding cut Zi. If h(yi) = 0, we stop, because we find the root of the function.
If h(yi) > 0, we compute the next parameter approximation yi+1. Let mi denote the
slope of the line at the i-th iteration.

yi+1 = yi −
h(yi)

h
′
(yi)

= − b(Zi)

δ(Zi)− ρ(Zi)

mi =
δ(Zi)− ρ(Zi)

δ(Zi)

First let us see the Radzik’s analysis of Newton’s method, that proves that the
number of iteration is linear in b. We will use the following lemma to prove the fast
convergence of the Newton’s approach:

Lemma 4.1. hi+1

hi
+ mi+1

mi
≤ 1 holds for all iteration of the method.

Proof. Because of Zi+1 minimize byi+1 (Z)

δ(Z)
:

hi+1 =
byi+1 (Zi+1)

δ(Zi+1)
≤ byi+1 (Zi)

δ(Zi)

Due to the fact that yi+1 − yi = − hi
mi
> 0 and mi < mi+1 < 0:

hi+1 ≤
byi+1

(Zi)

δ(Zi)
=
b(Zi)

δ(Zi)
+
δ(Zi)− ρ(Zi)

δ(Zi)
yi+1 =

=
b(Zi)

δ(Zi)
+
δ(Zi)− ρ(Zi)

δ(Zi)
yi +

δ(Zi)− ρ(Zi)

δ(Zi)
(yi+1 − yi) ≤

≤ hi +mi+1 −
hi
mi

= hi − hi
mi+1

mi

The following inequality holds true:

Lemma 4.2. (hi+1

hi
)(mi+1

mi
) ≤ 1

4

23

The next lemma can be proved in very similar way than lemma 3.5

Lemma 4.3. The Newton’s approach does at most O(log(n)) iterations, such that
|mi+1| ≤ 2

3
|mi| holds.

Lemma 4.4. The Newton’s approach does at most O
(

log2(n)+log2

(
max{b(Z)}

))
consequence iterations, such that |mi+1| ≥ 2

3
|mi|

Proof. Let us see the sequence of iterations, such that above inequality holds:
m1,m2, ..,mr (after reindexing). By lemma 4.2 (hi+1

hi
+ mi+1

mi
≤ 1) we have that

hi+1

hi
≤ 1

3
.

Due to the fact that yi+1 − yi = − h(yi)

h
′
(yi)

= − hi
mi

:

yi+2− yi+1 = − hi+1

mi+1

=
hi+1

|mi+1|
|mi|
hi

hi
|mi|

=
hi+1

hi

|mi|
|mi+1|

hi
|mi|

≤ 1

3

3

2

hi
|mi|

=
1

2
(yi+1− yi)

Because of yi+1 = − b(Zi)
δ(Zi)−ρ(Zi)

:

yi+1 − yi = − b(Zi+1)

δ(Zi+1)− ρ(Zi+1)
+

b(Zi)

δ(Zi)− ρ(Zi)
=

=
b(Zi+1)

|δ(Zi+1)− ρ(Zi+1)|
− b(Zi)

|δ(Zi)− ρ(Zi)|

One of the following holds true:

b(Zi+1)

|δ(Zi+1)− ρ(Zi+1)|
− b(Zi)

|δ(Zi)− ρ(Zi)|
≥ b(Zi+1)− b(Zi)
|δ(Zi+1)− ρ(Zi+1)|

b(Zi+1)

|δ(Zi+1)− ρ(Zi+1)|
− b(Zi)

|δ(Zi)− ρ(Zi)|
≥ b(Zi+1)− b(Zi)
|δ(Zi)− ρ(Zi)|

In both of the above case we have that:

yi+1 − yi =
b(Zi+1)

|δ(Zi+1)− ρ(Zi+1)|
− b(Zi)

|δ(Zi)− ρ(Zi)|
≥ b(Zi+1)− b(Zi)

|E|

As we mentioned, the difference between the parameters of this kind of iteration
reduces fast:

yi+2 − yi+1 ≤
1

2
(yi+1 − yi)→ (yi+k − yi+k+1) ≤

1

2k
(yi+1 − yi)

yi+1 − yi ≥ b(Zi+1)−b(Zi)
|E| implies that:

min{b(Zi+1)− b(Zi)}
|E|

≤ (yi+k − yi+k+1) ≤
1

2k
(yi+1 − yi) ≤

1

2k
max(b(Z))

24

We can estimate the number of iterations, such that |mi+1| ≥ 2
3
|mi|:

min{b(Zi+1)− b(Zi)}
|E|

≤ 1

2k
max(b(Z))→

k ≤ log2

(
|E|max(b(Z))

min{b(Zi+1)− b(Zi)}

)
≤ log2(|E|max{b(Z)})

Theorem 4.1. Newton’s method finds the root of h(y) by performing
O(log2(n))O

(
log2(n) + log2

(
max{b(Z)}

))
= max{O(log2

2(n)),O(log2(n) max(b))}
iterations.

Now we show that the Newton approach gives a strongly polynomial algorithm
to balanced submodular network flow problem.

Theorem 4.2. Newton’s method finds the root of h(y) by performing O(|E|2) iter-
ations.

Proof. The slope of the actual line is increased at every iteration and it is computed
by the following equation:

mi =
δ(Zi)− ρ(Zi)

δ(Zi)

This takes at most 2|E|2 different values, because −m ≤ δ(Zi) − ρ(Zi) ≤ m, 0 ≤
ρ(Zi) ≤ m and both of them are integer.

Since the slope is changed at each iteration, the number of iterations isn’t greater
than 2|E|2.

Theorem 4.3. Balanced submodular flow problem can be solved with computing
O(|E|3) submodular function minimization problem.

We note that this analysis works for uniform balanced network flow problem.
Thus we can prove that the algorithm in the previous section takes at most O(|E|3)
maximum flow computations.

The next lemmas imply that we can easily find the integer optimal submodular
flow, having got a fractional optimum. We remind that the parametric submodular
flow problem is formulated by (24)-(24). We use hI(y) to denote the optimal integer
solution of (24)-(24) for any integer y ∈ Z≥0.

Lemma 4.5. For an arbitrary integer y ∈ Z≥0, the optimal integer solution of the
parametric problem corresponding to y is equal to dh(y)e, i.e. hI(y) = dh(y)e

Proof. h(y) is denoted the smallest number, such that there exist a feasible submod-
ular flow in G and y ≤ x(e) ≤ h(y) holds for all e ∈ E. Due to this definition, it is
impossible to exist an integer flow, such that y ≤ x(e) ≤ dh(y)e − 1 holds true.
However, there is a fractional flow with dh(y)e upper bounds as well as y and dh(y)e

25

are integer. Then there is an integer flow in G, such that y ≤ x(e) ≤ dh(y)e.
Then above two facts imply that hI(y) = dh(y)e.

By the definition of h and hI , it is easy to see the following lemma:

Lemma 4.6. The optimal integer solution of the balanced submodular flow problem
is the minimum of hI(y), where y ∈ Z≥0.

Let y∗ define the optimal solution of the LP problem. Now we get that, the
optimal integer solution can be compute simply as follows:

Theorem 4.4. The integer optimal solution of balanced submodular flow problem is
equal to min{hI(dy∗e), hI(by∗c)}=min{dh(dy∗e)e, dh(by∗c)e}, where y∗ is the mini-
mum point of h.

