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1 Introduction

In this thesis I will be mainly concerned with the symmetric group acting on a
countably infinite set (Definition 2.1.4) and its subgroups. If we equip the set these
groups are acting on with the discrete topology then these groups can be equipped
with the topology of pointwise convergence. In such a setting they can be equipped
with a compatible complete metric and they are Polish groups.

It is an interesting question to ask how a typical element of a given group looks
like. First note that it makes sense to require that if an element g ∈ G (where G is
any group) is typical then all of its conjugates are typical because conjugate elements
in a group cannot be distinguished internally. Second, in order to make this question
mathematically precise we should specify what we mean by a typical element. There
are two common ways one can consider typicality:

1. It the sense of the Baire category theorem: typical elements shall form a comea-
ger set,

2. In a measure theoretic sense: the set of atypical elements must have measure
zero.

We can speak about typicality in the first sense without much problem because
the Baire category theorem holds for Polish groups. Thus we can ask the following
questions and their variants:

1. Which conjugacy classes are meager (if any)?

2. Which conjugacy classes are of second category?

3. Is there a comeager conjugacy class?

But we have a problem with the second approach: what measure shall we use? There
is an obvious choice for locally compact groups, the Haar measure but most of the
groups considered in this thesis are not locally compact. We will use a more general
notion instead due to Christensen [2]: the notion of Haar null sets. The Haar null
sets of a locally compact group in the sense of Christensen coincide with the sets of
Haar measure zero but they can be defined for non-locally compact Polish groups.
There is a terminology that calls Haar null sets shy and co-Haar null sets prevalent.
We will not use this terminology. In this setting we can ask the following questions
and their variants:

1. Which conjugacy classes are Haar null?

2. Which conjugacy classes are not Haar null?

3. Is there a co-Haar null conjugacy class?
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The answers for the above questions are quite different in the two settings, for
example we will see that a large class of infinite permutation groups can be divided
into two sets where one set is meager and the other is Haar null.

We would like to highlight that the notion of the “group theoretic algebraic
closure” turned out to be especially useful in some cases and that probably other
concepts could be translated into more easily verifiable ones with its help.
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2 Preliminaries and notation

In this section we will give a quick overview of the relevant definitions and theorems.

2.1 Topological groups

Definition 2.1.1 (Topological group) If a group G has a topology defined on it such

that the operations of multiplication

G×G→ G : (x, y) 7→ xy

and inverse

G→ G : x 7→ x−1

are continuous then G is called a topological group (with respective to that topol-

ogy).

In this thesis the topology will always be clear from the context so it will not be
indicated.

Definition 2.1.2 (Polish group) If a topological group G as a topological space is

a Polish space: it is separable and admits a compatible complete metric then G is

called a Polish group.

Definition 2.1.3 (Group action) If G is any group and X is a set, then a group

action ϕ of G on X is a function

ϕ : G×X → X

that satisfies the following two axioms. Usually we denote ϕ(g, x) by g(x) if the group

action is obvious from the context.

1. 1(x) = x for all x ∈ X (where 1 denotes the neutral element of the group G),

2. (gh)(x) = g(h(x)) for all g, h ∈ G and all x ∈ X.

We will mostly be concerned with the properties of one particular Polish group
and its closed subgroups, namely with the symmetric group acting on a countably
infinite set. Without loss of generality we can assume that the countable set being
acted on is ω.
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Definition 2.1.4 We will denote the group of all permutations acting on the set ω

by Sym (ω).

One can find an overview of the properties of Sym (ω) as a topological group in
[1].

Definition 2.1.5 The group Sym (ω) can be equipped with the topology of point-

wise convergence. This is the topology generated by the base consisting of the

sets:

Uy1,y2...yn
x1,x2...xn

= {p ∈ G : p(x1) = y1, p(x2) = y2 . . . p(xn) = yn}.

It is really a topology of pointwise convergence if we consider the set ω that
the permutations act on with the discrete topology. A sequence of permutations
p1, p2 . . . ∈ Sym (ω) converges to a permutation p if and only if for all x ∈ ω there is
an index N such that pM(x) = p(x) for every M > N . From now on if we refer to a
subset of Sym (ω) as closed we mean it as closed in this topology. This topology is
metrizable, for example by the following metric:

δ(p, q) =
1

2N
where N = min{n ∈ ω : p(n) 6= q(n)}.

However, this metric is not complete. This can be fixed by the metric:

d(p, q) = max{δ(p, q), δ(p−1, q−1)} =
1

2N
where

N = min{n ∈ ω : p(n) 6= q(n) or p−1(n) 6= q−1(n)}.

The group Sym (ω) is a complete metric space when equipped with the metric d(p, q).

Definition 2.1.6 If G is a subgroup of Sym (ω) then:

1. The orbit of an element x ∈ ω is the set of all elements y ∈ ω that are of

the form g(x) = y for some g ∈ G.

2. The stabilizer of an element x ∈ ω is the set of permutations g ∈ G such

that g(x) = x. The stabilizer of x will be denoted by G(x).

3. The orbit of a tuple (x1, x2 . . . xn) is the set of all tuples (y1, y2 . . . yn) that

are of the form g(x1) = y1, g(x2) = y2 . . . g(xn) = yn for some g ∈ G.

4. The stabilizer of the tuple (x1, x2 . . . xn) is the set of permutations g ∈ G
such that g(x1) = x1, g(x2) = x2 . . . g(xn) = xn. The stabilizer of a tuple will

be denoted by G(x1,x2...xn).
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5. For a set S ⊂ ω the pointwise stabilizer of the set, S consisting of the

permutations g ∈ G such that g(s) = s for every s ∈ S, will be denoted by

G(S).

Definition 2.1.7 (Topologically transitive group action) A group action where a

group G is acting on a topological space S is said to be topologically transitive

if for every pair of non-empty open sets U, V ⊂ S there is an element of the group

g ∈ G such that g(U) ∩ V 6= ∅.

In the above definition we can restrict ourselves to a given base of S without loss
of generality. If (Ui)i∈ω is a base of S and for every Uj and Uk there is an element of
the group g ∈ G such that g(Uj)∩Uk 6= ∅ then the action is topologically transitive.
Note that every group acts on itself by conjugation.

Definition 2.1.8 (σ-ideal) Let (X, S) be a measurable space. An subset I of the

σ-algebra S is called a σ-ideal if it satisfies the following:

1. ∅ ∈ I,

2. If A ∈ I, B ∈ S and B ⊂ A then B ∈ I,

3. The set I is closed under taking countable unions: {An}n∈ω ⊂ I⇒
⋃
n∈ω An ∈

I.

If one tries to capture smallness or negligibility in some way then the resulting
definition often determines a σ-ideal, as in the following examples:

1. The countable subsets of a given base set,

2. The sets of measure 0 regarding an arbitrary measure,

3. The sets of first category in the sense of Baire in an arbitrary topological space,

4. The Haar null sets in the sense of Christensen [2] in an arbitrary Polish group,

5. The openly Haar null sets in an arbitrary Polish group [13],

6. The Haar-meager sets in an arbitrary Polish group [4].

If some subset is negligible in one way that does not imply that it is negligible in
some other way:

Theorem 2.1.9 ([11, Special case of Theorem 16.5]) If we consider the set R with

the Euclidean topology and the Lebesgue measure then there exists a decomposition

R = A ∪B where A is meager and B has measure 0.
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Section 4 is about similar decompositions.

Definition 2.1.10 (Haar null set) Let G be a Polish group. A subset A ⊂ G is called

Haar null if there exists a Borel set U ⊃ A and a Borel probability measure µ on

G such that µ(xUy) = 0 for every x, y ∈ G.

Sets that are not Haar null will be called Haar positive. The complements of

Haar null sets will be called co-Haar null.

Note that for a Borel set A we can omit U from the definition and require
µ(xAy) = 0 instead of µ(xUy) = 0. We mention that in some literature the set U
in the definition of Haar null sets is required to be universally measurable instead
of Borel. In most practical applications this makes little difference but the resulting
notions are not the same. This is examined in [6].

Definition 2.1.11 (Openly Haar null set) Let G be a Polish group. A subset A ⊂ G

is called openly Haar null if there exists a probability measure µ on G such that

for all ε > 0 exists a U ⊃ A open set such that for all pairs of elements x, y ∈ G the

inequality µ(xUy) < ε holds [13].

From Definition 2.1.10 and Definition 2.1.11 clearly follows that every openly
Haar null set is Haar null. On the other hand there are Haar null sets that are not
openly Haar null: every openly Haar null set has a Haar null Gδ hull (take a series
of ε-s converging to zero then take the intersection of the corresponding open sets)
but in [6] some Haar null sets are constructed without any Haar null Gδ hull. Note
that although some Haar null sets do not have a Haar null Gδ hull all Haar null sets
have a Haar null Borel hull.

If in the definition of Haar null sets we only require the existence of a Borel
measure µ such that µ(xU) = 0 for every element x ∈ G then we get a different
notion. These sets are called left Haar null, and they coincide with Haar null sets
(and thus sets with Haar measure zero) in locally compact second countable Polish
groups, coincide with Haar null sets on abelian Polish groups but are different in a
general setting. For example, they do not always form a σ-ideal ([14, Theorem 3]).
Their properties are studied for example in [14].

However, for conjugacy invariant Borel subsets the two definitions will yield the
same result:

Lemma 2.1.12 If a Borel set A ⊂ G is conjugacy invariant: gAg−1 = A for every

g ∈ G then A is Haar null if and only if there exists a Borel measure µ such that

µ(gA) = 0 for every element g ∈ G. Similarly A is Haar null if and only if there

exists a Borel measure ν such that ν(Ag) = 0 for every element g ∈ G.
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Proof. This µ works for the original definition. Let x, y ∈ G be two arbitrary ele-

ments. Then

µ(xAy) = µ(x(yAy−1)y) = µ(xyA) = 0.

The same works for the right translates as well.

Lemma 2.1.13 Let G be a Polish group. Let S ⊂ G be a Borel subset with the

property that for any compact set F ⊂ G there is an open set V ⊂ G and an element

g ∈ G such that ∅ 6= F ∩ V ⊂ gS. Then S is Haar positive.

Proof. First note that changing the definition of Haar null sets in a way to require

the Borel probability measure µ to have compact support yields the same notion. In

order to prove this we show that if some set X ⊂ G has a Borel probability measure

µ with non-compact support satisfying the requirements of Definition 2.1.10 then

there is another Borel probability measure ν with compact support that satisfies the

requirements with the same U .

According to [9, 17.10] every finite Borel measure is regular. This means that the

measure of every set is the supremum of the measure of all of its compact subsets.

Thus for every Borel measure there is a compact set with positive measure.

Let Y ⊂ G be a set with µ(Y ) > 0. Let ν0 be the restriction of µ to ν and let ν

be ν0 normalized to ν(G) = 1. This ν satisfy our requirements as a replacement for

µ in the definition.

Indirectly assume that S is Haar null, let µ be a Borel probability measure with

compact support as in Definition 2.1.10. Let F denote the compact support of µ.

This implies that every open neighborhood Nx of every point x ∈ F has µ(Nx) > 0.

There is an open set V and an element g ∈ G such that ∅ 6= F ∩ V ⊂ gS. So

0 < µ(F ∩ V ) ≤ µ(gS) which contradicts that µ(gS) is assumed to be zero.

Later we will need a somewhat general of a theorem proved by Christensen [2],
here we reiterate Rosendal’s proof (see [12]).

Theorem 2.1.14 (Christensen) Let A ⊂ G be a conjugacy invariant Borel set and

suppose that there exists a cover of A by Borel sets A =
⋃
n∈ω An and a conjugacy

invariant Borel set B so that 1 ∈ B and B∩
⋃
n∈ω A

−1
n An = ∅. Then A is Haar null.

