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Introduction

This thesis explores an interesting graph class: the class of dual-critical graphs.
Studying these graphs arise many exciting questions. One of them is determining
the complexity of dual-criticality test. The basic definitions show that the problem
is in NP, and a result of Christian Szegedy and Baldzs Szegedy [4] provides a random
polynomial algorithm, which relies on formal matrix rank computing. It is unknown
whether dual-criticality test can be done in deterministic polynomial time, moreover
the question of being in co-NP is also open.

Since there is no written material (up to this point) that deals directly with dual-
critical graphs, I collected many propositions and theorems during discussions with
my advisor. The majority of these were based on his ideas, but some of them came
from others, as I tried to indicate them in the text. Naturally, some other questions
arose while I was proving these propositions, for example the problem of finding
splitting trees and their properties.

The first chapter introduces dual-critical graphs and their basic properties. We
examine connectivity conditions, splitting trees, and the background of the termi-
nology, which lies in planar dual-critical graphs. The second chapter deals with
3-regular graphs. The main theorem of the chapter shows that dual critical graphs
coincide with many graph classes when restricted to 3-regular graphs. The follow-
ing sections show further equivalences, and they yield a deterministic polynomial
algorithm. The final chapter is a short description of known algorithms with some
necessary conditions of non-dual-criticality that were inspired by the results of my
implementation of the greedy algorithm.

I hope that further investigations will be done in this area, because any step could

have important consequences in complexity theory.

Acknowledgement

I would like to thank my advisor for the fruitful discussions we had, the hard work

and the immense help he provided.



Chapter 1

Dual-critical graphs in general

1.1 Basic properties of dual-critical graphs

Definition 1.1.1 (Acyclic orientation). An orientation = (V, ﬁ) of a graph G

is called acyclic if it does not have directed cycles.

Definition 1.1.2 (Dual-critical graph). A graph G is dual-critical if it has an acyclic

orientation such that all vertices except one have an odd indegree.

Remark 1.1.3. In every acyclic orientation there is a source vertex v. It has an
even indegree (0). Thus an orientation of a dual critical graph that satisfies the
above conditions has exactly one vertex (the source) that has an even indegree, and
|V(G)| — 1 vertices that have odd indegrees.

It is a known fact that acyclic graphs have a topological ordering. In a topological
ordering the source vertex comes first. The orientation of the edges is determined
by the order of their endpoints: the source of an arc always precedes its target. Let
us take a topological ordering of an orientation described above. Beginning with
the second vertex, every vertex has an odd number of predecessors to which it is
connected. Consequently, the class of dual-critical graphs can be characterized as
the graphs that can be built by taking a single vertex, and adding new vertices
that have an odd degree. Such an ordering will be called a good ordering, and the

orientation defined by a good ordering will be called good orientation.

Remark 1.1.4. Tt is easy to see that a good orientation of a dual-critical graph is
rooted connected, with the source vertex as root. Indeed, starting at the second
vertex in the good ordering, every vertex has at least one incoming arc. So one
could construct a backward path from any vertex to the root by going back on

incoming arcs.



Corollary 1.1.5. The vertex and edge counts in a dual-critical graph have different
parity: a graph that has one vertex has this property, and the addition of odd degree

vertices preserves it.

Notation: The notation of the modulus will be omitted if the modulus of the
congruence is 2, e.g. a = b means that a and b have the same parity, a # b means

that they have different parity.

Definition 1.1.6 (Good parity, bad parity). If |V'| # | E| holds for a graph G(V, E),
we say that G has good parity. If |V| = |E|, we say that G has bad parity.

Remark 1.1.7. Suppose that an acyclic orientation 8 is given for a good parity graph
G. Let w € V(G) be an arbitrary vertex. If we check all indegrees in V(G) — w,
and there is at most one even indegree, then the orientation is good: the indegree
of the last vertex will be even if the others are odd, and odd if there was one even
indegree in {o(v) |v € V(G) — w}, since |V (G)| # |E(G)|.

Definition 1.1.8 (7-odd). Let " C V. An orientation of a graph G = (V, E) is
T-odd if all vertices in T have odd indegree and all vertices in V' — T" have even

indegree.
Theorem 1.1.9. The following statements are equivalent for any graph G = (V, E):
(1) G is dual-critical

(2) For allv € V(G) there is an acyclic orientation, in which all the indegrees are

odd except for v.

(3) The graph has good parity and for every set T'C V with |T| = |E|, there exists

a T-odd acyclic orientation.

(4) Either G is the graph that has one vertex, or it has a two class partition
AU B =V such that G[A] and G[B] are dual-critical, and the cut defined by
A and B has an odd number of edges.

Proof.

(1)=(4) Take a good ordering of G. Let w be the last vertex in the ordering.
Choose A =V(G) —w, B ={w}.

(4)=(3) We use induction on the number of vertices. For a vertex set X C V(G) let
i(X) denote the number of induced edges. If |[TNA| # i(A) and |[TNB| # i(B),
then by addition |T'| = i(A)+i(B). After adding the number of edges between



A and B we get |T| £ i(A) +i(B) + e(A, B) = |E|: this is a contradiction.
Without loss of generality one can suppose i(A) = |T'N A|. By induction we
can take an orientation of G[A] in which the vertices of "N A have an odd

indegree, and the vertices of A — T have an even indegree. Direct the edges of

E(A, B) towards B.
From |T'N A| = i(A) it follows that |T'N B| # i(B). Let 1] be the set of

vertices in B N7 that have an even number of incoming edges from A, and

let T be the set of vertices in B — T that have odd number of incoming edges
from A. Let 7" =T U T5.

We state that |T'| = i(B). The symmetric difference of 77 and BN T consists
of those vertices that have an odd number of incoming edges from F(A, B).
Thus |T" & (T'N B)| is odd, since e(A, B) is odd. We have

[T'| # TN B o
P = |T"| # i(B) (1.1)

Now one can use induction for B and 7", and fix a good orientation of G[B].
A and B do not span any cycles. Neither does the whole graph, since such a
cycle would have to step in and out of A, but all edges in F (A, B) have been
oriented towards B. The vertices with an odd indegree are exactly the vertices
of T.

The condition | E(G)| % |V(G)] follows from |A|+ |B| % i(A) +i(B)+e(A, B).
(3)=>(2) We may use (3) for T = V(G) —v.
(2)=(1) Obvious.

]

Proposition 1.1.10. The following operations do not change dual-criticality, i.e. a
graph is dual-critical if and only if using any of these operations make a dual-critical

graph:
(1) Deletion of two parallel edges
(2) Insertion of two parallel edges between two arbitrary vertices
(3) Division of an edge by adding a vertez in the middle

(4) Contraction of an edge that has an endpoint with degree 2.



Proof. (1) is trivial: a good orientation stays good after the operation, and if a non-
dual-critical graph became dual-critical by this operation, then its good ordering
would be good for the original graph as well. (2) follows from (1). (3): if G is dual
critical, then the new vertex can be put anywhere between the endpoints of the
divided vertex in the good ordering. If GG is not dual-critical, then the new graph
cannot be dual-critical. Suppose it is dual critical, then a good ordering of the new
graph with a source other than the new vertex would have the new vertex between
the endpoints of the divided edge, thus doing the reverse of the operation would
leave a good ordering of the graph. (4) follows from (3). O]

Remark 1.1.11. If a graph has loops, then it is not dual critical since all its ori-
entations have a cycle (the loop). Also note that a graph that is not connected
cannot be dual-critical: in an acyclic orientation all its components have a source
vertex, which has an even indegree. Hence there are at least two vertices with even
indegree. The same can be said regarding loops: a graph with a loop cannot be
changed into a dual-critical graph. Using the operations (1) and (3) from 1.1.10 one
can make any graph simple by dividing loops by two vertices (so a triangle is made)
and eliminating parallel edge pairs. We might cut a connected graph this way, but

in that case Proposition 1.1.10 states that the original graph was not dual-critical.