4.4 Balanced submodular network flow problem with inter-

secting submodular function

Let us consider balanced sub-modular flow problem with intersecting sub-modular
function. We can define the problem in very similar way: Given a directed graph
G = (V,E), there is given an intersecting sub-modular function b(X) for all X ⊆ V

node set. A flow in the graph is a sub-modular flow, if
∑

e∈ρ(X) xe−
∑

e∈δ(X) xe ≤ b(X)

holds for all X ⊂ V . The problem and its dual problem is formulated as the same
way, when b was fully sub-modular. Then the solutions of the dual problem are a
family of node sets, such that minimize min

∑
Z⊂V yZb

′(Z)∑
e∈E ye

. (Every set Z ⊂ V has a
weight yZ in the family.) We denote the family Z, such that Z ∈ Z ⇔ yZ > 0.

We remind of the modified dual problem: Dual optimal solutions are equivalent
to optimal solutions of the following modified problem.

min

∑
Z⊂V yZb

′(Z)∑
e∈E ye

ye ≥
∑
e∈δ(Z)

yZ −
∑
e∈ρ(Z)

yZ ∀e ∈ E

∑
e∈E

ye > 0

ye, yZ ≥ 0 ∀e ∈ E,Z ⊂ V

Now we examine the optimal solutions of this problem. If there are two inter-
secting sets X, Y in the family, then we can replace them by their intersection and

26

union. Weights yX∪Y , yX∩Y are increased by min{yX , yY } and weight yX , yY are de-
creased by the same value. We get a new feasible solution, whose objective function
value isn’t increased.

Thus we can assume that Z is laminar. We transform this laminar set family Z
as follows: Every step of the transformation starts with a family (Z) and ends a new
family (Z ′), that is objective value isn’t greater than value of (Z). Besides there are
some labelled sets in the family. We say that an unlabelled set Z ∈ Z is largest, if
there is no other unlabelled set Z ′ ∈ F , such that Z 6= Z ′, Z ⊂ Z ′.

One step of transformation:
If there are more than one largest sets in Z:

Let us see all largest unlabelled sets in Z, that are denoted by Z1, Z2, .., Zi. Let Z ′1 be
the union of largest sets and let be b′(Z ′1) =

∑
j=1,2..,i b(Zj). We define b′(Z) for each

original set of the family Z ∈ Z, which is equal the weight of Z in the beginning of
this step. Weights of Z1, Z2, ...Zi are decrease by minj=1,2..i yZj

and set Z ′1 is added to
family Z with wight minj=1,2..i yZj

. Then amount of
∑

Z∈Z b
′(Z) is equal to the total

weight of the original family. (Original family is the family in the beginning of the
actual step of the transformation.) Amount of

∑
e∈E ye isn’t increased. (Some edges

have the same weight and weights of other edges is decreased.) Therefore, the dual
objective value of family Z ′ isn’t increased during this step of the transformation,
this means that:

∑
Z∈Z b(Z)yZ∑

e∈E ye
≥

∑
Z∈Z′ b

′(Z)y′Z∑
e∈E y

′
e

After this Z ′1 is labelled.
If there is exactly one largest unlabelled set in Z, then it become labelled.
We doesn’t consider labelled sets during steps, but at the end of the transforma-

tion we will use them.
We repeat this step, while there is at least one unlabelled set in Z. The beginning

family of a step is the obtained family at the end of the previous step.
Number of pairs of disjoint sets is decreased at each step, because we deleted

at least one set of Z1, Z2, .., Zi and we added their union, that isn’t disjoint with
any set in Z. Since every labelled set contains all unlabelled sets, the union can’t
be disjoint with any unlabelled set. Because of it is union of unlabelled sets, it also
can’t be disjoint any labelled set.

Transformation method does at most (|Z|+#(number of disjoint pairs)) steps.
Let Z∗ be the family of sets obtained by the transformation. We have that:∑

Z∈Z b(Z)yZ∑
e∈E ye

≥
∑

Z∈Z∗ b
′(Z)y∗Z∑

e∈E y
∗
e

=

∑
Z∈Z∗ b

′(Z)y∗Z∑
Z∈Z∗ δ(Z)y∗Z

Thus Z∗ is a family in which each pair of sets are related by containment. Set
function b′ is fully submodular for sets in Z∗, since for all Y ⊂ X the submodularity
constraint holds true: b′′(X) + b′′(Y) ≥ b′′(X ∩ Y) + b′′(X ∪ Y) = b′′(X) + b′′(Y)

27

Similarly to the case where b was fully sub-modular, we can choose a set Z∗ from
Z∗, such that: ∑

Z∈Z∗ b
′(Z)y∗Z∑

Z∈Z∗ δ(Z)y∗Z
≥ b′(Z∗)

δ(Z∗)

Now y∗Z∗ can be equal to 1, as its value doesn’t matter in the objective fuction.
Then Z∗ is an union of some disjoint sets of the original family Z. They are denoted
by Z∗1 , Z∗2 , ..., Z∗i , that is Z∗ = Z∗1 ∪ Z∗2 ∪ .. ∪ Z∗i . Due to the definiton of b′:∑

Z∈Z b(Z)yZ∑
e∈E ye

≥ b′(Z∗)

δ(Z∗)
=

∑
j=1,2..,i b(Z

∗
j)

δ(
⋃
j=1,2..,i Z

∗
j)

In summary, we can assume that the optimal solution of the modified dual prob-
lem consists pairwise disjoint sets, where weights of every selected set are the same
(practicably 1).

If δ(
⋃
j=1,2..,i Z

∗
j) = 0 holds true, then the dual problem is unbounded. Since the

dual optimal solution isn’t positive, thus
∑

j=1,2..,i b(Z
∗
j) < 0. Adding these sets with

an arbitrary large weight, we got an arbitrary small solution. This means that the
primal problem can’t be feasible.

If b(Z) ≥ 0 hold for all Z ⊂ V , then the primal problem has a trivial solution,
because of xe ≡ 0 is primal feasible.

Therefore, provided the primal problem is feasible and the trivial solution
isn’t feasible, then we can solve the dual problem finding pairwise disjoint sets
Z1, Z2, ..., Zi, that minimizes

∑
j=1,2..,i b(Zj)

δ(
⋃

j=1,2..,i Zj)

28

5 Packing of T-joins

In this section we will describe a polynomial combinatorial algorithm for finding an
optimal T -join packing, that is presented by Barahona [3]. First we will discuss its
LP formulation using theory of Blocking Polyhedra, that is proved by Fulkerson [7].
Then we will give a description of Padberg-Rao’s algorithm for finding a minimum
T-cut [17]. In the end of this section, we will give a formal description and analysis
of Barahona’s algorithm for maximum T -joins packing problem [3].

5.1 Problem formulation

Let be G = (V,E) an undirected graph, and T ⊆ V , |T | even cardinality subset of
nodes.

Definition 5.1. Given S ⊂ V , we say that δ(S) is a T -cut, if |S ∩ T | is odd.

Definition 5.2. Given J ⊂ E, we say that H = (V, J) spanning sub-graph is a
T -join, if dH(V) is odd if and only if v ∈ T . (In the other words, dH(V) is odd for
all v ∈ T and dH(V) is even for all v ∈ V \ T .)

Given a matrix A whose rows are the incidence vectors of T -cuts and a non-
negative arc cost w, the linear program below is described:

min(wx)

Ax ≥ 1

x ≥ 0

Edmonds and Johnson proved that its optimal integer solution is an incidence
vector of T -join [5]. They showed a polynomial combinatorial algorithm to solve this
minimum cost T -join problem and its dual, that looks like as follows:

max(y1)

yA ≤ w

y ≥ 0

This dual problem gives the maximum packing of T -cuts.
We will use the theory of Blocking Polyhedra [6], that is given by Fulkerson. He

investigate a duality relationship between non-negative convex polyhedra (blocking
and anti-blocking pairs of polyhedra). Let us A = {x ∈ Rn

+ | Ax ≥ 1} be a convex

29

polyhedron, where A is a 0-1 matrix with rows a1, a2, .., an. We denote by b1, b2...bm
the extrem points of A. Let B be a matrix, whose rows are b1, b2...bm.