Proof. We claim that there exists a sequence {gi : i ∈ ω} ⊂ B with gi → 1 and the

following properties:
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• for every (εi)i∈ω ∈ 2ω we have that the sequence (gε00 g
ε1
1 . . . gεnn )n∈ω converges,

• the map ϕ : 2ω → G defined by (εn)n∈ω 7→ gε00 g
ε1
1 g

ε2
2 . . . is continuous (the right

hand side expression makes sense because of the convergence).

We can choose such a sequence by induction: fix a compatible complete metric

and suppose that we have already selected g0, g1, . . . , gn. Now notice that for ev-

ery (ε0, . . . , εn) ∈ 2n+1 the set {x ∈ G : d(gε00 g
ε1
1 . . . gεnn x, g

ε0
0 g

ε1
1 . . . gεnn ) < 2−n−1}

contains a neighbourhood of the identity. Therefore we can choose a

gn+1 ∈ B ∩
⋂

(ε0,...,εn)∈2n+1

{x ∈ G : d(gε00 g
ε1
1 . . . gεnn x, g

ε0
0 g

ε1
1 . . . gεnn ) < 2−n−1}.

One can easily show that for every (εn)n∈ω ∈ 2ω the sequence (gε00 g
ε1
1 . . . gεnn )n∈ω is

Cauchy and the function ϕ is continuous.

Let λ be the usual measure on 2ω and let λ∗ = ϕ∗λ, its push forward. We claim

that λ∗ witnesses that A is left-Haar null which is equivalent to its Haar nullness,

by the fact that A is conjugacy invariant using Lemma 2.1.12.

Suppose not, then there exists an f ∈ G so that λ∗(fA) > 0, therefore

λ∗(fAk) > 0 for some k ∈ ω. This is equivalent to λ(ϕ−1(fAk)) > 0 and if we

regard 2ω as Zω2 by Weil’s theorem (see e.g. [12]) we have that ϕ−1(fAk)−ϕ−1(fAk)
contains a neighbourhood of (0, 0, . . .), the identity in Zω2 . Then there exists an

element in ϕ−1(fAk) − ϕ−1(fAk) that is zero at every coordinate except for one.

Thus, ϕ−1(fAk) contains two elements of the form (ε0, . . . , εn−1, 0, εn+1, . . .) and

(ε0, . . . , εn−1, 1, εn+1, . . .), i. e. differing at exactly one place. Then taking the ϕ im-

ages of these elements we obtain that there exist h1, h2 ∈ G so that h1h2 ∈ fAk and

h1gnh2 ∈ fAk. This implies

h−12 h−11 h1gnh2 ∈ A−1k Ak

thus

h−12 gnh2 ∈ A−1k Ak

but by the conjugacy invariance of B we get

h−12 gnh2 ∈ B ∩ A−1k Ak,

contradicting the initial assumptions of the theorem.
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2.2 Infinite permutation groups

This subsection is mostly concerned with results specific to Sym (ω) and its sub-
groups. The interested reader can read more about the basics of model theory in
[8].

Definition 2.2.1 (Structure and its automorphism group) We will call a base set

A equipped with a set of relations, a set of functions, and a set of constants a

structure: A. The automorphism group of A denoted by Aut (A) is the set of

all one-to-one functions (permutations) p : A→ A that preserve all of the relations,

functions and constants of A.

All countably infinite structures mentioned in this thesis will have ω as their
base set. This will simplify our arguments. Thus the automorphism groups of the
structures will be subgroups of Sym (ω). All automorphism groups are closed, and
all closed subgroups G of Sym (ω) can be obtained as an automorphism group of
some structure A on ω. If we define an n-ary relation for each n ∈ ω and for each
finite tuple (x1, x2 . . . xn) as

R(x1,x2...xn) = {(y1, y2 . . . yn) : (∃g ∈ G)g(x1) = y1, g(x2) = y2 . . . g(xn) = yn}

then the automorphism group of the resulting relational structure will be exactly G.

We briefly mention the following two properties:

1. A countable structure A is ω-categorical if it is isomorphic to all of the count-
able models of its theory.

2. A permutation group acting on ω is oligomorphic if for every finite set S ⊂ ω
the number of orbits under the stabilizer G(S) is finite. The Engeler–Ryll-
Nardzewski–Svenonius theorem states that a structure A is ω-categorical if
and only if Aut (A) is oligomorphic ([8, Theorem 7.3.1]).

Definition 2.2.2 Let A be a structure on ω, let G denote its automorphism group

and let S ⊂ ω be a finite subset. The group theoretic algebraic closure of S is:

ACL (S) = {x ∈ ω : the orbit of x under the stabilizer G(S) is finite}

We follow the notation of [8, notation introduced before Lemma 4.1.1]. It is
known that if A is ω-categorical then for finite subsets the above definition coincides
with the usual model-theoretic algebraic closure [8]. In particular in ω-categorical
structures the ACL (S) is a finite set for every finite S because of the Engeler–
Ryll-Nardzewski–Svenonius theorem and ACL (ACL (S)) = ACL (S) because the
model-theoretic algebraic closure is a proper closure operator. We will now give

13



easier to check characterizations of general topological properties for subgroups of
Sym (ω):

Theorem 2.2.3 ([1, Theorem 2.1]) Let G be a subgroup of Sym (ω). Then:

1. G is open if and only if for some finite set S ⊂ ω the stabilizer Sym (ω)(S) is

contained in G,

2. G is closed if and only if it is the automorphism group of some first order

structure on ω,

3. G is discrete if and only if for some finite S ⊂ ω its pointwise stabilizer G(S)

is trivial,

4. G is compact if and only if it is closed and all its orbits are finite,

5. G is locally compact if and only if it is closed and all orbits of the stabilizer of

some finite set are finite.

Note that the last two items can be reworded as G is compact if and only if it
is closed and ACL (∅) = G and G is locally compact if and only if it is closed and
there is a finite set S ⊂ ω such that ACL (S) = G.

Definition 2.2.4 We will say that a group G has a nice algebraic closure if for

every finite set S ⊂ ω its group-theoretic algebraic closure ACL (S) is finite.

It is easy to check that oligomorphic groups have a nice algebraic closure, but
the class of closed groups having a nice algebraic closure is strictly greater.

Lemma 2.2.5 If a group G has a nice algebraic closure (Definition 2.2.4) then the

corresponding operator ACL is idempotent.

Proof. We shall show that for every finite set S ⊂ ω the identity ACL (ACL (S)) =

ACL (S) holds. Let S ⊂ ω be an arbitrary finite set and let x ∈ ACL (ACL (S)) be

an arbitrary element. We will show that x has a finite orbit under G(S) which implies

x ∈ ACL (S) because this is the definition of the group theoretic algebraic closure.

Let XACL(S) denote the orbit of x under G(ACL(S)) and XS denote the orbit

of x under G(S). Enumerate the elements of ACL (S) as (x1, x2 . . . xk). The group

G(S) is acting on ACL (S)k coordinatewise. Under this group action the stabilizer

of the tuple (x1, x2 . . . xk) is G(ACL(S)). The Orbit-Stabilizer Theorem states that for

any group action the index of the stabilizer of an element in the whole group is
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the same as the cardinality of its orbit. In our settings this yields that the index

[G(S) : G(ACL(S))] is the same as the cardinality of the orbit of (x1, x2 . . . xk). This

orbit is finite because the whole space ACL (S)k is finite. So G(ACL(S)) has a finite

index in G(S).

Let g1, g2 . . . gn ∈ G(S) be a left transversal for G(ACL(S)) in G(S). Since XS =

g1XACL(S) ∪ g2XACL(S) ∪ . . . gnXACL(S) is a finite union of finite sets it must be

finite.

We will formalize the following technical statement for future use:

Lemma 2.2.6 Let G be a group that has a nice algebraic closure. Let S ⊂ ω be a

finite subset such that ACL (S) = S and x ∈ (ω \ S) be an arbitrary element. Then

we can order the finite set (ACL (S ∪ {x})\S) as (x1, x2 . . . xk) such that if 1 ≤ a <

b ≤ k then ACL (S ∪ {x1, . . . xa−1} ∪ {xb}) 6( ACL (S ∪ {x1, . . . xa−1} ∪ {xa}) where

6( denotes (not a proper subset of).

Proof. We can always pick the next xa by choosing it as one of the elements such

that ACL (S ∪ {x1, . . . xa}) is minimal with respect to inclusion.

Definition 2.2.7 (Partial permutation) A partial permutation is an injection

from a finite set S ⊂ ω to ω. A partial permutation p extends another partial

permutation q if Dom (q) ⊂ Dom (p) and p|Dom(q) = q. A permutation p extends a

partial permutation q if p|Dom(q) = q.

Definition 2.2.8 (Possible images and preimages) Let p be a partial permutation

and let x ∈ ω be an arbitrary element. We define the possible images of x under

p as the set

{y ∈ ω : (∃g ∈ G)g extends p and g(x) = y}.

Similarly we define the possible preimages of x under p as the set

{y ∈ ω : (∃g ∈ G)g extends p and g−1(x) = y}.

Lemma 2.2.9 Let G be a group that has a nice algebraic closure.. We define the

numbers ΘG,S,(x1,x2...xk)(a, b) ∈ ω ∪ {ω} where the parameters are:

(a) A finite subset S ⊂ ω such that ACL (S) = S,
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(b) An ordering of (ACL (S ∪ {x}) \ S) for some arbitrary element x as described

in Lemma 2.2.6: (x1, x2 . . . xk),

(c) Two indices 1 ≤ a < b ≤ k

Let q be a partial permutation defined on the domain Dom (q) = S ∪ {x1, . . . xa−1}
such that the set of permutations g extending q is non-empty. Then exactly one of

the following two possibilities hold:

(1) For every possible extension q̃ of q to (Dom (q) ∪ {xa}) the set of still possible

images (Definition 2.2.8) of xb is infinite:

|{yb ∈ ω : (∃g ∈ G)g extends q̃ and g(xb) = yb}| = ω.

In this case we define ΘG,S,(x1,x2...xk)(a, b) as ∞.

(2) For every element y ∈ ω the set

Wy = {z ∈ ω : (∃g ∈ G)g extends q; g(xa) = z and g(xb) = y}

is finite. For those y where Wy is non-empty, it always has the same size, define

ΘG,S,(x1,x2...xk)(a, b) as this size.

Proof. All of the sets

Sy = {yb ∈ ω : (∃g ∈ G)g extends q; g(xa) = y and g(xb) = yb}

are translates of the orbit of xb under G(Dom(q)∪{xa}). Thus for every element y ∈ ω
that is a possible image for xa under q the cardinality of the set Sy is the same.

When these sets are infinite then the (1) holds. Assume that the sets Sy are finite,

this means that xb ∈ ACL (Dom (q) ∪ {xa}). Then xa ∈ ACL (Dom (q) ∪ {xb}) also

holds because the two algebraic closures must coincide since we enumerated the set

(ACL (S ∪ {x}) \S) as described in Lemma 2.2.6. Thus for every element y ∈ ω the

set

Wy = {z ∈ ω : (∃g ∈ G)g extends q; g(xa) = z and g(xb) = y}

is finite because these sets are either empty or translates of the orbit of xa under

G(Dom(q)∪{xb}). For those y where the set Wy is non-empty it will always have the

same size because the translates of any set have the same cardinality.
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Lemma 2.2.10 Let G be a group that has a nice algebraic closure and S ⊂ ω be a

finite subset such that ACL (S) = S and x ∈ (ω \ S) be an arbitrary element. Let

(x1, x2 . . . xk) be an ordering of (ACL (S ∪ {x}) \ S) as described in Lemma 2.2.6.

For every 1 ≤ d ≤ k there is a 1 ≤ c ≤ d such that if h1 is any partial permutation

defined on the domain Dom (h1) = S ∪ {x1, . . . xc−1} then the set of the possible

images of xd under h1 is infinite and if h2 is any partial permutation defined on the

domain Dom (h2) = S ∪ {x1, . . . xc} then the set of the possible images of xd under

h2 is finite.

