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Introduction

This thesis examines what can be said about the behavior a.e. of Dini derivatives of one
or several real variable functions.1 For one variable functions it is mostly clear what
should be meant by these notions, and the fundamental result describing the behaviour
is the Denjoy-Young-Saks theorem. However, in higher dimensions the generalization of
the notions involved is not self-evident. What should be meant by Dini derivatives? By
taking Dini derivatives of linear sections of the function one can talk about directional
or linear derivatives. Derivatives can also be obtained by taking limits of the difference
quotient in decreasing angular sectors near a point which are called directed derivatives.
Also, when one tries to state an analogue of the Denjoy-Young-Saks theorem using these
notions, it is not clear what should be meant by almost everywhere. Should such a the-
orem be formulated for almost every point, in every direction or for almost every point,
in almost every direction? This paper recapitulates the results that are known about
such questions from both the measure and category point of view, for both ordinary and
approximate derivatives.

The structure of the thesis is the following. The first chapter introduces basic defini-
tions and gives a historical introduction to the results (most results are stated without
proof). The chapter is divided into two sections; first the results are discussed from the
measure point of view, then from the category point of view. In both sections Denjoy-
Young-Saks type results for one and several variable functions are discussed, first for
classical, second for approximate derivatives. In each case measurability properties of
the different variants of Dini derivatives are examined.

The rest of the thesis presents proofs, and is only concerned with the two variable
case and linear Dini derivatives. Theorems that are stated without a citation are the
product of this thesis.

The second chapter presents Denjoy-Young-Saks type theorems that hold for linear
Dini derivatives of two variable functions at a typical point in a typical direction. Typical
here is meant both from the measure and category point of view.

First we prove Ward’s theorem, which states that a Borel measurable function at
almost every point in almost every direction has the Denjoy property in that direction.
Then we present Davies’ example of a Lebesgue measurable function that doesn’t have
the linear Denjoy property on a set of positive measure in a set of directions of full outer
measure. We then present Ward’s theorem that states that a Lebesgue measurable func-
tion at a.e. point, a.e. direction is an approximate linear Denjoy direction. We construct

1In the discussion that follows we state the definitions and theorems for two-variable functions. Most
of the theorems can be generalized to higher dimensions.
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a counterexample for arbitrary functions. The chapter is concluded by adapting Ward’s
theorem to category.

The third chapter is concerned with the stronger form of the previous question; what
can be said about such relations at a typical point in all directions? (The answer seems
to be: not much. This chapter is mainly concerned with counterexamples.)

We first present Besicovitch’s example of a continuous function, such that to each
point of a set of positive measure there is associated a direction, in which the function
has three zero and one infinite linear Dini derivatives. Subsequently we construct a con-
tinuous function, such that to each point of a set of positive measure there is associated
a direction, in which the function has finite and distinct linear Dini derivatives. We
conclude the chapter by constructing a continuous function that on a set of positive
measure in c many directions has finite and different one-sided approximate derivatives.

In the appendix we present some by-products that resulted from the previous exam-
inations, in particular the following question is examined: How big can a set of disjoint
(linear) segments be? We show that if the endpoints are measurable, then this set must
be of measure zero. We also prove Stepanoff’s theorem on differentiability a.e. by slightly
extending the proof of Federer’s theorem on measurability of partial derivatives. The
thesis is concluded with some tables recapitulating the results discussed herein.



5

1 The Denjoy-Young-Saks theorem and its analogues

"If only I had the theorems!
Then I should find the proofs
easily enough."

Bernhard Riemann

This chapter presents the results that are known concerning the relations that hold
between Dini derivatives of one and several variable functions. The majority of the
results presented in this section are stated without proof. Most of the results presented
for one variable functions can also be found in [12], [72]. For discussion of both the one
and several variable case the reader is referred to Saks’ Theory of the integral2 [63], [13],
similar and other aspects are also discussed in [22]. Many related results and also
historical aspects can be found in [15].

1.1 Measure

1.1.1 Classical derivatives

One variable real functions The Denjoy-Young-Saks theorem in its final form ex-
presses the connection between the Dini derivatives of an arbitrary function f : R→ R
almost everywhere. The Dini derivatives (sometimes also called derivate numbers or
derivates) of a function f : R→ R are defined as follows:

D+f(x) := lim sup
t→x+

f(t)− f(x)

t− x

D−f(x) := lim sup
t→x−

f(t)− f(x)

t− x

D+f(x) := lim inf
t→x+

f(t)− f(x)

t− x

D−f(x) := lim inf
t→x−

f(t)− f(x)

t− x
Both (D+f,D−f) and (D+f,D

−f) are called opposite derivatives of each other.
(D+f,D+f) and (D−f,D−f) are called f ’s one-sided derivatives. Finally, (D+f,D−f)
are called upper derivatives and (D+f,D−f) are called lower derivatives of f .

2Many results that were original at the time are stated in the first edition of the book. However,
unless stated, we always cite from the second (English) edition of the book.
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Theorem 1 (Denjoy-Young-Saks [23], [77], [59]) For an arbitrary function f : E →
R defined on an arbitrary set E ⊆ R, at λ1-a.e. point, one of the following three cases
holds:

• f is differentiable;

• two of f ’s opposite derivatives (D+f,D−f) [(D+f,D
−f)] are finite and equal,

the two other opposite derivatives (D+f,D
−f) [(D+f,D−f)] are infinite with the

appropriate sign;

• all four derivate numbers of f are ±∞ with the appropriate sign.

A function f with one of the previous properties at x is said to have the Denjoy
property at x.

The theorem in its previous form was found by Arnaud Denjoy (1884-1974) in 1915,
for continuous functions [23]. In 1916 Grace Chisholm Young (1868-1944) [77] weakened
the condition of continuity to measurability. The theorem in its final form, for arbitrary
real functions was stated by Stanisław Saks (1897-1942) [59] in 1924. For a proof based
on Vitali’s theorem see Eugene Harold Hanson’s proof [28], for a proof based on the
contingence theorem (to be discussed later), see Saks’ proof [63] Chapter IX, Theorem
4.1, and for a direct proof see Riesz–Szőkefalvi-Nagy [53], pages 18-19.

Several variable real functions In generalizing the Denjoy-Young-Saks theorem to
higher dimensions two questions arise naturally:

• How does one generalize the Dini derivatives? (Directional (linear) derivatives, or
directed derivatives)

• What should be meant by a.e.? (for λ2-a.e. point in every ϑ ∈ [0, 2π) direction, or
λ3-a.e. in R2 × [0, 2π))

Let us define the directional or linear Dini derivatives of an arbitrary function f :
E → R defined on E ⊆ R2 at a point x ∈ E in a direction 0 ≤ ϑ < 2π:

∂ϑf(x) := lim sup
E∩l3y→x

f(y)− f(x)

|y − x| ,

∂ϑf(x) := lim inf
E∩l3y→x

f(y)− f(x)

|y − x| ,

where l denotes the half-line l(x, ϑ) extending from the point x in direction ϑ. By this
we mean that the extension of the half-line has angle ϑ with the positive x-axis, and
ϑ = 0 if they are parallel. If the function f restricted to l(x, ϑ) has the Denjoy property
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as a one variable function, we say that f has the directional (or linear) Denjoy property
at the point x in the direction ϑ.

Conditions for differentiability a.e. were first given by Hans Rademacher (1892-
1969) [49], who examined differentiability a.e. for Lipschitz continuous functions. Vyach-
eslav Vassilievich Stepanoff (1889-1950) [71] gave the following conditions for Lebesgue
measurable functions3: if E ⊆ R2 is Lebesgue measurable, a necessary and sufficient
condition for a Lebesgue measurable function f : E → R to be (totally) differentiable
a.e., is that for a.e. point

Lf (x) := lim sup
y→x

|f(y)− f(x)|
|y − x| <∞.

In Stepanoff’s proof John Charles Burkill (1900-1993) and Ughtred Shuttleworth Haslam-
Jones (1903-1962) [17] discover two imprecise statements: Stepanoff, in order to avoid
questions of non-measurability, supposes that the Lebesgue measurable function f :
E → R is defined on an Fσ-set M ⊆ E of equal measure. However, by defining f on
an additional null-set, the differentiability properties can change on a set of positive
measure as simple examples show.

Thus his theorem is only proved for Lebesgue measurable functions defined on Fσ-
sets. The other shortcoming of the proof is that Stepanoff obtains a function f defined
on a set P , such that

f(x+ h, y)− f(x, y)

h
→ ∂f

∂x

uniformly as h → 0, for x ∈ P . However f(x + h, y) need not be defined (x + h 6∈ P ),
and even if so, it is not clear that it is continuous. The continuity of ∂f/∂x is needed
in the proof.

It is interesting to note that in the Burkill–Haslam-Jones article there is also an
imprecise Lemma 2, which was discovered by Clarence Raymond Adams (1898-1965) and
James Andrew Clarkson (1906-1970) in a correction (1939, [2]) given for their own 1936
article [1] on functions of bounded variation. This lemma states that if f : E → R is a two
variable Lebesgue measurable function, defined on a Lebesgue measurable E ⊆ R2 set,
then the partial derivatives, taken where they exist, are also Lebesgue measurable. Miloš
Neubauer (1898-1959) in 1931, [45], had already published the following counterexample,
originally given by Hans Hahn (1879-1934)4:

3This is what we refer to as Stepanoff’s theorem, unless it is explicitly stated otherwise.
4It is strange that Burkill and Haslam-Jones stated the lemma, since Haslam-Jones already knew of

this counterexample of Neubauer, see [29], p. 121.
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Example Take a non-measurable subset of the lineN ⊆ R. Define f(x, y) := χQ(x)χN(y),
where χM denotes the characteristic function of the set M . The function f is zero out-
side of a null-set, thus it is λ2-measurable. By the previous notation ∂0f [∂0f ] denotes
the upper [lower] partial derivative in the positive direction of the x-axis, and we have

∂0f |R×Nc ≡ 0, ∂0f |R×Nc ≡ 0, ∂πf |R×Nc ≡ 0, ∂πf |R×Nc ≡ 0,

∂0f |Q×N ≡ 0, ∂0f |Q×N ≡ −∞, ∂πf |Q×N ≡ 0, ∂πf |Q×N ≡ −∞,

since Q is dense in R and f |Q×N ≡ 1, and

∂0f |Qc×N ≡ ∞, ∂0f |Qc×N ≡ 0, ∂πf |Qc×N ≡ ∞, ∂πf |Qc×N ≡ 0.