We say that B is the blocker (or blocking matrix) of A, if B = {y ∈ Rn
+ | yx ≥

∀x ∈ 1∀x ∈ A}.

Theorem 5.1. Let A,B, a1, ..an, b1, .., bm be defined above. Then B = {x ∈ Rn
+ |

Bx ≥ 1} and A is the blocker of B.

By using this theorem, we can describe the dual solutions of T -join packing
problem. The minimum cost T -join problem can be formulated with matrix A, whose
rows are the incidence vector of T -cuts. We mentioned that {x ∈ Rn

+ | Ax ≥ 1}
problem’s optimal solutions is matched the incidence vectors of T -join. Let us given
B matrix, whose rows are incidence vectors of T -joins in G. Applied the theory of
Blocking Polyhedra, B is the blocking matrix of A as well as the extrem points of
the following polyherdon are the incidence vectors of T -cuts.

min(cx)

Bx ≥ 1

x ≥ 0

Therefore the optimal solutions of this problem are the incidence vectors of T -
cuts.

The dual problem gives the maximal packing of T -joins:

max(y1)

yB ≤ c

y ≥ 0

Barahona showed an algorithm for finding the maximum fractional packing of
T -joins, that runs in O(n6) time. [3]
We will use c(S) to denote the capacity of the cut (S, V \ S): c(S) =

∑
e∈δ(S) c(E).

5.2 Minimum T -cut problem

The minimum T -cut can be found with Padberg-Rao’s algorithm in polynomial time.
It is based on the following lemma:

Lemma 5.1. Let S be a minimum cut, which separates at least two T nodes.
If |S ∩ T | is odd then S is a minimum T -cut.

30

If |S ∩ T | is even then there is a S ′ ⊂ S or S ′ ⊂ V \ S, that defines a minimum
T -cut.

Proof. The statement is trivial, in the case where |S ∩ T | is odd.
So we can assume that |S ∩ T | is even. Let be A a minimum T -cut in the graph.

1. case: |A ∩ S ∩ T | is odd:
1.a) case: A ∪ S separating at least two nodes in T :
Because of c submodularity:
c(A ∩ S) + c(A ∪ S) ≤ c(A) + c(S)

But A ∪ S separates two T -nodes, for this c(S) ≤ c(A ∪ S). As well as A ∩ S is a
T -cut, thus c(A) ≤ c(A ∩ S).
Therefore c(A ∩ S) = c(A) → A ∩ S is a minimum T -cut.

1.b) case: A ∪ S not separating two T nodes, i. e. T ⊆ A ∪ S:
A′ = V \A is also a minimum T -cut. A′ ∪ S doesn’t include T , since A \ S contains
T node for sure. Thus A′ ∪S separates two nodes in T . Now, we can see that A′ ∩S
is a minimum T -cut really similarly way as in case a).

2. case: |A ∩ S ∩ T | is even:
Then S ′ = V \ S defines the same cut and |A ∩ S ′ ∩ T | is odd. Apply the first case
technique to see that S ′ is a minimum T -cut.

Based this lemma, a fast algorithm can be given for find the minimum T -cut.

Algorithm 3 Min. T -cut search(G)
if |T | = 0 or |V | = 0 then

exercise not reasonable, RETURN FAIL
Let be S minimum cut separating two nodes in T
if S ∩ T is odd then

Split contracted nodes, if there is any
RETURN S

if S ∩ T is even then
G1 = G/S (contract S in G)
G2 = G/V \S (contract V \ S in G)
Min. T -cut search(G1)
Min. T -cut search(G2)

If we use the graph’s Gomory-Hu tree [9], the algorithm will become more sim-
plier. By this, we can choose the minimum edge wich defines a T -cut in the Gomory-
Hu tree.

31

5.3 Maximum packing of T -joins algorithm

Follow from the weak duality theorem, capacity of an arbitrary T -cut isn’t less than
the value of any T -joins packing. For this bound to be tight, in the optimal fractional
packing of T -joins every positive weighted T -join has to intersect in exactly one edge
every minimum T -cut.

Let λ(G) be the optimal value in G graph. It can be computed with the previous
algorithm.
For arbitrary U ⊆ E and α > 0, let G − αU be a graph, that is obtained by the
following way: capacities of edges in U is reduced to c(e)−α. If capacity of an edge
becomes 0, then we remove that edge from the graph.
Let us be µ(U) = mine∈U c(E).
For all U T -join, we define αU value, such that
αU = max(α | λ(G− αU) = λ(G)− α, 0 ≤ α ≤ µ(U))

With these notations, the problem can be solved recursively: Given a T -join
U with a positive weight in an optimal packing, we can compute αU . Then G′ =

G − αUU graph’s optimal T -join packing is completed with the αU weighted U

T -join. This way we get the optimal packing of G graph.

Lemma 5.2. If U is a T -join and αU = 0, then there is a minimum T -cut S, such
that |δ(S) ∩ U | > 1

Proof. In G−αUU graph, the cost of a T -cut decreases by kαU , where k = |δ(S)∩U |.
Therefore, if |δ(S) ∩ U | = 1 holds for some T -cut, then ∃αU > 0 small value, such
that λ(G− αUU) = λ(G)− αU

Similarly, if there are a T -join U and a T -cut S, where |δ(S) ∩ U | > 1, then
αU = 0 must hold.

Lemma 5.3. Let A,B be minimal T -cuts, which are intersecting (that is to say
A∩B 6= ∅, A \B 6= ∅, B \A 6= ∅, V \ (A∪B) 6= ∅) and |A∩B ∩ T | is odd. Let U be
a T -join.
If δ(A∩B), δ(A∪B) intersect U in exactly one edge ⇒ δ(A), δ(B) also intersect U
in one edge.

Proof. Because of c submodularity: c(A∩B) + c(A∪B) ≤ c(A) + c(B). Since A,B
are minimal T -cuts, A∩B,A∪B must be minimal T -cuts and between A\B,B \A
there is no edge.
For a T -join U and a T -cut S, |U ∩ δ(S)| has to be odd. Now it is easy to see, that
if a T -join intersect A ∩B,A ∪B , then it also intersects A,Bin one edge.

Very similar proof can be given for the following lemma:

32

Lemma 5.4. Let A,B be minimal T -cuts, which are intersecting (that is to say
A ∩ B 6= ∅, A \ B 6= ∅, B \ A 6= ∅, V \ (A ∪ B) 6= ∅) and |A ∩ B ∩ T | is even. Let U
be a T -join.
If δ(A \ B), δ(B \ A) intersect U in one edge ⇒ δ(A), δ(B) also intersect U in one
edge.

With the previous two lemma, we get the following statement. Let S be a non-
expandable laminar set family of T -cuts. If a T -join U intersects in one edge every
S ∈ S, than U intersects every minimal T -cut in one edge. In this case, U can be
taken to the packing with positive weight by lemma 5.2.

In the algorithm for finding an optimal packing, we simultaneously build T -join
packing and a Φ laminar set family of T -cuts. At every iteration, we find a T -join
with positive weight in the optimal packing and we can reduce the graph or we find
a new minimum T -cut and we can extend Φ.