Proof. Let xe be an arbitrary element from (x1, x2 . . . xk) and h′ be a partial permu-

tation with Dom (h′) = S ∪ {x1, . . . xe}.

Then the set of possible images of xd under h′ is the translate of the orbit of

xd under the stabilizer G(S∪{x1,...xe}). The element xc is the first element such that

xd ∈ ACL (S ∪ {x1, . . . xc}).

Lemma 2.2.11 The operator ACL is translation invariant in the following sense:

if S ⊂ ω is a finite set and g ∈ G is an arbitrary permutation then

ACL (gS) = gACL (S) .

Proof. Let x ∈ ω be an arbitrary element, then

x and y are in the same orbit under G(S) ⇔

∃h ∈ G(S) : h(y) = x⇔ ∃h ∈ G(S) : gh(y) = g(x)⇔

g(x) and g(y) are in the same orbit under G(gS)

So an element x has a finite orbit under G(S) if and only if g(x) has a finite orbit

under G(gS).
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3 A random construction

In our proofs we will use the following probability measure generated by a random
process. Our process makes sense only for closed permutation groups that have a
nice algebraic closure (Definition 2.2.4).

Our random process will define a permutation p ∈ G in stages. We will need
a random integer sequence (ki,j)i∈ω,j∈ω whose values will be determined later to be
appropriate for the given proof. It is indexed by a pair instead of a single index only
for the simplicity of notation in some later proofs. By random integer sequence we
mean that the value of ki,j is only needed in the ith stage of the construction, and
although it is not fixed before the proof it can be determined at stage i based on
the outcome of the random events during previous stages.

Let G be a closed permutation group with a nice algebraic closure. At stage i
we will choose the least element from ω that either has no preimage or image, let
this element be denoted by ai. We will denote the set of those elements that have
their image defined before stage i by Ii and the set of those elements that have their
preimage defined before stage i by Pi. We also build a sequence of partially defined
permutations (Definition 2.2.7) pi During the process we maintain:

1. Both Ii and Pi will be finite sets such that ACL (Ii) = Ii, ACL (Pi) = Pi,

2. The domain of pi is Ii and the range of pi is Pi,

3. There is a permutation g ∈ G that extends pi.

In some stages we define the sets Ki+1, Li+1 and a partial permutation p′i+1 in
such a way that Pi ⊂ Ki+1 ⊂ Pi+1, Ii ⊂ Li+1 ⊂ Ii+1, Dom

(
p′i+1

)
= Ki+1 and

Im(p′i+1) = Li+1. The partial permutation p′i+1 will be an extension of pi and will be
extended by pi+1.

At stage i we proceed as follows:

1. We will refer to this part of the construction as the first step of stage i. If
the element ai /∈ Pi then define Ki+1 = ACL (Pi ∪ {ai}). We will extend pi to
a partial permutation p′i+1 such that Im(p′i+1) = Ki+1. This includes finding
an appropriate preimage for ai as the partial permutation p−1i is defined only
for Pi. Enumerate the elements of Ki+1 \ Pi as in Lemma 2.2.6:

Ki+1 \ Pi = (x1, x2 . . . xk).

We will determine the preimages of (x1, x2 . . . xk) in this order. Note that
ai is amongst these elements so this procedure will define the preimage for
ai. Denote the partial permutations defined in these sub-steps by pi,j. So
Im(pi,0) = Pi, Im(pi,1) = Pi ∪ {x1}, Im(pi,2) = Pi ∪ {x1, x2} . . .. If the first
j preimages are determined then there are two possibilities for xj+1:
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(a) The set of possible preimages of xj+1 under pi,j (Definition 2.2.8) is finite.
Then choose one from them randomly with uniform distribution.

(b) The set of possible preimages of xj+1 under pi,j (Definition 2.2.8) is infi-
nite. Then choose one from the smallest ki,j+1 many possible values uni-
formly. The value of ki,j+1 might depend on the choices made in previous
stages, steps and sub-steps. Note that the exact values will be specified
in each of the proofs.

We note that for all xj its orbit under the stabilizer G(Pi) is infinite because
xj /∈ Pi = ACL (Pi) so the possibility (b) must occur for at least x1 in every
stage.

Now we have Ki+1 as the set of elements with their preimage currently defined.
Let p′i+1 be pi,k and let Li+1 be Dom

(
p′i+1

)
. Then Li+1 is a strict superset of Ii

containing the elements with an already defined image. The elements of Ki+1

and Ii+1 are in a bijection that can be extended to a permutation g ∈ G.
Ki+1 = ACL (Ki+1) because Lemma 2.2.5 states that ACL is idempotent.
Li+1 = ACL (Li+1) because of Lemma 2.2.11.

2. We will refer to this part of the construction as the second step of stage i.
If the element ai /∈ Li+1 then we will choose an image p(ai) similarly, starting
with defining

Ii+1 = ACL (Li+1 ∪ {ai}) .

Let pi+1 be the extension of p′i+1 to the whole Ii+1 (the extension can be
carried out in the same manner as the extension of pi above). Let Pi+1 be
the set Im(pi+1). These will satisfy ACL (Ii+1) = Ii+1, ACL (Pi+1) = Pi+1 and
that pi+1 is a partial permutation between them that can be extended to a
permutation g ∈ G.

Let p be the union of the increasing chain of partial permutations p1, p2 . . .. This p
will be a permutation because every element x ∈ ω has both its preimage and image
defined. The resulting p will be in G because G is closed.

Lemma 3.0.1 Let p be a permutation generated by the previous random construc-

tion. Then the sets Pi, Ki, Ii, Li that appeared in the different stages of the construc-

tion can be obtained as

(A) Ki+1 = ACL (a0, p(a0), a1, p(a1) . . . ai),

(B) Li+1 = ACL (p−1(a0), a0, p
−1(a1), a1 . . . p

−1(ai)),

(C) Ii+1 = ACL (p−1(a0), a0, p
−1(a1), a1 . . . p

−1(ai), ai),

(D) Pi+1 = ACL (a0, p(a0), a1, p(a1) . . . ai, p(ai)).
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Proof. The set K1 is ACL (a0) so (A) holds for the index i = 0. Proceed by induction:

If (A) holds for the index i then (B) also holds for the index i because of Lemma

2.2.11 using that Li+1 is the translate of Ki+1 by p−1,

If (B) holds for the index i then (C) also holds for the index i because Ii+1 is defined

as Ii+1 = ACL (Li+1 ∪ {ai}),

If (C) holds for the index i then (D) also holds for the index i because of Lemma

2.2.11 using that Pi+1 is the translate of Ii+1 by p,

If (D) holds for the index i then (A) holds for the index (i + 1) because Ki+2 is

defined as Ki+2 = ACL (Pi+1 ∪ {ai+1}).
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4 Haar null–meager decompositions

In this section we are examining possible generalizations of Theorem 2.1.9. The
statement of Theorem 2.1.9 was that R equipped with the Euclidean topology and
the Lebesgue measure can be decomposed as R = A ∪ B where A is meager and B
has measure zero.

A proof of Theorem 2.1.9. Enumerate all rational numbers: (qi)i∈ω. Let Ui,n denote

the open interval with center qi and length 1
n2i

. Let Vn =
⋃
i∈ω Ui,n then the measure

of Vn is at most 2
n
. Then the set B =

⋂
n∈ω Vn has measure zero. Moreover the set

A = R \B is meager because R \B =
⋃
n∈ω R \ Vn where all of the sets (R \ Vn) are

nowhere dense.

For locally compact groups the following generalization is known:

Theorem 4.0.1 ([11, Theorem 16.5]) Every uncountable locally compact Polish

group G may be written as a disjoint union R = A ∪ B where A is meager and

B has Haar measure zero.

There are generalizations for non-locally compact groups as well. We will state
the following theorem without proof:

Theorem 4.0.2 ([3, Proposition 2]) The following Polish groups can be decomposed

as G = A ∪B where A is meager and B is Haar null:

1. Any uncountable G that has a compatible two-sided invariant metric (TSI),

2. G = Sym (ω),

3. G = Aut(Q) if only the ordering < of Q is considered,

4. G = U(l2) or more generally G = U(R) the unitary group of a von Neumann

algebra R on a separable infinite dimensional complex Hilbert space H with the

strong operator topology,

5. If there is a continuous surjective homomorphism from G to any of the above

groups.

Our goal is to prove the existence of a similar decomposition for a class of groups
as general as possible. Considering the diversity of groups in Theorem 4.0.2 it is not
a big surprise that the proof given in [3] is elaborate and uses tools from topological
dynamics. Although the proof of the G = Aut (Q) case could be modified with little
additional efforts to achieve our goals we will rather go with a new shorter proof
which uses some parts of the original.
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Theorem 4.0.3 Let G be a closed subgroup of Sym (ω) that has a nice algebraic

closure and satisfies the following: for every n ∈ ω there is a finite set Sn ⊂ ω such

that there is no n-element subset X ⊂ ω such that Sn ⊂ ACL (X).

Then G can be decomposed as G = A∪B where A is meager and B is Haar null.

Proof. Let H be an arbitrary Polish group, then its openly Haar null subsets form

a translation invariant σ-ideal [13]. If the singleton set {1} is openly Haar null

then every countable subset of H is openly Haar null. The group H is separable

as a topological space so there is a countable dense set X ⊂ H in it. This X is

openly Haar null so X has a Haar null Gδ hull B. This hull can be obtained as an

intersection B =
⋂
Ui where the sets U are dense open sets containing X. The set

A = G \B =
⋃

(G \ Ui) is meager because the sets G \ U are nowhere dense.

We will prove that the singleton set {1} is openly Haar null. Let p be a ran-

dom permutation obtained using the construction described in Section 3. We will

show that for every ε > 0 there is an open set U 3 1 such that for every pair of

permutations g, h ∈ G the inequality P (gUh) < ε holds.

Let n ∈ ω be an arbitrary integer. Let Sn ⊂ ω be a finite subset such that there

is no n-element subset X ⊂ ω such that Sn ⊂ ACL (X). The pointwise stabilizer

G(Sn) is an open set containing {1}. We will restrict our search for appropriate open

sets to this kind of stabilizers. Let g, h ∈ G be an arbitrary pair of permutations.

The two-sided translate of a stabilizer G(Sn) by g from the left and by h from the

right consists of the following permutations:

gG(Sn)h = {q ∈ G : (∀x ∈ h−1Sn) q(x) = gh(x)}.

From Lemma 2.2.11 follows that all translates of Sn, in particular h−1Sn also have

the property that they are not contained in the algebraic closure of any n-element

set.

We will use the construction described in Section 3 choosing the numbers

(ki,j)i∈ω,j∈ω as described below. If we are at stage i and Ki+1 \ Pi = (x1, x2 . . . xk)

and we already defined the preimages for x1, x2 . . . xj−1 and let pi,j−1 denote the

last partial permutation defined already. We choose ki,j as follows. Let M denote

following maximum using Lemma 2.2.9 (the function Θ is also defined there):

M = max{ΘG,Pi,(x1,x2...xk)(j, b) : j < b ≤ k where Θ is finite}.
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Let ki,j be 2iM . We proceed similarly for the elements of Li+1 \ Ii when defining

their images.

Now let i denote the stage where the image of all elements of h−1Sn are fi-

nally determined. Then i is at least n−1
2

because after any stage j the set Ij+1 =

ACL (p−1(a0), a0, p
−1(a1), a1 . . . p

−1(aj), aj) as stated in Lemma 3.0.1, and the set

h−1Sn cannot be covered by the algebraic closure of any set with size less than

n. Let x denote an element from h−1Sn that has its image defined only at stage i

and let y denote p(x). Then at stage i exactly one of the following two possibilities

happened:

(A) The element y was amongst Ki+1 \ Pi = (x1, x2 . . . xk), let the index of y be

denoted by m,

(B) The element x was amongst Ii+1 \ Li+1.

