
Eötvös Loránd University of Science
Department of Operational Research

Inventory optimization with
guaranteed service time

Mátyás Korom

Supervisor: Alpár Jüttner
Department of Operational Research
Eötvös Loránd University of Science

Contents

1 Introduction 3

2 Supply chains with guaranteed service times 5

2.1 The model and assumptions . 5

2.1.1 Single stage model . 7

2.1.2 Multi stage model . 7

2.2 Algorithm for trees . 9

2.3 Algorithm for graphs with Clusters of Commonality 11

2.4 The complexity of the general case 14

3 Two approximating algorithms 18

3.1 Generate strong flow cover cuts with CPLEX 18

3.2 Branch and bound . 24

4 Supply chains with capacity constraints 27

4.1 Base-Stock Replenishment Policy 27

4.2 Censored Order Policy . 30

5 Supply chains with different outbound service times 32

5.1 Algorithm for trees . 33

5.2 Algorithm for bipartite graphs with head and target partition . . 35

5.3 The complexity of the general case 36

A Common notations 39

2

Chapter 1

Introduction

Inventory management plays a fundamental role in the life of manufacturing or-
ganizations. Not only does its efficiency highly affect the profitability, but also
determines quality of service and the overall adaptability of the whole company.

There are three main purposes why a company holds an inventory[2]. The
first one is that materials has to be transported between different locations of
the supply chain. Therefore, every stage has to hold certain amount of inventory
to cover its needs until the next transport arrives. The second one is to deal
with the uncertainty of the external demand. Finally, maintaining an inventory
may cut down costs in terms of logistic.

An inventory can either be a single entity or — in case of large production
and distribution organizations — a complex multi-stage and multi-location sys-
tem. Operation of a single stage inventory is already a difficult but well studied
topic, interested readers are referred to e.g. [1] for a detailed introduction to
known approaches. Optimal running of multi-stage is even more difficult.

There are two basic approaches to minimize the costs in a multi-stage in-
ventory. The first one tries to plan an optimal supply network and reduce
the cost of manufacturing by placing the factories and warehouses at the right
places. The second approach applies various inventory holding policies to min-
imize the costs for an already given network. In fact, these are complementary
approaches. Obviously, the first one may result in higher savings for a green
field supply network establishment. However, in many cases there is an already
established supply chain or there may be external constraints determining the
main structure and parameters of the network. Then, the second approach has
a significant role to play in reducing the operational cost of a supply chain.

A prominent work by Stephen C. Graves and Sean P. Willems in 1998 [3]
(later revised in 2005 [4]) introduces a flexible model to the second approach, i.e.

3

it assumes an already existing supply network and strictly bounded demands,
then computes the optimal internal service times minimizing the overall opera-
tional cost of the full system. They and later S. Humair and Willems[13] gave
efficient algorithms for finding the optimal solutions for special supply network,
while E. Lesnaia, I. Vasilescu, and Graves[14] proved that the problem is NP-
hard for general directed acyclic graphs. On the positive side, T. L. Magnanti
et al.[16] and Graves and Lesnaia[17] gave practically efficient approximating
solutions for this general case. A further generalization assuming capacity con-
straints is discussed by T. Schoenmeyr and Graves[19].

This thesis gives an overview of the works above and — as new results —
discusses the analogous questions results in the case when non-uniform service
times are allowed. Finally, the appendix shortly summarizes notations most
frequently used throughout the thesis.

Acknowledgment

I would like to acknowledge my supervisor Alpár Jüttner for introducing me
to the theory of safety stocks and guided me through the writing of the thesis. I
am also grateful for the support of IBM-ELTE Center of Applied Mathematics
during my work on this topic.

4

Chapter 2

Supply chains with
guaranteed service times

This chapter introduces the basic model and the different algorithms developed
by Stephen C. Graves, Sean P. Willems[3] and others.

2.1 The model and assumptions

The supply chain is modelled as a directed acyclic graph, where a node represent
a stage at the chain and an edge induce a customer - supplier relationship. A
stage is a part of the chain where some relevant process happens. Practically
that can almost be anything including assembly, distribution or row material
pre-processing. We assume that external demand occurs only at nodes have
zero outdegree. We call this kind of nodes demand nodes.

We are given a scalar φuv associated to every arc (uv), which means node v
needs φuv unit of component from node u to produce its own product. Another
two scalars are associated to nodes. The first is Tu, which denotes production
time. If node u got all the subcomponents from its suppliers, it takes Tu time to
manufacture its product. The second is hu, which is the holding cost per unit
at node u.

So far, we have a directed acyclic graph with a scalar field φuv on the arcs,
and two scalar fields, namely Tu and hu on the nodes. Let us introduce the
basic assumptions.

• Bounded External Demand: We assume there are given a Du(τ) function,
which is the upper bound for demand for any τ long period for every
demand node u. So a demand sequence of length τ , namely du(t), du(t−1),

5

. . . du(t− τ + 1) at node u is valid if and only if

du(t) + du(t− 1) + . . . du(t− τ + 1) ≤ Du(τ) (2.1)

holds.

• Guaranteed Service Time: One of the most important assumptions. Each
node (both demand nodes and internal nodes) quotes a services time (out-
bound service time) Su to their customers, and guarantees it will fulfil
every valid demand occurred at time t at time t + Su. The task is to
determine these outbound service times. In this chapter, we assume each
node guarantees the same service time to all of its customers.

• Maximized service time for demand nodes: There is a given su ≥ 0, which
maximizes the service time of node u for every demand node.

• Periodic-Review Base-Stock Replenishment Policy: The last assumption
says all of the stages operate with periodic-review policy with a common
review period. The stages also places the same demand (multiplied by the
scalar φuv) on their suppliers than they observes at the period. So if an
external demand occurs at a demand node u at time t all of the supplier
sub-chain see the demand.

The first assumption do not say anything about internal demands, but ac-
cording to the last one

du(t) =
∑

(uv)∈A

(φuv · dv(t)), (2.2)

therefore
Du(τ) =

∑
(uv)∈A

(φuv ·Dv(τ)) (2.3)

is a demand bound for internal node u.

Remark Graves and Willems also assume Du(τ) to be concave and monotoni-
cally increasing with τ , but some of the following algorithms work perfectly well
without these assumptions. However some of them uses them, therefore we will
note every time these are relevant.

Observation If the demand bounds of demand nodes are concave and mono-
tonically increasing, Du(τ) is concave and monotonically increasing with τ for
all nodes, because it is the sum of some concave and monotonically increasing
functions.

6

2.1.1 Single stage model

This and the next subsection shows how to build the model step by step.

Consider a single stage (node u) with some inbound and some outbound
arcs, and also consider this stage quotes service time Su to its customers. Let

ISu = max
(vu)∈E

{Sv}

be the inbound service time of node u. If the stage observes demand du(t), it
also places the equivalent demand on its suppliers at time t. So it will get all
the parts necessary to begin the production at time t+ ISu, thus complete the
production at time t+ ISu + Tu. Meanwhile it needs to fulfil demand du(t) at
time t + Su. So if ISu + Tu > Su, stage u needs to store certain amount of
already processed stock to be able to satisfy the guaranteed service time it has
quoted.