Let U be a T -join, which intersects in one edge every T -cut in Φ. Then there are
two possible case:

1. The first case when αU = µ(U): As at least one edge capacity decrease to 0

and this edge is deleted from G, number of edges in G− αUU is less, then number
of edges in G.

2. The second case when αU < µ(U): as T -join U can’t be packed greater weight
than αU , in G − αUU there is a minimal T -cut S, such that |U ∩ δ(S)| > 1. This
means that S /∈ Φ. (In G−αUU αU is equal to 0.) So S is added to φ and Φ can be
uncrossed. (We want Φ always to be a laminar set family.)

Said uncrossing procedure works as follows:

Algorithm 4 Uncrossing procedure(Φ, S, U)
while There is A ∈ Φ, such that U cross A do
if |A ∩ S ∩ T | is odd then
if δ(A ∪ S) ∩ U>1 then
S := A ∪ S

if δ(A ∪ S) ∩ U=1 then
S := A ∩ S

if |A ∩ S ∩ T | is even then
if δ(A \ S) ∩ U>1 then
S := A \ S

if δ(A \ S) ∩ U=1 then
S := A \ A

S is added to Φ

Therefore the algorithm does polynomial iterations, because at every iteration
either number of edges in G decreases or size of Φ increases. So the algorithm does

33

at most m + 2n − 1 iterations. (As a laminar set family contains at most 2n − 1

sets over n elements.)

Algorithm 5 Maximum packing of T -joins (G)
1: Φ = ∅
2: Search U T -join, such that |U ∩ δ(S)| = 1 ∀S ∈ Φ

3: Compute αU
4: if αU < µ(U) then
5: Find S /∈ Φ set, such that G− αUU -ban |U ∩ δ(S)| > 1

6: Add S to Φ

7: Run Uncrossing procedure(Φ, S, U)
8: G = G− αUU
9: if λ(G) > 0 then

10: Go to 2. step

Now we describe the second step in Maximum packing of T -joins algorithm. We
want to find a T -cut U , such that |U∩δ(S)| = 1 ∀S ∈ Φ. A new arc cost is defined as
follows: c′(e) =#(Number of sets S ∈ Φ, such that e ∈ δ(S)). We search a minimal
cost T -joins. Its cost is at least |Φ|, since every T -join intersects any T -cut at least
1 edge. Therefore minimal T -joins, whose cost is equal |Φ|, has to intersect any set
in Φ in exactly one edge.

In third step of the algorithm, we have to compute αU . For this we define f(α) =

λ(G − αU). The function f is the minimum of linear functions, thus f is concave
and piece-wise linear. We would like to find its first break-point f . If we choose a
bigger α than this break-point, we find a new T -cut, which is defined that linear
function. Because of the greater gradient, this T -cut intersects U in minimum 2

edge. As |U ∩ δ(S)| > 1 holds, we can added this new minimum T -cut to Φ. (This
T -cut’s cost in the reduced graph is equal to minimum T -cut.) This procedure looks
like as follows:

Algorithm 6 Compute αU
1: αU = µ(U)
2: Search S minimal T -cut in G− αUU
3: if λ(G− αU) = λ(G)− αU then
4: Return αU , S
5: if λ(G− αU) < λ(G)− αU then
6: Let us α′ be the solution of λ(G)− α = c(S)− kα, such that k = |U ∩ δG(S)|
7: αU = α′ and go to 2. step

The value of k is decreased at every iteration and k is an integer. Thus the
procedure takes at most |U | ≤ n− 1 iterations. Consider its running time, there are

34

two possible case:
If αU = µ(U), then it makes at most O(n) minimum st-cut computations, so it runs
at O(n4) times.
If αU < µ(U), then it makes at most O(n2) minimum st-cut computations, so it
runs at O(n5) times.

In the fifth step in the algorithm 5, a new minimum T -cut S is found. The
procedure 6 in the third step gives this minimum T -cut.

As we said, the 5 algorithm does at most m + 2n − 1 iteration. The running
time of step 2 is O(n3), because we compute all-pairs shortest path problem and a
minimum cost perfect matching. (Both problem can be solved in O(n3) time.) There
are two types of iteration:
Its does at most m iterations, when αU = µ(U): In this case, the total running time
is O(m ∗ (n4 + n3)) = o(mn4).
And there are at most 2n − 1 iterations, when αU < µ(U): in this case, the total
running time is O(n ∗ (n5 + n3)) = O(n6).
Thus the algorithm runs in O(mn4 + n6) = O(n6) time.

35

6 Packing of perfect matchings in bipartite graph

In this section, we consider maximum packing of perfect matching problem in bi-
partite graphs. In the beginning we show an algorithm to compute optimal solution
based on an separation method. Then we characterize dual optimal solutions and
thereafter we present a polynomial time algorithm for solve maximum packing prob-
lem.

Let us given a bipartite graph G = (S, T,E) and every edge e has a non-negative
capacity u(e). We would like to find the maximum fractional packing of perfect
matchings. Let A be the incidence matrix ofG, the linear program below is described:

max(0x)

Ax = α

x ≤ u

If α = 1, then the above polyhedron is the perfect matching polytope. An arbi-
trary vector of this polytope is a convex combination of perfect matchings incidence
vectors. If a solution of the above problem is divided by α, then we get a vector,
which is in the perfect matchings polytope. For this, it can be written as convex
combination of perfects matchings. This is a fractional 1-packing in G. Then co-
efficients is multiplied by α. The given packing of perfect matchings is a feasible
packing in G. Therefore, the solutions of above problem are α-valued packing of
perfect matchings in G.

It can be converted to a network flow problem. Let G′ = (S∪T,E) be a directed
graph, that differs from the graph G since edges are directed from S to T . We define
a demand function b : V → R as follows: b(s) = −α for all s ∈ S and b(t) = α

for all t ∈ T . If there exist a circulation in G′, such that ρ(v) − δ(v) = b(v) for
each v ∈ S ∪ T , then there is an α-valued packing of perfect matching in G. If
Xe is equal to the amount of the flow on e, then x is a feasible solution of above
problem. (

∑
e=(sti)

xe = ρ(s) + δ(s) = δ(s) = α, because ρ(s) = ∅ and similarly∑
e=(sit)

xe = α.)

6.1 Computing optimal value

For solving perfect matchings packing problem, it is enough to find a feasible cir-
culation of the above network problem. Hoffman gave a characterization for this
problem [11]: there exists a feasible flow if and only if ρ0(X)− δu(X) ≤ b(X) holds
true for all X ⊆ V . This means that if the α-packing problem isn’t feasible, there

36

exist a cut X ⊆ V , such that ρ0(X)− δu(X) > b(X).
Re-written: ∃X ⊆ V : −δu(X) > b(X)⇔ 0 > b(X) + δu(X)

Now we want to find X ⊆ V , that minimize the following function:

b(X) + δu(X) = δu(X)− α|X ∩ S|+ α|X ∩ T | = δu(X)− α(|X ∩ S| − |X ∩ T |)

In the beginning we construct an auxiliary graph Gα as follows: we add two extra
nodes s′, t′ to G′. We define a weight function w, that is w(e) = u(e) for all e ∈ E.
Edge s′ → v is added with weight w(sv) = α for all v ∈ S ∪ T .
Each s ∈ S has a new edge s→ t′ with weight w(st′) = 0 and each t ∈ T has a new
edge t→ t′ with weight w(tt′) = 2α.
Let us see the weight of an arbitrary s′-t′ cut X in Gα:

w(X) =
∑
e∈δ(X)