Since Qc ×N is non-measurable, ∂0f is a non-measurable function. The set, where the
partial derivatives in the direction of the x-axis exist, is R×N c, which is not Lebesgue
measurable.

As we shall see later, the theorem of Stepanoff is sound (and can be even extended
to non-measurable functions); e.g. it follows both from Theorem 6 of Haslam-Jones and
Theorem 7 of Saks. We give a proof of the theorem for arbitrary functions in Appendix
B.

Measurability (one variable functions) The previous examples show that mea-
surability conditions are delicate points of the investigations. For one variable functions
Stefan Banach (1892-1945) showed in 1922 [5] that the Dini derivatives of a Lebesgue-
measurable function are also Lebesgue-measurable. Wacław Sierpiński (1882-1969), in
the same volume of Fund. Math. [67] obtained the same result for Borel measurable func-
tions, by showing that if f is a real function of class Baire-α, then its Dini derivates are
of class α+ 2.5 Stronger relations do not hold, as simple examples show (i.e. there exist
Lebesgue measurable functions whose derivate numbers are not Borel measurable. Also,
there are arbitrary functions whose derivate numbers are not Lebesgue measurable).
Herman Auerbach gave a simple proof for the Lebesgue measurable case in 1925 [4].

Remark 1 (Further results) We also mention some related further results: In [27] it is
shown that the extreme bilateral derivatives of arbitrary one variable functions are of Baire
class two and in [69] it is shown that this holds strictly. Surprisingly in [40] a function of Baire
class two is given such that the upper symmetric derivatives are not even Borel measurable.

5In fact in Banach’s paper it is also shown that the Dini derivatives of a bounded function of Borel
class α are of class α+ 2.
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Measurability (two variable functions) For functions of two real variables one
can speak of the measurability of the (x, ϑ) 7→ ∂ϑf(x) directional Dini derivatives, or
measurability of Dini derivatives in a fixed direction ϑ0: x 7→ ∂ϑ0f(x) (which are the
sections of the previous function).

For a fixed ϑ0 direction if f is continuous, then ∂ϑ0f is Borel measurable, however
Borel measurability of f does not imply that ∂ϑ0f is Borel measurable. If f is Borel
measurable, then ∂ϑ0f is Lebesgue measurable (see Neubauer [45] and also [39], pp. 512-
5146), but if f is Lebesgue measurable, ∂ϑ0f is not necessarily Lebesgue measurable, as
we have seen.

However, restricted to the set M := {x : Lf (x) < ∞} an argument due to Herbert
Federer (1920-2010) [70] p. 268 proves the following:

Theorem 2 (Federer [70]) Let f : R2 → R be a Lebesgue measurable function. Then
the set

M := {x ∈ R2 : Lf (x) <∞}
is Lebesgue measurable and the set of points where the function is differentiable is also
Lebesgue measurable.

Extending Federer’s argument we obtain an extension of Stepanoff’s result:

Theorem 3 Let f : E → R be an arbitrary function defined on an arbitrary set E ⊆ R2.
Define

M := {x ∈ E : Lf (x) <∞}.
Then the function is differentiable a.e. on M . Moreover M is relative Lebesgue measur-
able (moreover relative Fσ), and the partial derivatives are relative Lebesgue measurable
functions on M .

For a proof, see Appendix B.

Moshe Marcus and Victor Julius Mizel (1931-2005) have given sufficient conditions
for measurability of ordinary partial derivatives in 1977 [41]. Define for an arbitrary real
variable function f : R→ R the right cluster set of f at x as

C+f(x) := {y ∈ R ∪ {±∞} : ∃xn → x+ 0, f(xn)→ y},

and define the left cluster set C−f(x) similarly. Define L±f(x) := supC±f(x) and
L±f(x) := inf C±f(x).

6Actually, it is shown that the upper [lower] partial Dini derivatives are analytic [co-analytic] func-
tions.
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Theorem 4 (Marcus-Mizel [41]) If f : R2 → R is a Lebesgue measurable function,
and for every c ∈ R constant the c-section fc(x) := f(x, c) satisfies

min(L+fc(x), L−fc(x)) ≤ f(x, c) ≤ max(L+fc(x), L−fc(x)),

then the set of points Ωx where the partial derivative ∂xf in the x-axis’ direction exists
is Lebesgue measurable, and ∂xf is also Lebesgue measurable on Ωx.

Directional derivatives, λ3-a.e. on R2 × [0, 2π) Augustus John Ward (1911-1984)
showed in 1936 [76] that a Borel measurable function f : R2 → R has Borel measurable
(x, ϑ) 7→ ∂ϑf(x) directional Dini derivatives. From this, he shows that the two-variable
case can be reduced to the one-variable Denjoy-Young-Saks theorem; he obtains that
every Borel measurable function f has the Denjoy property at the point x on the line
l(x, ϑ) for λ3-a. e. (x, ϑ).7 However if f is only Lebesgue measurable, Ward remarks that
he cannot prove Lebesgue measurability of the directional Dini derivatives. Luckily,
since Roy Osborne Davies in 1956 [21] disproves this. In fact, he constructs a function
using transfinite methods, whose (x, ϑ) 7→ ∂ϑf(x) Dini derivatives are not Lebesgue
measurable. He remarks that his construction can be modified in such a way that one
obtains a Lebesgue measurable function f : R2 → R with the following property. At
every point of a subset H ⊆ R2 of positive measure, the set of directions in which
the lower directional Dini derivatives have values a and c, the upper directional Dini
derivatives have values b and d has full outer measure for every a ≤ 0 ≤ b, c ≤ 0 ≤ d.
We present the proofs of these results in detail in Chapter 2.

Directional derivatives, at λ2-a.e. point, in all directions The question whether
a certain stronger form of Ward’s theorem holds, was answered negatively by Abram
Samuel Besicovitch (1891-1970) in a remarkable construction in his 1936 paper [8]. By
this stronger form we mean the following question: Is it true that an f : E → R func-
tion of the appropriate class (e.g. continuous) defined on an appropriate set E, at λ2-a.e.
point of the set E has the Denjoy property in all directions? Besicovitch constructed
a continuous function f : R2 → R, a set G ⊆ R2 of positive measure such that for
each point of G there exists a direction (even c many directions), where the section of
the function doesn’t have the Denjoy property. In these directions the function has one
upper derivative that is +∞ on one side, and all three other derivate numbers are 0.
The construction can be sketched as follows:

Besicovitch constructs pairwise disjoint systems of circles Cn in a square such that
for each point x of a set G of positive measure, there exist c many lines through x with

7More is obtained from his results on approximate derivatives; at λ2-a.e. point the directional deriva-
tives are not independent of each other: there exists a derivate plane, such that λ1-a.e. directional
derivative belongs to this plane. This is discussed in Chapter 2.
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the following property: each line on one side of x locally intersects only finitely many
circles, and on the other side of x it intersects one from each system Cn for n ≥ N for a
certain N . Then by taking these Cn sets as the support of the function f , and placing
right cones of appropriate height on each circle of Cn, his result follows.

For a function of one variable it is impossible that any two derivate numbers be
finite and distinct on a set of positive measure by the Denjoy-Young-Saks theorem.
Besicovitch’s example doesn’t answer the seemingly natural question whether anything
can be said in this sense for two variable functions, for λ2-a.e. point of E, in all directions.
In Chapter 3 we answer this question by the negative, in which a continuous function is
given, and for each point of a set of positive measure there exists a direction in which
the derivate numbers on one side are finite and distinct.

. . .

Directed derivatives In order to avoid the previously encountered problems posed by
non-measurability, U. S. Haslam-Jones in [29] introduced the notion of directed deriva-
tives. This notion is slightly less natural, however the stronger type of relations hold
for these derivatives: Haslam-Jones already obtained positive results concerning the di-
rected derivatives for λ2-a.e. points in all directions.

The definition is the following. For ϑ ∈ [0, 2π) denote by eϑ the unit vector at an
angle ϑ with the {(x, 0) : x ≥ 0} half-line. Denote by Sα(ρ, η) the open angular sector
originating from 0, with radius ρ, direction α and central angle 2η:

Sα(ρ, η) := {reϑ : ϑ ∈ [α− η, α + η], r ∈ [0, ρ]} .

When α, ρ and η are of no importance, we simply write S∠. Putting

Bα(ρ, η, x) := sup
r∈Sα(ρ,η)

f(x+ r)− f(x)

|r| ,

the directed upper derivative is defined as

Dαf(x) := lim
η→0

lim
ρ→0

Bα(ρ, η, x).

The directed lower derivative is defined similarly and is denoted Dαf . Haslam-Jones
also gives the following definitions:

The function f : R2 → R is said to have an upper differential at the point x if there
exists a d+f(x) ∈ R2 such that for every α and η:

lim sup
ρ→0, r∈Sα(ρ,η)

f(x+ r)− f(x)− < d+f(x), r >

|r| = 0.
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We define analogously the lower differential. The following definition of Saks is equiva-
lent:

The function f : R2 → R is said to have an upper differential at the point x0 if there
exists a d+f(x0) ∈ R2 such that :

lim sup
r→0

f(x0 + r)− f(x0)− < d+f(x0), r >

|r| = 0,

and the contingent of the graph of f at the point (x0, f(x0)) ∈ R3 contains the plane8{
(x, z) ∈ R2 × R :< d+f(x0), x− x0 >= z − f(x0)

}
.

We define analogously the lower differential. If both exist at x, then they are necessarily
equal, and the function is totally differentiable at the point x.

Concerning the measurability of directed derivatives, Haslam-Jones obtained that
two variable Lebesgue measurable functions have Lebesgue measurable directed Dϑf
Dini derivatives in every fixed direction ϑ. This obviously doesn’t hold for non-measurable
functions: decomposing the plane into two sets M,N of full outer measure, the directed
Dini derivates of the characteristic function of N are not measurable for any fix direc-
tions.

It was already proven by G. C. Young in 1914 that for an arbitrary function, every-
where, except a countable set of points

D+f(x) ≥ D−f(x) and D−f(x) ≥ D+f(x)

holds. Ward in [74] by examining the structure of plane sets, obtained a two dimensional
analogue of the theorem (using directed derivatives):

Theorem 5 (Ward, [74]) For an arbitrary function f : E → R, defined on an arbi-
trary set E ⊆ R2, at every point except maybe a countable set of points there exists a
direction α, such that

Dαf +Dα+π ≥ 0.

The following stronger form of the theorem does not hold: The set of points in which
there exists an α such that the statement doesn’t hold (Dαf +Dα+πf < 0) is not neces-
sarily countable. To see this, simply take f(x, y) := −|x|. At each point of the y-axis in
the direction 0 (the positive direction of the x-axis) Dαf +Dα+πf < 0 holds. However,
that this set is of measure 0, follows from the following theorems.