Let Iu(t) denote the inventory held at sage u at time t. Because orders
observed at time (t−Su) need to be fulfilled while orders placed on suppliers at
time (t − ISu) arrived and are available Tu periods later, this value can easily
be determined by the following recursive form.

Iu(t) = Iu(t− 1)− du(t− Su) + du(t− ISu − Tu) (2.4)

By definition Iu(t) ≥ 0 at any time. Using Equation (2.4) recursively

0 ≤ Iu(t) = Iu(0)−
t−Su∑

i=t−ISu−Tu

du(i) (2.5)

must hold for every valid demand sequence du(1), du(2), . . . , du(t− Su).
Rearranging Inequality (2.5) and using the fact

t−Su∑
i=t−ISu−Tu

du(i) ≤ Du(ISu + Tu − Su) ∀t

we get the following
Iu(0) ≥ Du(ISu + Tu − Su). (2.6)

This is a necessary and sufficient condition to satisfy the guaranteed service
time model.

2.1.2 Multi stage model

At this general case we are given a directed acyclic graph D = (V,A) with node
set V and arc set A. If we associate a service time Su to every node and define

7

ISu as the single stage model, then using Inequality (2.6), we can calculate the
minimal inventory that is sufficient to satisfy the assumptions.

Iu(0) ≥ Du(ISu + Tu − Su) ∀u ∈ V

As hu is the holding cost per unit, the minimal inventory value held at node u
is ∑

u∈V
(hu ·Du(ISu + Tu − Su)) (2.7)

Now, we can formulate the optimization problem as a NLP.

Problem 1.

min
∑
u∈V

(hu ·Du(ISu + Tu − Su))

s.t. :

ISu + Tu ≥ Su ∀u ∈ V
ISu ≥ Sv ∀v ∈ V : (vu) ∈ A
Su ∈ Z, ≥ 0 ∀u ∈ V
Su ≤ su ∀u ∈ V, demand node

Observation One may assume IS = 0 for all nodes with zero indegree.

Observation Nodes with zero indegree can not quote higher service times to
their customers than their production times. Since for these kind of nodes
IS = 0, they have to hold Du(Tu−Su) processed stock, which is zero if Tu = Su,
and is out of range Dv(τ) if Tu < Su. Along this line we can define a maximal
possible service time for every node as follows. Let Mu = Tu for every node
with zero indegree, and

Mu = max
(vu)∈A

(Mv) + Tu. (2.8)

Repeating the previous argument no node can quote a service time, which is
higher than Mu to its customers in an optimal solution to Problem 1. This
observation will be used in the next section.

If we suppose the demand bound functions to be concave, Problem 1 is a concave
optimization problem over linear constraints which is known to be NP-hard in
the general case. Graves and Willems developed a polynomial algorithm for
trees[3], Humair and Willems introduced a little bit more general algorithm for
graphs with Clusters of Commonality[13] which is exponential in terms of the
number of vertices in a cluster, while Lesnaia, Vasilescu and Graves proved the
general problem is NP-hard[14]. The next sections of this chapter introduce
these results, while the next chapter introduces two approximating algorithms
developed by Magnanti, Zuo-Jun Max Shen, Jia Shu, David Simchi-Levi, Chung-
Piaw Teo [16] and Graves and Lesnaia[17].

8

Figure 2.1: Labelling algorithm for trees.

i = 1
while V 6= ∅ do

Label an arbitrary leaf node with i, and remove it from graph D.
i := i+ 1.

end while

2.2 Algorithm for trees

Graves and Willems developed a dynamic programming method to solve Prob-
lem 1 if the underlying directed graph D is a tree. First they label the nodes
with integers such a way that all nodes has at most one neighbour with higher
label. An easy way to do that to use the algorithm presented in Figure 2.1.

Definition Such a labelling of nodes is called leaf ordering.

1

2

3

4
5

6

7

9

10

8

Figure 2.2: A proper leaf ordering of a tree

This leaf ordering is used to decompose the problem into sub-problems in
the following way.

Let |V | = N , and l(v) be the label of node v. Thus 1 ≤ l(v) ≤ N ∀v ∈ V .
Call node v the parent of node u if l(v) > l(u) and (uv) ∈ A or (vu) ∈ A.
Similarly, v is child of u if l(v) < l(u) and (uv) ∈ A or (vu) ∈ A. So every
node apart from the one with l(v) = N has exactly one parent but can have
several children. Denote the set of children of u by ch(u) and the parent by
p(u). Define sub-graph Nv of D the following way:

• V (Nv) := {v} ∪u V (Nu), where u is a child of v.

9

• A(Nv) := IG(V (Nv)).

Definition fu(x) is the optimal inventory holding cost for Nu supposing Su ≤
x.

Similarly

Definition gu(x) is the optimal inventory holding cost for Nu supposing ISu ≥
x.

Let cv(Sv, ISv) be the following.

cv(Sv, ISv) = hv ·Dv(ISv + Tv − Sv) +
∑

u ∈ ch(v)
(vu) ∈ A

gu(Sv)+

+
∑

w ∈ ch(v)
(wv) ∈ A

fw(ISv) (2.9)

It is easy to see cv(Sv, ISv) is the optimal inventory holding cost for Nv sup-
posing the inbound service time of v is ISv and outbound service time is Sv.

Lemma 1. If (p(v)v) ∈ A, then

gv(x) = min
x≤ISv≤Mv−Tv

min
0≤Sv≤Mv

cv(Sv, ISv) (2.10)

If (vp(v)) ∈ A, then

fv(x) = min
0≤Sv≤x

min
0≤ISv≤Mv−Tv

cv(Sv, ISv) (2.11)

Proof. It is straightforward from the definition of cv(Sv, ISv).

With Lemma 1, one can calculate the function f or g for every node one-
by-one according to the leaf ordering.

Since there exists no node guaranteeing service time higher than its M , and
gets service time higher than M − T it is enough to minimize the expressions
over the [0,Mv] interval. Hence the minimization can be done in (Mv − Tv −
x) · (Mv + 1) steps by simply computing all the possible values. Since Mv ≤
maxv∈V (Tv) · |V | the enumeration of gv(x) takes O(|V |2) steps. The same is
true for fv(x) as well.

Figure 2.3 summarizes the algorithm. The variable opt contains the optimal
solution to Problem 1 at the end of the algorithm.

10

Figure 2.3: The dynamic programming method for trees

for i = 1→ N − 1 do

if l(v) = i and (p(v)v) ∈ A then
calculate gv(x) for x = 0, 1 . . . (Mv − Tv)

end if

if l(v) = i and (vp(v)) ∈ A then
calculate fv(x) for x = 0, 1 . . .Mv

end if

end for

opt := min
0 ≤ ISv ≤Mv − Tv
0 ≤ Sv ≤Mv

(cv(ISv, Sv))

2.3 Algorithm for graphs with Clusters of Com-
monality

The tree structure is often insufficient to accurately model more complex supply
chains. This chapter relaxes the tree assumption and introduce an algorithm,
that optimizes the safety stock in more complex networks, namely networks
with Clusters of Commonality.

Theorem 1. The vertex set of a graph G = (V,E) has a unique partition V1,
V2 . . . , Vk such that for every i ∈ {1, 2 . . . , k} the induced graph of Vi is 2-edge-
connected. Furthermore if the vertexes in these sets are pinched the resultant
graph is a tree.