=
∑

e∈δ(X),e=s′v

w(e) +
∑

e∈δ(X),e=vt′

w(e) +
∑

e∈δ(X),e=st

w(e) =

=
∑

s′v∈δ(X)

α +
∑

st′∈δ(X)

0 +
∑

tt′∈δ(X)

2α +
∑

st∈δ(X)

u(e) =

= (|S|+ |T | − |X|)α + |X ∩ T |2α +
∑

e∈δG′ (X)

u(e) =

= (|S| − |X ∩ S|)α + (|T | − |X ∩ T |)α + |X ∩ T |2α +
∑

e∈δG′ (X)

u(e) =

= |S|α− |X ∩ S|α + |T |α + |X ∩ T |α +
∑

e∈δG′ (X)

u(e) =

= (|S|+ |T |)α +
∑

e∈δG′ (X)

u(e)− α(|X ∩ S| − |X ∩ T |)

Thus weight of cut X∪S ′ is (|S|+|T |)α greater than δu(X)−α(|X∩S|−|X∩T |),
that we want to minimize. If α is fixed, than (|S|+ |T |)α is constant.
This means that the minimum cut in Gα is the same as the cut, that minimize
δu(X)−α(|X ∩ S| − |X ∩ T |). Since the minimum weight s′-t′ cut can be found, we
get the minimum of the above formula.

Now we show a method, that computes the optimal value of packing of the
perfect matchings. First we choose α0, which is certainly greater than the optimum
value. (For example α0 =

∑
e∈δ(s) u(e) is a good choose, where s is an arbitrary node

in S.) Then we construct Gα0 auxiliary graph and we compute a minimum s′-t′ cut
X0. If this minimum is equal to 0, then there is an α0-valued packing in G. If it is
negative, we compute the next guess, that is got closer to the optimum.

αi+1 =
δu(Xi)

(|Xi ∩ S| − |Xi ∩ T |)

37

Since 0 > δu(Xi)− α(|Xi ∩ S| − |Xi ∩ T |) holds true for any α > αi+1, then optimal
value is less then or equal to αi+1 by Hoffman theorem.
We repeat this iterative computation, until we find the optimal value of perfect
matching packing.

Algorithm 7 Compute optimal value(G, u)
1: α =

∑
e∈δ(s) u(e), where s is chosen randomly from S

2: construct Gα

3: compute minimum weight s′-t′ cut → X

4: while 0 > δu(X)− α(|X ∩ S| − |X ∩ T |) do
5: α = δu(Xi)

(|Xi∩S|−|Xi∩T |)

6: construct Gα

7: compute minimum weight s′-t′ cut → X

8: RETURN α,X

The algorithm 7 does at most |S| repetition, because (|Xi ∩ S| − |Xi ∩ T |) is
decreased at every iteration. (0 ≤ |Xi ∩ S| − |Xi ∩ T | ≤ |S| and it is integer.)
Let Xi denote the minimal cut found at the i-th iteration.
If |Xi+1 ∩ S| − |Xi+1 ∩ T | ≥ |Xi ∩ S| − |Xi ∩ T |:

αi+1 < αi → (αi − αi+1)(|Xi ∩ S| − |Xi ∩ T |) ≤ (αi − αi+1)(|Xi+1 ∩ S| − |Xi+1 ∩ T |)

δu(Xi)− αi(|Xi ∩ S| − |Xi ∩ T |) ≤ δu(Xi+1)− αi(|Xi+1 ∩ S| − |Xi+1 ∩ T |)

δu(Xi)− αi(|Xi ∩ S| − |Xi ∩ T |) + (αi − αi+1)(|Xi ∩ S| − |Xi ∩ T |) ≤

≤ δu(Xi+1)− αi(|Xi+1 ∩ S| − |Xi+1 ∩ T |) + (αi − αi+1)(|Xi+1 ∩ S| − |Xi+1 ∩ T |)

δu(Xi)− αi+1(|Xi ∩ S| − |Xi ∩ T |) ≤ δu(Xi+1)− αi+1(|Xi+1 ∩ S| − |Xi+1 ∩ T |)

0 ≤ δu(Xi+1)− αi+1(|Xi+1 ∩ S| − |Xi+1 ∩ T |)

This is a contradiction, provided the algorithm doesn’t stop at the i+1-th iteration.
In this case Xi+1 is the minimum cut in Gαi+1

, so it have to be negative. Thus,
|Xi+1∩S|− |Xi+1∩T | < |Xi∩S|− |Xi∩T | holds true at any intermediate iteration.
Every repetition runs is O(n3) time, because its running time is dominated by min-
imum s′-t′ cut computations. Therefore the algorithm finds the optimal value of
packing of perfect matching in O(mn3) = O(n5) time.

We can solve the packing problem as follows: First we compute the optimal
α. Then we formulate the linear program with this α. Solving this LP problem,
the solution can be written as a convex combination of perfect matchings. As we
described at the beginning of this section, given packing is a feasible solution of the
problem.

38

Let us note that running one iteration of algorithm 7 with an arbitrary λ, we
can decide either there is a λ-packing in G or not. Using this method, a separation
algorithm is obtained for an arbitrary λ to decide that the optimal value of the
packing problem is less than λ or not. However, we can’t say that the optimal value
is equal to λ or not. With this separation method, Megiddo’s parametric search
computes the optimal value of maximum packing problem [16].

6.2 An algorithm for solving packing problem

We show another algorithm for solving maximum packing of perfect matching in
a bipartite graph based on that we can compute the optimum value in polynomial
time.

It is easy to see the next lemma by Hall-theorem [10]:

Lemma 6.1. Let X, Y be node sets, such that X ⊆ S, Y ⊆ T and |Y | < |X|. Let
L ⊂ E be given as follows: L = {e ∈ E | e ∈ E(X,T \ Y)}, that L contains every
edge between X and T \ Y . Then every perfect matching intersects L in at least
|X| − |Y | edge.

Let A be a matrix, whose columns are incidence vectors of perfect matchings.
Maximum packing problem can be formulated as follows:

max(1x)

Ax ≤ u

x ≥ 0

Let us see its dual problem:

min(yu)

yA ≥ 1

y ≥ 0

We showed that the optimal value can be calculated and a cut Z is gotten, such
that δu(Z)

(|Z∩S|−|Z∩T |) is equal to the optimum. We prove that this cut Z defines an
optimal solution of the dual problem.

Lemma 6.2. Let Z be the cut, that is found by algorithm 7. Let y be a 0-1 vector,
such that ye = 1 ⇔ e ∈ δ(Z) in G′. Then y∗ = 1

|Z∩S|−|Z∩T |y is an optimal solution
of the dual problem.

Proof. Let X = Z ∪ S, Y = Z ∩ T be node sets, and L ⊂ E be defined like in the
previous lemma.

39

e ∈ L⇔ e ∈ δ(Z), since |Z ∪ S| > |Z ∪ T | holds for optimal Z. This means that y
is the incidence vector of L.
Every perfect matching has to intersect L in at least |X| − |Y | edge by lemma 6.1,
this implies that y∗ai = 1

|Z∩S|−|Z∩T |ya
i ≥ 1

|Z∩S|−|Z∩T |(|Z ∩ S| − |Z ∩ T |) = 1 holds,
where ai denotes i-th column in A. Thus y∗ satisfies the dual constraints.

We showed that δu(Z)
(|Z∩S|−|Z∩T |) is equal to the optimum, and this value is equal to

the objective function value of y∗. Therefore y∗ is a dual optimal solution.