8See the following paragraph for the definitions.
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Haslam-Jones [29] obtained what can be considered as the analogue of the Denjoy-
Young-Saks theorem, for directed derivatives of measurable functions. Subsequently
Saks already removed some measurability conditions in the first edition of [63] and
Ward extended the result to arbitrary functions in [75]:

Theorem 6 (Haslam-Jones–Ward, [29], [75]) An arbitrary function f : R2 → R at
λ2-a.e. point x satisfies one of the following relations:

• The function is totally differentiable at x,

• There exists an upper [lower] derivate plane and Dαf(x) = −∞ [Dαf(x) = +∞]
in all directions α at the point x,

• Dαf(x) =∞ and Dαf(x) = −∞ in all directions α at x.

For an arbitrary function f : R2 → R define

H :=

{
x ∈ R2 : ∃S∠ : lim sup

S3h→0

f(x+ h)− f(x)

|h| <∞
}

and

K :=

{
x ∈ R2 : ∃S∠ : lim inf

S3h→0

f(x+ h)− f(x)

|h| > −∞
}
.

Saks’ following theorem (second edition of [63] p. 311), slightly extends the previous
theorem:

Theorem 7 (Saks, [63]) For an arbitrary function f : R2 → R the following hold:

• In λ2-a.e. point of H ∩K, f is totally differentiable,

• In λ2-a.e. point of H [K] there exists an upper [lower] differential,

• The set

M :=

{
x ∈ R2 : ∃S∠ : lim

S3h→0

|f(x+ h)− f(x)|
|h| =∞

}
has measure zero.

Note that by definition, in every point of Hc ∩Kc the directed derivatives of Haslam-
Jones (Dαf and Dαf) in every α direction are infinite with the appropriate sign, so this
corresponds to the third case of Haslam-Jones’ theorem. The proof of Saks’ theorem
relies on the contingence theorem in higher dimensions.
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Contingent of a set The first definition of the contingent of a set is apparently due
to Georges Bouligand (1889-1979) in 1932 [11]. Further examination of the contingent
can be found in the thesis of Jean Mirguet [42] (and also [43]). Besicovitch in 1934 [7]
obtains part of the contingence theorem, Andrei Nikolayevich Kolmogorov (1903-1987)
and Ivan Yakovlevich Verčenko in 1934 [36], [37] obtain the more complete form of the
theorem for plane sets. Both Saks [61] and Fréderic Roger (a student of Fréchet and
Denjoy) rediscover the theorem in 1936, the latter author generalizing it to higher di-
mensions (presented by Émile Borel (1871-1956) at the French Academy of Sciences in
1935 [54], [56], [55], 1936 [58]). Roger called Saks’ attention to his results, who stated
and proved Roger’s theorem in the supplement of [61]. In the subsequent paper [57],
Roger remarks that this supplement states only his "simplest results", and that the
article "stays silent" on his less simple, and more important results.9 In response Saks
proves Roger’s theorem on one page [62].

We state the definitions and the contingence theorem for the case R3.

Define the contingent of a set E ⊆ R3 at a point x as the set C(x) of all half-lines
issuing from x, with the property that for each l ∈ C(x) there exist ln half-lines issuing
from x, converging10 to l such that there exist xn ∈ ln ∩ E such that xn → x. We say
that the contingent of the set E at the point x is a half-space if ∪C(x) is congruent to a
half-space {(x, y, z) ∈ R3 : x ≥ 0}. We say that the contingent of the set E at x is the
whole space if ∪C(x) is R3. We say that the contingent of the set E at x is a plane, if
∪C(x) is an affine plane.

Theorem 8 (Contingence theorem) Any set E ⊆ R3 can be decomposed into two
sets P and Q such that

• at each point of P the contingent of E is the whole space,

• at H2-a.e. point of Q the contingent is either a plane or a half-space

• Q is H2 σ-finite.

A proof of the theorem can be found in [63], p. 307.

Remark 2 (Further questions) Ward’s theorem states that a Borel measurable function
f : R2 → R at λ2-a.e. point, in λ1-a.e. direction has the Denjoy-property. However it is not
clear whether the domain can be partitioned to sets of positive measure, such that in λ2-a.e.

9"Aussi n’est-il pas étonnant qu’elles conduisent, comme le fait remarquer l’Auteur dans un supplé-
ment á son article, aux plus simples de mes résultats de l’espace. Cependant la tournure plus géométrique
des méthodes que j’ai employées permet peut-être une extensions plus facile, notamment aux résultats
d’oú je vais tirer un critère d’analyticité et sur lesquels la remarque de M. Saks reste muette." [57]

10By convergence of half-lines we mean the convergence of the direction vectors of these half-lines.
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point of these sets in λ1-a.e. direction the Denjoy-behaviour of f is the same in that direction.
Gholam-Hossein Mossaheb (1910-1979) answered this question in the negative (1950, [44]), by
constructing a continuous function, such that at every point of a set of positive measure there
are sets of directions of positive measure, on which the Denjoy-behaviour of the function is
different.

For one variable functions Jerome Raymond Ravetz in [50] examined the Hausdorff dimen-
sion of the exceptional set, where the Denjoy relations do not hold. He constructed a continuous
function f : R→ R, such that there exists a set H ⊆ R of Hausdorff dimension one, on which
three of the Dini derivatives are 0, and one is +∞.

1.1.2 Approximate derivatives

One-variable case [Definitions] Denjoy [24] and Aleksandr Yakovlevich Khintchine
(1894-1959) [32] in 1916 both introduce the notion of approximate (or in Khintchine’s
words asymptotic) derivatives. These derivatives are defined by ignoring a set of outer
density zero around each point.

A point x ∈ E is called a point of dispersion of the set E ⊆ R, if E has outer density
0 at the point x. Let us define the approximate limits of an arbitrary function f : E → R
defined on a set E ⊆ R:

A+ lim
y→x

f(y) := inf {K ∈ R ∪ {±∞} : x is a point of dispersion of {E 3 y > x : f(y) > K}} ,

A+ lim
y→x

f(y) := sup {K ∈ R ∪ {±∞} : x is a point of dispersion of {E 3 y > x : f(y) < K}} ,

A− lim
y→x

f(y) := inf {K ∈ R ∪ {±∞} : x is a point of dispersion of {E 3 y < x : f(y) > K}} ,

A− lim
y→x

f(y) := sup {K ∈ R ∪ {±∞} : x is a point of dispersion of {E 3 y < x : f(y) < K}} .

Defining derivatives using approximate limits one obtains the approximate Dini
derivatives of f :

AD+f(x) := A+ lim
y→x

f(y)− f(x)

y − x ,

AD+f(x) := A+ lim
y→x

f(y)− f(x)

y − x ,

AD−f(x) := A− lim
y→x

f(y)− f(x)

y − x ,

AD−f(x) := A− lim
y→x

f(y)− f(x)

y − x .



16 1 The Denjoy-Young-Saks theorem and its analogues

Several-variable case [Definitions] Analogously to directional classical Dini deriva-
tives, directional approximate Dini derivatives can also be defined for an arbitrary two
variable function f : E → R defined on a set E ⊆ R2. Denote

E+(x, ϑ,K) := {y ∈ E ∩ l(x, ϑ) : f(y) > K},

and
E−(x, ϑ,K) := {y ∈ E ∩ l(x, ϑ) : f(y) < K},

where l(x, ϑ) denotes the half-line extending from the point x in the direction ϑ. First
define the directional (or linear) approximate limits of such a function in the direction
0 ≤ ϑ < 2π:

Aϑ lim
y→x

f(y) := sup
{
K ∈ R ∪ {±∞} : x is a point of (linear) dispersion of E+(x, ϑ,K)

}
,

Aϑ lim
y→x

f(y) := inf
{
K ∈ R ∪ {±∞} : x is a point of (linear) dispersion of E−(x, ϑ,K)

}
.

Using directional approximate limits, the definition of directional approximate Dini
derivatives follows:

A∂ϑf(x) := Aϑ lim
y→x

f(y)− f(x)

y − x ,

A∂ϑf(x) := Aϑ lim
y→x

f(y)− f(x)

y − x .

Measurability The distinction of the one and several variable case for questions of
measurability of approximate derivatives is not necessary here, as the following result
shows:

Theorem 9 (Khintchine-Saks, [33], [63]) Let f : E → R be a Lebesgue measurable
function defined on a Lebesgue measurable set E ⊆ R2. For any fixed direction ϑ, the
approximate partial Dini derivatives x 7→ A∂ϑf(x) and x 7→ A∂ϑf(x) are also Lebesgue
measurable.

The result for one variable functions has been obtained by Khintchine [33]. Besicov-
itch [9] obtained the theorem for continuous one variable functions, which has been sub-
sequently extended to Lebesgue measurable functions by Burkill and Haslam-Jones [16]
independently of Khintchine’s result. The first mention of the multivariable case stating
measurability of all sections was found in Saks [63], p. 299, Theorem 11.2. The following
theorem of Ward [76] examines the measurability of (x, ϑ) 7→ A∂ϑf(x):

Theorem 10 (Ward, [76]) Let f : E → R be a Lebesgue measurable function defined
on a Lebesgue measurable E ⊆ R2 set. Then f has Lebesgue measurable (x, ϑ) 7→
A∂ϑf(x) and (x, ϑ) 7→ A∂ϑf(x) approximate directional Dini derivatives.
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Remark 3 (Further questions) Further results on measurability of ordinary approximate
derivatives (as opposed to approximate Dini derivates) of one variable functions can be found
in [26], [38]. In [26] it is shown that if f is an approximately differentiable function on an
interval, then ADf is of Baire class one. In [38] it is shown that for any f : R → R, if R ⊆ R
denotes the points where the function is approximately differentiable and all points of R are
points of outer density, then ADf is of Baire class two with respect to R.

One-variable functions Denjoy in 1916 [24], pp. 208–209 and Khintchine in 1924 [33]
and [34] p. 212 independently discover the following theorem (which Besicovitch also
discovers, however only for continuous functions [9]):

Theorem 11 (Denjoy-Khintchine [24], [33]) Let f : E → R be a Lebesgue measur-
able function defined on a set E ⊆ R; then one of the following two Denjoy-properties
for approximate derivatives holds λ1-a.e.:

• f is approximately differentiable

• all four approximate derivate numbers of f are ±∞ with the appropriate sign.