Definition The D = (V,A) directed graph is a graph with Clusters of Common-
ality (CoC) if its 2-edge-connected components are directed bipartite graphs,
and all the edges inside a 2-edge-connected component are directed towards the
same partition.

Remark Humair and Willems define the Clusters of Commonality in a some-
what different but more complicated way.

Observation A graph with Clusters of Commonality is acyclic.

The algorithm developed by Humair and Willems[13] for solving Problem 1
for graphs with Clusters of Commonality is an extension of the one introduced
in the previous section. Similarly to the tree case this also has two main phase

11

with an additional phase 0 which verify if the graph is a CoC network. The first
one labels the nodes, the second calculates the optimal safety stock for different
sub-graphs at the order of labels.

Phase 0 - verifying if the network is CoC:

• Start a depth first search with arbitrary root node.

• If a circle is found contract it. (These nodes belong to the same 2-edge-
connected component.)

With appropriate data structure the depth-first search does not need to be
restarted after a circle is contracted, so the identification of the 2 edge-connected
components can be done in linear time.

• Check if the 2-edge-connected components are bipartite.

• Check if every 2-edge-connected component has one node partition with
ρ(v) = 0 in the induced graph.

Phase 1 - labelling the nodes:

• Contract every 2-edge-connected component. (This results a tree: D′.)

• Number the nodes in the graph D′ the same way as in the tree case.

Suppose a 2-edge-connected component has label k and n nodes.

• Add n− 1 to every label which is greater than k.

• Assign number k + n − 1 to the node adjacent to node (or component)
labelled with k + n (originally k + 1). We call this node the root of the
component.

• Assign arbitrary numbers from interval [k, k+n−2] to other nodes in the
component.

Observation For every cluster the cluster root has the greatest label.

Let us denote the clusters by V1, V2 . . .Vq, the head of cluster Vj by V +
j , the

source by V −j and define the children function:

• For cluster root v from cluster Vj

ch(v) = {u : (uv) or (vu) ∈ A and l(u) < l(v)} ∪ Vj

12

• For a non cluster root w in cluster Vj :

ch(w) = {u : (uw) or (wu) ∈ A, l(u) < l(v) and u 6∈ Vj}

Phase 2 - calculate optimal safety stock:

• If node v is not a cluster root, let cv(Sv, ISv) be

cv(Sv, ISv) = Dv(ISv + Tv − Sv)+

+
∑

u ∈ ch(v)
(vu) ∈ A

gu(Sv) +
∑

w ∈ ch(v)
(wv) ∈ A

fw(ISv) (2.12)

and evaluate fv(x) or gv(x) as in the previous section.

• If node v is a cluster root of Vj we have to keep an eye on the constraints
belong to the arcs in the cluster (the f and g functions of the children are
not independent), therefore suppose v ∈ V −j and let us define

h−v (Sv, ISv) := min(
∑
u∈V −

j

fu(xu) +
∑
w∈V +

j

gw(yw)) (2.13)

s.t.:

yw ≥ Sv ∀(vw) ∈ A, v, w ∈ Vj
yw ≥ xu ∀(uw) ∈ A, u,w ∈ Vj

and

cv(Sv, ISv) := Dv(ISv + Tv − Sv) +
∑

u ∈ ch(v) \ Vj
(vu) ∈ A

gu(Sv)+

+
∑

w ∈ ch(v) \ Vj
(wv) ∈ A

fw(ISv) + h−v (Sv, ISv). (2.14)

If v ∈ V +
j let us define

13

h+v (Sv, ISv) := min(
∑
u∈V −

j

fu(xu) +
∑
w∈V +

j

gw(yw)) (2.15)

s.t.:

ISv ≥ xu ∀(uv) ∈ A, u, v ∈ Vj
yw ≥ xu ∀(uw) ∈ A, u,w ∈ Vj

and

cv(Sv, ISv) := Dv(ISv + Tv − Sv) +
∑

u ∈ ch(v) \ Vj
(vu) ∈ A

gu(Sv)+

+
∑

w ∈ ch(v) \ Vj
(wv) ∈ A

fw(ISv) + h+v (Sv, ISv). (2.16)

After the cv function is computed the computation of the desired fv or gv
function can be done in linear time.

Unfortunately the computation of h−v or h+v and therefore the computation
of cv is exponential in the terms of the size of the clusters. Note that Humair and
Willems introduced two enumeration schemes[13], which improve the running
time, but those algorithms are still exponential.

2.4 The complexity of the general case

This section proves that Problem 1 is NP-hard. The section is a clarified ver-
sion of the original paper of Ekaterina Lesnaia, Iuliu Vasilescu and Stephen C.
Graves [14]. The key idea is to convert the vertex cover problem into Problem 1.

Problem 2. We are given a simple undirected G = (V,E) graph. Search for a
set of vertexes S which satisfy the following to statement:

1. ∀(uv) ∈ E : u ∈ S or v ∈ S

2. If some S̃ satisfies statement 1, then |S| ≤ |S̃|

This problem is called the vertex cover problem.

14

This problem is known to be NP-complete[15], so, if for every simple undi-
rected graph this problem is convertible into a minimal safety stock problem,
that proofs Problem 1 is NP-hard.

Construct a minimal safety stock problem:

1. Consider graph G = (V,E). |V | = N .

2. Make all of the edges directed acyclically.

3. Add a new node P and new arcs (vP) for all v ∈ V if v is not a demand
node.

4. Call the new graph D = (V ∪ {P}, A) and the set of demand nodes in D
VD

5. Let the demand bound function be

Dv(τ) =

{
0, if τ = 0
1, if τ ≥ 1

for all nodes in VD. It is easy to see that all demand bound functions have
the form:

Dv(τ) =

{
0, if τ = 0
kv, if τ ≥ 1

for some kv.

6. Set the per unit hold cost scalar

hv =

{
1
kv
, if v 6= P

N + 1, if v = P

7. Set the production times

Tv =

{
1, if v 6= P
0, if v = P

8. Set the upper bound of service time for demand nodes equal to 1.

Note that the largest safety stock value that a node can hold is equal to 1 if the
node is not equal to P . Node P can hold safety stock for zero or N + 1. It is
easy to give a feasible solution to the problem. For example, let Sv = 1 for all
v ∈ V ∪ {P}.

Lemma 2. Su ≤ 1 holds for every non-demand node u in D for all optimal
solution.

15

Proof. Consider a non-demand node v quotes service time greater than 1, namely
Sv ≥ 2. Hence (vP) ∈ A, ISP ≥ 2. The amount of safety stock node P have to
hold is DP (ISP + TP − SP) ≥ DP (2 + 0 − 1) = 1. So the value of the safety
stock held at node P is N + 1.

On the other hand, if every non-demand node quotes service time less than 2,
ISv ≤ 1 and hv · Dv(ISv + Tv − Sv) ≤ hv · Dv(1) = 1 for each node v 6= P ,
while hP ·DP (ISP + TP − SP) ≤ DP (0) = 0 holds for node P . The total value
of safety stock in this case is at most N .

Lemma 3. If (uv) ∈ A, at least one in the two nodes holds safety stock in every
optimal solution.