Definition 1.1.12 (Super-dual-critical). A graph is super-dual-critical if for any
vertex v € V(@) the graph G — v is dual-critical.

Proposition 1.1.13. In super-dual-critical graph all vertex degrees are odd or all

vertex degrees are even. The degree parity is the same as the parity of |E(G)| —

V(G-

Proof. For an arbitrary vertex v the graph G — v has good parity, thus

V(G) =1#£ |E(G)| —d(v) = d(v) = |E(G)] - [V(G)]. (1.2)

O

Corollary 1.1.14. A super-dual-critical graph is dual-critical if and only if it has
good parity, or equivalently, a super-dual-critical graph is dual-critical if and only if

every vertex has odd degree.

Proof. Let G be a super-dual-critical graph. If it has bad parity, then by Proposition
1.1.13 all degrees are even, so it cannot be dual-critical. If G has good parity, then
all degrees are odd. Delete an arbitrary vertex v. The graph G — v is dual-critical,
hence GG is dual-critical as well, since it can be obtained from G — v by adding a
vertex that has odd degree (v). O



Proposition 1.1.15. The graph G has a T-odd acyclic orientation for every T C
V(G) for which |T| = |E(G)| if and only if G is dual-critical or G is super-dual-

critical.

Proof. First we prove the existence of the orientations. If G is dual-critical, then
the proposition follows from Theorem 1.1.9. If GG is super-dual-critical but it is not
dual-critical, then let v € V(G) — T. By the same theorem, G — v has a T-odd
acyclic orientation since |T'| = |E(G)| = |E(G)|—d(v) = |E(G —wv)|. (The condition
T # V —w also holds, since |V(G)| = |E(G)| = |T, so from T' C V it follows that
|T| < |V(G)| —2.) We direct the incident edges of v towards v, and get a T-odd
acyclic orientation of G.

Now we prove the other direction. If G has good parity, then the statement
follows from Theorem 1.1.9. If G does not have good parity (so |E(G)| = |V(G)]),
then by Proposition 1.1.13 the graph is Eulerian. Let v € V(G) be an arbitrary
vertex. We will show that G — v is dual-critical. Let w € V(G) be a vertex different
from v. There is a T-odd orientation G for T = V(G) —{v,w}. In this orientation,
every source vertex has even in-degree (it is 0) and every sink has even indegree since
G is Eulerian. In an acyclic orientation there is at least one sink and one source, so v
is the source and w is the sink or vice versa. If v is a sink, then G — v is dual-critical
with the orientation of 8 —v. Otherwise consider the reversed orientation E It is
still T-odd, since v and w will have even indegree, and all other vertices will have
odd indegree, since o4 (u) = dg(u) — 0g(u) which is odd. Hence G-visa good

orientation of G — v. O

We prove another equivalent description of dual-critical graphs for later use. We

need to define vertex splitting first, which is the opposite of a contraction.

Definition 1.1.16. (Vertex splitting) We replace a vertex v with two vertices v’
and v” and connect them with an edge e,. We distribute the edges incident to v
among v’ and v”. (So each edge will be incident to either v' or v”). This operation
is a splitting of vertex v. Note that this operation can also be used on a graph that

has a single vertex.
We will need a lemma to proceed.

Lemma 1.1.17. All vertex splittings of a dual-critical graph preserve dual-critical-

1ty.

Proof. Take a good ordering vy, vs, ... v, of G. Suppose we split vertex v to v and
v”. We call the graph obtained this way G’. If v = vy, then v/, v" v, v3,... v, is a

good ordering of G'. If v = vy, (k # 1), then v has an odd indegree, so (not counting
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the new edge e,) exactly one of v" and v” have an odd indegree. Suppose it is v'.

Now vy, ... 05 1,0, 0", Ups1, ... v, is a good ordering. H

Proposition 1.1.18. A graph is dual-critical if and only if it can be built from a

graph that has a single vertex using the following operations:
e Splitting of a vertex
e Addition of two parallel edges to an existing edge

Proof. Ttem (2) in Proposition 1.1.10 and the previous lemma imply that all graphs
that can be built from a single vertex using the two operations above are dual-
critical.

We need to prove that all dual-critical graphs can be built. We will use induction
on the number of edges. The statement is trivial if the graph has no edges. Suppose
the statement is true for all graphs with at most e edges. Let G be a dual-critical
graph with |F(G)| = e + 1. Take a good ordering of G. There is an odd number
of edges connecting the first two vertices. If there are at least 3 edges, we can
remove two of them: we are done by induction. If there is only one edge, then
the contraction of this edge results in G, which is a dual-critical graph: the same
orientation is a good orientation of G’. By induction there is a way to build G’
from a single vertex using the two operations. After these operations we can make

a vertex splitting that results in G. O

Remark 1.1.19. Note that there is a spanning tree that corresponds to the splitting
build-up of a dual-critical graph: it is the set of edges that were introduced with
vertex splittings (they were not added as parallel edges).

Finally, the following is a proposition which shows that a question about acyclic
orientations with parity constraints can be viewed as dual-criticality of a slightly

changed graph.

Proposition 1.1.20 (Beéta Faller). A graph G = (V, E) has a T-odd acyclic ori-
entation for some T C V' if and only if the graph G' obtained by adding a vertex v

and connecting it to all vertices in V — T is dual-critical.

Proof. If G has such an orientation, then directing the edges away from v will give
a good orientation for G'. (There are no cycles in GG, and no cycle can pass through
v either.) If G’ is dual-critical, then it has a good orientation in which the source

vertex is v. This orientation is T-odd and acyclic in G. O]



1.2 Splitting trees

We would like a better understanding of splitting build-ups and the corresponding
splitting-trees. We call a spanning tree T' of a graph G splitting-tree if there is a
splitting build-up for which the edges obtained by splittings are the edges of T
Take a splitting tree T' of a dual-critical graph G. A parallel edge pair (e, es)
that is added to an edge e during the build-up has a certain property. Let f be an
edge on the fundamental cycle of e when the edge pair e;, e; is added (so f is an
edge of the fundamental cycle of the parallel edges as well). Vertex splittings cannot
change this property, so f will be a common edge of the fundamental cycles (with

respect to T') of e; and ey in G.

Definition 1.2.1 (FC-matching). For a spanning tree 7" of G there is a fundamental
cycle-matching (or FC-matching) if there is a perfect matching on the edges of G—T
such that for every pair, the fundamental cycles of the two matched edges have a

common tree-edge.
The argument above proves the following proposition:

Proposition 1.2.2. If T is a splitting tree of a dual-critical graph then there is an
FC-matching in G. 0

Definition 1.2.3 (Good cut). An edge set Z is a good cut, if it is an odd proper

cut for which the two components of G — Z are dual-critical.
The argument below establish a connection between splitting trees and good cuts.

Proposition 1.2.4. Fvery splitting tree T' has an edge e such that the cut defined

by the two components of T'— e is a good cut.

Proof. Let e; and ey be the first edge pair added as parallel edges in a splitting
build-up B that corresponds to the splitting tree T. They are added as parallel
edges to an edge f € T. Let I be the set of edges obtained by vertex splitting
before f. The build-up B’ where f is the first edge obtained by vertex splitting, and
only after the addition of e; and ey do we perform the splittings that result in F is
a splitting build-up of the same graph with the same splitting tree.