Shu-Er Chow in a 1948 paper [19] notices that Saks remarks in Theory of the Integral
[63] 11 that the Denjoy-Khintchine theorem can be extended to arbitrary functions by a
"slight modification" of the proof. However, Chow constructs a simple example, showing
that the Denjoy-Khintchine theorem stated in the previous form does not generalize to
arbitrary functions:

Example Take (0, 1) = I∪J where I and J are disjoint and non-measurable sets of outer
measure 1. Then by taking f(x) := χI(x) as the characteristic function of I, we obtain
that at each point x of I: AD+f(x) = AD−f(x) = 0, AD+f(x) = −AD−f = −∞, and
on J : AD+f(x) = −AD−f(x) = +∞, AD+f(x) = AD−f(x) = 0, contradicting the
conclusion of the theorem for arbitrary functions.

However, upon closer inspection Saks states that the "slight modification" should
be made in such a way that for arbitrary functions the definition of approximate dif-
ferentiability should be modified. According to the new definition, the point x is said
to be an point of approximate differentiability in the modified sense, if there exists a
set, of which x is a point of outer density, and in which the function is differentiable. If
interpreted in this light, Chow’s counterexample fails since all points are approximately
differentiable in the modified sense by taking I as this set for points of x ∈ I, and by
taking J for points of x ∈ J .

Let us now return to the discussion of the original definition. Burkill and Haslam-
Jones in 1931 [16] knowing of Besicovitch’s result, first extend the result from continuous

11See page 297, discussion following Theorem (10.1) in Chapter IX.
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functions to Lebesgue measurable functions. In their subsequent 1933 paper [18], p. 238,
Theorem 10, they obtain a result for non-measurable functions. Ward in the same year
obtains a partial result in [73], and completes the result of Burkill of Haslam-Jones
in 1934 [75] p. 344, Theorem II. All these results are obtained using the notion of λ-
approximate derivates, that is instead of sets of density 0, sets of density λ are ignored.
The following theorem is not stated in terms of λ-approximate derivates, but it follows
directly from their result.

Theorem 12 (Burkill–Haslam-Jones–Ward [18], [75]) If f : E → R is an arbi-
trary function defined on an arbitrary set E ⊆ R, then λ1-a.e. one of the following
Denjoy relations holds for approximate derivates:

• f is approximately differentiable;

• two of f ’s opposite approximate derivatives (AD+f, AD−f) [(AD+f, AD
−f)] are

finite and equal, the two other opposite derivatives (AD+f, AD
−f) [(AD+f, AD−f)]

are infinite with the appropriate sign;

• all four approximate derivate numbers of f are ±∞ with the appropriate sign.

Ralph Lent Jeffery (1889-1975) in 1935 [30], (cf. also [31] pp. 198-199) also obtained
the previous result for arbitrary functions, however his results are based on the notion of
metric separability12 and the paper has been criticized for the unusual definition of the
approximate derivatives, cf. [60]. Chow in his paper [19] also obtained the same result,
using the metrical upper and lower boundaries u(x), l(x) originally introduced by Henry
Blumberg (1886-1950) in [10].

Remark 4 (Further questions) Alberti-Csörnyei-Laczkovich-Preiss in 2000 [3] examined the
valid relations that hold for approximate derivates at H1-a.e. point of the graph of an arbitrary
f real function.

. . .

Several-variable case Stepanoff in [71] obtains the following theorem (cf. also Saks
[63] p. 300):

Theorem 13 (Stepanoff [71]) If f : R2 → R is a Lebesgue measurable function,
then it is approximately differentiable a.e. if and only if f possesses approximate partial
derivatives a.e..

12Two sets of finite outer measure are said to be metrically separable if for every ε > 0 there exist
neighborhoods of the sets, such that the intersection of these neighborhoods has measure less than
ε. Or, the same: if the sum of their outer measures is the outer measure of their union. A function
f : E → R is said to be metrically separable if for every c the sets E(f < c) and E(f ≥ c) are metrically
separable.
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Saks in [63], p. 312 also obtained further conditions on approximate differentiability
of two variable Lebesgue measurable functions. Ward in 1937 [76] extended the result:

Theorem 14 (Saks-Ward, [63], [76]) If f : E → R is a Lebesgue measurable func-
tion defined on an E ⊆ R2 Lebesgue measurable set, then for λ2-a.e. x in E, either

• In λ1-a.e. ϑ direction A∂ϑf(x) = ∞, and there exists no approximate derivative
plane, or

• There exists an approximate derivative plane (a(x) cosϑ+b(x) sinϑ) and in λ1-a.e.
ϑ direction:

A∂ϑf(x) = A∂ϑf(x) = a cosϑ+ b sinϑ.

AndrewMichael Bruckner and Melvin Rosenfeld in 1968 [14] obtain that if a Lebesgue
measurable function on the plane has approximate partial derivatives almost everywhere,
then it has approximate directional derivatives at λ2-a.e. point, in λ1-a.e. direction. Note
that this result follows from the previous two theorems.

The question arises, whether anything could be said about the approximate direc-
tional behaviour of an arbitrary function. By a transfinite construction we show in
Theorem 29 that the answer is negative. In fact, we construct a function, which at no
point (x, ϑ) ∈ M of a set M ⊆ R2 × [0, 2π) of positive outer measure possesses the
approximate linear Denjoy property at x in the direction ϑ.

Approximate directed derivatives The approximate version of the directed deriva-
tives ADϑ introduced by Haslam-Jones have been examined by Ward in [75], who ob-
tained the following theorem:

Theorem 15 (Ward [75]) If f : E → R is an arbitrary real function defined on an
arbitrary set E ⊆ R2, then for λ2-a.e. point x ∈ E we have either

• ADϑf(x) =∞ for all ϑ ∈ [0, 2π], or

• there exists an upper approximate derivate plane at x.

Note that this theorem is of the utmost generality, the strongest type of statement holds
for arbitrary functions.

Remark 5 (Further questions) Fedor Isaakovich Shmidov using notions of approximate
contingents also examined the problem of approximate differentiability for two variable func-
tions in several papers, cf. [64], [65], [66], [68].



20 1 The Denjoy-Young-Saks theorem and its analogues

1.2 Category

1.2.1 Classical derivatives

One variable real functions The relation between the Dini derivatives from the
category point of view was already examined by William Henry Young (1863-1942) [78]
who proved that for continuous functions D+f = D−f and D+f = D−f , except on a
set of first category (cf. also Christoph J. Neugebauer (1927-2012) [46]).

Ludek Zajíček [80] and simultaneously Belna-Cargo-Evans-Humke [6] found the fol-
lowing theorem, which may be regarded as the category version of the Denjoy-Young-
Saks theorem (cf. also [72] p. 176):

Theorem 16 (Zajíček, [80]) For an arbitrary function f : R→ R one of the following
relations must hold, except on a first category set:

• The upper derivatives are equal (D+f = D−f) and the lower derivatives are equal
(D+f = D−f);

• The opposite derivatives are infinite with the appropriate sign D−f = −∞, D+f =
∞ [D+f = −∞, D−f =∞] and D+f ≤ D−f [D−f ≤ D+f ].

If a function satisfies one of the previous relations at the point x, we say that it has the
Zajíček property at the point x.

In fact it is shown that the exceptional set is σ-porous.

Directional derivatives in a generic point, generic direction If a two variable
function f restricted to the line l(x, ϑ) satisfies the Zajíček property at the point x, we
say that ϑ is a Zajíček direction of f at the point x. Adapting Ward’s proof to category
we obtain the following theorem:

Theorem 17 If f : R2 → R is a continuous function (Baire measurable) then for a
generic (x, ϑ), ϑ is a Zajíček-direction in x, that is one of the following hold must hold
on a residual set R ⊆ R2 × [0, 2π):

• The upper directional derivatives are equal and the lower directional derivatives
are equal;

• ∂ϑ+πf = −∞, ∂ϑf =∞ and ∂ϑf ≤ ∂ϑ+πf .

For the proof, see Chapter 2.

For sevaral variables Ravetz in two articles (1955 [51], 1956 [52]) examines from the
category point of view the properties of directed derivatives introduced by Haslam-Jones.
He calls a point a tangential singularity, when there exists a direction µ, in which one
of the following holds:
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• ϑ 7→ Dϑf(x) or ϑ 7→ Dϑf(x) is not continuous in ϑ = µ

• Dµf(x) > ∂µf(x) or Dµf(x) < ∂µf(x)

• Dµf(x) =∞ or Dµf(x) = −∞
Theorem 18 (Ravetz [51]) For a continuous function f : E → R on an arbitrary set
E ⊆ R2, there exists a set H ⊆ E residual in E, and which is the disjoint union of two
relative open sets U and V , such that

• Neither point of V is a tangential singularity (in these points the directed deriva-
tives ϑ 7→ Dϑf and ϑ 7→ Dϑf are continuous, finite and equal to the directional
(linear) derivatives), and

• In every point x of U there is a direction µ such that in every direction ϑ ∈
[µ, µ+ π]:

Dϑf(x) = −Dϑ+πf(x) =∞
holds.

From this theorem he obtains an analogue of W. H. Young’s theorem stated at the
beginning of this section:

Theorem 19 (Ravetz [51]) If f : E → R is a continuous function defined on an
arbitrary set E ⊆ R2 and ϑ0 is a fixed direction, then the set of points x where ∂ϑ0f(x) 6=
∂ϑ0+πf(x) is a set of first category.

1.2.2 Approximate derivatives

For approximate derivatives of one variable functions Zajíček [79] obtained a result simi-
lar to the Denjoy-Young-Saks theorem in the category sense. This was later strengthened
in a joint paper with David Preiss in [48] to the following form of the theorem:

Theorem 20 (Preiss-Zajíček [48]) For an arbitrary function f : R → R for all x
except a set of first category at least one of the following must hold:

• Both upper and lower approximate derivatives are equal (AD+f(x) = AD−f(x)
and AD+f(x) = AD−f(x))

• Two opposite derivatives are infinite with the appropriate sign (i.e. at least one
of the relations AD+f(x) = −AD−f(x) = ∞ or AD−f(x) = −AD+f(x) = ∞
holds)

In their paper it is also shown that for any given four (extended real) numbers
satisfying any of the theorem’s relations, there exists a function such that the relation
is satisfied on a residual subset of the line. In this sense, this theorem is the strongest
possible.
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Remark 6 (Further questions) It should be mentioned that Michael J. Evans and Lee Lar-
son in [25] examined what is in some sense the category analogue of approximate derivatives,
that is this time instead of ignoring a set of outer density zero around each point, a set of first
category is ignored. These are also known as qualitative derivatives, and are originally due to
Solomon Marcus. They obtain a Denjoy type theorem for qualitative derivatives of arbitrary
functions that hold on a residual set, similar to the theorem of Zajíček.
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2 DYS for linear derivatives at a typical point and
direction

"In the old days when people
invented a new function they
had something useful in mind.
Now, they invent them
deliberately just to invalidate our
ancestors’ reasoning, and that is
all they are ever going to get out
of them."