Proof. By contradiction, suppose there is a node pair u and v such that (uv) ∈ A
and none of them holds safety stock. If node u does not hold safety stock, then
hu ·Du(ISu + Tu − Su) = 0. Therefore Du(ISu + Tu − Su) = 0, which is true
only if ISu + Tu − Su = 0. The same holds for node v. Hence

Tu = Tv = 1,
0 ≤ ISu, ISv, Su, Sv ≤ 1,

Su, Sv = 1,
ISu, ISv = 0

must hold.

But since (uv) ∈ A ISu ≥ Sv, which is a contradiction.

From Lemma 3 it follows if we solve the optimal safety stock problem for D,
and choose the nodes which hold safety stock, we get a vertex cover for graph G.
Furthermore, the cardinality of such a vertex covering set is equal to the optimal
safety stock value. To complete the proof, we only need to verify that we can
assign a solution to Problem 1 with safety stock value equal to the cardinality
of the vertex covering set to every vertex cover problem.

Lemma 4. If S ⊆ V is a vertex covering set, there exist a solution {Sv : v ∈ V }
to Problem 1 where each node v holds safety stock if and only if v ∈ S.

Proof. Set Sv = 0, ISv = 1 for all v ∈ S, SP = 1, ISP = 1 for node P and
Sv = 1, ISv = 0 for all v 6∈ S ∪ {P}.

Check if this solution is feasible:

• Sv ≤ 1 for all demand nodes.

• No service time is greater than 1 so ISv ≥ Sneighbour of v holds for v ∈ S
or v = P .

16

• If v 6∈ S ∪ {P}, all of the neighbours of v are in S therefore all of its
neighbours service time is equal to 0, so ISv ≥ Sneighbour of v holds for
v ∈ S

Hence ISv+Tv−Sv > 0 if and only if v ∈ S the total safety stock value is equal
to |S|.

Lemma 3 and Lemma 4 together proof the safety stock problem is NP-hard.

17

Chapter 3

Two approximating
algorithms

After proving the optimal safety stock problem is NP-hard a natural question
arises. What should we do if we have to optimize inventory for a company.
A lot of algorithms were developed that solves NP-hard problems by relaxing
either the constraint on the running time or the constraint of optimality. That
means, they are either not polynomial at worst case, but solves some types of the
given problem fast, or they are polynomial but usually can not find the optimal
solution, just a solution which is relatively close to the optimal one. These are
the approximating algorithms. This chapter introduce two of them to solve the
safety stock problem. The first was developed by Magnanti et al.[16] while the
second by Stephen C. Graves, and Ekaterina Lesnaia.[17]

3.1 Generate strong flow cover cuts with CPLEX

This section presents the approximating algorithm developed by Magnanti et
al.[16] This algorithm supposes the demand bound functions to be concave and
monotonically increasing. They approximate the optimal solution with two
steps. At first, they suppose the demand bound function Dv(τ) is piecewise
linear for every v ∈ V . They add redundant inequalities to the problem to
make the CPLEX[20] optimization tool generate strong flow cuts to improve on
the run time. Afterwards applying the previous results they approximate the
original concave demand bound function with piecewise linear functions, and
iterate this step until the gap between the approximated and optimal solution
is sufficiently small.

Consider a piecewise linear concave function φ(x), x ≥ 0. Denote the number
of breakpoints by R, the nth breakpoint by Nn, the gradient of the nth piece by

18

αn and the intersection of the extension of the nth piece with the y coordinate
line by fn, see Figure 3.1. Using the multiple-choice approach we can calculate
the value of φ(x) with the following formula:

φ(x) = min

R∑
i=1

(fiui + αizi)

s.t.

R∑
i=1

ui ≤ 1

R∑
i=1

zi = x

Ni−1ui ≤ zi ≤ Niui
ui ∈ {0, 1} ∀i. (3.1)

Supposing all of the demand bound functions are piecewise linear Problem 1
can be written as

M1 M2

f1

f2

α1

α2

α3

x

φ(x)

Figure 3.1: Piecewise linear function

19

Problem 3.

min
∑
v∈V

(hv ·
Rv∑
i=1

(fvi u
v
i + αvi z

v
i))

s.t.

Rv∑
i=1

uvi ≤ 1 ∀v ∈ V

Rv∑
i=1

zvi = Xv ∀v ∈ V

Nv
i−1u

v
i ≤ zvi ≤ Nv

i u
v
i ∀i, ∀v ∈ V

uvi ∈ {0, 1} ∀i, ∀v ∈ V
Xv = ISv + Tv − Sv ∀v ∈ V
ISv + Tv ≥ Sv ∀v ∈ V
ISv ≥ Sw ∀v, w ∈ V : (wv) ∈ E
Sv ∈ Z, ≥ 0 ∀v ∈ V
Sv ≥ sv ∀v ∈ V, demand node

Lemma 5. ∑
v∈P

Xv ≥
∑
v∈P

(Tv)− svj

holds for all path P = {v1, v2 . . . vj} where v1 is a source and vj is a sink.

Proof. By substituting Xvi with ISvi + Tvi − Svi and using the following in-
equalities to give an upper estimation for the left hand side

Svi ≤ ISvi+1 ∀vi ∈ P
Svj ≥ svj

we get the following inequality∑
v∈P

Xv ≥ ISv1 +
∑
v∈P

(Tv)− svj .

Since v1 is a source, ISv1 = 0 stands which gives the desired result:∑
v∈P

Xv ≥
∑
v∈P

(Tv)− svj

Denote Problem 3 with all the redundant inequalities Lemma 5 induce by
P̃ . The CPLEX optimization tool uses the embedded inequalities to generate

20

Q

Q\S

b

t
Figure 3.2: Flow cover

flow cover cuts[18] and improves the running time.

Flow cover cut inequality: Consider a node with some inbound arcs Q with
capacities mi and two outbound arcs with capacities t and b. We can formulate
a single node flow inequality with these parameters.

∑
i

xi − t = b,

0 ≤ xi ≤ miyi

t ≥ 0

yi ∈ {0, 1} (3.2)

yi = 1 means the ith inbound arc is open.

Definition Consider a subset of inbound arcs J ⊂ Q. We call J a flow cover if∑
j∈J

mj = b+ λ

for some λ > 0.

Consider a flow cover J . Let S ⊂ J and close arcs in S.

21

∑
j∈J\S

xj − t ≤ min{b,
∑
i∈J

mi −
∑
s∈S

ms}

≤ min{b, b− (
∑
s∈S

ms − λ)}

≤ b− (
∑
s∈S

ms − λ)+

≤ b−
∑
s∈S

(ms − λ)+ (3.3)

holds. This yields to the so-called flow cover inequality.

∑
j∈J

xj − t ≤ b−
∑
j∈J

(mj − λ)+(1− yj). (3.4)

If we look back at problem P̃ we can see the following embedded inequalities.

∑
v∈P

Rv∑
r=1

zvr =
∑
v∈P

Tv − ssink(P) for all source-sink path P

zvr ≤ Nv
r u

v
r ∀r, j

zvr ≥ 0 ∀r, j
uvr ∈ {0, 1} ∀r, j

These are the same as in the flow cover cut problem so inequality (3.4) also
holds (with the appropriate notations).

Now, one is able to apply this result and approximate the general demand
bound functions with piecewise linear ones.