If possibility (A) occurred then there was an xl ∈ (x1, x2 . . . xk) because of Lemma

2.2.10 such that the number of possible preimages of y under pi,l−1 was infinite and

the number of possible preimages of y under pi,l was finite. The number ki,l used when

defining the preimage of xl was chosen to be greater than 2iΘG,Pi,(x1,x2...xk)(l,m).

Define the set

Wx = {z ∈ ω : (∃g ∈ G)g extends p−1i,l−1; g(xl) = z and g(xm) = x}

as in Lemma 2.2.9 (note that the names of the variables changed). So |Wx| is the

number of elements that can be chosen as the preimage of xl in a way that x remains

a possible preimage of y under the resulting pi,l partial permutation. Using the

definition of ΘG,Pi,(x1,x2...xk)(l,m) = |Wx| we obtain that the probability of choosing

a preimage for xl without making p(x) = y impossible was at most |Wx|
2iM
≤ 1

2i
.

A similar argument works for possibility (B).

The probability of p(x) = y is at most 1
2i

. The permutation p cannot be in

gG(Sn)h if p(x) 6= gh(x) so

P
(
p ∈ gG(Sn)h

)
≤ 1

2i
.

This proves the statement of the theorem: for every ε > 0 one can choose the

stabilizer of any set S that cannot be covered by the algebraic closure of any finite

set with at most 2 log2
1
ε

+ 1 elements as a suitable U .
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5 The generalization of a theorem of Dougherty

and Mycielski

In the article [5] Dougherty and Mycielski examined the group Sym (ω), the group of
permutations acting on a countably infinite base set. The description of the typical
permutations in the sense of Baire category had been known before [10], Dougherty
and Mycielski gave the description of the typical permutations in a measure theoretic
sense. The descriptions in the measure and in the category case are quite different:

Theorem 5.0.1 ([5, Theorem 1]) The set of permutations with infinitely many in-

finite cycles and only finitely many finite cycles is co-Haar null.

Theorem 5.0.2 (Trivial consequence of the theorems in [10]) There is a comeager

conjugacy class in Sym (ω). The permutations in this conjugacy class have infinitely

many cycles of any given finite length and no infinite cycles.

In this section our goal is to generalize Theorem 5.0.1

Lemma 5.0.3 Assume we are constructing a permutation p using the process de-

scribed in Section 3 and we are just entering stage i. Let w ∈ ω be an integer and

let ε > 0 be any constant.

Then one can choose the numbers ki,j in such a way that for any w-element set

S ⊂ ω the probability of defining a preimage at the first step of stage i as some

element from S or defining an image at the second step of stage i as some element

from S is at most ε.

Proof. We use Lemma 2.2.10 Let (x1, x2 . . . xj) denote the elements of Ki+1 \ Pi
enumerated in the same order as they appear during the construction. Let xd ∈
(x1, x2 . . . xj) be an arbitrary element. There is an xc such that the set of possible

preimages of xd is infinite before defining the preimage of xc and finite after defining

the preimage of xc (xc may be equal to xd). We will denote this kind of relationship

by Φ(xd) = xc.

The numbers ki,j used to determine the number of elements out of the preimage

of xc will be chosen in a way that the inequality

P(After the preimage of xc is chosen there is

still a possible preimage for xd from S) ≤ ε

2j
(5.0.1)
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holds. The second possibility of Lemma 2.2.9 holds for the pair (xc, xd) so the

number ΘG,Pi,(x1,x2...xk)(c, d) (as defined in Lemma 2.2.9) is finite. Denote this

ΘG,Pi,(x1,x2...xk)(c, d) by N(xd) for better readability. This means that for every ele-

ment v ∈ ω the set

Wv = {z ∈ ω : (∃g ∈ G)g extends the partial permutation p−1

already defined; g(xc) = z and g(xd) = v}

is finite and is always empty or has the same non-zero size regardless of v: N(xd).

The union of the Wv-s for all v ∈ S is finite because S is finite and it has at most

wN(xd) elements. If we choose the number ki,c to be greater than 2j
ε
wN(xd) then

Inequality 5.0.1 holds for xd.

For an x ∈ (x1, . . . xj) let us denote the maximum of the numbers wN(xl) where

Φ(xl) = x by M(x). If we choose the integers ki,j in such a way that

2j
ε
M(xl) ≤ ki,l for all xl ∈ (x1, . . . xj) then all of the inequalities above will hold.

We can choose the values ki,j similarly for the second step of the construction when

images are determined.

In this way the probability of having any preimage or image defined from S is at

most j ε
2j

+ j′ ε
2j′

= ε.

Definition 5.0.4 Let G ≤ Sym (ω) be a closed group. We will denote the set of

permutations p ∈ G with finitely many finite cycles by XFFC (G).

Lemma 5.0.5 The set of permutations XFFC (G) is Borel and conjugacy invariant.

Proof. The set of permutations containing a given cycle is open for every cycle (it

is an element of the base described in Definition 2.1.5)

Ux2,x3...x1
x1,x2...xn

= {p ∈ G : p(x1) = x2, p(x2) = x3 . . . p(xn) = x1}.

Thus for any finite set of finite cycles the set of permutations containing those finite

cycles in their cycle decompositions is open: it can be obtained as the intersection

of finitely many open sets. Thus for every n ∈ ω the set of permutations containing

at least n finite cycles is open: it can be obtained as the union of open sets (one

open set for each possible set of n cycles). Thus Sym (ω) \ XFFC (G) is Gδ: it is the

intersection of the above open sets. Thus XFFC (G) is Borel.
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The set XFFC (G) is conjugacy invariant because the number of cycles of given

length is conjugacy invariant in any symmetric group.

Theorem 5.0.6 Let G ≤ Sym (ω) be a closed group. Then G has a nice algebraic

closure if and only if XFFC (G) is co-Haar null.

Proof. First we will prove that if G has a nice algebraic closure then XFFC (G) is

co-Haar null. We will generate a permutation p randomly using the construction

described in Section 3 Let g ∈ G be an arbitrary permutation. We will show that

P (pg has infinitely many finite cycles) = 0.

In this case it is sufficient to examine only translations by multiplication from the

right because of Lemma 2.1.12 and Lemma 5.0.5 It is sufficient to prove that the

expected value of the number of finite cycles is finite:

E (Number of finite cycles in pg) =∑
i∈ω

E (Number of finite cycles completed at stage i in pg) <∞.

At stage i we define the image of a finite number of elements x1, x2 . . . xj and the

preimage of another finite number of elements y1, y2 . . . yj under p if not already

defined. We are interested what this means for the permutation pg.

At stage i we define the image of g−1(xk) under pg as p(xk) and the preimage of

yl under pg as g−1p−1(yl). So at stage i a finite cycle is completed if p(xk) happens to

be chosen as (pg)−h(g−1(xk)) where h is the largest integer such that (pg)−h(g−1(xk))

is already defined, or g−1p−1(yl) is (pg)h(yl) where h is the largest integer such that

(pg)h(yl) is already defined.

So there is a finite number of problematic elements (the [(pg)−h(g−1(xk))]-s and

the [(pg)h(yl)]-s above) that can cause problems (finite cycles) if appear as newly

defined images or preimages. Denote the set of these elements by D. We will choose

the sequence (ki,j)i∈ω,j∈ω such that the following estimate will hold:

E (Number of finite cycles completed at stage i in pg) ≤ 1

2i
.

We will use that if for all α ∈ A where A is a partition of the sample space the

inequality E (X|α) ≤ c holds for some fixed c then E (X) ≤ c. In Equation 5.0.2 we
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will take the conditional expectation of some value regarding Pi, Ii, and pi. We can

do this because Pi, Ii and pi can be considered as set-valued and partial permutation-

valued random variables. Note that including Pi and Ii is redundant. We are using

this conditional expectation to formulate that we are now working in a setting where

we consider the results of the first few stages until stage (i− 1) given. Since

E (Number of finite cycles completed at stage i in pg|Pi, Ii, pi) =∑
xk∈(x1,...xj)

P (xk is assigned an image from D) +

∑
yk∈(y1,...yj)

P (yk is assigned a preimage from D) (5.0.2)

it would suffice to choose the random sequence ki,j in such a way that

P (some element is assigned an image or preimage from D) ≤ 1

2i
.

This is exactly the setting of Lemma 5.0.3 with w = |D| and ε = 1
2i

so the random

sequence ki,j can be chosen as required. We can conclude that

E (Number of finite cycles in pg) ≤
∑
i∈ω

1

2i

which is finite.

We will now prove the other direction that can be restated as: if G does not have

a nice algebraic closure then the set of permutations with infinitely many finite cycles

is not Haar null. If G does not have a nice algebraic closure then there is a finite

set S ⊂ ω such that ACL (S) is infinite. This means that all of the permutations

in G(S) have infinitely many finite cycles. The stabilizer G(S) is a non-empty open

set. Countably many translates of G(S) can cover the whole G. Thus G(S) cannot be

Haar null.

Definition 5.0.7 Let G ≤ Sym (ω) be a closed group. We will denote the set of

permutations p ∈ G with infinitely many infinite cycles by XIIC (G).

Lemma 5.0.8 Let G be a closed subgroup of Sym (ω) that has a nice algebraic

closure. Let S ⊂ ω be an infinite set. Then the set of permutations that have infinitely

many cycles in their cycle decomposition, each containing at least one element from

S is co-Haar null. We will denote the set of these permutations by PS.
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Proof. Let p be a permutation generated by a random construction that is a slightly

modified version of the construction described in Section 3. We modify the rule to

choose ai at stage i. The original rule was to choose the smallest element from ω

that has undefined preimage or undefined image. We keep this rule for odd i, but

for even i we will choose the smallest element from S that has undefined preimage

and undefined image.

Let g, h ∈ G be two arbitrary permutations.

During the stages of the construction of p every element is contained in ei-

ther an already defined finite cycle or a partially defined cycle: a tuple of ele-

ments (x1, x2 . . . xk) such that it is already determined that p(x1) = x2, p(x2) =

x3 . . . p(xk−1) = xk and the element x1 has no preimage defined yet and the element

xk has no image defined yet. We define the length of the partially defined cycle as k.

We will refer to x1 as the tail and xk as the head of the partially defined cycle. We will

say that two partially defined cycles (x1, x2 . . . xk) and (y1, y2 . . . yl) merge at the ith

stage of the construction if either p(xk) = y1, p(yl) = x1, p
−1(y1) = xk or p−1(x1) = yl

is defined at stage i. We will say that a partially defined cycle (x1, x2 . . . xk) closes

at the ith stage of the construction if p(xk) = x1 or p−1(x1) = xk is defined at stage

i.

Let X and Xi denote the following random variables:

X = (the number of occasions during the construction when two partially

defined cycles with length at least two merge or a partially defined cycle

with length at least two closes),

Xi = (the number of occasions during stage i when two partially defined

cycles with length at least two merge or a partially defined cycle

with length at least two closes),

Yi = (a variable indicating that at stage 2i the element a2i is assigned its preimage

or image defined as the head or tail of a partially defined cycle

already of length at least two).
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In the definition of Yi “is assigned its preimage”means that a2i /∈ P2i so the definition

of the preimage of a2i happened at the first step of stage 2i and“is assigned its image”

means that a2i /∈ L2i+1 so the definition of the image of a2i happened at the second

step of stage 2i.

Note that X =
∑

i∈ωXi. We will show that the sequence ki,j can be chosen in

such a way that E (X) is finite and Yi is always small enough. More precisely, in

a way that E (Xi) ≤ 1
2i

and P (Yi) ≤ 1
2i

for every i ∈ ω. Then
∑

i∈ω P (Yi) < ∞
and the Borel-Cantelli Lemma implies that it only happens for finitely many i that

we define the preimage or image of a2i as the head or tail of some longer than one

partially defined cycle with probability 1. This will prove that PS is co-Haar null

because there are only a finite number of merges between longer than one partially

defined cycles with probability 1. We will use a similar argument to that in the proof

of Theorem 5.0.6.