In the optimal fractional packing of perfect matching every positive weighted
perfect matching has to intersect in exactly |Z ∩ S| − |Z ∩ T | edge every dual
optimal cut Z, since the corresponding dual constraint has to be tight.

We use k(X) to denote k(X) = |X ∩S|− |X ∩T |. Before we continue examining
dual optimal solutions, we make some very simple observations:

Statement 6.1. k(X)+k(Y) = k(X∩Y)+k(X∪Y) holds for every pair X, Y ⊂ V .

Proof.

k(X ∪ Y) = |(X ∪ Y) ∩ S| − |(X ∪ Y) ∩ T | =

= |X ∩ S|+ |Y ∩ S| − |(X ∩ Y) ∩ S| − (|X ∩ T |+ |Y ∩ T | − |(X ∩ Y) ∩ T |) =

= k(X) + k(Y)− k(X ∩ Y)

k(X ∩ Y) + k(X ∪ Y) = k(X) + k(Y)

Statement 6.2. Let d1, d2, d3, d4 and k1, k2, k3, k4 be non-negative numbers, that
satisfy the next inequalities: d1 + d2 ≥ d3 + d4, k1 + k2 = k3 + k4and d1

k1
= d2

k2
. Then

at least one of the following holds: d1
k1
≥ d3

k3
or d1

k1
≥ d4

k4

Proof. It can be proved by contradiction. Suppose that neither of them holds, we
have that:

d1
k1

<
d3
k3
→ d1k3 < d3k1

d2
k2

<
d3
k3
→ d2k3 < d3k2

d1
k1

<
d4
k4
→ d1k4 < d4k1

d2
k2

<
d4
k4
→ d2k4 < d4k2

These are implies that: (d1 + d2)(k3 + k4) < (d3 + d4)(k1 + k2).
This is an contradiction, because of k1 + k2 = k3 + k4.

40

Now we can continue considering dual optimal solutions:

Lemma 6.3. Let Z1, Z2 be cuts in G, that define dual optimal solutions. Let us
define the following notations: Z3 = Z1 ∩Z2, Z4 = Z1 ∪Z2. Then k(Z3), k(Z4) have
to be non-negative.

Proof. We prove it by contradiction. We assume that k(Z3) = k(Z1 ∩ Z2) < 0.
Because of Zi, Z2 define optimal solutions, every positive weighted perfect matching
in the optimal packing has to intersect them in exactly k(Z1) and k(Z2) edges.
As well as every perfect matching has to intersect every cut Z in at least k(Z)

edges. By using statement 6.1, then a perfect matching intersects Z4 in at least
k(Z4) = k(Z1) + k(Z2) − k(Z3) > k(Z1) + k(Z2) edges. This means that a positive
weighted perfect matching contains exactly k(Z1) and k(Z2) edge in δ(Z1), δ(Z2) and
also contains more than k(Z1) + k(Z2) edges in their union. This is a contradiction,
so k(Z3) > 0.
In the case where k(Z4) = k(= Z1 ∪ Z2) < 0, it can be proved similarly.

Lemma 6.4. Let Z1, Z2 be cuts in G, that define dual optimal solutions. Let us
define the following notations: Z3 = Z1 ∩ Z2, Z4 = Z1 ∪ Z2. Assume that k(Z3),
k(Z4) are non-negative. Then at least one of Z1∪Z2, Z1∩Z2 defines an optimal dual
solution.

Proof. Since δ is an submodular set function: δ(Z1) + δ(Z2) ≥ δ(Z3) + δ(Z4).
By statement 6.1, we have that k(Z1) + k(Z2) = k(Z3) + k(Z4). Because of Z1, Z2

define optimal dual solutions: δ(Z1)
k(Z1)

= δ(Z2)
k(Z2)

So we can apply statement 6.2 for di = δ(Zi) and ki = k(Zi).
Then at least one of the following holds: δ(Z1)

k(Z1)
≥ δ(Z3)

k(Z3)
or δ(Z1)

k(Z1)
≥ δ(Z4)

k(Z4)
.

This means that Z3 = Z1 ∩ Z2 or Z4 = Z1 ∪ Z2 defines a dual optimal solution.

We use the following notion:
A cut Z is called a tight cut, if k(Z) ≥ 0 and every positive weighted perfect
matching in the optimal packing intersects in exactly k(Z) edges. It follows from
the definition that if a cut Z defines an optimal solution, then Z is tight. Let us see
a lemma of tight cuts:

Lemma 6.5. Let Z1, Z2 be cuts in G, that define dual optimal solutions. Then
Z1 ∪ Z2, Z1 ∩ Z2 are tight cuts.

Proof. Let M be a perfect matching with positive weight in the optimal fractional
packing. By a counting argument, it is easy to see the following: there is no edge in
M between Z1 \ Z2 and Z2 \ Z1.
The statement of this lemma is implied by the next equality:
|M ∩ δ(Z1)|+ |M ∩ δ(Z2)| = |M ∩ δ(Z1 ∩ Z2)|+ |M ∩ δ(Z1 ∪ Z2)|.
(Due to the fact that |M ∩ δ(Z1)| ≥ k(Z1) and lemma 6.1)

41

The theorem below show that we only need to impose this for a laminar family
of tight cuts.

Theorem 6.1. Let Z1, Z2 be cuts, that define optimal solutions. If Z1 ∪Z2, Z1 ∩Z2

are tights, then Z1, Z2 are tights cuts.

Proof. Due to the previous lemma and the fact that a positive weighted perfect
matching has no edge between Z1 \ Z2 and Z2 \ Z1, we get this theorem.

We say that a perfect matchingM satisfy the tightness condition, ifM intersects
every tight cut Z in exactly k(Z) edges. A positive weighted perfect matching in
the optimal packing must satisfy the tightness condition. Therefore, it is enough to
keep a laminar family of tight sets F , if we want to check that a perfect matching
satisfy the tightness condition or not.

During the algorithm we will keep a laminar family of tight sets. If we add a
new cut to F , then we convert it into a laminar family by using the following simple
uncrossing procedure: If there are two intersecting cut X, Y in F , then we replace
them by their union and intersection. It is easy to see that at each uncrossing step
the number of crossing pairs decreases by at least one.

Let be λ(G) the optimal value in graph G, that can be computed with the
algorithm 7.
For arbitrary M ⊆ E and α > 0, let be G − αM a graph, that is obtained by the
following way: capacities of edges in M is reduced to u(e)−α. If capacity of an edge
becomes 0, then we remove that edge from the graph.
Let us be µ(M) = mine∈M u(E).
For ∀M perfect matching, we define αM value, such that αM = max(α | λ(G−αM) =

λ(G)− α, 0 ≤ α ≤ µ(M))

With these notations, the problem can be solved recursively: Given anM perfect
matching with a positive weight in an optimal packing, we can compute αM . Then
G′ = G − αMM graph’s optimal packing is completed with the αM weighted M

perfect matching. This way we get the optimal packing of graph G.
Now we can describe the algorithm for solving maximum packing of perfect

matchings problem.