The cut defined by the tree edge f is clearly an odd cut, since no other tree edge is
an element of it, and the later addition of parallel edge pairs preserve this property.
It is easy to verify that both sides are dual-critical: the steps of the splitting build-up
are performed on one side of the cut define a splitting build-up of that side. Thus

both sides are dual-critical. O



Proposition 1.2.5. If the edge set of a tree T' corresponds to a spanning arbores-
cence in a good orientation of G, then there is a splitting build up of G where the

edges obtained by vertex splitting are exactly the edges of T

Proof. We will use induction on the number of vertices. The statement is trivial
for a graph with a single vertex. Let G' be a dual-critical graph on n vertices, and
let T be the edge set of a spanning arborescence in a good orientation. Choose a
good ordering of G. We call the last vertex of the good ordering v. Since v has an
odd degree, and v is a leaf of T', there is an even number of edges from G' — T that
are incident to v, we call them ey, eq, ... eg, and the edge of T' incident to v will be
denoted by f. The good orientation of G can be restricted to the edges of G —v, and
T' =T — f defines a spanning arborescence in it, so by induction 7" is a splitting

tree of G — v. The following build-up proves that 7' is a splitting tree of G:
1. We split the single vertex, the edge obtained will be f = (wwv).
2. We add the parallel edge pairs e;,e; 41 to f fori=1,...k.
3. We use the splitting build-up of G — v beginning with vertex w.

We need to show that the vertex splittings can be done in a way that the edges
added in the first two steps will have the proper endpoints when the build-up is
ready. But this can be done, since the endpoint v will not be split, and all the
other endpoints are obtained by splittings from the vertex w, thus we can define the

vertex splittings properly. O]

Remark 1.2.6. Some splitting trees cannot be constructed as

spanning arborescences of good orientations. The example on 1

the right shows a dual-critical graph: the numbers show a good

ordering, and the thick edges form a splitting tree that cannot 2 4
be constructed this way. In a good orientation the last vertex
has an odd degree, and in every arborescence the last vertex is
a leaf. Albeit in this tree both leaves have an even degree, thus

it cannot be a spanning arborescence in a good orientation.

Definition 1.2.7 (Adjacency matching). Let 7" be a spanning tree of G. An
adjacency-matching is a perfect matching on the edges of G — T such that in every

pair the edges are adjacent (they have a common endpoint).

Proposition 1.2.8. If G is dual-critical then it has an adjacency matching for at

least one splitting tree T

10



Proof. Choose a good orientation vy, vs,...v, of G. For each vertex except v; we
choose the incoming arc with the latest source vertex in the ordering to be an element
of T'. The tree is a splitting tree by Proposition 1.2.5, so we only need to show that
there is an adjacency matching in G —T'. We erase the edges of T. Now all vertices
have an even indegree, since all but the first vertex had one incoming arc removed.
Thus the arcs with the same endpoints can be arranged into pairs. These pairs

define an adjacency matching in G —T'. m

Remark 1.2.9. Not every spanning tree is a splitting tree.

The following graph is dual-critical (the numbering of the

vertices shows a good ordering), but the spanning tree

formed by the thick edges is not a splitting tree. Edges

(46), (23) and (35) define even cuts. Edge (16) defines

a cut where one side is Eulerian (K3), thus it cannot be 2 lA\ 0
dual-critical. Edge (24) defines a cut where both sides are ‘.'
triangles, so they are not dual-critical either. Thus the tree 3 'A‘ 5
has no edge that defines an odd cut with both sides dual-

critical, so by Proposition 1.2.4 it cannot be a splitting

tree.

1.3 Dual-criticality and connectivity.

We already know that all dual-critical graphs are connected. The aim of this section
is to show that deciding dual-criticality in graphs that are not 3-vertex-connected
can be done by deciding dual-criticality for some 3-connected subgraphs. Maximal

2-connected subgraphs will be called blocks.

Proposition 1.3.1. A connected graph is dual-critical if and only if all its blocks

are dual-critical.

Proof. We use induction on the number of blocks. The statement is trivial if the
graph has 1 block. First we show that the blocks are dual-critical. Take an end block
B (a leaf of the block tree), and the corresponding cut vertex (v). The original graph
had a good ordering with a source outside B. In that ordering, no vertex of B—wv can
precede v, since the first of those vertices would have 0 indegree. Thus all vertices
in B — v have an odd indegree, and their predecessors are vertices of B. Thus the

orientation restricted to B is a good orientation with source v.

11



If the blocks are dual-critical, and B is an end block with cut vertex v, then by
induction, G — (B — v) is dual-critical, and so is B. Thus they both have a good

orientation with source v, and this gives a good orientation of G. O

Proposition 1.3.2 (Beata Faller). Let G be a 2-connected graph. Suppose that
the deletion of the vertex set {v,w} cuts G in k > 2 parts, their verter sets are
Vi, Vo, ... Vi. Let G; = G[V; U {v,w}] fori=1,2,... k. Let G =G, if G; has good
parity and G; = G; ® (vw) otherwise. We use the shorthand notation [k] for the
set {1,2,...k}. Then G is dual-critical if and only if it has good parity and ((/J\Z) is
dual-critical for all i € [k].
Proof. Suppose that G, is dual-critical for all i € [k]. Fix a good ordering of each
G, beginning with vertex v. We can construct a good ordering of G by putting
together these orderings. Let V! be the sequence of vertices in V; that are between
v and w in the good ordering of G, and let V2 be the sequence of vertices in V; that
come after w in the good ordering of G;. Now v, VL, Vi, ... VL w, V2, V2, .. . V2isa
good ordering of G. We need to show that all the indegrees (except the indegree of
v) are odd. The indegree of v is even, and and every vertex in V! and V;? has odd
indegree. Thus w has odd indegree by Remark 1.1.7.

Now suppose that G is dual-critical. G has a good ordering beginning with vertex
v. Let V! be the subsequence of vertices in V; that are between v and w in the good
ordering of G and let V;? be the subsequence of vertices in V; that come after w.
Now v, V', w, V% is a good ordering of GA’Z-, because the indegree of vertices other

than w remains unchanged, so the indegree of w is odd by Remark 1.1.7. O]

Suppose that an algorithm A is given that can identify 3-vertex connected dual-
critical graphs. We can construct an algorithm B for identifying general dual-critical
graphs. Let G be the input graph of B.

First, we check if G has good parity. If it does, we check whether it is connected.
(Otherwise G cannot be dual-critical). We find the block-decomposition of G. For
each block B we run the algorithm again: B(G) will be true if for all blocks B(B) is
true. If G is 2-connected, then we look for 2-element separating set. If we do not find
such a set, then algorithm A can be used to decide dual-criticality. Now suppose
that {v, w} is a separating set that cuts the graphs in k& > 2 parts. We run algorithm

B recursively for each G If they are all dual-critical, then G is dual-critical.

Remark 1.3.3. As we will see in the last chapter, finding interesting good parity
non-dual-critical graphs is hard. Bedta Faller and Ervin Gy6ri conjectured that

any minimal 3-connected good parity graph is dual-critical. (A graph is minimal

12



3-connected if for any edge e € E(G) the graph G — e is not 3-connected.) The

graph on the right (found by my advisor) is a counterexample to this conjecture.

It is easy to see that it is minimal 3-
connected, since the removal of an edge leads
to a vertex with degree 2. Now suppose the
graph is dual-critical. It has a vertex v which
is last in a good ordering. Then G — v is dual-
critical. In this graph though there is no such
vertex: removing any vertex, and doing sim-
plifications (deleting vertices that have degree
1 and doing operation (1) and (4) from Propo-

sition 1.1.10) leads to a non-connected graph.

1.4 Planar case, motivations

Before talking about dual-critical graphs in more detail, some background informa-
tion should be provided about the term ’dual-critical’ In this section we are going
to use matroids. Ample introductory and advanced material can be found on them.

See e.g. [5]. In this section graphs may have parallel edges and loops.

Definition 1.4.1 (Factor-critical). A graph G is factor-critical if for every vertex

v € V(G) there is a perfect matching in G — v.