At stage i we define the image of a finite number of elements x1, x2 . . . xj and

the preimage of another finite number of elements y1, y2 . . . yj under p. For the per-

mutation hpg this means that the image of g−1(xk) under hpg is defined as hp(xk)

and the preimage of h(yl) under hpg is defined as g−1p−1(yl).

During the construction we have partially defined cycles with two free ends.

These partially defined cycles grow during the construction either when a preimage

is defined for their tail or an image is defined for their head. At these events a

partially defined cycle can close or two of them can merge. We will denote the set

of endpoints of those partially defined cycles that contain at least two elements by

E. The set E is finite at every stage. Using Lemma 5.0.3 with w = |E| and ε = 1
2i

yields that the numbers ki,j can be chosen in an appropriate way.

Theorem 5.0.9 Let G ≤ Sym (ω) be a closed group that has a nice algebraic closure.

The set XIIC (G) is co-Haar null.

Proof. Apply Lemma 5.0.8 with arbitrary infinite S ⊂ ω.

We hope that the following Theorem will be useful in concrete classifications of
conjugacy classes of automorphism groups (similar to Section 6).

Theorem 5.0.10 Let G ≤ Sym (ω) be a closed group that has a nice algebraic

closure. Let H ⊂ G denote the set of permutations p with the following property:
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1. For every finite set X ⊂ ω and for every infinite orbit O under the stabilizer

G(X) the orbit O is not covered by finitely many cycles of p.

Then H is co-Haar null.

Proof. Let HX,O where X ⊂ ω is a finite set and O is an infinite orbit under G(X)

denote the set of permutations p such that O is not covered by finitely many cycles

of p. Then

H =
⋂

(X⊂ω finite)

⋂
(O is an infinite orbit under G(X))

HX,O.

It is enough to show that all HX,O are co-Haar null since the countable intersection

of co-Haar null sets is co-Haar null. Apply Lemma 5.0.8 with S = O.
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6 A concrete example

Let Aut(Q) denote the set of automorphisms of (Q, <), that is, the set of order
preserving bijections f : Q→ Q. With the topology pointwise convergence, Aut(Q)
is a Polish group. In the current section, our world is restricted to the rational
numbers, hence the interval (p, q) now denotes the set {r ∈ Q : p < r < q}. For an
automorphism f ∈ Aut(Q), we denote the set of fixed points of f by Fix(f). The
set of orbitals of f , Of , consists of the convex hull (relative to Q) of the orbits of
the rational numbers, that is

Of = {conv({fn(r) : n ∈ Z}) : r ∈ Q}.

It is easy to see that the orbitals of f form a partition of Q, with the fixed points
determining one element orbitals, hence “being in the same orbital” is an equivalence
relation. Using this fact, we define the relation < on the set of orbitals by letting
O1 < O2 for distinct O1, O2 ∈ Of if p1 < p2 for some (and hence for all) p1 ∈ O1 and
p2 ∈ O2. Note that < is a linear order on the set of orbitals.

It is also easy to see that if p, q ∈ Q are in the same orbital of f then f(p) > p⇔
f(q) > q, f(p) < p⇔ f(q) < q and f(p) = p⇔ f(q) = q ⇒ p = q. This observation
makes it possible to define the parity function, sf : Of → {−1, 0, 1}. Let sf (O) = 0
if O consists of a fixed point of f , sf (O) = 1 if f(p) > p for some (and hence, for
all) p ∈ O and sf (O) = −1 if f(p) < p for some (and hence, for all) p ∈ O.

The main theorem of this section is the following.

Theorem 6.0.1 The conjugacy class of f ∈ Aut(Q) is Haar positive if and only

if Fix(f) is finite, and for distinct orbitals O1, O2 ∈ Of with O1 < O2 such that

sf (O1) = sf (O2) = 1 or sf (O1) = sf (O2) = −1, there exists an orbital O3 ∈ Of with

O1 < O3 < O2 and sf (O3) 6= sf (O1).

Remark 6.0.2 We actually prove that every Haar positive conjugacy class C is

compact biter, that is, a portion of every compact set can be translated into C.

Together with the next theorem this yields a complete description of the random
element of Aut(Q).

Theorem 6.0.3 The union of the Haar null conjugacy classes of Aut(Q) is Haar

null.

We say that an automorphism is good if it satisfies the conditions of the theorem.
In the proof of the theorem, we use the following lemma to check conjugacy between
good automorphisms.

Lemma 6.0.4 Let f and g be good automorphisms. Suppose that there exists a

function ϕ : Q → Of with the following properties: it is monotonically increasing
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(not necessarily strictly), surjective, |ϕ−1(p)| = 1 for every p ∈ Fix(f), and for each

q ∈ Q,

(1) g(q) = q ⇔ sf (ϕ(q)) = 0;

(2) g(q) > q ⇔ sf (ϕ(q)) = 1;

(3) g(q) < q ⇔ sf (ϕ(q)) = −1.

Then f and g are conjugate automorphisms.

Proof. We use the characterization in [7] to check the conjugacy of automorphisms:

f and g are conjugate if and only if there exists an order preserving bijection ψ :

Og → Of such that sg(O) = sf (ψ(O)) for every O ∈ Og.

We now show that it is legal to define the appropriate bijection ψ as ψ(O) = O′

where O′ = ϕ(p) for some p ∈ O. To show that it is a well-defined map, we need

to prove that given O ∈ Og and p, q ∈ O, ϕ(p) = ϕ(q). Suppose the contrary,

then p 6= q, hence sg(O) = 1 or sg(O) = −1. We now suppose that sg(O) = 1,

the case where sg(O) = −1 is analogous. Then g(p) > p and g(q) > q, hence

sf (ϕ(p)) = sf (ϕ(q)) = 1. Since f is good, and ϕ(p) 6= ϕ(q) by our assumption, there

is an orbital O′ ∈ Of such that ϕ(p) < O′ < ϕ(q) and sf (O
′) 6= 1. Using that ϕ is

surjective and monotone increasing, there exists an r ∈ (p, q) such that ϕ(r) = O′.

Then sf (ϕ(r)) 6= 1, but r is in the same orbital as p and q, since orbitals are convex,

hence g(r) > r. This contradicts (2).

The map ψ is increasing and surjective, since ϕ is increasing and surjective.

One can easily check that conditions (1), (2) and (3) imply that for every O ∈ Og,

sg(O) = sf (ψ(O)). Hence it remains to show that ψ is injective.

Let O,O′ ∈ Og be distinct orbitals with ψ(O) = ψ(O′). Then using conditions

(1), (2) and (3), we have sg(O) = sg(O
′). If sg(O) = sg(O

′) = 0 then sf (ψ(O)) = 0,

hence ψ(O) is a set consisting of a fixed point, let {q} = ψ(O). Then |ϕ−1(q)| = 1

using the assumption of the lemma, contradicting the fact that O,O′ ⊂ ϕ−1(q). If

sg(O) = sg(O
′) = 1 then using that g is good, there exists an orbital O′′ ∈ Og

between O and O′ such that sg(O
′′) 6= 1. Then using the monotonicity of ψ one

obtains ψ(O′′) = ψ(O′), hence 1 6= sf (ψ(O′′)) = sf (ψ(O)) = 1, a contradiction. An

analogous argument shows that sg(O) = sg(O
′) = −1 also leads to a contradiction,

hence the proof of the lemma is complete.
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Now we turn to the proof of the theorems.

Proof of Theorem 6.0.1. First we show the “only if” part. Using Theorem 5.0.6, for

the co-Haar null f ∈ Aut(Q), Fix(f) is finite. Since the cardinality of fixed points is

the same for conjugate automorphisms, it is clear that the conjugacy class of f can

only be Haar positive if Fix(f) is finite.

The property that between any two distinct orbitals O1, O2 ∈ Of with either

sf (O1) = sf (O2) = 1 or sf (O1) = sf (O2) = −1, there exists an orbital O3 ∈ Of

with sf (O3) 6= sf (O1), is also conjugacy invariant. Hence it is enough to prove the

following lemma to finish the “only if” part of the theorem.

Lemma 6.0.5 For the co-Haar null f ∈ Aut(Q), for distinct orbitals O1, O2 ∈ Of

with O1 < O2 such that either sf (O1) = sf (O2) = 1 or sf (O1) = sf (O2) = −1, there

exists an orbital O3 ∈ Of with O1 < O3 < O2 and sf (O3) 6= sf (O1).

Proof. Let H be the set of those automorphisms that satisfy the property in the

lemma, and let A denote the set of functions f ∈ Hc such that we can choose distinct

orbitals Of
1 , O

f
2 ∈ Of such that Of

1 < Of
2 , sf (O

f
1 ) = sf (O

f
2 ) = 1, and between Of

1

and Of
2 , there is no orbital O3 ∈ Of with sf (O3) 6= 1. Also, let us denote by A′

the set of functions f ∈ Hc, such that we can choose distinct orbitals Of
1 , O

f
2 ∈ Of

such that Of
1 < Of

2 , sf (O
f
1 ) = sf (O

f
2 ) = −1, and between Of

1 and Of
2 , there is no

orbital O3 ∈ Of with sf (O3) 6= −1. We show that A is Haar null and the same can

be proved similarly for A′. Since it is easy to see that Hc = A∪A′, proving this will

finish the proof of the lemma.

We use Theorem 2.1.14 to show that the conjugacy invariant set A is Haar null.

Let (p0, q0), (p1, q1), . . . be an enumeration of all pairs (p, q) with p < q, and for all

n ∈ N, let

An ={f ∈ Aut(Q) : pn and qn are in distinct orbitals with respect to f

and f(r) > r for every r ∈ [pn, qn]}

=
⋂
k∈Z

⋂
r∈[pn,qn]

{f ∈ Aut(Q) : fk(pn) < qn and f(r) > r}.

Note that A =
⋃
n∈N An and An is Borel for every n ∈ N. Using Theorem 2.1.14, it

is enough to show that there is a conjugacy invariant set B with 1 = idQ ∈ B and
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B ∩
⋃
n∈N A

−1
n An = ∅. Let

B = {f ∈ Aut(Q) :

Fix(f) is finite, |Of | = 2|Fix(f)|+ 1 and f(r) ≥ r for every r ∈ Q}.

Note that the condition |Of | = 2|Fix(f)|+ 1 essentially states that between neigh-

boring fixed points, every point is in the same orbital (roughly speaking, this means

that there are no “irrational fixed points”).

It is easy to see that B is a conjugacy invariant set, and also that idQ ∈ B. Let

n ∈ N be arbitrary, it remains to show that if f , g ∈ An then f−1g 6∈ B. Let O

be the orbit of pn with respect to g and let I = {r ∈ Q : r ≤ r′ for some r′ ∈ O}.
Note that I is convex, and since g(r) > r for every r ∈ (pn, qn) but pn and qn are in

different orbitals (with respect to both f and g), qn 6∈ I.

There are two cases with respect to the relationship of I and the orbitals of f .

Suppose first that I does not split orbitals of f , that is, there is no r ∈ I and k ∈ Z
such that fk(r) 6∈ I. Then the sets I and Q \ I are invariant under both f and g

(and f−1 and g−1), thus I does not split any orbitals of f−1g. Moreover, I has no

greatest element, nor Q \ I has a least element, since any such element would need

to be a fixed point of g, but g does not have a fixed point in the interval (pn, qn).

Now suppose that f−1g ∈ B. Then it has a greatest fixed point (if any) that belongs

to I and a least fixed point (if any) that belongs to Q \ I, hence between the two,

every point is in the same orbital. This contradicts the fact that I does not split the

orbitals of f−1g.

Now suppose that I splits any orbital of f , thus there exist r ∈ I and k ∈ Z
such that fk(r) 6∈ I. Since f(r) > r for every r ∈ (pn, qn), it follows that there is an

r ∈ (pn,∞)∩I such that f(r) 6∈ I. Then g−1(f(r)) 6∈ I, since I does not split orbitals

of g. By setting r′ = g−1(f(r)), we see that f−1g(r′) = r ∈ I, thus f−1g(r′) < r′,

hence f−1g 6∈ B also in this case, finishing the proof of the lemma.