42

Algorithm 8 Maximum packing of perfect matchings (G)
1: F = ∅
2: Search M perfect matching, such that |M ∩ δ(Z)| = k(Z) ∀Z ∈ F
3: Compute αM
4: if αM < µ(M) then
5: Find Z /∈ F set, such that G− αMM -ban |M ∩ δ(Z)| > k(Z)

6: Add Z to F
7: Run Uncrossing procedure(F ∪ Z)
8: G = G− αZZ
9: if λ(G) > 0 then

10: Go to 2. step

Let M be a perfect matching, which is satisfy the tightness condition for all
Z ∈ F . Then there are two possible case:
1. The first case when αM = µ(M): As we can add M to the packing and its weight
is equal to its capacity. So at least one edge capacity decrease to 0 and this edge is
deleted from G. Therefore in this case, the number of edges in G − αMM is less,
then number of edges in G.
2. The second case when αM < µ(M): as M can’t be packed greater weight than
αM . This means that in G − αMM there is a cut Z such that |M ∩ δ(Z)| > k(Z),
that is F doesn’t contain Z. Adding Z to F and applying the uncrossing procedure
to convert it into a laminar family, we get a family of tight cuts, which is greater
then the original family.

Therefore the algorithm does polynomial repetitions, because at every iteration
either number of edges in G decreases or size of F increases. So the algorithm does
at most m + 2n − 1 iteration. (Because of a laminar set family contains at most
2n− 1 sets over n elements.)

In the second step of algorithm 8 we would like to find a perfect matching, that
intersects every cut Z ∈ F in exactly k(Z) edges. We can manage it by the algorithm
for find a minimum cost perfect matching [13]. A new arc cost c is defined as follows:
c(e) is equal to the number of cuts Z ∈ F , such that e ∈ δ(Z). Now we search a
minimum cost perfect matchingM .M is a good candidate for having positive weight
in the optimal packing. (Cost of M is equal to

∑
Z∈F k(Z).)

Let describe the third step of the algorithm, in which αM is computed. Let M
be a perfect matching, that satisfy the tightness condition for all Z ∈ F . We use
the new notation: f(α) = λ(G − αM). Then f is a piece-wise linear function and
we want to find its first break-point. By the definition of µ(M), αM ≤ µ(M) holds.
We start the process with initial value α0 = µ(M). Then value of α is decreased

43

until we find the biggest α, that f(α) = λ(G) − α holds. (f(α) ≤ λ(G) − α for an
arbitrary α.)

Algorithm 9 Compute αM
1: α = µ(M)
2: Run compute optimal value(G− αMM , u) → f(α), Z
3: if f(α) = λ(G)− α then
4: Return α,Z
5: if f(α) < λ(G)− α then
6: Let us α′ be the solution of λ(G)− α = u(Z)− kα, such that k = |M ∩ δ(Z)|
7: αU = α′ and go to 2. step

The value of k is decreased at every iteration and k is an integer. Thus the
procedure takes at most |M | = n iterations. The running time of an iteration in
this algorithm is dominated by the running time of Steps 2. As we said compute
optimal value algorithm in the 2. step runs O(mn3) time. Therefore, if α = µ(M),
then algorithm 9 runs in m\3 time. If α < µ(M), then algorithm 9 runs in m\4 time.

Now let us examine the running time of algorithm 8. Step 2 is run O(n3) at
every iteration. After finding M perfect matching, there are two possible case:
1. αM = µ(M): in this case compute αM algorithm runs in O(mn3) time. As well as
there are at most m this kind of iteration, because number of edges in G decreases
at each repetition. So the total running time in this case is O(n3) +O(m2n3).
2. αM < µ(M): in this case compute αM algorithm runs in O(mn4) time. As well
as there are at most 2n− 1 iterations, because size of F increases at each this kind
of repetition. So the total running time in this case is O(n3) +O(mn5).

Thus the complexity of the packing algorithm is max{O(m2n3),O(mn5)} =

O(n7). Then we get the following theorem:

Theorem 6.2. Let us given a bipartite graph G = (S, T,E) and every edge e has a
non-negative capacity u(e). There is an algorithm, that solves maximum fractional
packing of perfect matchings problem in O(n7) time.

44

7 Problem relations

In this section we consider relationships between problems related to packing of T -
joins and perfect matchings. First we will formulate three problems about T -joins
packing and we will describe relations between these problems. Then we will see same
problems with perfect matchings and their relationships. In the end of this section,
we will show that matchings problems are reducible to minimum cost 1-packing of
T -joins problem.

In every problem, graph G = (V,E) is given and every edge e has a non-negative
capacity u(e). We will use the next matrices for LP-formulations. Let A be a matrix
whose columns are the incidence vectors of T -joins. As well as let B be a matrix
whose columns are the incidence vectors of T -cuts.

First let us see the maximum packing of T -joins problem. We would like to find
the maximum fractional packing of T -joins, such that e edge is used at most u(e)

times by the packing. In this case every T -join has a unit weight and we want to
maximize the sum of their weight in the packing. This problem can be formulated
as follows:

max(1x) (28)

Ax ≤ u (29)

x ≥ 0 (30)

The second problem is 1-packing problem. We want to decide either there is a
packing with 1 weight or not. The answer of this decision problem is yes, if a T -joins
packing can be found, where total weights is 1. This problem is decidable with the
next LP-formula. (The following problem is feasible if and only if the answer is yes
for the decision problem.)

Ax ≤ u (31)

1x = 1 (32)

x ≥ 0 (33)

Minimum cost 1-packing problem is very similar to the second one. A non-
negative cost c is given on the edges. A cost for T -joins is defined by c, that is
c(T) =

∑
e∈T c(e). We would like to find a minimum cost packing, which total

weight is one. In this problem every T -join has different cost, but this cost is come
from edge’s cost. This problem is the special case of the more general minimum cost

45

1-packing problem. This problem can be written as follows:

min(cx) (34)

x ≤ u (35)

xB ≥ 1 (36)

x ≥ 0 (37)

Edmonds and Johnson proved that if a polyhedron defined by (36)-(37), then it
is the dominant of the T -join polytope of G [5]. We use P to denote the T -join
polytope. If x satisfies (36)-(37), then x = x1 +x2, where x1 ∈ P and x2 ≥ 0. Let x∗

be an optimal solution of (34)-(37). Then x∗ can be written as a sum x∗1 +x∗2, where
x∗1 ∈ P and x∗2 ≥ 0. Because of c is non-negative, we get cx∗ ≥ cx∗1. Thus we can
assume that x∗ is contained in P . Then it can be written as a convex combination of
incidence vectors of T -join. This gives a packing of T -joins in G, such that satisfies
all above conditions (34)-(37).

Now we examine the relations between these problems. First two problems are
equivalent.
If we can solve maximum packing problem, then 1-packing problem can be decided.
This case is very simple, because we can just check whether the maximum packing
is greater than one or not.
Let see the other direction. Suppose that there is an algorithm for solve 1-packing
problem in polynomial time, we can decide α-packing problem for an arbitrary α.
For this we make a new capacity function u′(e) = u(e)

α
and apply 1-packing algorithm

to get the answer α-packing problem. With this subroutine to α-packing problem,
Megiddo’s technique can be used for solve (28)-(30) [16].

Finally, the minimum cost 1-packing problem implies the first two problem. If
we can solve (34)-(37) with c ≡ 0, then we can decide (31)-(33).

Let us consider same problems with perfect matchings. Let C be a matrix whose
columns are the incidence vectors of perfect matchings in G.

Fourth problem is maximum packing of perfect matchings problem. We would
like to find the maximum fractional packing of perfect matchings, such that e edge
is used at most u(e) times. This problem is formulated in the following way:

max(1x) (38)

Cx ≤ u (39)

x ≥ 0 (40)

Then let us see 1-packing of perfect matching problem. We want to decide either
there is a packing with 1 weight or not. This problem is decidable with the next

46

LP-formula. (The following problem is feasible if and only if the answer is yes for
the decision problem.)