Definition 1.4.2 (Ear decomposition). The addition of an ear to a graph is adding
a path to the graph as an ear, i.e. the endpoints of the path are vertices of the
original graph, the inner points are new vertices. If the the endpoints of the path
are the same vertex of the original graph, then we have added a cycle. A graph has
an ear decomposition if there are edge disjoint paths (or cycles with a fixed vertex)
{Py, Py, ... P;} such that the graph can be built from a single vertex by adding the

paths (or cycles with a fixed vertex) as ears.
There is a well-known result about factor-critical graphs and ear decompositions.

Theorem 1.4.3. [1] A graph is factor-critical if and only if it has an odd ear
decomposition, i.e., an ear decomposition in which all ears have an odd number

of edges.
We will use the following variant of this theorem.

Theorem 1.4.4. A graph is factor-critical if and only if it can be built from a single

vertex using the following operations:

13



e Addition of an edge between two vertices or addition of a loop
e Division of an edge into path of length three using two new vertices

Proposition 1.4.5. The planar dual of a planar factor-critical graph G is always
dual-critical. (So if there are multiple dual graphs depending on the planar embedding
of G, then all of them are dual-critical.)

Proof. We will show that the build-up of a factor-critical graph described in Theorem
1.4.4 is the dual of the dual-critical build-up with vertex splittings described in
Definition 1.1.18. Let G be a planar factor-critical graph. Take a planar embedding
of G. The statement is trivial if G has only one vertex. The addition of an edge e
divides a face F' in two parts. Let v be the vertex in the dual which corresponds to
F. After the addition of the edge there will be two faces, let their dual vertex be v,
and v,. Now v, and v, will be connected by the dual edge of e, and the incident edges
of v will be either incident to v, or v,. Thus the addition of an edge corresponds
to a vertex splitting in the dual graph. The division of an edge e into three parts

corresponds to adding two parallel edges between the endpoints of the dual of e. [

Definition 1.4.6 (Blowing). Let v be a vertex of a graph G. Let H be a graph.
Blowing graph H into vertex v is an operation were we delete vertex v from G, we
add the vertices and edges of H to GG, and for every original edge vx we take a vertex
h € V(H) and connect v to h.

Proposition 1.4.7. Let G be a factor-critical graph. The graph G’ that is obtained

from G by blowing an odd cycle into a vertex v is factor-critical.

Proof. We need to show that for any w € V(G’) there is a perfect matching in G’ —w.
Let C be the odd cycle that we blew in. If w € V(C), then a perfect matching of
G — v and a perfect matching of C'— w together form a perfect matching of G' — w.
If w ¢ V(C), then take a perfect matching M of G — w. There is an edge uv € M.
We denote by v’ the new endpoint of this edge in G'. Let M¢ be a perfect matching
in C —v'. Now (M —uv +wv') U M is a perfect matching of G' — w. O

Proposition 1.4.8. The dual of a planar dual-critical graph G is always factor-
critical. (So if there are multiple dual graphs depending on the planar embedding of
G, then all of them are factor-critical.)

Proof. We will use induction by the size of the vertex set. If |V(G)| = 1 then the
statement is trivial. Let G be dual-critical graph, and let v € V(G) be the last

vertex of a good ordering. We fix a planar embedding of G. If we remove v and
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the incident edges, the graph G' — v is dual-critical, thus its dual graph (G — v)* is
factor-critical. Let f be the face in which v was (so it is the union of faces that were
originally incident to v). Putting back vertex v and its incident edges corresponds
to blowing in a cycle on d(v) vertices into the vertex of (G — v*) that corresponds
to f. Since d(v) is odd, it is an odd cycle, so the dual graph G* is factor-critical by
Proposition 1.4.7. []

Since dualization and factor-criticality test can be done in polynomial time, we

arrive at the following corollary.

Corollary 1.4.9. There is a polynomial time algorithm for deciding dual-criticality
if the graph is planar. O

Proposition 1.4.5 and Proposition 1.4.8 show that dual-criticality and factor-
criticality are dual concepts. An important corollary of these concerns 3-connected
graphs. It is known that the dual of a planar 3-connected graph is unique up to
isomorphism, which lets us to state these propositions together in the following

simplified form.

Corollary 1.4.10. A 3-connected planar graph is dual-critical if and only if its dual

is factor-critical.

Our next goal is to show that Propositions 1.4.5 and 1.4.8 can be generalized.

Remark 1.4.11. It is known that a graph is 2-connected if and only if it has an open
ear-decomposition, i.e. an ear decomposition where we begin with a cycle, and the
two ends of an ear cannot coincide. This statement can be ported for factor-critical
graphs. A 2-connected graph is factor-critical if and only if it can be obtained from

an odd cycle by adding odd length open ears.

Now we state a well-known result from matroid theory. A proof can be found in

section 2.3 in [5].

Proposition 1.4.12. The graphic matroid of the dual of a planar graph is isomor-
phic to the cographic matroid of the graph. (Equivalently: the dual graph’s graphic
matroid is the dual of the graph’s graphic matroid.)

Definition 1.4.13. [2] A sequence of circuits {Cy, C1,...Cy} of the matroid M =

(S, F) is an ear-decomposition if
(1) C; —( ;;%) C};) is not empty for all 1 <i <k

(2) C;N(UiZh C;) is not empty for all 1 <i <k
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(3) C;i — (UiZh C;) is a circuit in M/(UiZ C;) for all 1 <i <k
(4) Uf:o Ci=S5
An ear is a set C; — (U'Z} Cj).

This definition is the matroid equivalent of the open-ended ear-decomposition
which is described in Remark 1.4.11. It follows that a 2-connected graph is factor-
critical if and only if its graphic matroid has an odd ear-decomposition.

We need two basic lemmas from matroid theory. The notation M* indicates the
dual matroid of M, and M/Z is used for the contraction of the subset Z.

Lemma 1.4.14. (Theorem 8.3 in [9]) Let M be a matroid on the set S. Then for
any Z C S the following holds:

(M/Z)* = M* = Z and M*)Z = (M — Z)* (1.3)

Definition 1.4.15 (Proper cut). A set Z of edges in a connected graph G is a
proper cut if G — Z has exactly two connected components. In a non-connected
graph the edge set Z is a proper cut if there is a connected component G’ for which
Z C E(G') and Z is a proper cut in G'.

It is known that a cut is proper if and only if it is a minimal cut.

Lemma 1.4.16 (Proposition 2.3.1 in [5]). Let M = (E(G),F) be the graphic ma-
troid of G. The set Z C E(G) is a cycle in M* if and only if it is a proper cut in
G.

Proposition 1.4.17. Let G be a dual-critical graph which has at least 2 vertices.
For any pair of vertices (v,w € V(G),v # w) there is a good cut (as in Definition
1.2.3) of G that separate v and w.

Proof. We will use induction on the number of vertices. For a graph with 2 vertices
the statement is trivial. Suppose that the statement is true for all dual critical
graphs with at most n vertices. Let G be a dual-critical graph, and let u be the last
vertex of a good ordering of G. If u € {v,w} then it is easy to find a good cut: the
cut consists of the incident edges of w.

If u € {v,w}, then we use the induction to find a good cut C' in G — u that
separate v and w. If v or w is not a neighbour of u then C' is an odd proper cut
in G. If both v and w are neighbours of u, then (since d(u) is odd) e(W, {u}) is
odd and e(V(G — u) — W,{u}) is even or vice versa. If e(W,{u}) is odd, then
the cut W,V (G) — W satisfies the conditions. If e(W,{u}) is even, then the cut
W +u,V(G) — W — u is a good choice. O
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Proposition 1.4.18. A 2-connected graph is dual-critical if and only if its cographic

matroid has an odd ear decomposition.

Proof. Let M be the graphic matroid of GG. First we prove that for any 2-connected
dual-critical graph the cographic matroid has an odd ear-decomposition.