Henri Poincaré

This section deals in detail with the following question: What can be said about the
linear derivatives of a two variable function at a typical point in a typical direction?
Typical here is meant both from the measure and category point of view. Both ordinary
linear derivates and approximate linear derivates are discussed.

2.1 Measure

2.1.1 Classical derivatives

Simple examples show that without restrictions nothing can be said about the linear
Denjoy behaviour of an arbitrary two variable function.

Positive results Ward’s following theorem can be regarded as the proper 2 dimen-
sional analogue of the classical Denjoy-Young-Saks theorem for linear derivatives:

Theorem 21 (Ward, [76]) Let f : R2 → R be a two variable Borel measurable func-
tion. Then in λ2-a.e. point, λ1-a.e. direction is a Denjoy direction.

Proof. First suppose that f is continuous. Then the sets

E(K,h) :=

{
(x, ϑ) :

f(x+ reϑ)− f(x)

r
≤ K, ∀r ∈ [0, h]

}
are closed for all (K,h). Since{

(x, ϑ) : ∂ϑf(x) < K
}

=
⋃
n

E

(
K − 1

n
,

1

n

)
,

these sets are measurable (they are Fσ sets), (x, ϑ) 7→ ∂ϑf(x) is Lebesgue measurable.
Denote by H the set of points (x, ϑ), for which ϑ is not a Denjoy-direction of f at x. H
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is also measurable, since it can be written as a countable union and intersection of some
E(K,h) sets. Moreover H is of measure zero. Since, by Fubini’s theorem, if H wasn’t
of measure zero, then there would be a direction ϑ0, for which the section Hϑ0 would
be measurable and also be of positive measure (a.e. direction has this property). This
would contradict the Denjoy-Young-Saks theorem, since (again using Fubini’s theorem),
in an appropriate point x0 in the direction ϑ0 the r 7→ f(x0 +reϑ0) one variable function
would not satisfy the Denjoy-Young-Saks theorem on a set of positive measure. �

Negative results Davies’ following example shows that this theorem cannot be strength-
ened to Lebesgue measurable functions:

Theorem 22 (Davies, [21]) There exists a Lebesgue measurable function f : R2 → R,
such that at λ2-almost every point x, the set of directions ϑ, in which

∂ϑf(x) = a, ∂ϑf(x) = b, ∂ϑ+πf(x) = c, ∂ϑ+πf(x) = d

hold, is of full outer measure in [0, 2π), for every a ≥ 0 ≥ b, c ≥ 0 ≥ d.

Proof. Denote by M the set of points with at least one rational coordinate

M := (Q× R) ∪ (R×Q).

Using transfinite recursion we construct the function in such a way that each point
of M c will have the property of the statement. The set M of plane measure null con-
tains the support of the resulting function f , hence the function is Lebesgue measurable.

Denote by F the set of all closed sets of (0, 2π) of positive measure. Now enumerate
the elements of the following set:

M c ×F × R2
+ × R2

− = (pα, Fα, (aα, cα), (bα, dα))α<c ,

where c is the cardinal continuum.
Choose any ϑ0 ∈ F0 and denote the line of angle ϑ0 passing through p0 by l0. Define

f0 : M c∪ l0 → R as 0 onM c and such that at p0 on the line l0 the linear Dini derivatives
are a0, b0, c0, d0 in the prescribed order.

Let α < c, and suppose that for each β < α a line lβ of angle ϑβ ∈ Fβ has been
selected, such that M ∩ (∪γ<βlγ) ∩ lβ = ∅ and that a function

fβ : M c ∪ (∪γ<βlβ)→ R

has been defined with the desired non-Denjoy behaviour at each point pγ on the line lγ
prescribed by (aγ, bγ, cγ, dγ) for all γ < β. Choose a line lα passing through pα that is
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disjoint from M ∩ (∪β<αlβ). This is possible, since so far only β < α lines intersect M ,
each in ω points; hence these define less than c many "forbidden" directions, whereas
Fα is of cardinality c. Since pα is a limit point of lα ∩M and lα ∩M is disjoint from the
domain of all fβ for all β < α, the desired non-Denjoy behaviour can be prescribed on
the line lα ∩M giving a function gα. Then we define fα :=

⋃
β<α fβ ∪ gα.

This gives a function
fc : M c ∪ (∪α<clα)→ R.

We define the function on the rest of the points as 0. Thus we obtained a function with
the following property: in each point p of a set M c of full measure in the plane, for any
a ≥ 0 ≥ b, c ≥ 0 ≥ d, the set of directions in which

∂ϑf(x) = a, ∂ϑf(x) = b, ∂ϑ+πf(x) = c, ∂ϑ+πf(x) = d

simultaneously hold intersects each closed set of positive measure. �

2.1.2 Approximate derivatives

Positive results The main result of Ward’s article [76] is the result on approximate
derivatives. The following theorem is obtained:

Theorem 23 (Ward, [76]) Let f : R2 → R be a two variable Lebesgue measurable
function. Then at λ2-a.e. point x, the following two cases are possible:

• In λ1-a.e. direction ϑ, A∂ϑf(x) =∞.

• The function is approximately differentiable, ADf(x) = (a, b), and for λ1-a.e.
direction ϑ:

A∂ϑf(x) = A∂ϑf(x) = a cosϑ+ b sinϑ.

Denote by dϑ(x,E) the linear outer density in direction ϑ of the set E ⊆ R2. The proof
is based on the following two lemmas:

Lemma 1 If E ⊆ R2 is a Lebesgue measurable set, then for λ3-a.e. (x, ϑ) ∈ E × [0, 2π)
the set {r : x+ reϑ ∈ E} is Lebesgue measurable and dϑ(x,E) = 1.

Lemma 2 If f : E → R is a Lebesgue measurable function defined on a Lebesgue
measurable set E ⊆ R2, then (x, ϑ) 7→ A∂ϑf(x) is Lebesgue measurable.

Proof. (Ward’s theorem) Denote by F := {(x, ϑ) ∈ E × [0, 2π) : A∂ϑf(x) < ∞}. By
Lemma 2 this set is measurable. We want to show that for λ3-a.e. (x, ϑ) ∈ F there
exists an approximate derivate plane at x. Take those points x ∈ E in which there
exist distinct (or infinite) partial approximate Dini derivatives; this set is measurable
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by the Khintchine-Saks theorem. Furthermore, by Stepanoff’s theorem (Theorem 13)
this set differs from the set Ĥ ⊆ E consisting of the points in which there is no ap-
proximate derivate plane by a set of measure 0, so Ĥ is also measurable. Denote
H := Ĥ × [0, 2π) ∩ F , that is those points (x, ϑ) ∈ F in which there is no approxi-
mate derivate plane of f at x. Now suppose to the contrary that H has positive measure.

By Lebesgue’s density theorem, we can find a cube C of side length δ < π such that
if Q := H∩C then λ3(Q) > δ3/2. By Fubini’s theorem a.e. section of the measurable set
Q is measurable. It follows that there exist two directions ϑ1, ϑ2, such that |ϑ1−ϑ2| ≤ δ
and the projections of the sections Q1 := πx(Q

ϑ1) and Q2 := πx(Q
ϑ2), are measurable

and have measure greater than δ2/2; here πx denotes the projection on the x-plane.

Since Q1 and Q2 are subsets of πx(F ), in none of their points does there exist an
approximate derivate plane. Also, since Q1 and Q2 both have plane measure greater
than δ2/2, their intersection Q′ has positive measure. Thus we obtained a plane set of
positive measure, at each point x of which there exists no approximate derivate plane,
and the linear approximate derivatives in two fix directions are finite: A∂ϑ1f(x) < ∞,
and A∂ϑ2f(x) < ∞. By Stepanoff’s theorem (and by a transformation of variables) it
follows that

A∂ϑif(x) = A∂ϑif(x) = −A∂ϑi+πf(x) = −A∂ϑi+πf(x), i = 1, 2

cannot hold at any point x ∈ Q′ simultaneously, since then the approximate derivate
plane would exist. Suppose that this doesn’t hold in the direction ϑ1 on a set Q′′ of
positive measure.

By Fubini’s theorem again, since almost every ϑ1 directional section of the Lebesgue
measurable set Q′′ is measurable and has positive measure, there exists a section on
which on a set of positive linear measure A∂ϑf is finite, but not all four approximate
Dini derivatives of f are equal. This is impossible. �

Negative results Since the Denjoy-relations hold for arbitrary one variable functions
concerning approximate Dini derivatives, the question arises whether anything can be
said in the case of arbitrary two variable functions for linear approximate derivatives.
The following example shows that the answer is negative if one assumes the continuum
hypothesis. We show the following:

Theorem 24 Assuming the continuum hypothesis, there exists a function f : R2 → R,
such that for a set M ⊆ R2 × [0, π) of positive outer measure, in each (x, ϑ) ∈ M the
direction ϑ is not an approximate Denjoy direction for f at x.
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Proof. Following Sierpiński, we first construct the (non-measurable) setM ⊆ R2× [0, π)
of full outer measure with the property that each ϑ-section and each x-section contains
at most one point of M . We assume the continuum hypothesis.

Let F3 denote the closed sets of R2× [0, 2π) of positive measure. Take a well-ordering
of

F3 = (Fα)α<c.

Suppose that for β < α the (pβ, ϑβ) ∈ Fβ points have been chosen with the desired
properties. Since Fα is a closed set of positive measure, its projection π(Fα) on R2 also
has positive measure. Since less than α < c points of S have been chosen so far, and the
projection π(Fα) is of cardinality c, there exists a pα ∈ π(Fα), such that the pα-section
of Fα doesn’t contain any ϑβ (β < α). Take any ϑα such that (pα, ϑα) ∈ Fα. The set
M = (pα, ϑα)α<c thus obtained has the desired properties.

Take through each point p ∈ πx(M) the line l(p) of angle ϑ(p). By the construction
ofM , the lines l(p) cannot coincide, or be parallel. Now for each such p we will construct
a set E(p) ⊆ l(p), with the property that p is a point of linear outer density 1 of E(p)
and such that the sets E(p) are disjoint.