Cx ≤ u (41)

1x = 1 (42)

x ≥ 0 (43)

The last problem is minimum cost 1-packing problem. A non-negative c cost is
given on the edges and every perfect matching M has a cost, such that is c(M) =∑

e∈M c(e). We would like to find a minimum cost packing, which total weight is
one. This problem can be written as follows:

min(cx) (44)

Cx ≤ u (45)

1x = 1 (46)

x ≥ 0 (47)

The relationships between problems with perfect matchings are very similar,
than between related problems with T -joins.

We can reduce problem with perfect matchings to minimum cost 1-packing of T
joins problem.
If we can solve minimum cost 1-packing of T -joins problem, then we can decide
(41)-(43). For this we choose T = V and c ≡ 1 cost in (34)-(37). Then we compute
its optimal value, that can’t be less than n

2
. If it is equal to n

2
, then every T -join

with a positive weight in the optimal packing has n
2
edges. Otherwise, let U ′ be a

T -joins with positive weight w(U ′) and it has more than n
2
edges. This implies that

cx =
∑

UT−join c(U)W (U) =
∑

U 6=U ′ c(U)W (U) + c(U ′)w(U ′) ≥ n
2
(1 − W (U ′)) +

c(U ′)w(U ′) > n
2
. This means that the optimal objective value of (34)-(37) is equal

to n
2
if and only if there is a packing of perfect matchings in G, such that total

weight is 1.
As well as the last problem is reducible to minimum cost 1-packing if T -joins

problem. Let c be the cost, that is used in (44)-(47). Then we make a cost c′ for
the third problem. c′(e) = c(e) + N is a good chose, where N is a big number. We
say that a1 + b1N is less than a2 + b2N , if b1 < b2 or b1 = b2, a1 < a2. Then we
compute the optimal value of (34)-(37) with c′. If it is greater than

∑
E c(e) + n

2
N ,

then the optimal solution uses at least one T -join in the optimal packing, which is
not a perfect matching. Let U ′ be T -join with positive weight in the optimal packing
of (34)-(37), such that U ′ has more than n

2
edges. Then for the value of this optimal

47

solution the following holds:

c′x =
∑
U

c′(U)W (U) =
∑
U 6=U ′

(c(U) + |U |N)W (U) + (c(U ′) + |U ′|N)w(U ′) ≥

≥
∑
U 6=U ′

(
c(U) +

n

2
N

)
W (U) +

(
c(U ′) + (

n

2
+ 1)N

)
w(U ′) =

=
∑
U 6=U ′

c(U)W (U) +
n

2
N(1−W (U ′)) + c(U ′)w(U ′) + (

n

2
+ 1)Nw(U ′) =

=
∑
U

c(U)W (U) +

(
n

2
+ w(U ′)

)
N >

∑
e

c(e) +

(
n

2

)
N

This implies that the optimal value isn’t greater than
∑

E c(e)+
n
2
N , then the optimal

solution uses only perfect matchings in the optimal packing. This means that the
minimal cost packing of (34)-(37) is a 1-packing of perfect matchings, if there exists
a packing of perfect matchings in G with 1 total weight. Let x∗ be a packing of
perfect matchings in G. Then we have that:∑

M

c′(M)x∗(M) =
∑
M

(c(M) +
n

2
N)x∗(M) =

∑
M

c(M)x∗(M) +
n

2
N

This implies that optimal solutions of (34)-(37) are the optimal solutions of (44)-(47)
and the optimal value of (34)-(37) is n

2
N more than the optimal value of (34)-(37).

48

8 Conclusion and future work

This thesis introduced some algorithm for two kinds of problems. In the first part,
we discussed balanced network problems, then we presented a strongly polynomial
algorithm for balanced submodular flow problem. Thereafter in the second part of
thesis, we consider some different packing problems and we showed a polynomial
algorithm to find maximum packing of perfect matchings in bipartite graph.

We close this work with some question, that remain open and would be interest-
ing to examine in the future.
Can we find the optimal balanced network flow in a graph, if an upper capacity is
given along the arcs?
How can we compute the optimal value of balanced submodular flow problem with
an intersecting submodular function?
How can we finish the algorithm in this case?
A network flow and submodular flow problem can be consider as a packing problem.
This idea provides the next problem: We search a 1-valued packing in the graph,
such that the difference between maximum edge weight and minimum edge weight
is minimal. In this case capacity constraints can be given in arcs and the the op-
timal balanced 1-packing have to find. We can phrase questions about this kind of
problems.
Can we solve different balanced 1-packing problems without capacity constraints,
like balanced spanning tree problem?
What can we say about balanced packing problems with an edge capacity?
Let us see some question related to the second part of this thesis:
Can we compute the optimal value of maximum packing of perfect matching prob-
lem in a general graph?
Can we give a good characterization its dual optimal solutions?
Can we solve minimum cost 1-packing of T -joins problem, that is described in the
previous section?
Can we find the optimal packing of perfect matching in a general graph?

49

9 References

[1] Ravindra K. Ahuja. The balanced linear programming problem. European
Journal of Operational Research, 101(1):29–38, 1997.

[2] Francisco Barahona. Planar multicommodity flows, max cut and the chinese
postman problem. Polyhedral Combinatorics, DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, 1:189–202, 1990.

[3] Francisco Barahona. Fractional packing of t -joins. SIAM J. Discrete Math.,
17:661–669, 04 2004.

[4] Paolo M. Camerini, Francesco Maffioli, Silvano Martello, and Paolo Toth. Most
and least uniform spanning trees. Discrete Applied Mathematics, 15(2):181–197,
1986.

[5] Jack Edmonds and Ellis Johnson. Matching, euler tours and the chinese post-
man. Mathematical Programming, 5:88–124, 12 1973.

[6] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Mathematical
Programming, 1:168–194, 1971.

[7] D.R Fulkerson. Anti-blocking polyhedra. Journal of Combinatorial Theory,
Series B, 12(1):50–71, 1972.

[8] H. Gabow and K. Manu. Packing algorithms for arborescences (and spanning
trees) in capacitated graphs. Mathematical Programming, 82:83–109, 1998.

[9] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the
Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[10] P. Hall. On representatives of subsets. Journal of the London Mathematical
Society, s1-10:26–30, 01 1935.

[11] A. J. Hoffman. Some recent applications of the theory of linear inequalities to
extremal combinatorial analysis. Proc. Symp. in Applied Mathematics, pages
113–127, 1960.

[12] Maria Grazia Scutellà Klinz Bettina. A strongly polynomial algorithm for the
balanced network flow problem. Technical report, TU Graz, Austria, University
of Pisa, Italy, 01 2000.

[13] H. Kuhn. The hungarian method for the assignment problem. Naval Research
Logistic Quarterly, 2, 05 2012.

50

[14] S Martello, W.R Pulleyblank, P Toth, and D de Werra. Balanced optimization
problems. Operations Research Letters, 3(5):275–278, 1984.

[15] S.Thomas McCormick and Thomas R. Ervolina. Computing maximum mean
cuts. Discrete Applied Mathematics, 52:53 – 70, 1994.

[16] Nimrod Megiddo. Combinatorial optimization with rational objective functions.
Mathematics of Operations Research, 4(4):414–424, 1979.

[17] Manfred W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings.
Mathematics of Operations Research, 7(1):67–80, 1982.

[18] T. Radzik. Parametric flows, weighted means of cuts, and fractional combina-
torial optimization. In Complexity in Numerical Optimization, 1993.

[19] Éva Tardos. A strongly polynomial algorithm to solve combinatorial linear
programs. Operations Research, 34(2):250–256, 1986.

51