Let Cy C E(G) be a good cut in G. If both sides of G — C have one vertex, then
(Cp) is an ear-decomposition of M*. Let G; be a component of G — Cj that has
at least two vertices. The graph (; is dual critical, and it has at least two distinct
vertices that are incident to some edges of Cy. (If there is only one such vertex then
it is a cut vertex in G.) By Proposition 1.4.17 there is an odd proper cut C] in
(1 that separate these vertices. Now C] is not a cut in G, but C] U Cj is, though
it is not a proper cut. We remove some edges of Cy from Cy U C] until we get a
minimal cut which is proper. (We will get a minimal cut before all edges of C are
removed since C] is not a cut in G.) Thus there is a proper cut C; in G for which
¢ C C) CCyu . If all components of G — Cy — C are isolated vertices, then we
stop. Note that C; — Cy = Cf, thus |C; — Cp| is odd.

Otherwise let G be a connected component of G — Cy — C. We choose a good
cut CY that separate two vertices of G5 that are incident to some edges in Cy U C}.
There is a proper cut Cy in G for which C§ C Cy C Cy U Cy U CY. We repeat this
procedure until all connected components of G — ( 5?:0 C};) are isolated vertices.

In the general step let GG; be a connected component of G — ( ;;B C;) that has
at least two vertices. Th graph G; is dual-critical, thus it has an odd proper cut
C] that separate two vertices which are incident to some edges of (Ui—y Cj). (If
there is no such vertex pair in G; then G is not 2-connected.) We remove some
edges of (U/ZyC;) from (Ui—y C;) U C! and find a proper cut C; in G for which
C; C C; C (UiZh C;) UC. Now C; is a proper cut in G, thus it is a circuit in M*.

Moreover,

(1) Ci = (UiZ Cy) = C; # 0

=0
(2) Cin(Uj=o Cy) #0

(3) C;i — (UZy C;) = Cf is a proper cut in G — (UjZ; C}), thus it is a circuit in

M /(UL Cy).

Since C; — (U/Zy C;) = CY, the ear C; — (UZ{ C;) is odd, and at the end of the
procedure E(G) = ;?:0 C}; holds, thus (Cy, C1,...C}) is an odd ear-decomposition
of M*.

Now we prove that if M™* has an odd ear-decomposition, then G is dual-critical.

Let Cy, Y, . .. Cy be the circuits of the odd ear-decomposition. We will use induction
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on the number of ears. If £ = 0 then G is a graph on two vertices and an odd
number of parallel edges between them, which is clearly dual-critical. Let Cj be
the last ear, so C}, = Cj, — (U?;é (). Item (3) of the ear-decomposition’s definition
says that C, is a circuit in M*/ (U;?;é C;). Thus C}, is a set of parallel edges in the
graph G — ( ;;}) C;). Now let M* = M* — C}. The matroid M* is the cographic
matroid of G_ = G/C}.. Note that G_ can be obtained by deleting |C}| — 1 edges of
C}. and contracting the last edge. The circuit sequence (Cy, C1,...Ck_1) is an ear
decomposition of the cographic matroid of G_ with less ears: so by induction, G_
is dual-critical. Graph G can be obtained from G_ by splitting a vertex and adding

|Ct| — 1 parallel edges (which is an even number), thus G is dual-critical. O
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Chapter 2

3-regular dual-critical graphs

2.1 Equivalent descriptions

3n

A 3-regular graph on n vertices have =

edges, so n is even. If the graph is also

dual-critical, then it must have a good parity, thus n = 4k + 2 for some integer k.

Definition 2.1.1 (r-rooted connected). A directed graph is r-rooted connected for

a vertex r if there is a path from r to v for every v € V —r.

Theorem 2.1.2. ' The following are equivalent for any 3-regqular graph G = (V, E)
which has 4k + 2 vertices.

(1) G is dual-critical.

(2) There are k+1 independent vertices, such that their deletion leaves a connected

graph.
(3) There are k + 1 vertices whose deletion leaves a forest.
(4) There are some independent vertices whose deletion leaves a tree.

(5) There is a spanning tree, for which the deletion of the tree’s edges makes a

graph in which every component has an even number of edges.

(6) There is an r-rooted connected orientation for every vertexr r € V', in which

all vertices but r have an odd indegree.

(7) There is an r-rooted connected orientation for a fized root r € V', in which all

vertices but r have an odd indegree.

!Bedta Faller and Ervin Gydri had the original idea that dual-criticality is equivalent to de-

scription (2) in the 3-regular case.
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Proof.

(1)=(2) Let ny be the number of vertices with 1 incoming arc in the good orien-
tation. Similarly let n3 be the number of vertices with 3 incoming arcs. The
following equations can be obtained on the number of edges and the number

of vertices:

3. (dk +2
n1—|—3n3:(2+>:6k+3 (2.2)

The solution is ny = 3k, n3 = k+ 1. We observe that the vertices with 3 inde-
gree are independent, and by deleting them the graph stays rooted connected.

(The original graph was rooted connected, see remark 1.1.4)

(2)=(3) Delete the vertices. The graph we have left is connected, and has 6k +
3—3(k+1) =3k edges and 4k +2 — (k+1) = 3k + 1 vertices. Thus the graph

is a tree.

(3)=(4) Let W be a vertex set with k + 1 vertices satisfying (3). If W spans an
edge, then G — W would have 3k + 1 vertices and at least 3k + 1 edges, so
G — W would span a cycle: this is a contradiction. So W is an independent
set, and its deletion makes a forest that has 3k + 1 vertices and 3k edges, thus

it is a tree.

(4)=(5) Let W be the set of independent vertices whose deletion leaves a tree.
Take one incident edge for every vertex of W. These edges and the edge set
E(G — W) form a spanning tree of G. We delete the edges of T. Now the
edges of the new graph are incident to W. All vertex degrees in W are 2,
because all vertices of W were leaves of T'. Since W is an independent set, a
component C' of G — T has 2|V (C) N W| edges, which is even.

(5)=-(6) By deleting a spanning tree’s edges from a 3-regular graph, we get a graph
in which the vertex degrees are either 0, 1 or 2. Since the components have

even number of edges, they are even cycles or even paths.

Direct the tree’s edges away from an arbitrary root to get an arborescence. In
the arborescence the indegree of every vertex is 1 except for the root. Direct
the edges of the cycles back and forth, so going around the cycle one arc points
forward, the next one backward, then forward, backward, etc. The vertices of
the cycle are leaves of the spanning tree, so the indegree in these vertices is 1

or 3.
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We still need to define an orientation for the paths. Direct them back and
forth as well, in a way that the first and last arc is directed away from the
endpoints of the path. The endpoints of a path are 2 degree vertices in the
original tree, so their indegree is now 1. The inner points of the paths are all
leaves of the tree, so their indegree is 1 or 3. The orientation defined above

satisfies all the conditions.
(6)=-(7) Obvious.

(7)=-(1) Suppose that the orientation given by (7) is not good (as described in
the first chapter), that is, it contains a directed cycle C. Let r be the root.
Since the orientation is rooted connected, there is a spanning arborescence in
G rooted at 7.

If » ¢ V(C), then let v be the vertex in C' that is the nearest to r in the
arborescence. (If there is more than one such vertex, we choose an arbitrary
one.) The path rv in the arborescence does not contain any vertices from the
cycle. The indegree of v cannot be 3, since the cycle has to leave v on some
arc, so the outdegree must be at least one. Thus p(v) = 1. It follows that the
cycle passes through v’s parent, a contradiction. Therefore r has to be in the

cycle.

It is easy to see that r’s indegree is even: there is an odd number of edges in
the graph. The indegrees sum up to this odd number, and without r the sum

is 4k + 1 times an odd number which is odd.