Let F1 := (F 1
α)α<c denote the closed sets of R of positive measure. Fix in advance

linear isomorphisms between the lines l(p) and R. When we talk about the sets F of F1

as subsets of these lines l(p), we mean it by these fix isomorphisms. Take a well-ordering
of

M ×F1 = (pα, ϑα, F
1
α)α<c.

For simplicity denote lβ := l(pβ). For each α < c we choose a point qα ∈ F 1
α with the

additional property that qα 6∈ lβ for any β < α, with lβ 6= lα. This is possible; suppose
the qβ ∈ lβ points have been selected for β < α. Since less than c many points qβ have
been selected so far and the set Fα being of cardinality continuum, there exists a point

qα ∈ F 1
α\
⋃
β<α
lβ 6=lα

(lβ ∩ lα).

Now define the sets E(p) as the union of all those qβ, where qβ was chosen for pβ = p.
By construction, we obtain sets E(p) that are disjoint and of full linear outer measure
on lα.

We have yet to check that pα is not a linear density point of
⋃
q 6=pE(q) on the line

lα. Since, for each α, in at most α < c = ω1 many instances can there be a qβ on the
line lα, there are only countably many qβ ∈ lα (assuming the continuum hypothesis).
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Now the approximate Dini derivatives can be simultaneously set, almost arbitrarily
on these E(p) sets, with the following restriction: on these lines the complement of E(p)
might also have even full outer measure, so the values on l(p)\E(p) might influence
the approximate linear derivative behaviour. However, by defining f as zero on the
complement of

⋃
p∈M E(p) any a(p) ≥ 0 ≥ b(p), c(p) ≥ 0 ≥ d(p) values (allowing ±∞)

can be assigned in any points to the four linear approximate Dini derivatives. �

Remark 7 The previous proof works under the weaker condition non N = c, where non N is
the least cardinal of any set which has positive outer measure.

2.2 Category

2.2.1 Classical derivatives

Applying Ward’s proof verbatim, only changing the wording to category equivalents, we
obtain the following theorem:

Theorem 25 If f : R2 → R is a continuous function (Baire measurable) then for a
typical (x, ϑ), ϑ is a Zajíček-direction in x, that is one of the following hold must hold
on a residual set R ⊆ R2 × [0, 2π):

• The upper directional derivatives are equal and the lower directional derivatives
are equal;

• A ∂ϑ+πf = −∞, ∂ϑf =∞ and ∂ϑf ≤ ∂ϑ+πf .

Proof. First suppose that f is continuous. Then the

E(K,h) :=

{
(x, ϑ) :

f(x+ reϑ)− f(x)

r
≤ K, ∀r ∈ [0, h]

}
sets are closed for all (K,h). Also, since the sets{

(x, ϑ) : ∂ϑf(x) < K
}

=
⋃
n

E

(
K − 1

n
,

1

n

)
have the Baire property (they are Fσ sets), (x, ϑ) 7→ ∂ϑf(x) is Baire measurable. Denote
by H the set of (x, ϑ) points, for which ϑ is not a Zajíček-direction of f at x. H also
has the Baire property, since it can be written as a countable union and intersection of
some of the sets E(K,h). Moreover if H wasn’t a set of the first category. Since using
the Kuratowski-Ulam theorem, if H wouldn’t be of the first category, then there would
be a direction ϑ0, for which the section Hϑ0 would have the Baire property and also be
of the second category (a typical direction has this property). This would contradict
Zajíček’s theorem, since (using the Kuratowski-Ulam theorem), in an appropriate point
x0 in the direction ϑ0 the r 7→ f(x0 + reϑ0) one variable function would not satisfy
Zajíček’s theorem on a second category set. �
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3 DYS for linear derivatives (λ2-a.e. in all directions)

"I recoil in fear and loathing
from that deplorable evil:
continuous functions with no
derivatives."

Charles Hermite
in a letter to Stieltjes, 1893

In this chapter we only examine the question from the measure point of view.

3.1 Measure

3.1.1 Classical derivatives

The first result of this sort is due to Besicovitch, who constructed the following coun-
terexample:

Theorem 26 (Besicovitch, [8]) There exists a continuous function f : [0, 1]2 → R
such that, at every point of a set H ⊆ [0, 1]2 of positive measure, there exist c many
directions in which the function f does not have the Denjoy property.

Proof. We construct pairwise disjoint systems Cn, each consisting of disjoint circles, each
circle in Cn having radius rn to be defined later. The aim is the following: each line on
one side of x locally intersects only finitely many circles, and on the other side of x it
intersects one from each system Cn for n ≥ N for a certain N . Then by taking as the
support of the function f these Cn, and placing right cylinders of appropriate height on
each circle of Cn, the function can be made continuous in such a way that three of the
derivates are 0 and one is +∞.

Take disjoint finite systems of points An, which are the centers of the circles of Cn.
Denote by Bn and Dn the systems of circles with the same centers An with radii rn/2
and 2rn respectively. Denote by En the finite union of strips whose points through which
there is a line intersecting more than one circle from Cn. Denote by 2αn the smallest
angle under which a circle of Bn can be seen from a point in [0, 1]2.

Let us choose the rn radii and the centersAn recursively: choose r1 andA1 arbitrarily
(ensuring that the entire [0, 1]2 square is not covered). By our previous definitions, this
defines the angle α1 and the systems B1 and D1.

Now suppose An and rn have been defined. Choose the radius rn+1 and centers
An+1 in such a way that every angular sector originating in a point outside ∪ni=1Di with
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central angle αn and radius rn contains a circle of Dn+1. This is always possible, since
the Dn systems of circles are not required to be disjoint (as opposed to the Cn). It is
also clear that for fixed An centers, by choosing rn sufficiently small, λ2(En) < ε/2n can
simultaneously be achieved, since decreasing the radius does not destroy the previous
property. Also assume

∑
n λ

2(Dn) < 1.

Dn
i ∈ Dn

Cn
i ∈ Cn

Bn
i ∈ Bn

An
i ∈ An

2αn

1

Now we define the set G that is going to satisfy the requirements of the theorem.
First, define:

Gn :=
∞⋃
i=n

Ei ∪
∞⋃
i=1

Di.

Since

λ2(Gn)→ λ2

(
∞⋃
n=1

Dn
)
< 1,

it follows that

G := [0, 1]2\
∞⋂
n=1

Gn

has positive measure.

Any point x not belonging to Gn has the following property: any line through x
meets at most one circle from Di for all i ≥ n. Take an arbitrary angle γ and choose
an N large enough, such that 2αN ≤ γ. An angular sector with vertex x and angle γ
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contains at least two disjoint sectors with radius rN , angle γN < αN circumscribing a
circle of BN+1.

By definition, 2αN+1 is the smallest angle in which a circle of BN+1 can be seen, thus
2αN+1 ≤ γN .

Repeating this argument for the sectors of angle αN+1 an infinity of nested angular
sectors are obtained, each such nested sequence defining a common half-line L, resulting
in c many lines. Every such half-line L meets a circle of BN+i at a distance ≤ rN+i−1 for
every i. By construction the opposite half-line does not meet any circle of these BN+i

since any line through x 6∈ Gn can meet at most one circle of Di for all i ≥ n.

Now it remains to define the function: take a sequence of hn such that hn → 0 and
hn/rn−1 →∞. We construct the graph of the function by placing right cylinders on each
circle of Cn of height 2hn. This function is easily seen to be continuous. On the other
hand the half-lines L meet each Bn from an n on at a distance less than rn−1. Denote
such a point of intersection by yn:

f(yn)− f(x)

|yn − x|
≥ hn
rn−1

→∞

as n → ∞ since at each Bn the value of the function is at least hn. The other side
of such a line meets a finite number of circles, so there is a neighborhood on this line
disjoint from the support of the function. It follows that at any point belonging to the
set G of positive measure in c many directions three of the linear Dini derivates are zero
and one is infinite. �

Remark 8 By Ward’s theorem it follows that at a.e. point the set of such directions forms a
set of measure zero.

. . .

What can be said about the directional one-sided Denjoy property13? Is it true
that for every continuous function, at a.e. point, every direction is a one-sided Denjoy
direction? The following counterexample shows that even when considering continuous
functions, such a stronger type relation doesn’t hold:

Theorem 27 There exists a continuous function f : [0, 1]2 → R such that, in every
point of a set H ⊆ [0, 1]2 of positive measure, there exists a direction in which the
function f has two finite and distinct linear Dini derivatives.

13By the directional one-sided Denjoy property we mean that −∞ < ∂ϑf(x) < ∂ϑf(x) <∞ doesn’t
hold at x in direction ϑ.
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Proof. The construction of such a function follows the lines of Davies’ construction of a
positive measure accessible set.

In the rest of the proof all parallelograms have two sides parallel to [0, 1]× {0} and
[0, 1] × {1}; these are called the bases of the parallelograms, the other two sides are
referred to as sides of the parallelogram, and the direction determined by the sides are
called the direction of the parallelogram.

We are going to use the following notations: Bn [B<n] is the set of binary sequences
(consisting of {0, 1}) of length n [less than n]. (So ε ∈ Bn if ε = (ε1, . . . , εn), where
εi ∈ {0, 1}.) Denote by BN [B<N] the set of infinite [finite] binary sequences. The first n
digits of a sequence ε ∈ BN are denoted ε|n; similarly for elements of Bm, where m > n.
Denote by ε1 ∗ ε2 the concatenation of the finite sequences ε1 and ε2. By a slight abuse
of notation we write B<n ∗ 2 for the set of binary sequences of length less than n with a
2 concatenated at the end of each sequence (thus not being a binary sequence any more).

Take the square S := [0, 1] × [0, 1). We are going to recursively define the function
and the set with the required properties simultaneously. The result of each nth step are
the following:

• A system Sn consisting of disjoint horizontal strips Sε ⊆ Sε|n−1 where

ε ∈ Bn ∪B<n ∗ 2.

For ε ∈ Bn we call the sets SI nth stage binary strips. The points that only belong
to binary strips are called binary points. The rest of the points are called triadic
points.

• For every ε ∈ Bn, a principal direction ϑε.

• For every I ∈ Bn a finite collection of parallelograms PI contained in Sε, each
of direction ϑε such that every P ∈ Pε is contained in a previous parallelogram
P ′ ∈ Pε|n−1 , and the union of all parallelograms contained in P ′ almost cover
P ′\Sε∗2.

• For each ε ∈ Bn−1 a finite collection of linear segments Rε ⊆ Sε∗2, each in the
principal direction ϑε∗1 with the following property: the projection of Rε in the
direction ϑε∗0 is almost the entire base of S, meanwhile the projection in the
direction ϑε∗1 is a finite number of points. We will call such a collection of segments
a venetian blind (VB).