Now we prove the “if” part of the theorem. Let f be a good automorphism, we

prove that C, the conjugacy class of f is Haar positive. We use the notation O = Of

and s = sf .

To show this, using Lemma 2.1.13, it is enough to prove that for any compact

set F ⊂ Aut(Q) there is an open set U ⊂ Aut(Q) and an element g ∈ Aut(Q) such

that ∅ 6= F ∩ U ⊂ gC. So let F ⊂ Aut(Q) be compact. In our proof, we partition Q
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into finitely many intervals bounded by the fixed points of f , and on each interval,

we define a suitable part of g.

Let {p1, p2, . . . , pk−1} be the set of fixed points of f (which is necessarily finite)

with p1 < p2 < · · · < pk−1. We now choose q1, q2, . . . , qk−1 ∈ Q such that if we

set U = {h ∈ Aut(Q) : ∀i(h(pi) = qi)} then U ∩ F 6= ∅. Let K = U ∩ F, we will

construct an automorphism g with K ⊂ gC to finish the proof of the theorem. Note

that U is clopen, hence K is compact. Also note that the sets {h(p) : h ∈ K} and

{h−1(p) : h ∈ K} are finite, since K is compact.

Let us use the notation p0 = q0 = −∞ and pk = qk = +∞. We construct g and

a function ϕ : Q ×K → O separately on each interval (pi, pi+1), recursively. So let

i < k be fixed for now and let r1, r2, . . . be an enumeration of (pi, pi+1) and t1, t2, . . .

be an enumeration of (qi, qi+1). Let O1, O2, . . . be an infinite sequence of elements

of O that are subsets of (pi, pi+1), containing every such element at least once. Note

that there may be only finitely many such intervals, hence the sequence may contain

the same element more than once. We let O′ = {O1, O2, . . . }. At the nth step of the

recursive construction, we have a finite set Hn ⊂ (pi, pi+1) and functions gn and ϕn.

We preserve the following properties of these sets and functions:

For every n ∈ N, h, h1, h2 ∈ K and p, p′, p′′ ∈ Hn, where p′ < p′′ and (p′, p′′)∩Hn =

∅,

(i) H0 ⊂ H1 ⊂ . . . , g0 ⊂ g1 ⊂ . . . and ϕ0 ⊂ ϕ1 ⊂ . . . ;

(ii) Hn ⊂ (pi, pi+1) is finite;

(iii) gn : Hn → (qi, qi+1) is strictly increasing;

(iv) ϕn : Hn ×K→ O′, and ϕn(., h) is increasing;

(v) r1, . . . , rn+1 ∈ H3n+1, t1, . . . , tn+1 ∈ g3n+2(H3n+2) and O1, . . . , On+1 ∈
ϕ3n+3(H3n+3, h);

(vi) it cannot happen that h1(p
′) < gn(p′) < h2(p

′), h1(p
′′) > gn(p′′) > h2(p

′′);

(vii) if h(p′) > gn(p′) and h(p′′) > gn(p′′) then h(r) ≥ gn(p′′) for every r ∈ [p′, p′′];

similarly, if h(p′) < gn(p′) and h(p′′) < gn(p′′) then h(r) ≤ gn(p′) for every

r ∈ [p′, p′′] (thus extending gn in any way to a strictly increasing function on

[p′, p′′], there is no r ∈ [p′, p′′] where the value of the extension can be equal to

h(r));
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(viii) s(ϕn(p, h)) = 1⇔ gn(p) < h(p) and s(ϕn(p, h)) = −1⇔ gn(p) > h(p);

(ix) ϕn(Hn, h1) = ϕn(Hn, h2);

(x) the value of s is alternating on the image ϕn(Hn, h), that is, either ϕn(p′, h) =

ϕn(p′′, h) or s(ϕn(p′, h)) 6= s(ϕn(p′′, h));

(xi) hi(p
′) > gn(p′) and hi(p

′′) < gn(p′′) (i = 1, 2) (or similarly, hi(p
′) < gn(p′) and

hi(p
′′) > gn(p′′) (i = 1, 2)) implies that ϕn(p′, h1) = ϕn(p′, h2) and ϕn(p′′, h1) =

ϕn(p′′, h2).

Remark 6.0.6 Conditions (vi) and (vii) are equivalent to the following fact: the

rectangle conv((p′, gn(p′)), (p′′, gn(p′)), (p′′, gn(p′′)), (p′, gn(p′′))) has two sides that are

opposite such that no h ∈ K intersects the interior of any of those sides.

First we prove the following.

Claim 6.0.7 On each interval (pi, pi+1), the sets and functions Hn, gn and ϕn can

be constructed with the above properties.

Proof. We prove the claim by induction on n. For n = 0, let H0 = g0 = ϕ0 = ∅.
Now suppose that Hn, gn and ϕn are given with the above properties, using them,

we construct the suitable Hn+1, gn+1 and ϕn+1. There are three cases according to

the remainder of n mod 3.

Case 1: n = 3m. At this step, we make sure that rm+1 ∈ Hn+1. If already

rm+1 ∈ Hn then let Hn+1 = Hn, gn+1 = gn and ϕn+1 = ϕn. Otherwise, there are

multiple cases according to the existence of p′ ∈ Hn with p′ < rm+1, p
′′ ∈ Hn

with rm+1 < p′′, and whether gn(p′) < h(p′) or gn(p′) > h(p′), gn(p′′) < h(p′′) or

gn(p′′) > h(p′′).

Case 1a: there are neither p′ ∈ Hn with p′ < rm+1 nor p′′ ∈ Hn with rm+1 < p′′

(that is, Hn = ∅, n = 0). If s(O1) = 1 then we find q ∈ (qi, qi+1) with q < h(rm+1)

for every h ∈ K, otherwise, we find q ∈ (qi, qi+1) with q > h(rm+1) for every h ∈ K.

Such a q exists, since K is compact, thus {h(rm+1) : h ∈ K} is finite. Now we set

Hn+1 = {rm+1}, gn+1(rm+1) = q, ϕn+1(rm+1, h) = O1 for every h ∈ K.

Case 1b: there is a p′ ∈ Hn with p′ < rm+1 but there is no p′′ ∈ Hn with

rm+1 < p′′. Let p′ be the largest element in Hn, clearly p′ < rm+1. Let q′ = gn(p′).

Using (ix), ϕn(p′, h) is the same for every h ∈ K, since it is the largest element in
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the common image ϕn(Hn, h). Let O = ϕn(p′, h) for some h ∈ K. Depending on

s(O), gn(p′) < h(p′) for every h ∈ K or gn(p′) > h(p′) for every h ∈ K using (viii).

In the first case, choose t ∈ (qi, qi+1) such that q′ < t < h(p′) for every h ∈ K. Then

set Hn+1 = Hn ∪ {rm+1} and let gn+1 extend gn with gn+1(rm+1) = t, and let ϕn+1

extend ϕn with ϕn+1(rm+1, h) = O for every h ∈ K.

In the second case, let h(rm+1) < t for every h ∈ K, also satisfying t ∈ (q′, qi+1).

Choose q ∈ (q′, t) such that q > h(rm+1) for every h ∈ K. As h−1(q′) > p′ for every

h ∈ K, there exists p ∈ (p′, rm+1) such that p < h−1(q′) for every h ∈ K. Now set

Hn+1 = Hn∪{rm+1, p}, and let gn+1 and ϕn+1 extend the appropriate functions with

gn+1(rm+1) = t, gn+1(p) = q and ϕn+1(rm+1, h) = ϕn+1(p, h) = O for every h ∈ K.

Case 1c: there is no p′ ∈ Hn with p′ < rm+1 but there is a p′′ ∈ Hn with rm+1 < p′′.

This case can be handled similarly as Case 1b.

Case 1d: there is a p′ ∈ Hn with p′ < rm+1, there is a p′′ ∈ Hn with rm+1 < p′′, and

for the largest such p′ and the smallest such p′′, there is no h ∈ K with gn(p′) < h(p′)

and gn(p′′) > h(p′′). In this case, let K′ = {h ∈ K : gn(p′) > h(p′) and gn(p′′) <

h(p′′)}, where p′ ∈ Hn is the largest with p′ < rm+1 and p′′ ∈ Hn is the smallest with

p′′ > rm+1. Note that K′ may be the empty set. Let q′ = gn(p′) and q′′ = gn(p′′).

Choose t ∈ (q′, q′′) such that t > h(rm+1) for each h ∈ K′ with h(rm+1) < q′′. Such a

t exists, since the compactness of K′ implies that {h(rm+1) : h ∈ K′, h(rm+1) < q′′}
is finite. We will set gn+1(rm+1) = t, but we need to define the value of gn+1 at one

more place. Choose q ∈ (q′, t) with q > h(rm+1) for each h ∈ K′ with h(rm+1) < q′′.

For every h ∈ K′ we have h(p′) < q′, hence also p′ < h−1(q′). Therefore there is a

p ∈ (p′, rm+1) for which p < h−1(q′) for every h ∈ K′.

Now let Hn+1 = Hn∪{p, rm+1}, gn+1 extend gn with gn+1(p) = q, gn+1(rm+1) = t.

For h ∈ K′, either h(rm+1) < t or h(rm+1) > t. If h(rm+1) < t then let

ϕn+1(rm+1, h) = ϕn(p′, h), if h(rm+1) > t then let ϕn+1(rm+1, h) = ϕn(p′′, h). In both

cases, let ϕn+1(p, h) = ϕn(p′, h). If h ∈ K \K′ then let ϕn+1(p, h) = ϕn+1(rm+1, h) =

ϕn(p′, h). Note that using (viii), s(ϕn(p′, h)) = s(ϕn(p′′, h)), thus (x) implies that

ϕn(p′, h) = ϕn(p′′, h). All of the properties can be checked easily.

Case 1e: there is a p′ ∈ Hn with p′ < rm+1, there is a p′′ ∈ Hn with rm+1 < p′′, and

for the largest such p′ and the smallest such p′′, there is no h ∈ K with gn(p′) > h(p′)

and gn(p′′) < h(p′′). Now let K′ = {h ∈ K : gn(p′) < h(p′) and gn(p′′) > h(p′′)},
where again, p′ ∈ Hn is the largest with p′ < rm+1 and p′′ ∈ Hn is the smallest with

p′′ > rm+1. Let q′ = gn(p′) and q′′ = gn(p′′). The set {h(p′′) : h ∈ K′} is finite, hence
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there is a t ∈ (q′, q′′) with t > h(p′′) for every h ∈ K′. Let Hn+1 = Hn ∪ {rm+1},
gn+1(rm+1) = t and ϕn+1(rm+1, h) = ϕn(p′′, h) for every h ∈ K. Using the fact that

for no h ∈ K can h and any strictly increasing extension of gn+1 have the same

values on [rm+1, p
′′], one can easily check that every property is satisfied.

Using (vi), these cover all sub-cases of Case 1. Now we turn to the second case.

Case 2: n = 3m+1. At this step, we make sure that tm+1 ∈ gn+1(Hn+1). If already

tm+1 ∈ gn(Hn) then let Hn+1 = Hn, gn+1 = gn and ϕn+1 = ϕn. Otherwise, similarly

as in Case 1, there are multiple sub-cases according to the existence of q′ ∈ gn(Hn)

with q′ < tm+1, q
′′ ∈ gn(Hn) with tm+1 < q′′, and whether there exists an h ∈ K

such that gn(p′) < h(p′) or gn(p′) > h(p′), gn(p′′) < h(p′′) or gn(p′′) > h(p′′), where

p′ = g−1n (q′) and p′′ = g−1n (q′′). These sub-cases can be handled similarly as in Case

1, but we quickly go though them. Since rm+1 ∈ Hn we do not have to deal with the

case Hn = ∅.