Since r is on the cycle, its indegree cannot be 0. Thus o(r) = 2 and §(r) = 1.
Let r" be the target of the arc that leaves r. Every cycle of the graph passes
through 7, so all of them pass through the arc rr’ as well. By reversing the
orientation of 7’ we get an orientation in which all vertices except 1’ have
an odd indegree. This orientation is acyclic, since the cycles of the previous
graph are not contained in the new graph (no cycle can pass through r because
its new outdegree is 0), and no new cycles were formed, because such a cycle
would have to use the edge r'r, but the outdegree of r is currently 0; we arrived

at a contradiction. This completes the proof.
m

In the following sections we will prove further equivalent conditions, see Corol-
laries 2.2.12 and 2.3.9. They could be inserted in Theorem 2.1.2 as equivalent
descriptions (8) and (9).
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2.2 Allowing cycles: rooted connected orienta-

tions with parity constraints

Theorem 2.2.1 (Nebesky [4]%). A graph has an r-rooted connected orientation for
a fized r € V in which o(r) is even and all other vertices have an odd indegree if

and only if for every partition P of the vertex set
e(P) > |P|+bp(P) —1 (2.3)

holds, where e(P) denotes the number of edges between different classes of P and

bp(P) denotes the number of classes in P spanning a subgraph which has bad parity.

We will prove a stronger result. There is an even stronger version, see Theorem

1.10 in [3]. We denote symmetric difference by .

Theorem 2.2.2. Let T C V(G) be fized. The graph G has an r-rooted connected
orientation with a fixed root r which is (T @ r)-odd if and only if for every partition
P of the vertex set

e(P) = [P| +bps(P) — 1 (2.4)

holds, where bp(P) denotes the number of classes C' € P for which i(C) = |CNT|.

To prove this result, we will need two definitions and some lemmas. The proof is

based on the proof of the main result in [3].

Definition 2.2.3 (Odd set, even set). A vertex set C'is called odd (with respect to a
fixed T'C V) if |TNC| # i(C), and C is called even if |[TNC| = i(C). (Consequently

bp(P) denotes the number of even classes in P.)

Definition 2.2.4 (Tight partition). A partition P is called tight if it satisfies (2.4)
with equality.

Remark 2.2.5. For the trivial partition P = {V'} the inequality (2.4) states that 0 >
1 —1+bpp(V), so bpp(V) = 0: the trivial partition is always tight if |E(G)| Z |T|.

We say that a partition is nontrivial if it has at least two classes.

Lemma 2.2.6. If (2.4) holds for the trivial partition, then for every partition P

e(P)=|P|+bpp(P) —1 (2.5)

2This theorem is stated explicitly in Corollary 1.6 in [3]
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Proof. In Remark 2.2.5 we observed that |E(G)| # |T|, or equivalently

e(P)+ > i(C)# > |CNT|. (2.6)

ceP ceP

We rearrange the equation:

e(P) # >_(ICNT| —i(C)) = [P| + bpy(P) O

ceP

Lemma 2.2.7. Suppose that there is a counterexample for Theorem 2.2.2, such
that (2.4) holds but the graph does not have the desired orientation. Take a coun-
terezample G that has a minimum number of edges. Then G has a nontrivial tight

partition.

Proof. Assume that G does not have a nontrivial tight partition. Let G’ be the
graph we get if we erase the edge uv from G, and let 7/ = T @ u. Let P be any
nontrivial partition. This operation decreases e(P) by at most one, and increases
bp, by at most 1, so using Lemma 2.2.6 we can conclude that (2.4) stands for G'.
If G’ has a (T" @ r)-odd which r-rooted connected orientation, then putting the
edge uv back and directing it towards u would give a (T'@®r)-odd r-rooted connected
orientation in (G, which is a contradiction. So G’ does not have such an orientation,

hence it is a counterexample with fewer edges, which contradicts the minimality of

G. ]

Lemma 2.2.8. Let C be a class in a tight partition P of G. Let Tc =T NC if C
is odd, and Te = (T'NC) @ w for an arbitrary w € C if C is even. If (2.4) holds
strictly for all refinements of P (the refinements of P are not tight), then (2.4) holds
for T and G[C, that is for every partition Q of C

e(Q) = Q] +bpr.(Q) — 1 (2.7)

Proof. Since i(C) # |CNT¢|, Lemma 2.2.6 can be used, so ¢(Q) = |Q|+bpr,(Q)—1
for any partition Q of C. Suppose Q is a counterexample, that is e(Q) < |Q| +
bpy,.(Q) — 3. We denote the restriction of the partition P to C' by P|c. Let P’ be
the partition for which P’|y_¢ = Ply_c and P|c = Q.

First, P is tight, so e(P) = |P| + bpy(P) — 1. Second, |P| + |Q] — 1 = |P’|, and

bpy(P) + prc(Q) —2< pr(P,)> (2.8)

since there are at most two classes on the left side that are not counted on the right:

class C' and the class in which w is in O.
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Third, (2.4) holds for P’. Putting these observations together we get

e(P') = e(P) +e(Q) < [P| —1+bpg(P) +]2Q| +bpg.(Q) — 3
< [P+ bpy(P) — 1 < e(P). (2.9)

Consequently all inequalities are in fact equalities in (2.9), so P’ is tight wich is a

contradiction. O

Lemma 2.2.9. Let C be a class in a tight partition P of G, and let vo be the vertex
obtained by contracting C. Suppose (2.4) holds for all partitions P. Let T' =T —C
if C is even, and T" = (T — C) U {vc} if C is odd. Then (2.4) holds for G' = G/C
and T', that is for every partition R of G’

e(R) = [R[ +bpr(R) -1 (2.10)

Proof. For a partition R of G’ let P be the partition of GG for which the contraction
of C' results in R. Now

e(R) =e(P) > |P|+bpp(P)—1=|R|+bppn(R) — 1, (2.11)
since bpy(P) = bpy(R) by the definition of 7. O
The following well-known result will be needed.

Lemma 2.2.10 (A. Frank, A. Gyarfas, [6]). Let f: V — N be fized. A graph has
an orientation in which o(v) = f(v) for all vertices if and only if
> f)=|EV)] (2.12)
veV

and for all X CV
> F(X) > i(X). (2.13)

veX
Lemma 2.2.11. Let f : V — N be fixed. The graph G has a r-rooted connected
orientation in which f(v) = o(v) for all vertices v € V if and only if (2.12) holds
and for all X CV
S AX) > i(X)+1— | X n{r}. (2.14)

veX
Proof. Tt is easy to verify that the conditions are necessary. To prove the existence
of an orientation, take a graph GG and a function f that satisfy the conditions. Since
(2.14) implies (2.13), there is an orientation for which f(v) = p(v), but it is not
necessarily rooted connected. Take a set S C V — r. We need to show that S has
an incoming arc.

o(S) = _o(s) —i(S) =>_ f(s) —i(S) = i(S) +1 - [Sn{r} —i(S) =1 O

seS seSs
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Now we are ready to prove the theorem.

Proof of Theorem 2.2.2. First we prove that (2.4) holds if there is an r-rooted con-
nected orientation which is (T" @ r)-odd. The orientation is rooted connected, so
every class of the partition has an incoming arc, except maybe the class which con-
tains r. Thus it would suffice to prove that all even classes have at least one more

incoming arc. Let C' be an even class.

If r € C, then
o(C) = zég(v) —i(C)=|(Ter)nC|—i(C) =1. (2.15)

If r ¢ C, then
0(C) = zég(v) —i(C)=|TNC|—i(C)=0. (2.16)

Thus in both cases there is at least one more incoming arc.
Note that in a (7' @ r)-odd rooted connected orientation the number of incoming

edges for a class D of a tight partition is determined above:

0 ifCisoddandre C
o(C) =141 ifCisevenand r € C, or Cis odd and r & C (2.17)
2 ifCisevenandr & C

To prove the existence of an orientation, we are going to use induction on the
number of edges. The statement trivially holds for a graph on one vertex. By
Lemma 2.2.7 we may assume that there is a nontrivial tight partition P. We may

also assume that no refinement of P is tight.