• A function
fn :

⋃
ε∈B<n

Sε∗2 → R,
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always extending the previous function: fn−1 ⊆ fn. The support of the functions
is contained in a small neighborhood of the VBs Rε, ε ∈ Bn.

SI∗2

SI∗1

SI∗0

RI

PI∗1

PI∗0

1

Figure 1: A venetian blind type construction

Take a point p in a P ∈ Pε parallelogram where ε ∈ Bn. We say that p sees the VB
Rε′ where ε′ ∈ B≤n, if any line intersecting the bases of P also intersects the VB. If no
such line intersects the VB, then the VB is invisible from that point. In order for these
definitions to be well-defined we have to achieve that in each step of the recursion the
previous visibility properties must not change. In other words: any point that has seen
a VB in the previous stages still has to see the VB in future stages and any VB that
was invisible from a point must remain invisible.

We construct the parallelograms in such a way that the intersection of any nested
sequence of parallelograms P1 ⊇ P2 ⊇ . . . containing a point p defines a line l, intersect-
ing the bases of each Pi. This is the line through p on which the linear Dini derivatives
are going to be finite and distinct.

The linear Dini derivatives should be finite. This is achieved in such a way that the
line l intersects only those VBs Rε where ε ∈ Bn ends in a 0, thus the points of Sε∗1,
"close" to the VB cannot see it. Hence any binary point that sees a VB Rε has a lower
bound on the distance from it.

The linear Dini derivatives should be distinct. This can be obtained by setting the
values of the function on the VBs Rε such that for points of Sε∗0 the difference quotient
is between two fix positive numbers, u > l > 0.

Now we give the explicit construction. First, we define the horizontal strips Sε. In
the first step of the construction divide S into

S0 := [0, 1]×[0, (1−η1)/2), S1 := [0, 1]×[(1−η1)/2, 1−η1), S2 := [0, 1]×[1−η1, 1).
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If ε ∈ Bn and
Sε = [0, 1]× [aε, bε),

denote by hn := bε−aε the height of Sε (depending only on n) andmε := (aε+bε−ηnhε)/2
the midpoint of aε and bε− ηnhn. In each subsequent step we subdivide the Sε sets into

Sε∗0 := [0, 1]×[aε,mε), Sε∗1 := [0, 1]×[mε, bε−ηnhn), Sε∗2 := [0, 1]×[bε−ηnhn, bε),

where εn are to be defined later. (In the initial step h0 = 1, m[] = (1 − ε1)/2.) Notice
that any point (x, y) ∈ S has a finite triadic or an infinite binary representation

εy ∈ (B<N ∗ 2) ∪BN

associated to it (depending on y). By an appropriate choice of the ηn (say η/4n), the set⋃
ε∈B<N

Sε∗2

can be made to have arbitrarily small measure (
∑

n η2n/4n = η).

We make the following obvious geometric remark: Let ABCD be a parallelogram, l
a fixed line parallel to AB. Denote by E and F the intersection of l and the extension
of the side AD and the diagonal AC respectively. The remark is the following: As the
width of the parallelogram tends to zero (keeping A and D fixed) EF also tends to zero.

Now we give the construction of the VB, the parallelograms and the function. Sup-
pose we have constructed everything until the stage n− 1. Take an arbitrary ε ∈ Bn−1

and let us do the recursion step in a single P ∈ Pε (and then applying the same con-
struction in every other P ′ ∈ Pε). We want to achieve the following:

• The area of P not covered by the parallelograms of the following stage is a δn (to
be precised) fraction of the area of P .

• Every line, through every point of the new parallelograms P ′ ∈ Pε∗0 intersecting
both bases of P ′ intersect the new VB Rε.

• No line, through no point of the new parallelograms P ′ ∈ Pε∗1 that intersect both
bases of P ′ intersects the new VB Rε.

• Every new parallelogram P ′ ⊆ P has the property that if a line intersects both
bases of P ′, then it intersects both bases of P .

Take two strips L1, L2 ⊆ P both of width δn in the direction ϑε at both ends of the
parallelogram P ∈ Pε; this is the area that is not going to be entirely covered by the new
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parallelograms. By choosing δn → 0 fast enough, in the end the loss can be achieved to
be negligible.

The principal direction ϑε∗0 is chosen to be ϑε. Note that in this case, any line in-
tersecting both bases of a parallelogram of Pε∗0 has a direction in (ϑε − ψ, ϑε + ψ) for
some ψ. As the width w0 of the parallelograms of Pε∗0 tends to zero, ψ also tends to
zero. By choosing any width less than δn, the parallelograms of Pε∗0 have the property
that any line intersecting both bases of the parallelogram also intersects the bases of the
previous parallelogram.

When choosing the direction ϑε∗1 two constraints have to be taken into account: the
VB of this direction has to be always seen from points of Sε∗0\(L1 ∪ L2), and any line
intersecting both bases of a parallelogram of Pε∗1 must intersect the bases of the previous
parallelogram. The VB is chosen as the extension of the sides of the parallelograms of
Pε∗1.

The first property can be achieved by choosing an angle outside the interval (ϑε −
ψ, ϑ + ψ) (since the VB cannot be parallel to any line intersecting both bases of a
parallelogram of Pε∗0) and putting a VB densely enough (e.g. by taking the width w1

less than the width of the parallelogram of height εn, direction ϑε∗1 and diagonal of
direction ϑε + ψ).

Extend the two sides of the first parallelogram of Pε∗1 to the right of L1 and de-
note the intersection of the extensions with the base by A and B. Since decreasing
w0 decreases ψ, ϑε∗1 can be brought close enough to ϑε, such that both A and B fall
in the interior of L1. Decreasing w1 decreases the angle of the diagonal, hence by the
geometric remark made in the beginning the second property can also be obtained: any
line intersecting both bases intersects the bases of the previous parallelogram.

Finally take an ρn neighborhood of the VBs Rn, and define a continuous function,
such that it takes the value zn on the points of the VB and is zero outside the neighbor-
hood. The numbers zn should be chosen such that zn → 0 and u > zn/dn ≥ zn/Dn ≥ l
where Dn = hn denotes the upper and dn = hn(1 − εn)/2 denotes the lower bound on
the distance of a point of Sε∗0 from Sε∗2. Note that by defining the function on a neigh-
borhood of the VB, in order for the visibility properties to remain intact, the area of the
parallelograms Pε∗1 must be decreased by a ratio depending on ρn, which can be chosen
to be arbitrarily small by decreasing ρn. Since the fn functions are each continuous on
the Sε∗2 strips, by extending the function f := ∪nfn as zero outside the triadic strips
∪ε∈B<NSε∗2, since zn → 0 we obtain a continuous function. �

. . .
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3.1.2 Approximate derivatives

We wish to construct a function f : R2 → R such that, at each point of a subset E ⊆ R2

of positive measure, there exists a direction that is not a Denjoy direction.
Davies in [20], p. 231 obtained the following result:

Theorem 28 (Davies [20]) For every ε > 0 there exists a set M ⊆ [0, 1]2 of measure
greater than 1 − ε, such that to each point p of M there is associated a set of lines of
accessibility L(p) with the following properties:

• Each angle contains c many lines of accessibility l(p) from L(p);

• To each p in M there is associated a subset F (p) ⊆ L(p), such that for each l(p)
in L(p), if we define E(p) = l(p) ∩ F (p), then the point p is a linear density point
of E(p);

• There exists a function g : R+ → R+ such that for any choices of l(p) ∈ L(p),
if d(p, p′) > δ, then d(E(p), E(p′)) > g(δ), where d(·, ·) denotes the Euclidean
distance of point sets.

Remark 9 The property of g can also be stated in the following way: if d(q, q′) < ε for some
q ∈ F (q), q′ ∈ F (q′), then d(p, p′) < g−1(ε) = δ. Notice that g can be supposed to be a
nondecreasing function, and that limt→0+ g(t) = 0.

Davies originally used this theorem for proving the following result: for any given
continuous function f defined on a unit square, for any ε > 0, one can give a function
g equal to f on a set H of measure greater than 1− ε, with the property that through
each point of H there pass c many lines, each on which g is approximately constant.

However our aims are different, and based on this result we obtain the following
counterexample:

Theorem 29 There exists a continuous function that at each point of a set of positive
measure in c many directions has finite and different one-sided approximate derivatives:

±∞ 6= A∂ϑf = A∂ϑf 6= A∂ϑ+πf = A∂ϑ+πf 6= ±∞.

Proof. Take the set of the previous theorem. Define f to be 0 on M . Define f on
the points q of F (p) as the distance from p: f(q) := d(p, q). By the properties of
the sets F (p), the function f is approximately differentiable on both sides of all the
lines l(p) ∈ L(p), these derivatives are ±1, thus do not possess the Denjoy property. It
remains to show that f is uniformly continuous. Fix an ε > 0. We need that there exists
a δ, such that if d(q, q′) < δ (q ∈ F (p), q′ ∈ F (p′)), then |f(q) − f(q′)| < ε. Suppose
d(p, q) > d(p′, q′), then we have

|f(q)− f(q′)| = |d(p, q)− d(p′, q′)| ≤ |d(p, p′) + d(p′, q′) + d(q, q′)− d(p′, q′)|
= |d(p, p′) + d(q, q′)| < g−1(δ) + δ



3.1 Measure 37

by taking the limit as δ → 0, we obtain a δ, such that g−1(δ) + δ < ε holds.
If for a point p ∈ M the relation d(p, q′) < δ holds, then a point q ∈ F (p) close

enough (say d(p, q) = η) to p can be found such that d(q, q′) < δ also holds, implying
|f(q)− f(q′)| < ε. We obtain that

|f(p)− f(q′)| ≤ |f(q′)− f(q)|+ |f(p)− f(q)| < ε+ η,

for arbitrarily small η. Now it only remains to extend this uniformly continuous function
to the whole domain. �

Remark 10 Note that when considering approximate derivatives we can ignore the behaviour
of the function on the lines l′(p′) ∈ L(p′) associated to the other points p′ 6= p. However the
point p can still be a point of accumulation of such l′ ∩ l intersections, thus changing the value
of the classical Dini derivatives. It is not even clear how a transfinite construction could be
executed in this case. This is what Theorem 27 achieves.
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A Disjoint segments in the plane
The construction of Otto Marcin Nikodyḿ (1887-1974) [47] and later Davies [20] of a
plane set of positive measure, each point of which is linearly accessible from the outside
suggests that linear segments in the plane can be placed in a complicated fashion, to
obtain rather unexpected behaviour. A first related question that can be posed is the
following:

Problem 1
Is it possible, that each point p of a plane disk D of unit radius is the endpoint of a
linear open segment l(p) ⊆ R2 of length 1, such that these open segments are disjoint?