1. The first step is to replace every demand bound function Dv(τ) by

φ1v(τ) =
Dv(Mv)−Dv(0)

Mv
· τ +Dv(0).

2. Solve the ith iteration of problem P̃ with the demand bound functions
φiv(τ). Suppose the optimal values for the decision variables are Xv

i and
Nv
n ≤ Xv

i < Nv
n+1.

22

3. If Nv
n = Xv

i , let φi+1
v (τ) = φiv(τ), otherwise

αv, i+1
j = αv, ij j < n

fv, i+1
j = fv, ij j < n

αv, i+1
n =

Dv(X
v
i)−Dv(N

v
n)

Xv
i −Nv

n

fv, i+1
n = Dv(X

v
i)− αv, i+1

n ·Xv
i

αv, i+1
n+1 =

Dv(N
v
n)−Dv(X

v
i)

Nv
n −Xv

i

fv, i+1
n+1 = Dv(X

v
i)− αv, i+1

n+1 ·Xv
i

αv, i+1
j = αv, ij n+ 1 < j

fv, i+1
j = fv, ij n+ 1 < j.

Xj

αn+1
v,i+1

αn
v,i+1

αn
v,i

fn
v,i

fn
v,i+1

fn+1
v,i+1

Figure 3.3: Approximate with piecewise linear function

4. Terminate if

hv · |φiv(Xv
i)−Dv(X

v
i)| ≤ ε

|V |
∀v ∈ V (3.5)

Since the value of φiv(τ) ≤ Dv(τ), the optimal solution to the original prob-
lem (let us denote it by Opto) is always greater or equal to the approximated
optimum (Opta). Namely,

Opta ≤ Opto (3.6)

23

On the other hand, using inequality (3.5)

Opto ≤
∑
v∈V

(hv ·Dv(X
v
i))

≤
∑
v∈V

(hv · φiv(Xv
i)) + |V | · ε

|V |

≤ Opta + ε (3.7)

Inequality (3.6) and (3.7) together induce

Opta ≤ Opto ≤ Opta + ε (3.8)

So, choosing the terminating criterion appropriately, the algorithm provides
a solution to problem P̃ arbitrary close to the optimal one. Magnanti at al.
showed that this method can significantly improve the computational efficiency.
While for a randomly generated graph with 100 nodes and 142 arcs and also
randomly generated parameters, it took more than one hour to solve the problem
without the redundant inequalities, meanwhile took only 181 seconds with them.
For more computational experiences see[16].

3.2 Branch and bound

The approximation algorithm developed by Stephen C. Graves and Ekaterina
Lesnaia[17] has a branch and bound structure. The branch and bound scheme
requires two main decisions. The first is to determine how to branch, while
the second is how to bound. If this two is determined, a branch and bound
algorithm has the following structure.

Consider we know a feasible solution x̃.
repeat

Make a branching step according to the branching rules.
Give a lower (or upper, according to the task) bound x1, x2. . . , xk for all
the branches.
for i = 1→ k do

if xi ≥ x̃ then
Do not search for solution in that branch any more.

end if
end for
Refresh x̃

until x̃ is the optimal solution

Of course, the branch and bound scheme does not guarantee that the al-
gorithm is of polynomial running time, but for different problems e.g. Integer

24

Programming it can provide a generally quick and efficient solving method[18].
This section introduce a branch and bound algorithm for Problem 1 developed
by Stephen C. Graves and Ekaterina Lesnaia[17].

In Problem 1, there are two different kinds of decision variables, namely the ser-
vice times quoted by nodes S and the inbound service times IS. If the variables
of one type are known for an optimal solution, the variable of the other type
can easily be obtained. The following two lemmas show how to do that.

Lemma 6. If there exists an optimal solution to Problem 1 with outbound ser-
vice times {Sv : v ∈ V }, there is an optimal solution with the same outbound
service times and with inbound services times

ISv = max
(uv)∈A

{Su}

Proof. ISv ≥ max(uv)∈A{Su} holds for the given optimal solution, because this
is a constraint of Problem 1

On the other hand, if ISv > max(uv)∈A{Su} for a node v, ISv−1 also satisfies all
of the constraints and since Dv(τ) the demand bound function is monotonically
increasing, therefore

hv ·Dv(ISv + Tv − Sv) ≥ hv ·Dv((ISv − 1) + Tv − Sv).

So, with ISv := ISv−1 the new feasible solution has not greater objective value
than the original one.

Lemma 7. If there exists an optimal solution to Problem 1 with inbound service
times {ISv : v ∈ V }, there is an optimal solution with the same inbound service
times and with outbound services times

Sv = min
(vu)∈A

{ISu}

Proof. The proof of lemma 6 can be modified easily to prove Lemma 7.

Lemma 8. There always exists an optimal solution to Problem 1 which satisfies
the following claims.

• ISv = 0 ∀ source node v.

• Sv = sv ∀ demand node v.

Proof. The two claims are straightforward, as all the demand bound functions
are monotonically increasing.

25

These results can be used to construct a branch and bound algorithm.

At first, let us define layers. Let layer L0 be the set of source nodes, i.e.

L0 = {v | v ∈ V, ρ(v) = 0}

Define the other layers in the following way

Li = {v ∈ V | the longest directed path between L0 and v has lenght of i}

Label the nodes with integers in such a way that all nodes in Li have larger
numbers than the nodes in Lj ∀j < i, and there are not two nodes with the same
number. Practically, we label an arbitrary node in L0 with 1, an other with 2
and so on until all nodes in L0 are labelled, then we move on and continue with
nodes in L1 e.t.c. This way, if |V | = N , the nodes are labelled with 1, 2 . . .N .
Let ri := |Li|.

The next step is to construct the branching tree. If there are outbound ser-
vice times Sv assigned to all nodes in layers Li, i < j, all the inbound service
times of the nodes in Lj can be defined. This immediately follows from Lemma
6 and the definition of Lj . So, supposing the service times of layers Li i < j
are fixed, the resultant sub-problem is also an inventory optimization problem
(Problem 1) with some additional constraints on some inbound service time —
these arise because of arcs between Li i < j and Lk k > j — but this additional
constraints can be easily treated. Therefore a branching step would be to assign
a different service time values to node v supposing all nodes with smaller labels
has a fixed service time.

Now we have to compute a lower bound for the sub-problems. After a
branching step the nodes with given in and outbound service times can be re-
moved as no decision variables are associated with them. Denote the remainder
acyclic graph by D̃. To set the lower bound, remove some arcs from D̃ until
the remaining graph is a tree. Compute the optimal service times for the tree
according to the algorithm presented in Section 2.2. Hence removing an arc
corresponds to removing a constraint of type

ISv ≤ Su, (uv) ∈ A.

Therefore, this optimum is a suitable lower bound for Problem 1 with graph D̃.

The last step is to compute a solution to every sub-problem. The previously
described method results a solution to a tree. But increasing some inbound
service times result in a feasible solution to the original problem.

26

Chapter 4

Supply chains with capacity
constraints

Tor Schoenmeyr and Stephen C. Graves[19] extended the original model by
adding capacity constraints to the stages of the supply chain. This chapter
presents their results.