Case 1. There is a class C' € P which has at least two vertices.

We contract the edges of G[C] to get the graph G’. Since G[C] is a connected
graph on at least two vertices, it has at least one edge, thus |E(G’)| < |E(G)|.
So we can use the induction for G’ and 7" as well by Lemma 2.2.9. Let v’ =r
if r € Vo and 1’ = ve if r € C. There is a (T" & r’)-odd 7’-rooted connected

orientation in G’; we are going to call this orientation G’

Note that G’ gives an orientation on the edges of G[V — C]. Let G be this
partial orientation of G. Since P — C + {v¢} is a tight partition in G’ for
T', we can use (2.17) to determine the number of incoming edges of ve in the

orientation of G', which is the same as the number of incoming edges of C' in

~

G.

By (2.17) we see that C' has either 0, 1, or 2 incoming arcs. Let P; be the
endpoint of the incoming arc if o(C) = 1, end let P; and P, be the enpoints
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if the incoming arcs if o(C) = 2. Note that by the definiton of 7" in Lemma
2.2.9, {vc¢} is odd in G’ if and only if C' is odd in G. We also chose the root

1" of the orientation G’ so that r = v¢ if and only if r € C.

We will use Lemma 2.2.8 to orient the undirected edges (the edges spanned by

C) in G. Choose the vertices ¢ and w of the lemma according to this table:

C' is even C'is odd
recC re=nr,w=P re=r
rgClrc=Pandw="PF | rc=P

Lemma 2.2.8 states that (2.4) holds for G[C] and T¢. Since P is not trivial,
i(C) < |E(G)], we can use the induction hyphothesis on the subgraph spanned
by C, so there is (Tt @ r¢)-odd re-rooted connected orientation in G[C]. It is

easy to verify that we got a (7' @ r)-odd r-rooted connected orientation of G.

Case 2. All classes of P consist of 1 vertex. We are going to use Lemma 2.2.11 to
show that there is a (T'@ r)-odd orientation rooted at r. Choose the values of

f according to 2.17, so

0 ifv=reT
flw)=41 ifv=r¢gT,orv#randveT (2.18)
2 ifv#randvéT
If there is rooted connected orientation of G with o = f, then it will be

(T @ r)-odd. Thus we only need to verify the conditions of Lemma 2.2.11.
The equation (2.12) is easy to prove:

Y fW)=VI+|V-T|=1=[P|+bp(P) —1=¢(P) =|E(G)| (2.19)

veV
For the verification of (2.14), let Q@ = P|y_x U{X}.

First,
Yo flo)=|X[+|X-=T|—|Xn{r}. (2.20)

veX

Second,
e(Q) = [Q+bpp(Q) —12 V|- [X[+1+[(V-X)-T|-1, (221)

since bp(Q) > |(V — X) —1T.

Third,
e(Q)=e(P)—i(X)=|V|+|V-T|]-1—-1i(X). (2.22)
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So using the previous lower bound on e(Q) we get

VI+[V =T -1-iX) 2 V|- |X|+1+|(V-X)-T|-1
S (X)L 1< |V =T +]X]| = |(V = X)=T| = |X| +|X —T|. (2.23)

Finally, equation (2.20) and (2.23) imply

dYoflw) > i(X)+1—|XN{r}. [

veX

Corollary 2.2.12. A 3-reqular graph is dual-critical if and only if (2.3) holds for

all partitions.

Proof. A 3-regular graph is dual-critical if and only if condition (7) holds in 2.1.2.

Thus we can use Theorem 2.2.1. O

2.3 Upper-embeddable graphs

In this section we will use orientable 2-dimensional surfaces. A surface S is uniquely
defined by its genus (S) up to homeomorphism. Graphs will be regarded as 1-

complexes.

Definition 2.3.1 (Embedding). An embedding of a graph into a surface S is an

injective continuous mapping f : G — S.
For a fixed embedding we call the components of S — f(G) regions.

Definition 2.3.2 (Cellular embedding). An embedding is cellular if all regions are
homeomorphic to an open 2-dimensional disk. For cellular embeddings regions will

be called faces.

Definition 2.3.3 (Cycle rank). The cycle rank of a connected graph G is the rank
of its cographic matroid. Since it is the dual of the graphic matroid, the rank is
|E(G)| — |[V(G)| + 1. We will use the notation 3(G) for cycle rank. The cycle rank

is also known as the first Betti number of the graph.

Remark 2.3.4. Suppose that G has a cellular embedding into the orientable surface
S. There is a simple upper bound on the genus of S. We can use Euler’s polyhedral

equation for the embedded graph. Let f be the number of faces in the embedding.

2-2y(G) = V(G| ~ |B@)| + f = = B(G) +1 = 4(G) < V(ﬂ /

since f > 1.
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Definition 2.3.5 (Maximum genus, upper-embeddability). The maximum genus of
the graph G is the maximum genus of the surface S for which there is a cellular
embedding f : G — S. We will use the notation v(G) for maximum genus. A graph

is upper-embeddable if its maximum genus is {@J

Definition 2.3.6 (Deficiency). The deficiency of a spanning tree T of the graph
G is the number of components in G — 71" that have an odd number of edges. The

deficiency of GG is the minimum deficiency of G’s spanning trees. Deficiency will be
denoted by £(G).

Theorem 2.3.7 (Xuong, [8]). The mazimum genus of a graph G is given by the

formula

Corollary 2.3.8. A graph is upper-embeddapble if and only if its deficiency is 0,
i.e. it has a spanning tree T for which all components of G — T have an even edge

count.

Corollary 2.3.9. A 3-reqular graph that has good parity is upper-embeddable if and

only if it is dual-critical.

Proof. 1t is evident by Corollary 2.3.8 and the equivalence (1)<>(5) in Proposition
2.1.2 0

Proposition 2.3.10. All dual-critical graphs are upper-embeddable.

Proof. By Proposition 1.2.8, there is a tree 7' for which there is an adjacency-
matching. Since adjacent edge pairs of G — T are in the same component of G — T,
the components have an even number of edges. Hence the deficiency of T is zero,

so by Xuong’s theorem G is upper-embeddable. [

Remark 2.3.11. The contrary is not true: the graph K5 has zero deficiency (so it is

upper-embeddable), but it is not dual-critical (since it is Eulerian).

Theorem 2.3.12 (Furst, Gross, McGeoch [7]). There is a polynomial algorithm
that decides whether a graph is upper-embeddable or not. It runs in O(end log® n)
time where e, n and d denote the number of edges, the number of vertices and the

maximum degree respectively.

Corollary 2.3.13. There is an algorithm for deciding dual-criticality in the 3-

reqular case which runs in O(n?log®n) time.
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Chapter 3

Algorithms for deciding

dual-criticality

In this chapter we analyze algorithms for deciding dual-criticality. No deterministic
polynomial algorithm is known in the general case, however there is a randomized

polynomial algorithm which uses the Schwartz—Zippel lemma.

3.1 The greedy algorithm

Before I started to write this thesis, I had tried to find dual-critical and non-dual-
critical graphs. Bad parity graphs, Eulerian graphs and complete or almost complete
graphs (graphs with at least (g) — | 5] edges) were the first obvious examples of
non-dual-critical graphs. After finding the conditions described in Section 1.3 it was
hard to produce non-dual-critical graphs by hand that did not fit into any of these
categories.

That is why I decided to implement the greedy algorithm, with the ultimate goal
of finding an interesting non-dual-critical graph. For the implementation I used the
C++ language and the LEMON Graph Library. LEMON is an open source project
which was launched by the Egervary Research Group on Combinatorial Optimization
(EGRES).