Remark 11 By a linear open segment l(p) of length 1 and direction ϑ(p) we mean the set

{p+ λeϑ(p) : λ ∈ (0, 1)}.

In this section ϑ as usual denotes the positive angle with the positive x-axis.

Proof. 14 The answer to this question is negative as the following simple argument shows.
Suppose that such segments exist. Take an open linear interval I in the disk D. By a
theorem of Blumberg, any function f : R → R can be restricted to a dense set, where
it is continuous. Applying this to ϑ|I , we obtain a dense set H ⊆ I, where ϑ|H is
continuous. Take any point p of H. Take a point q ∈ l(p) ∩D. Since there are points
pn ∈ H converging to p from both directions, by continuity of ϑ|H there is no direction
in which an interval l can be originating from q. However, we supposed q to be in D,
thus it should be the endpoint of a linear segment; contradiction. �

A next natural question that can be asked is the following:

Problem 2
Is it true, that every plane set E ⊆ R2, each point of which is the endpoint of pairwise
disjoint linear segments, has measure zero?

We show that the answer is negative. In fact, it is possible to give a Sierpiński like
construction for such a set, if all the segments are parallel. (Enumerate in the least
ordinal c the closed sets of the plane of positive measure, and place a unit segment
parallel to the y axis in a point (xα, yα)α<c, such that xα is disjoint from all the previous
(xβ)β<α.)

14I would like to thank Balázs Keszegh for this argument.
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By defining a (non-measurable) function on each y-section we can obtain arbitrary
Denjoy behaviour in the fixed direction of the y-axis on a set of positive outer measure
(namely the endpoints of these segments). It is difficult to see how a continuous or even
measurable function using such a transfinite construction can be obtained. To this end
let us ask the following:

Problem 3
Is it true, that every plane measurable set E ⊆ R2, each point of which is the endpoint
of pairwise disjoint linear segments, has measure zero?

The answer to this question is positive. We briefly sketch a proof for a special case.
Suppose that a plane measurable set E of positive measure with the required properties
exists. We can suppose that E is contained in a disk D of radius 1/10. (Take one such
that D ∩ E has positive measure and omit the rest of the segments.) Denote by M
the midpoints of the segments. For any segment S denote by eS ∈ E its endpoint and
mS ∈ M its midpoint. Take the f : M → E function that assigns to a midpoint of a
segment S its endpoint (by assumption contained in D)

f(mS) := eS.

(This function is well-defined since the segments are disjoint.) This function is Lipschitz
with constant 2:

|f(mS)− f(mS′)| = |eS − eS′ | ≤ 2|mS −mS′|,
otherwise the segments would intersect. Similarly, if instead of midpoints we define Mλ

as the points mλ
S ∈ S at distance λ from eS, then each fλ : Mλ → E is also Lipschitz

with constant 1/λ.

If the sets Mλ were measurable, we would be done, since Lipschitz functions do not
increase measure and if E is a set of positive measure, this would result in c many pair-
wise disjoint plane sets of positive measure which would finish the proof.

However if already we allow the segments to have length other than one, using a
Sierpiński like construction it is possible to take E := S1 and the segments in radial
direction, such that M is not measurable. It is not clear whether measurability of M
can be concluded with the restriction that all segments have length one.
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B Measurability of partial derivatives of arbitrary func-
tions

The following theorem extends Federer’s argument to arbitrary functions, and a result
similar to Stepanoff’s theorem is obtained. Although the theorems of Haslam-Jones
and Saks are stronger versions of this theorem, this proof does not rely nor on directed
derivatives, nor on the contingence theorem.

Theorem 30 Let f : E → R be an arbitrary function defined on an arbitrary set
E ⊆ R2. Define

M := {x ∈ E : Lf (x) <∞}.
Then the function is differentiable a.e. on M . Moreover M is relative Lebesgue measur-
able (moreover relative Fσ), and the partial derivatives are relative Lebesgue measurable
functions on M .

Proof. For each n, take the points x in which f restricted to the 1/n neighbourhood of
x is Lipschitz with constant n:

Mn :=

{
x ∈ E : |f(x+ h)− f(x)| ≤ n|h|, ∀|h| < 1

n
, x+ h ∈ E

}
.

Since Lf (x) = K < ∞ means that for a small enough neighborhood Ux of x, at every
y ∈ Ux |f(y)− f(x)| ≤ K|y − x|, it follows that M = ∪nMn.

The sets Mn are relative closed. It is enough to show that if xk ∈ Mn, and xk → x,
then x ∈Mn. Take a y, such that |y − x| < 1/n. We want to show that

|f(y)− f(x)| ≤ n|y − x|.

By taking an xk close enough to x, one has |xk− y| < 1/n for all k > N for a certain N .
Since xk ∈Mn, it follows that |f(xk)− f(y)| ≤ n|xk − y|. Using the triangle inequality:

|f(y)− f(x)| ≤ |f(y)− f(xk)|+ |f(xk)− f(x)| ≤ n|xk − y|+ n|xk − x|,

and since |xk − x| → 0 and |xk − y| → |x− y|, it follows that x ∈Mn.

The function f restricted to Mn is continuous for each n, since it is locally Lipschitz
on Mn.

In the following we show that the function is differentiable a.e. on M . Divide Mn

intoMn,i, each of diameter 1/n. It is enough to prove that f is differentiable a.e. onMn,i

for each i and n. The function f |Mn,i
is (globally) Lipschitz on Mn,i with constant n. By
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known results (see Mojżesz David Kirszbraun (1904-1942) [35]) f |Mn,i
can be extended

to R2 with the same Lipschitz constant; denote this function f̃ .

By Rademacher’s theorem f̃ is a.e. differentiable. It is enough to show the statement
for density points of Mn,i, where f̃ is differentiable. Let a ∈ Mn,i be such a point and
let d = (f̃)′(a). Then

lim
x→a

f̃(x)− f̃(a)− 〈d, x− a〉
|x− a| = 0. (B.1)

Our aim is to show that

lim
x→a, x∈E

f(x)− f(a)− 〈d, x− a〉
|x− a| = 0. (B.2)

Let ε > 0 is given. Since a is a density point of Mn,i, there is a 0 < δ1 < 1/(2n) such
that λ2(Mn,i ∩B(a, h)) > (1− ε2/4)λ2(B(a, h)) for every 0 < h < δ1. It is easy to check
that if x ∈ B(a, δ1/2), x 6= a and |x− a| = r, then B(x, εr) ∩Mn,i 6= ∅.

By (B.1), there is a δ2 > 0 such that

|f̃(x)− f̃(a)− 〈d, x− a〉| ≤ ε|x− a|

for every x ∈ B(a, δ2). Let δ = min(δ1, δ2)/2.

Let x ∈ B(a, δ) ∩ E, x 6= a be arbitrary. Choose an element y ∈ B(x, εr) ∩Mn,i.
Then y ∈Mn and |y − x| < 1/n, and thus

|f(y)− f(x)| ≤ n · |y − x| ≤ nε|x− a|.

Therefore,

|f(x)− f(a)−〈d, x− a〉| = |f(x)− f̃(a)− 〈d, x− a〉| ≤
≤ |f(y)− f̃(a)− 〈d, y − a〉|+ |f(x)− f(y)|+ |〈d, y − x〉| ≤
≤ |f̃(y)− f̃(a)− 〈d, y − a〉|+ nε|x− a|+ |d| · |y − x| ≤
≤ ε|x− a|+ nε|x− a|+ |d|ε · |x− a| =
= (1 + n+ |d|)ε · |x− a|.

This proves (B.2).

To prove measurability of the partial derivatives of f , it is enough to show that
the partial derivatives of f̃ are measurable. For proving the measurability of the ∂0f̃
functions, define gk : R2 → R as
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gk(x, y) :=
f̃(x+ 1/k, y)− f̃(x, y)

1/k

Since the f̃ functions are Lipschitz continuous and defined everywhere, it follows
that the gk|Mn functions are also Lipschitz continuous. Since the gk functions are Lips-
chitz, they are differentiable a.e., thus ∂0f̃ = limk→∞ gk a.e., thus the ∂0f̃ functions are
measurable. �
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C Tables

In order to create some order to all the results discussed in the introduction, the fol-
lowing tables recapitulate the most relevant results and articles known in each case. A
plus sign (+) denotes positive results for Denjoy type relations, whereas a minus sign
(-) denotes the cases where quite strong counterexamples have been given. On some
occasions depending on the conditions (Borel/Lebesgue/non-measurable) both a + and
a - sign can be found in the same entry (Ward/Davies; Ward/Theorem 24).

1-dim Classical Approximate
Measure Denjoy-Young-Saks Denjoy-Khintchine, Ward [75]
Category Zajíček [80], Belna-Cargo-Evans-Humke [6] Zajíček [79], Preiss-Zajíček [48]

2-dim directed (typical point all dir) Classical Approximate
Measure +: Haslam-Jones [29], Saks +: Ward [75]
Category Ravetz [51], [52]

2-dim linear (typical point+dir) Classical Approximate
Measure +: Ward [76], -: Davies [21] +: Ward [76], -: Theorem 24
Category +: Theorem 17

2-dim linear (typical point all dir) Classical Approximate
Measure -: Besicovitch [8], Theorem 27 -: Theorem 29
Category

The following table illustrates known results about the Lebesgue measurability of
derivate numbers of Lebesgue measurable functions:

f : R2 → R λ2-meas. [measurability] Classical Approximate
x 7→ ∂ϑf(x) sections, ϑ fix No [Neubauer] Yes [Khintchine-Saks]

(x, ϑ) 7→ ∂ϑf(x) No [Davies] Yes [Ward]
x 7→ Dϑf(x) sections, ϑ fix Yes [Haslam-Jones]

(x, ϑ) 7→ Dϑf(x)

. . .

The following questions still remain open at the end of this thesis:

1. Does there exist a continuous function with the following properties: for each point
of a set of positive measure there exists a direction such that the linear derivative
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exists (upper/lower equal), in the opposite direction the linear derivative exists,
but these two are finite and distinct?

2. Can the example given in Theorem 27 be improved such that all four linear derivate
numbers are distinct on a set of positive measure?

3. What can be said about functions f : R2 → R having the following property:
for each point of a set of positive measure there exists a direction, such that the
function is continuous in that direction. (With some appropriate condition on the
directions.)
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