Case 2a: there is a q′ ∈ gn(Hn) with q′ < tm+1 but there is no q′′ ∈ gn(Hn) with

tm+1 < q′′. Let q′ be the largest element in gn(Hn), clearly q′ < tm+1. As before,

gn(p′) < h(p′) for every h ∈ K or gn(p′) > h(p′) for every h ∈ K, where p′ = g−1n (q′).

In the first case, choose r ∈ (p′, pi+1) and r > h−1(tm+1) for every h ∈ K. Such

an r exists, since h(pi+1) = qi+1 for every h ∈ K, and {h−1(tm+1) : h ∈ K} is

finite. Let q ∈ (q′, tm+1) with q < h(p′) for every h ∈ K, and choose p ∈ (p′, r)

with p > h−1(tm+1) for every h ∈ K. Then let Hn+1 = Hn ∪ {r, p}, and let gn+1

and ϕn+1 extend gn and ϕn, respectively, with gn+1(r) = tm+1, gn+1(p) = q and

ϕn+1(r, h) = ϕn+1(p, h) = ϕn(p′, h) for every h ∈ K.

In the second case, choose r ∈ (p′, pi+1) with r < h−1(q′) for every h ∈ K. Such an

r exists, since for every h ∈ K, h(p′) < q′ implies p′ < h−1(q′) and {h−1(q′) : h ∈ K}
is finite. Then setHn+1 = Hn∪{r}, and let gn+1(r) = tm+1 and ϕn+1(p, h) = ϕn(p′, h)

for every h ∈ K.

Case 2b: there is no q′ ∈ gn(Hn) with q′ < tm+1 but there is a q′′ ∈ gn(Hn) with

tm+1 < q′′. This case can be handled similarly to Case 2a.

Case 2c: there is a q′ ∈ gn(Hn) with q′ < tm+1, there is a q′′ ∈ Hn with tm+1 <

q′′, and for the largest such q′ and the smallest such q′′, there is no h ∈ K with

gn(p′) < h(p′) and gn(p′′) > h(p′′), where p′ = g−1n (q′) and p′′ = g−1n (q′′). This is

analogous to Case 1e. There exists r ∈ (p′, p′′) with h−1(q′) > r for every h ∈ K such

that gn(p′) > h(p′) and gn(p′) < h(p′). As before, set Hn+1 = Hn ∪ {r} and let gn+1
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extend gn with gn+1(r) = tm+1, and ϕn+1 extend ϕn with ϕn+1(r, h) = ϕn(p′, h) for

every h ∈ K.

Case 2d: there is a q′ ∈ gn(Hn) with q′ < tm+1, there is a q′′ ∈ Hn with tm+1 < q′′,

and for the largest such q′ and the smallest such q′′, there is no h ∈ K with gn(p′) >

h(p′) and gn(p′′) < h(p′′), where p′ = g−1n (q′) and p′′ = g−1n (q′′). This is analogous

to Case 1d. Let K′ = {h ∈ K : gn(p′) < h(p′) and gn(p′′) > h(p′′)}, this may again

be the empty set. Choose r ∈ (p′, p′′) such that r < h−1(tm+1) for each h ∈ K′ with

h−1(tm+1) > p′. There is a q ∈ (tm+1, q
′′) with q > h(p′′) for every h ∈ K′. Choose

p ∈ (r, p′′) with p < h−1(tm+1) for each h ∈ K′ with h−1(tm+1) > p′.

Now let Hn+1 = Hn ∪ {p, r}, gn+1 extend gn with gn+1(r) = tm+1, gn+1(p) = q.

For h ∈ K′, either h−1(tm+1) ≤ p′ or h−1(tm+1) > p. If h−1(tm+1) ≤ p′ then let

ϕn+1(r, h) = ϕn(p′, h), if h−1(tm+1) > p then let ϕn+1(r, h) = ϕn(p′′, h). In both cases,

let ϕn+1(p, h) = ϕn(p′′, h). If h ∈ K\K′ then let ϕn+1(p, h) = ϕn+1(r, h) = ϕn(p′, h).

Again using (vi), these cover all sub-cases of Case 2. Now we turn to the third

case.

Case 3: n = 3m + 2. At this step, we make sure that Om+1 ∈ ϕn+1(Hn+1, h)

for every h ∈ K. Note throughout that there is no O ∈ O′ with s(O) = 0. If

Om+1 ∈ ϕn(Hn, h) for any (hence, by (ix) for every) h ∈ K then let Hn+1 = Hn,

gn+1 = gn and ϕn+1 = ϕn. If this is not the case, we consider the sub-cases according

to ϕn(Hn, h0) for a fixed h0 ∈ K. We suppose throughout that s(Om+1) = 1. The

case s(Om+1) = −1 is similar. Also, note that Hn 6= ∅, as, for example, r1 ∈ Hn.

Case 3a: Om+1 > O for every O ∈ ϕn(Hn, h0), and for the largest O ∈ ϕn(Hn, h0)

(with respect to <), s(O) = −1. Let p be the largest element in Hn, q = gn(p), then

O = ϕn(p, h0). This means, using (ix) and (viii) that ϕn(p, h) = O and gn(p) > h(p)

for every h ∈ K. As h(pi+1) = qi+1 for every h ∈ K and gn : Hn → (qi, qi+1), we

can choose t ∈ (q, qi+1) and as {h−1(t) : h ∈ K} is finite, there exists r ∈ (p, pi+1)

with r > h−1(t) for every h ∈ K. Now let Hn+1 = Hn ∪ {r}, let gn+1 extend gn with

gn+1(r) = t and let ϕn+1 extend ϕn with ϕn+1(r, h) = Om+1 for every h ∈ K. One

can easily check that the necessary conditions still hold.

Case 3b: Om+1 > O for every O ∈ ϕn(Hn, h0), and for the largest O ∈ ϕn(Hn, h0)

(with respect to <), s(O) = 1. Let p be the largest element in Hn, q = gn(p), then

O = ϕn(p, h0). Using that f is good, there exists O′ ∈ O′ with O < O′ < Om+1

and s(O′) = −1. Now choose r′ ∈ (p, pi+1 and choose t′ ∈ (q, qi+1) with t′ > h(r′)

for every h ∈ K. Then choose t′′ ∈ (t′, qi+1) and choose r′′ ∈ (r′, pi+1) with r′′ >
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h−1(t′′) for every h ∈ K. Now let Hn+1 = Hn ∪ {r′, r′′}, and let gn+1 extend gn with

gn+1(r
′) = t′ and gn+1(r

′′) = t′′, and let ϕn+1 extend ϕn with ϕn+1(r
′, h) = O′ and

ϕn+1(r
′′, h) = Om+1 for every h ∈ K.

The cases where Om+1 < O for every O ∈ ϕn(Hn, h0) are similar to the ones

above.

Case 3c: Om+1 is between elements of ϕn(Hn, h0), and if O′ is the largest element

of ϕn(Hn, h0) with O′ < Om+1 and O′′ is the smallest element of ϕn(Hn, h0) with

Om+1 < O′′ then s(O′) = −1 and s(O′′) = 1. In this case, choose O ∈ O′ with

Om+1 < O < O′′ and s(O) = −1, again, such an O exists because f is good. The

orbitals O′ and O′′ are neighboring ones in ϕn(Hn, h) for every h ∈ K.

Notice that for every h ∈ K there exists a unique pair of neighboring points

p′, p′′ ∈ Hn with ϕn(p′, h) = O′ and ϕn(p′′, h) = O′′. Therefore, we can partition K

into finitely many compact sets according to this pair. We define gn+1 separately on

each such interval (p′, p′′), that is, where p′ and p′′ are neighboring points in Hn and

ϕn(p′, h) = O′, ϕn(p′′, h) = O′′ for some h ∈ K.

So let p′, p′′ be such elements of Hn and let K′ = {h ∈ K : ϕn(p′, h) =

O′ and ϕn(p′′, h) = O′′}. Using the facts that s(O′) = −1, s(O′′) = 1 and (viii),

we have gn(p′) > h(p′) and gn(p′′) < h(p′′) for every h ∈ K′. Let q′ = gn(p′) and

q′′ = gn(p′′), and choose q ∈ (q′, q′′). Let {r1, r2, . . . , rc} = {h−1(q) : h ∈ K′}, where

r1 < r2 < · · · < rc. Note that h(p′) < gn(p′) = q′ < q < q′′ = gn(p′′) < h(p′′) for

every h ∈ K′, hence p′ < r1 and rc < p′′. For 1 ≤ j ≤ c, let Kj = {h ∈ K′ : h−1(q) =

rj}.

Choose t ∈ (q′, q) with t > h(rj) for every 1 ≤ j ≤ c and every h ∈ K′ such

that h(rj) < q. From now on, the values of gn+1|(p′,p′′) on newly defined points will

always be at least t. This will achieve that if we add new points to take care of the

functions in Kj for some j, then our choices will not interfere with the functions in

K′ \Kj.

Choose r ∈ (p′, p′′) with r < h−1(q′) for every h ∈ K′. By setting gn+1(r) = t and

extending it to a strictly increasing function, it can be easily seen that the extension

cannot have a common value with any h ∈ K′ on the interval (p′, r). Let t11 ∈ (t, q)

be arbitrary and choose r11 ∈ (r, r1) with t11 < h(r11) for every h ∈ K1. Then choose

r12 ∈ (r11, r
1) and choose t12 ∈ (t11, q) such that t12 > h(r12) for every h ∈ K1. Then let

r13 = r1 and choose t13 ∈ (t12, q).
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We handle the families Kj for j ≥ 2 similarly. Choose tj1 ∈ (tj−13 , q) and then

choose rj1 ∈ (rj−13 , rj) such that h(rj1) > tj1 for every h ∈ Kj. Then let rj2 ∈ (rj1, r
j)

and choose tj2 ∈ (tj1, q) with tj2 > h(rj2) for every h ∈ Kj. Then let rj3 = rj and choose

tj3 ∈ (tj2, q).

After recursively choosing the rational numbers above for every j ≤ c, we choose

p ∈ (rc3, p
′′) such that p > h−1(q′′) for every h ∈ K′. Now we will set Hn+1∩(p′, p′′) =

(Hn∩ (p′, p′′))∪{r, p, rj` : 1 ≤ j ≤ c, 1 ≤ ` ≤ 3}. Let gn+1 extend gn with gn+1(r) = t,

gn+1(p) = q and gn+1(r
j
`) = tj` for every 1 ≤ j ≤ c and 1 ≤ ` ≤ 3. Let ϕn+1 extend ϕn

with ϕn+1(r, h) = O′, ϕn+1(p, h) = O′′ for every h ∈ K′. Also, let ϕn+1(r
j
` , h) = O′

for every ` if h ∈ Kj′ with j′ > j, and ϕn+1(r
j
` , h) = O′′ if j′ < j. If j′ = j then let

ϕn+1(r
j
1, h) = Om+1, ϕn+1(r

j
2, h) = O and ϕn+1(r

j
3, h) = O′′. For every h ∈ K \ K′,

let ϕn+1(x, h) = ϕn(p′, h) = ϕn(p′′, h), for every x ∈ {r, p, rj` : 1 ≤ j ≤ c, 1 ≤ ` ≤ 3},
where we used (x) for the last equality.

We do the same in every interval of the form (p′, p′′), where p′ and p′′ are neighbors

in Hn, and ϕn(h, p′) = O′ and ϕn(h, p′′) = O′′ for some h ∈ K. Extending gn and ϕn

appropriately, one obtains Hn+1, gn+1 and ϕn+1 with the necessary conditions. We

note that the choice of t ensures that condition (vii) is satisfied.