4.1 Base-Stock Replenishment Policy

Let us formulate a very similar problem to the original one described by Chapter
2, but add a cv capacity constraint to every node in V . Suppose node v can
manufacture product more than cv at no time interval of length one.

Observation If for some node v

cv · τ < Dv(τ) ∀τ :0 ≤ τ ≤Mv,

then the guaranteed service time assumption can not be satisfied.

Therefore we suppose:

∀v ∈ V ∃τ : 0 ≤ τ ≤Mv and cv · τ ≥ Dv(τ)

Since the demand — and therefore the incoming material — can exceed the
production for some short interval, certain amount of unprocessed stock must
be stored (we suppose there is no maintenance cost of these type of stock). This
arrived but due to the capacity constraint unprocessed material is called the
internal queue and denoted at time t by IQv(t). We also need another function.
Let Rv(t) be the stock, that node v started to process at time t. Rv(t) can be
computed as

27

Rv(t) = min{IQv(t− 1) + dv(t− ISv); cv} (4.1)

while the internal queue is

IQv(t) = IQv(t− 1) + dv(t− ISv)−Rv(t) (4.2)

The total inventory can be computed in the following way

Iv(t) = Iv(t− 1) +Rv(t− Tv)− dv(t− Sv) (4.3)

This equation can be reformulated using Equation (4.2) as

Iv(t)+IQv(t−Tv) = Iv(t−1)+IQv(t−Tv−1)+dv(t−ISv−Tv)−dv(t−Sv) (4.4)

Now we can recursively replace Iv(t− 1) + IQv(t− Tv − 1) with Iv(t− 2) +
IQv(t−Tv−2)+dv(t−ISv−Tv−1)−dv(t−Sv−1), Iv(t−2)+IQv(t−Tv−2)
with Iv(t− 3) + IQv(t− Tv − 3) + dv(t− ISv − Tv − 2)− dv(t− Sv − 2) and so
for, until we get the equation

Iv(t) = Iv(0)− dv(t− ISv − Tv)− · · · − dv(t− Sv)− IQv(t− Tv) (4.5)

For the sake of convenience let us introduce the following notation

y∑
i=x

d(x) = d(x, y)

Using this notation, we get

Lemma 9.

IQv(t) = max
n∈Z+

(dv(t− ISv − n+ 1, t− ISv)− cn) (4.6)

Proof. Replacing Rv(t) with Equation (4.1) in Equation (4.2) we get

IQv(t) = IQv(t− 1) + dv(t− ISv)−min{IQv(t− 1) + dv(t− ISv); cv}
= max{0; IQv(t− 1) + dv(t− ISv)− cv}

Using this recursively

28

IQv(t) = max{0; IQv(t− 1) + dv(t− ISv)− cv}
= max{0; max{0; IQv(t− 2) + dv(t− ISv − 1)− cv}
+ dv(t− ISv)− cv}
= max{0; dv(t− ISv)− cv; IQv(t− 2) + dv(t− ISv)
+ dv(t− ISv − 1)− 2cv}
...

= max
n∈Z+

{dv(t− ISv − n+ 1, t− ISv)− ncv; 0}

= max
n∈Z
{dv(t− ISv − n+ 1, t− ISv)− ncv}

which gives the desired result.

With the previous lemma, Equation (4.5) can be written as

Iv(t) = Iv(0)− dv(t− ISv − Tv, t− Sv)−
−max

n∈Z
(dv(t− ISv − Tv − n+ 1, t− ISv − Tv)− cvn) (4.7)

Iv(t) ≥ 0 by definition, therefore

Iv(0) ≥ dv(t− ISv − Tv, t− Sv)+
+ max

n∈Z
(dv(t− ISv − Tv − n+ 1, t− ISv − Tv)− cvn)

for every valid demand and t, so

Iv(0) ≥ Dv(ISv + Tv − Sv) + max
n∈Z

(Dv(n)− cvn) (4.8)

must hold for every v in V . This term is similar to the one introduced in
Chapter 2. We can formulate an optimization problem with these cost functions
similar to Problem 1. The only difference is the additional term occurred due
to the capacity constraints.

As we mentioned above for the algorithm for trees and clusters of common-
ality the assumption of concavity is not necessary so they work with these cost
functions as well. For a general network the branch and bound algorithm in-
troduced in Section 3.2 uses only the tree algorithm, so it works with capacity
constraints as well.

29

4.2 Censored Order Policy

One may note the material hold at the internal queues is a dead load. The
supplier has to ship this mater but the customer does not use it. In fact, it
would be better for the supplier to ship this mater at a later time while from
the point of view of the customer it does not make any difference. Inspired by
this observation this section introduces a new policy which results lower holding
cost for the network.

Suppose demand node v has nothing in its internal queue at time t and
observes dv(t) demand where dv(t) > cv the capacity constraint. If this node
places dv(t) demand on its suppliers, at time t+ ISv, it will have more unpro-
cessed material than cv, so it will have to place dv(t)− cv > 0 material into the
internal queue.

Suppose this node places only cv order onto its suppliers at time t and
dv(t + 1) + (dv(t) − cv) at time t + 1. At this case node v will not have any
unprocessed material in the internal queue at time t, its suppliers have to ship
less product at time t and the same amount at the [t, t+1] interval than before.
On the other hand node v will have the same amount of finished product at time
t+Tv, t+Tv + 1 e. t. c. So, if node v ”censors” its order and never order more
than the capacity constraint, the guaranteed service times can be hold with the
same Sv and the safety stock of the suppliers can be reduced.

0 0,5 1,0 1,5 2,0

0

1

2

3

4

D1(τ)

D2(τ)

c1τ

c2τ

D3(τ)=D1(τ)+D2(τ)

D3'(τ)

Figure 4.1: The new demand bound

30

Since with this policy the nodes will not place the same demand on their
suppliers as they observe, it is convenient to make difference between the two
kinds of demand. Let us denote the observed demand by dov(t) and the placed
by dpv(t). With these notation, the censored order policy means

dpv(t) = min{dov(0, t)− dpv(0, t− 1); cv} (4.9)

for every node in V . With this order policy, the observed maximal demand
Do
u(τ) for a demand node

Do
v(τ) = Dv(τ) (4.10)

and for a non-demand node u

Do
u(τ) =

∑
(uv)∈A

min(Do
v(τ), cvτ). (4.11)

Observation 1. The new dpv(t) demands are valid if the original ones are
valid. Namely

τ∑
i=1

dpv(t+ i) ≤ Dv(τ)

2. Do
v(τ) is concave and monotone if the originals are concave and monotone.

3. With the new demands IQv(t) = 0 for ∀n ∈ V , t ≥ 0.

4. And the most valuable one

τ∑
i=1

dov(t+ i) ≤ Do
v(τ) (4.12)

Inequality (4.12) induces no node has to hold safety stock more than

Do(IS + T − S) + max
n∈Z

(Do(n)− cn) (4.13)

if it has inbound service time IS, outbound service time S, production lead time
T and capacity constraint c. Since Do

v(τ) ≤ Dv(τ) every node has to hold no
more safety stock than they hold without the Censored Order Policy.

This problem can be solved like the Base-Stock Replenishment Policy case,
since the only difference are the demand bound functions. Therefore the dy-
namical programming method for trees, the one for graphs with Clusters of
Commonality, and the branch and bound algorithm is applicable at this case.