In the following box there is a simplified code to show how the greedy algorithm
works for a fixed graph G. (The graphs tested are always simple, so they do not
contain loops or parallel edges.) The algorithm searches for a good ordering that

shows dual-criticality, finding the last vertex of the ordering first.
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bool Dualcritical(G)
{
if |V(G) |==
return true;
for every v in V(G)
{
if v has an odd degree
{
erase V;
if Dualcritical(G)
return true;
reattach v;
}
}
return false;
}

Naturally, an erased vertex cannot be reattached without saving the data of its
incident edges first. In my implementation I used an array of integers (called
deg_parity) to store the current state of each vertex: it could be an erased vertex,
a vertex with an odd degree, or a vertex with an even degree. This was an argu-
ment of the Dualcritical function. I used an array with the same structure to save
the content of deg_parity. This allowed the reattaching of a vertex with a single
command. The other argument was the number of non-erased vertices. I used a
global variable (adjacent) for the adjacency matrix of the original graph for fast

adjacency checking. The code:

bool dualcritical (vector<signed char> deg_parity,
const int & active_vertex_count)

//deg_parityl[v]=-1...... erased vertex
//deg_parityl[v]= 0...... even degree vertex
//deg_paritylv]l= 1...... odd degree vertex
{

vector<signed char> deg_save(VERTEX_COUNT) ;
if (active_vertex count==1)

return true;
for (int v=0; v<VERTEX_COUNT; ++v)

{
if (deg_parityl[v]==1)
{
deg_save=deg parity; //we save deg parity
deg_parity[v]=-1; //we erase vertex v
for (int w=0; w<VERTEX_ COUNT; ++w)
if (adjacent[v] [w] && deg _parityl[w]!=-1)
deg _parity[w]=1-deg parity[w];
//recursive step:
if (dualcritical(deg parity,active_vertex_count-1))
return true;
deg_parity=deg_save; //reattach v
}
}

return false;
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First I tested random graphs chosen from the Erdés-Rényi model. After taking
out bad parity graphs, most of the examples found were not 2-connected, or were
Eulerian. Thus I decided to search among non-Eulerian 3-vertex-connected good
parity graphs. (The LEMON Graph Library was very useful here: some functions
for testing these properties were already implemented.)

I was able to generalize some examples. The first proposition show that one can

build a non-dual-critical graph by taking any graph and attaching a clique properly.

Proposition 3.1.1. Let G be a simple graph on vertex set V. If V. = AU BUC,
where the sets A, B, C" are disjoint and B,C are non-empty, C is a clique, B is a
separating set, (B,C; E(B,C)) is a complete bipartite graph and |B| < |C| then G

18 non-dual-critical.

Proof. Suppose that G has a good ordering. We use induction on |V|. Since B
and C are non-empty and |B| < |C] it follows that |V| = |A| + |B| + |C] > 3. If
|B| + |C| = 3 then G[BU (] is a triangle in G, thus G is non-dual-critical.

For the inductive step take a graph with |B|+ |C| = m. If |C| = |B| +1, then all
vertex degrees in C' are 2|B|. Fix a good ordering of G. Let v be the last vertex in
the good ordering. Erasing v results in a dual-critical graph. We show that |B| < |C/|
stands in G — a, so using the induction we get that G — a is non-dual-critical, which
is a contradiction.

Ifve A ve B,orve Cand |C| > |B]+ 1 then the statement trivially holds.
Thus we only need to show that if |C| = |B|+ 1, then v ¢ C. If |C| = |B| + 1, then
all vertices in C' have degree |B|+ |C| — 1 = 2| B|, which is even, thus a vertex of C

cannot be the last vertex in a good ordering. O]

Proposition 3.1.2. Let G be a simple graph on vertex set V. If V = AU BUC,
where the sets A, B, C" are disjoint and B,C are non-empty, C is a clique, B is a
separating set, (B,C; E(B,C)) is a complete bipartite graph, |B| = |C|, the vertices
of A have an even degree and the vertices of B have an odd degree, then G is non-

dual-critical.

Proof. Suppose that G is dual-critical. Observe that v € C' cannot be the last
vertex of a good ordering, since G — v is Eulerian. Thus the last vertex could only
be an element of B. Its deletion results in a graph that satisfies the conditions of

Proposition 3.1.1, so G is non-dual-critical. O

I could not find any non-dual-critical graph with the algorithm that has at least
15 vertices which falls in the "interesting" category. For 5,6,7 etc. 15 vertices each I

tested millions of good parity graphs. The number of non-dual-critical graphs found
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by the algorithm started decreasing at 11 vertices. I checked one million graphs on
15 vertices, all of them had good parity, they were 3-connected, and they were all

dual-critical. It seems that almost all good parity random graphs are dual-critical.

Conjecture. Let p, be the probability that a random graph on n vertices (where

all edges are included with § probability) is dual-critical. Then

o=

3.2 A randomized algorithm by Balazs Szegedy
and Christian Szegedy

Definition 3.2.1 ([2]). Let M be a connected, bridgeless matroid. We denote by
(M) the minimal possible value of the number of even ears in an ear-decomposition
of M. If M is bridgeless but not connected, we define p(M) to be the sum of p(K)
over all blocks K of M. In particular ¢ (M) = 0 if and only if every block of M has

an odd ear-decomposition.

Theorem 3.2.2 (Szegedy—Szegedy, Theorem 10.8 in [2]). Let M be a matroid that
is representable over a field of characteristic 2. There is a randomized polynomial

algorithm which computes @(M).

This gives a randomized polynomial algorithm for deciding dual-criticality, if we
can represent the cographic matroid of graphs over a field of characteristic two: a
graph is dual-critical if and only if o(M*(G)) = 0.

We would like to outline this algorithm for cographic matroids. Let 7" be the
edge set of a spanning tree of our graph. We associate independent indeterminates
with each edge of T: x. for all e € T. The tree edges of the fundamental cycle
of i € E(G) — T will be denoted by T;. Let A = (a;;) be the following matrix
(1€ E(G)—T and j € E(G) —1T):

aj= >, e
e€T;NT;
If the fundamental cycles have no common edge (the sum is empty), then the matrix
entry is 0. The corank of A is equal to ¢(M*) by the theorem of Szegedy—Szegedy
([2]). So G is dual-critical if and only if det(A) is not the constant zero polynomial.

This can be determined by the Schwarz—Zippel lemma ([10]), which provides a
polynomial randomized algorithm. The randomized algorithm might require chang-
ing to a larger field, but this won’t arise any problems: if we choose the larger
field properly, the original field will be a subfield of the larger one, thus M can be

represented by the same vector set over the larger field.
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Notations

bp(P)
pr(P)
7()
B(G)
£(G)
(k]

Congruence. If the notation of the modulus is missing, then the mod-
ulus is 2.

The number of edges incident with the vertex set H

The number of edges spanned by the vertex set H

The subgraph of G which is spanned by H

Edge set of G

Vertex set of G

The set of edges with one endpoint in A and the other one in B

The number of edges with one endpoint in A and the other one in B
The set of edges that have their endpoints in two different classes of
the partition P

The number of edges that have their endpoints in two different classes
of the partition P

Symmetric difference.

Indegree of a vertex, or number of arcs entering a vertex set
Outdegree of a vertex, or number of arcs exiting a vertex set

The graph obtained by contracting edge e in G

The graph obtained by contracting the edge set Z in G

The matroid obtained by contracting the elements of 7" in M

The graph obtained by deleting vertex v and incident edges from G
The graph obtained by deleting the edge set Z from G

Number of classes of P that span a bad parity subgraph

Number of classes C of P for which i(C) = |C N T

Genus of the orientable surface or maximum genus of a graph

Cycle rank of the graph G. Equals |E(G)| — |[V(G)| + 1

Deficiency of GG. See Definition 2.3.6.

The set {1,2,...k}
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