Case 3d: Om+1 is between elements of ϕn(Hn, h0), and if O′ is the largest element

of ϕn(Hn, h0) with O′ < Om+1 and O′′ is the smallest element of ϕn(Hn, h0) with

Om+1 < O′′ then s(O′) = 1 and s(O′′) = −1. This case can be handled quite similarly

as Case 3c. Choose O ∈ O′ with O′ < O < Om+1 and s(O) = −1. Again the unique

pairs of neighboring points p′, p′′ ∈ Hn with ϕn(p′, h) = O′ and ϕn(p′′, h) = O′′

define a partition of K′. So let p′, p′′ ∈ Hn be such a pair, we set q′ = gn(p′) and

q′′ = gn(p′′).

Let p ∈ (p′, p′′) be arbitrary and let {t1, . . . , tc} = {h(p) : h ∈ K′}, where

K′ = {h ∈ K : h(p′) > gn(p′) and h(p′′) < gn(p′′)}, such that t1 < · · · < tc. We set

Kj = {h ∈ K′ : h(p) = tj}. Now one can choose r ∈ (p′, p) with h−1(tj) < r for every

h ∈ K′ and 1 ≤ j ≤ c if h−1(tj) < p. Let t ∈ (q′, t1) be such that t < h(p′) for every

h ∈ K′. Now suppose that for j′ < j and 1 ≤ ` ≤ 3 the points rj
′

` and tj
′

` are given.

Then choose rj1 arbitrarily for the set (r, p) if j = 1 and from (rj−13 , p) if j > 1. Then

choose tj1 from (t, tj) if j = 1 and from (tj−13 , tj) if j > 1 such that h(rj1) < tj1 for

every h ∈ Kj. Then choose tj2 ∈ (tj1, t
j) and choose rj2 ∈ (rj1, p) such that h(rj2) > tj2

for every h ∈ Kj. Finally, choose rj3 ∈ (rj2, p) and set tj3 = tj.

After recursively choosing the points rj` and tj`, choose q ∈ (tc, q′′) such that
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q > h(p′′) for every h ∈ K′. As before, let Hn+1∩ (p′, p′′) = (Hn∩ (p′, p′′))∪{r, p, rj` :

1 ≤ j ≤ c, 1 ≤ ` ≤ 3}, and define gn+1(r) = t, gn+1(p) = q and gn+1(r
j
`) = tj` for

every 1 ≤ j ≤ c and 1 ≤ ` ≤ 3. For h ∈ Kj let ϕn+1(r, h) = O′, ϕn+1(r
j′

` , h) = O′ for

every j′ < j and 1 ≤ ` ≤ 3, ϕn+1(r
j
1, h) = O, ϕn+1(r

j
2, h) = Om+1, ϕn+1(r

j
3, h) = O′′,

and ϕn+1(r
j′′

` , h) = ϕn+1(p, h) = O′′ for every j′′ > j, 1 ≤ ` ≤ 3. For every h ∈ K\K′

we set ϕn+1(x, h) = ϕn(p′, h) for every x ∈ (Hn+1 ∩ (p′, p′′)) \Hn.

It is straightforward to check that Hn+1, gn+1 and ϕn+1 obtained in this way

satisfy the conditions.

Now we show the following to complete the proof of the theorem.

Claim 6.0.8 There is an automorphism g ∈ Aut(Q) such that g−1K ⊂ C.

Proof. Suppose that H i
n, gin and ϕin are the corresponding sets and functions on the

interval (pi, pi+1) for i < k. Let g(pi) = qi for every 1 ≤ i < k, and let g|(pi,pi+1) =⋃
n g

i
n for every i < k. This makes sense, since

⋃
n g

i
n is an increasing bijection

between (pi, pi+1) and (qi, qi+1) using (i), (iii) and (v). Also, let ϕ(pi, h) = {pi} for

every 1 ≤ i < k and h ∈ K, and let ϕ(., h)|(pi,pi+1) =
⋃
n ϕ

i
n(., h) for every 0 ≤ i < k

and h ∈ K. This also makes sense, since using (i), (iv) and (v),
⋃
n ϕ

i
n(., h) is an

increasing surjective function from (pi, pi+1) to those elements of Of that are subsets

of (pi, pi+1).

We now show that f , g−1h and ϕ(., h) satisfy the conditions of Lemma 6.0.4 to

prove that f and g−1h are conjugate automorphisms for every h ∈ K. We start by

showing that g−1h is good for every h ∈ K. First of all, it only has the finitely many

fixed points that f has, since if p ∈ Q is not among the fixed points of f , then p is

in some interval of the form (pi, pi+1), and as (viii) covers all cases, gn(p) 6= h(p),

hence g−1h(p) 6= p. Now suppose towards a contradiction that there are distinct

orbitals O1, O2 ∈ Og−1h such that either sg−1h(O1) = sg−1h(O2) = 1 or sg−1h(O1) =

sg−1h(O2) = −1 and there is no orbital O3 ∈ Og−1h with sg−1h(O3) 6= sg−1h(O1)

between them. We suppose for the rest of the proof that sg−1h(O1) = sg−1h(O2) = 1,

the case when they equal −1 is analogous. Note that in this case,

g(p) < h(p) for every p ∈ (O1 ∪O2). (6.0.1)

There is no fixed point of g−1h, or equivalently, there is no fixed point of f

between O1 and O2, thus O1, O2 ⊂ (pi, pi+1) for some i < k. Let p′ ∈ O1 and
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p′′ ∈ O2 be arbitrary. Then ϕ(p′, h), ϕ(p′′, h) ∈ Of . We consider the following two

cases separately.

Case 1: ϕ(p′, h) = ϕ(p′′, h). Let O = ϕ(p′, h). Then, using the fact that ϕ(., h)

is increasing provided by (iv), ϕ(p, h) = O for every p ∈ (p′, p′′). Using (6.0.1) and

(viii), sf (ϕ(p′, h)) = sf (O) = 1. Hence if p ∈ (p′, p′′) then g(p) < h(p) using (viii)

and the fact that ϕ(p, h) = O. Let n be large enough such that p′, p′′ ∈ H i
n and let

{r1, . . . , rm} = H i
n ∩ [p′, p′′] where p′ = r1 < · · · < rm = p′′. Then applying (vii) to

each of the intervals [rj, rj+1], the facts that h(rj) > gin(rj) and h(rj+1) > gin(rj+1)

imply h(r) ≥ gin(rj+1) for every r ∈ [rj, rj+1]. It follows (since g is an increasing

extension of gin) that g−1h(r1) ≥ g−1(g(r2)) = r2. Using induction, one can show

with the same argument that (g−1h)m−1(r1) ≥ rm, hence (g−1h)m−1(p′) ≥ p′′. This

fact implies that p′ and p′′ are in the same orbital with respect to g−1h, contradicting

our assumption.

Case 2: ϕ(p′, h) 6= ϕ(p′′, h). Again using (6.0.1) and (viii) twice, g(p′) < h(p′)

and g(p′′) < h(p′′), hence sf (ϕ(p′, h)) = sf (ϕ(p′′, h)) = 1. Using the fact that f

is good, there is O ∈ Of between ϕ(p′, h) and ϕ(p′′, h) with sf (O) = −1, since

there is no fixed point between O1 and O2. Using that ϕ(., h) is increasing and

surjective provided by (iv) and (v), there is p ∈ (p′, p′′) with ϕ(p, h) = O. Then (viii)

ensures that g(p) > h(p), hence g−1h(p) < p, therefore there exists O′ ∈ Og−1h with

O1 < O′ < O2 and sg−1h(O
′) = −1, contradicting our assumptions. This completes

the proof of the fact that g−1h is good.

The function ϕ(., h) : Q→ Of is increasing and surjective using its construction

and (iv), (v). The fact that |ϕ(., h)−1(p)| = 1 for every p ∈ Fix(f) readily follows

from the construction of ϕ. Condition (1) of Lemma 6.0.4 follows from the fact that

(viii) covers all cases, hence there is no fixed points of g−1h on any interval of the

form (pi, pi+1). Now we check condition (2). Let q ∈ Q be fixed. For both direction,

both the facts that g−1h(q) > q and sf (ϕ(q, h)) = 1 imply separately that q 6= pi

for any i, hence q ∈ (pi, pi+1) for some i. If n is large enough such that q ∈ H i
n then

(viii) implies both direction in (2). The proof is analogous for (3).

Therefore the conditions of Lemma 6.0.4 are satisfied for f , g−1h and ϕ, hence f

and g−1h are conjugate automorphisms for every h ∈ K. This completes the proof

of the lemma.

And thus the proof of the theorem is also complete.
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Proof of Theorem 6.0.3. Using Theorem 6.0.1, the union of the Haar null conjugacy

classes is exactly the union of the automorphisms with infinitely many fixed points

and those that violate the condition of Lemma 6.0.5. The former set is Haar null

using Theorem 5.0.6, and the latter is Haar null by Lemma 6.0.5. Hence the union

of the two is also Haar null.
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7 Problems and questions

In this section we mention some problems and questions formulated while working
on this thesis.

Theorem 2.2.3 characterizes compact and locally compact subgroups of Sym (ω).
One might think that having a nice algebraic closure as defined in Definition 2.2.4
is almost the exact opposite of being locally compact:

1. Being locally compact is equivalent of having a finite set S ∈ ω that has the
largest group theoretic algebraic closure possible: ACL (S) = G,

2. while having a nice group theoretic algebraic closure means that for every finite
S its algebraic closure is small: ACL (S) must be finite.

In fact there is an even stricter notion that is more like the exact opposite of
being locally compact:

Definition 7.0.1 (Having no algebraicity) A closed subgroup G of Sym (ω) has no

algebraicity if for every finite set S ⊂ ω its group theoretic algebraic closure is

itself: ACL (S) = S.

Note that being compact or locally compact is an intrinsic property of a Polish
group G as an abstract group (i.e., we are not considering actions of G on underlying
spaces). Similarly, having a dense conjugacy class, having a comeager conjugacy
class, having a co-Haar null conjugacy class or having a decomposition into a meager
and a Haar null set are all intrinsic properties.

On the other hand, having a nice algebraic closure or having no algebraicity also
depends on the action of G on ω. These are not intrinsic properties. For example, if
G is any subgroup of Sym (ω) that has no algebraicity and thus has nice algebraic
closure, then one can define an action of G on (ω × ω) as

g ∈ G : g((x, y)) = (g(x), y).

This group action has

ACL ({(x, y)}) ⊃ {(x, z) : z ∈ ω}

so it has algebraicity and does not have nice algebraic closure.

Question 7.0.2 (Generalization of Theorem 5.0.9) For a closed subgroup G of

Sym (ω) is the set of permutations with infinitely many infinite cycles co-Haar null

if and only if G is non-locally compact?

Still it is possible that being locally compact is the exact opposite of some of the
two definitions in the following sense:
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Question 7.0.3 (Asked by Juris Steprans1) Is every non-locally compact, closed

subgroup of Sym (ω) isomorphic as an abstract group to another non-locally compact,

closed subgroup of Sym (ω) that has no algebraicity?

We ask the following similar question:

Question 7.0.4 Is every non-locally compact, closed subgroup of Sym (ω) homeo-

morphic as a topological group to another non-locally compact, closed subgroup of

Sym (ω) that has nice algebraic closure?

In the statement of Theorem 4.0.3 there is an additional criterion on G besides
having a nice algebraic closure, namely that for every n ∈ ω there is a finite set
Sn ⊂ ω such that there is no n-element subset X ⊂ ω such that Sn ⊂ ACL (X).

Question 7.0.5 Does the additional criterion in Theorem 4.0.3 follow from having

a nice algebraic closure?

Note that if both Question 7.0.4 and Question 7.0.5 have affirmative answers
then combining them with Theorem 4.0.1 and Theorem 4.0.3 yields the following
statement:

Conjecture 7.0.6 Every closed uncountable subgroup of Sym (ω) can be written as

a disjoint union R = A ∪B where A is meager and B has Haar measure zero.

1On mathoverflow: http://mathoverflow.net/questions/239285/automorphism-group-of-a-
structure-without-the-sap, we are not aware of any printed appearance of this question.
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