31

Chapter 5

Supply chains with different
outbound service times

The original model of Humair and Willems[3] suppose that a node guarantees
the same service time to all of its customers. In this chapter, we construct the
model that allows non-uniform service times and make the original algorithm
for trees applicable at this case. This is an extension of the original model and
a more accurate model of the real problem. It is also useful to the companies,
because this model does not result higher total inventory, and sometimes allows
a lower one.

Section 5.2 introduces an algorithm which solves the non-uniform optimiza-
tion problem for a bipartite graph D = (S, T, A) where all the arc has the
source in the same partition (namely (uv) ∈ A ⇒ u ∈ S and v ∈ T).

The last section shows the non-uniform case is also NP-hard if we allow ar-
bitrary cost functions.

Suppose node v has costumers u1 . . .uk, its inbound service time is IS and
has production time T . Furthermore, suppose ui has demand bound Di(τ) and
needs φvi unit material from v to produce one unit of product. As we have seen
in Chapter 2, if v quotes Svi service time to ui, it has to hold safety stock equal
to φvi ·Di(IS + T − Svi). If the holding cost of x unit of safety stock at node v
is Cv(x), the total holding cost is

Cv

(
k∑
i=1

φvi ·Di(IS + T − Svi)

)
(5.1)

Let us denote
∑k
i=1 φvi ·Di(IS+T −Svi) by D̃v(IS, Sv1, . . . , Svk) and the

number of customers of v by δ(v). With this notation, the safety stock problem

32

with non-uniform service times can be written for graph D = (V,E) as

Problem 4.

min
∑
v∈V

(Cv(D̃v(ISv, Svu1
, . . . , Svuδ(v))))

s.t.

ISv + Tv ≥ Svu ∀v, u ∈ V : (vu) ∈ E
ISv ≥ Suv ∀v, u ∈ V : (uv) ∈ E
Svu ∈ Z, ≥ 0 ∀v, u ∈ V : (vu) ∈ E
Sv ≥ sv ∀v ∈ V, demand node

Observation For an optimal solution to Problem 4 and for every service time

Suv = min{ISv, ISu + Tu}

5.1 Algorithm for trees

Let us suppose the graph is a tree and the cost function is linear just like at the
original uniform case. Namely, Cv(x) = hv · x.

Label the nodes and define the fv(x) and gv(x) functions as in the uniform
case. Namely, let fv(x) be the optimal inventory holding cost for Nv supposing
Svp(v) ≤ x if (vp(v)) ∈ A and gu(x) be the optimal inventory holding cost for
Nu supposing ISu ≥ x if (p(v)v) ∈ A.

The efficiency of the algorithm depends on how fast we can calculate the
gv(x) and fu(x) functions. If we can do it at polynomial time, the resulting
algorithm is also of polynomial running time, because we iterate on the nodes
only once. To calculate the desired functions we use the following lemma.

Lemma 10. If ISv is given for node v, the optimal safety stock is the sum of
the individual optima of the branches.

Proof.

Cv(D̃v(ISv, Svu1 , . . . , Svuδ(v))) = hv · D̃v(ISv, Svu1 , . . . , Svuδ(v))

= hv ·
δ(v)∑
i=1

(Dui(ISv + Tv − Svui))

=

δ(v)∑
i=1

(hv ·Dui(ISv + Tv − Svui))

Therefore

33

min
Svu1 ,..., Svuδ(v)

Cv(D̃v(ISv, Svu1 , . . . , Svuδ(v))) =

=

δ(v)∑
i=1

(min
Svui

(hv ·Dui(ISv + Tv − Svui)))

This result can be applied to calculate gv(x).

cv(Svu1 , Svu2 , . . . , Svuδ(v) , ISv) = hv · D̃v(ISv, Svu1 , . . . , Svuδ(v))+

+
∑

ui ∈ ch(v)
(vui) ∈ A

gui(Svui) +
∑

w ∈ ch(v)
(wv) ∈ A

fw(ISv)

and

gv(x) = min
x≤ISv≤Mv−Tv

min
0≤Sv≤Mv

cv(Sv, ISv)

= min
x≤ISv≤Mv−Tv

δ(v)∑
i=1

(min
Svui

(hv ·Dui(ISv + Tv − Svui)) + gui(Svui))+

+
∑

w ∈ ch(v)
(wv) ∈ A

fw(ISv)


For simplicity we can assume p(v) = uδ(v). Function fv(x) can be obtained

similarly

fv(x) = min
0≤Svp(v)≤x

min
0≤ISv≤Mv−Tv

cv(Sv, ISv)

= min
0≤ISv≤Mv−Tv

δ(v)−1∑
i=1

(min
Svui

(hv ·Dui(ISv + Tv − Svui)) + gui(Svui))+

+ min
0≤Svp(v)≤x

(hv ·Duδ(v)(ISv + Tv − Svuc(c))) + min
0≤y≤ISv

 ∑
(wv)∈A

fw(y)


34

Although these expressions may seems very complicated, but they can be
enumerated at polynomial time, therefore

Claim 1. The optimal solution can be obtained by enumerating the functions
fv(x) and gv(x) step-by-step at polynomial time.

5.2 Algorithm for bipartite graphs with head
and target partition

Let us investigate the case when the underlying graph is bipartite, D = (S,H,A)
where S and H are the sets of nodes and A is the set of arcs. Moreover suppose
if (xy) ∈ A, then x ∈ S and y ∈ H. Also suppose the cost function is linear for
every node.

Observation The set of the demand nodes is equal to H.

Observation If s ∈ S, then ISs = 0.

Let the ch(x) (h ∈ H) function be the following

ch(x) = hh ·Dh(x+ Th − sh) +
∑

(sh)∈A

(hs · φsh ·Dh(max{Ts − x, 0})) (5.2)

We can suppose ISh = max(sh)∈A{Ssh} and Ssh = min{ISh, Ts} for every
h ∈ H, s ∈ S. Since the cost function is linear,

∑
v∈S∪H

(Cv(D̃v(ISv, Svu1
, . . . , Svuδ(v)))) =

=
∑
s∈S

(hs · D̃s(ISv, Ssu1 , . . . , Ssuδ(s))) +
∑
h∈H

(hh ·Dh(ISh + Th − sh)

=
∑
s∈S

∑
(sh)∈A

hs · φsh ·Dh(Ts − Ssh) +
∑
h∈H

(hh ·Dh(ISh + Th − sh)

=
∑
h∈H

ch(ISh) (5.3)

Therefore the goal is to minimize
∑
h∈H ch(ISh). If we take a closer look at

the definition of ch(x), the value of the inbound service time of another h′ ∈ H
does not have any impact on the value of ch(x). Therefore the minimization
can be done separately.

35

Lemma 11.
min

{ISh: h∈H}

∑
h∈H

ch(ISh) =
∑
h∈H

min
ISh

ch(ISh)

To get an algorithm that solves Problem 4 in this case we only have to add
that the minimization of ch(x) is over the [0,max(sh)∈A{Ts}] interval, so the
minima can be enumerated.

5.3 The complexity of the general case

This section proves the following theorem.

Theorem 2. Problem 4 is NP-hard for a general acyclic digraph.

Proof. At fist we choose a special cost function.

Cv(x) =

{
hv if x > 0
0 if x = 0

∀v ∈ V (5.4)

Lemma 12. Consider an optimal solution to Problem 4 with cost functions
defined above and with a node v that guarantees service times Svu1

, . . . Svuδ(v)
to its costumers. Then the solution with the same service times, except Svui =
min{Svu1

, . . . Svuδ(v)} is also optimal.

Proof. The value of the safety stock at nodes other than v can not increase,
because their outbound service times are not effected and their inbound service
times are not increased.

For the sake of convenience denote min{Svu1 , . . . Svuδ(v)} by S̃v. If hv = 0 we
are ready. Otherwise

δ(v)∑
i=1

Dui(ISv + Tv − Svui) > 0⇔ Cv(D̃v(ISv, Svu1 , . . . , Svuδ(v))) = hv

Moreover

δ(v)∑
i=1

Dui(ISv + Tv − Svui) = 0⇔ ISv + Tv − Svui = 0 ∀i

Therefore

Cv(D̃v(ISv, Svu1
, . . . , Svuδ(v))) = 0⇔ Svui = ISv + Tv ∀i

36

and at that case

Svui = S̃v ∀i

which induce

Cv(D̃v(ISv, S̃v, . . . , S̃v)) = hv ⇔ Cv(D̃v(ISv, Svu1
, . . . , Svuδ(v))) = hv

and that proves the lemma.

Lemma 13. There exists an optimal solution to Problem 4 with uniform service
times.

Proof. This is a straightforward consequence of lemma 12.

Let us consider a safety stock optimization problem. Denote the optimum
of the total safety stock by optu at the uniform case and by optnu at the non-
uniform case. At the general case

optu ≥ optnu

holds. On the other hand Lemma 13 shows at this special case, when the cost
functions have the form of Equation (5.4)

optu = optnu (5.5)

also holds.

Let us specialise the problem a little more. First of all add an extra P node to
the supply chain and arcs (vP) for every non-demand node. Let D′ = (V ′, A′)
the resulting graph. Let the demand bound function be

Dv(τ) =

{
0, if τ = 0
1, if τ ≥ 1

for all demand nodes including P , and

hv =

{
1 if v 6= P
|V ′| if v = P

In Section 2.4, we had shown the uniform case for this problem is equivalent
to the vertex cover problem. Moreover with Lemma 13

τ = optu = optnu (5.6)

where τ is the optimal vertex cover of the original non directed graph. This
proves the non-uniform case is also NP-hard.

37

Conclusion

At first, we analysed the original model of Graves and Willems[3], and the
related algorithms for special supply chain networks. Then, we proved that
Problem 1 is NP-hard. In Chapter 3, we presented two approximating algo-
rithms. The first one by Magnanti at al.[16] which uses strong flow cover cuts
and the CPLEX optimization tool. The second one by Graves and Lesnaia[17]
which was a branch and bound algorithm. In Chapter 4, we extended the orig-
inal model, introducing the concept of capacity constraints. Finally, Chapter
5 examined a modified version of the original model where the nodes are per-
mitted to guarantee different service times to their customers. We also gave a
polynomial time algorithm for trees and another one for bipartite graphs with
head and target partition. We also showed this problem is NP-hard for general
graphs.

We finish this thesis with mentioning some future research areas. It would be
interesting to develop different approximating algorithms for the non-uniform
case, and algorithms that can handle non-uniform service times and capacity
constraints simultaneously. Another area is to extend the model. The first way
is to include shipment times. The second way is to let the stages choose supplier
from stages that manufacture the same product.

38

Appendix A

Common notations

• V (G) is the node set of graph G.

• A(G) is the arc set of graph G.

• IG(V ′) is the induced arcs of V ′ in the graph G.

• δ(v) is the outdegree of node v.

• ρ(v) is the indegree of node v.

• Sv is the service time node v guarantees.

• ISv is the inbound service time.

• Dv(τ) is the demand bound function.

• Tv is the production time of node v.

• l(v) is the label of node v.

• Mv is the maximal lead time of node v.

• hv is the holding cost per unit for node v.

• Nv is the child sub-graph of node v.

• p(v) is the parent function.

• ch(v) is the set of children of node v.

39

Bibliography

[1] Sven Axs ater: “Inventory Control”, Springer Science+Business Media,
LLC, 2006.

[2] http://en.wikipedia.org/wiki/Inventory

[3] Stephen C. Graves, Sean P. Willems: ”Optimizing Strategic Safety Stock
Placement in Supply Chains” 1998

[4] Stephen C. Graves, Sean P. Willems: ”Optimizing the Supply Chain Con-
figuration for New Products” 2005

[5] Simpson, K. F.: ”In-process Inventories” Operations Research 863-873,
1958.

[6] Inderfurth, K.: ”Safety Stock Optimization in Multi-stage Inventory Sys-
tems” International Journal of Production Economics Vol. 24 103-113,
1991.

[7] Inderfurth, K.: ”Valuation of Leadtime Reduction in Multi-Stage Produc-
tion Systems” in: G. Fandel, T. Gulledge and A. Jones (eds.) Operations
Research in Production Planning and Inventory Control Springer, Berlin,
413-427, 1993.

[8] Inderfurth, K., and S. Minner: ”Safety Stocks in Multi-Stage Inventory
Systems under Different Service Levels” 1995.

[9] Minner, S.: ”Dynamic Programming Algorithms for Multi-Stage Safety
Stock Optimization” 1995.

[10] Lee, H. L. and C. Billington: ”Material Management in Decentralized Sup-
ply Chains” Operations Research 41, 835-847, 1993.

[11] Glasserman, P. and S. Tayur: ”Sensitivity Analysis for Base-stock levels
in Multiechelon Production-inventory Systems” Management Science 41,
263-281, 1995.

[12] Ettl, M., G. E. Feigin, G. Y. Lin and D. D. Yao: ”A Supply Network Model
with Base-Stock Control and Service Requirements” IBM Technical Report
(RC 20473), 1996.

40

[13] Salal Humair, Sean P. Willems: ”Optimizing Strategic Safety Stock Place-
ment in Supply Chains with Clusters of Commonality” Operations Research
Vol. 54, No. 4, July–August 2006, pp. 725–742

[14] Ekaterina Lesnaia, Iuliu Vasilescu, and Stephen C. Graves: ”The Complex-
ity of Safety Stock Placement in General-Network Supply Chains” Working
Paper, Massachusetts Institute of Technology, USA, 2004.

[15] Garey, Michael R., Johnson, D. S.: ”Computers and Intractability: A
Guide to the Theory of NP-Completeness” 1979

[16] Thomas L. Magnanti, Zuo-Jun Max Shen, Jia Shu, David Simchi-Levi
and Chung-Piaw Teo: ”Inventory Placement in Acyclic Supply Chain Net-
works” 2004

[17] Stephen C. Graves and Ekaterina Lesnaia: ”Optimizing Safety Stock Place-
ment in General Network Supply Chains”

[18] G. L. Nemhauser and L. A. Wosley: ”Integer and Combinatorial Optimiza-
tion”

[19] Tor Schoenmeyr and Stephen C. Graves: ”Strategic safety stocks in supply
chains with capacity constraints” 2009

[20] http://en.wikipedia.org/wiki/CPLEX

41

