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Introduction

Classification of manifolds is one of the main problems in topology. For exam-
ple, the Poincare conjecture and its generalisations can be seen as the problem of
classifying homotopy spheres. By the works of Smale [29], Freedman [8] and Perel-
man [27], homotopy spheres in each dimension greater than or equal to 3 only have
one topological type. It is a classical result that the same statement holds true in
dimensions 1 and 2. It was very surprising when Milnor [19] showed that there are
more than one different smooth structures on the 7-sphere. In what follows, for a
given topological manifold M together with a standard smooth structure on it, an
exotic M is a manifold which is homeomorphic to M , but carries a smooth struc-
ture which is non-diffeomorphic to the standard one. Exotic manifolds do not exist
in dimensions less than 4 (see [21]). Exotic spheres were classified in dimensions
greater than 4 by the work of Milnor and Kervaire [20]. The existence of exotic
4-spheres is a major open problem.

4-dimensional topology experienced a revolution in early 1980s by the works of
Freedman and Donaldson. On the one hand, Freedman’s work [8] provides a com-
plete classification for a large class of topological 4-manifolds, as well as examples
of many topological 4-manifolds which do not carry any smooth structure. On
the other hand, Donaldson’s result [6] provides smooth invariants which paved the
way for the discovery of many surprising results concerning smooth structures in
dimension 4. For instance, many exotic R4’s were found by Freedman and Taylor
[9] while it is known that the smooth structures on Rn’s are unique for n 6= 4
(see [21], [30]). It was later shown by Taubes [33] that there are continuum many
pairwise non-diffeomorphic smooth structures on R4. In [6] , Donaldson found an
example of an exotic CP2]9CP2 as a complex surface. Later, Friedman and Mor-
gan [10] showed that there are infinitely many pairwise non-diffeomorphic smooth
structures on CP2]9CP2. Also by using Donaldson’s theory, Kotschick [16] showed
that a certain complex surface called the Barlow surface is an exotic CP2]8CP2.

In 1994, Witten [34] introduced new smooth invariants for smooth 4-manifolds
called the Seiberg-Witten invariants (see Section 2 for the definition of Seiberg-
Witten invariants) which is easier to work with. In [7], Fintushel and Stern intro-
duced a topological procedure called the rational blow-down (see Section 1.5 for
an explanation of the rational blow-down procedure) and investigated the change
of Seiberg-Witten invariants of smooth 4-manifolds under this procedure. Jongil
Park later extended the rational blow-down technique, and constructed the first
example of an exotic CP2]7CP2 in [25]. Following this line, Stipsicz and Szabó
[31], and later Jongil Park, Stipsicz and Szabó [26] constructed exotic CP2]6CP2’s
and exotic CP2]5CP2’s respectively. Note that other topological methods also have
been applied to construct exotic 4-manifolds of the form CP2]kCP2, 2 ≤ k ≤ 4 by
Akhmedov and Doug Park [1], [2]. The central remaining problem in this direc-
tion is to construct exotic structures on CP2]CP2,CP2 and S2 × S2, if they exist.
Also one might hope to find an approach to the smooth Poincare conjecture, i.e
constructing exotic structures on S4.

In this thesis, we only concern about the rational blow-down technique. In [7],
[25], [26] and [31], the blowing-down configurations are all linear plumbing trees (see
Section 1.3 for the definition of plumbing trees). The question of which plumbing
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trees can be used in the rational blow-down procedure was investigated extensively
by Stipsicz, Szabó and Wahl in [32], and by Bhupal and Stipsicz in [4]. A list of
linear, three branched and four branched plumbing trees is provided. The problem
then is to realise plumbing manifolds associated to these plumbing trees as embed-
ded submanifolds, and perform the rational blow-down procedure to construct new
exotic smooth 4-manifolds. In [18], some three branched plumbing trees were used
by Michalogiorgaki to construct new exotic 4-manifolds CP2]kCP2, 6 ≤ k ≤ 9. No
previously known example of exotic 4-manifolds obtained by rational blowing-down
along four branched plumbing trees has been constructed. In this thesis, we will
construct the first example of this kind.

In general, constructing an exotic structure on a given 4-manifold with a stan-
dard smooth structure requires two steps. First, one needs to construct a new
smooth 4-manifold in such a way that it can be shown to be homeomorphic to the
given 4-manifold. This usually can be done by applying Freedman’s classification
theorem (see Theorem 1.6). Secondly, one must compute values of smooth invari-
ants (Donaldson’s invariants, Seiberg-Witten invariants) for the given 4-manifold,
as well as for the new manifold in order to show that their values are different. This
is enough to conclude that the new 4-manifold carries a smooth structure which is
non-diffeomorphic to the standard structure on the given manifold. The Seiberg-
Witten invariants are usually used in this step as it is easier to work with, and many
computational results about Seiberg-Witten invariants are known (see for example
Theorem 2.50, Theorem 2.58). When b+2 > 1 (see Section 1.1 for the definition of
b+2 , b

−
2 ), the Seiberg-Witten invariants are well defined (see Section 2.6). However,

when b+2 = 1, the Seiberg-Witten invariants may depend on the choice of metrics,
and one has to modify its definition more carefully. If in addition to b+2 = 1, one
also has b−2 ≤ 9, then the Seiberg-Witten invariants are again well defined.

All blowing-down configurations used in [25], [31], [26] and [18] are constructed
from singular fibers of some elliptic fibrations obtained by blowing-up the base
points of pencil of two certain complex projective cubic curves (see the Appendices
of [31] and [18]). Stipsicz suggests that one might look at pencil of two com-
plex projective quartic curves to find new blowing-down configurations. Following
his suggestion, we construct a plumbing manifold associated to a four branched
plumbing tree as an embedded submanifold in CP2]17CP2, and perform rational
blow-down procedure along it to construct a new exotic structure on the 4-manifold
CP2]9CP2. Our construction is new in the sense that this is the first example of
rational blow-down along a four branched plumbing tree.
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1. Topological constructions

1.1. Topological 4-manifolds. Let X be a closed, oriented, simply connected
4-manifold. The cohomology groups of X are

H0(X;Z) ∼= Z, H4(X;Z) ∼= Z,
H1(X;Z) = 0, H3(X;Z) = 0,

H2(X;Z) ∼= Zb2(X),

where b2(X) is the second Betti number of X.
The orientation on X fixes the fundamental class [X] in H4(X;Z), the ring

structure of H∗(X;Z) gives an intersection form on H2(X;Z).

Definition 1.1. The intersection form of X is

QX : H2(X;Z)×H2(X;Z) −→ Z,
defined by QX(a, b) = 〈a ^ b, [X]〉.

QX is symmetric and bilinear. Poincare duality implies that QX is also unimod-
ular which means that the matrix of QX has determinant +1 or −1 in any basis of
H2(X;Z), i.e it is invertible over Z.

Denote by b+2 (X) and b−2 (X) the numbers of positive and negative eigenvalues
of QX respectively.

Definition 1.2. The signature of X is σ(X) = b+2 (X)− b−2 (X).

In general, a form Q over Z is a map Q : Zn×Zn −→ Z for some positive integer
n. We define types of forms as follows.

Definition 1.3. A symmetric, bilinear, unimodular form Q over Z is called even
if Q(v, v) is always even. Otherwise, Q is called odd.

Example 1.4. a) The complex projective plane CP2 with its usual orientation has
the second homology group H2(CP2;Z) ∼= Z whose generator is usually denoted by h.
The intersection form QCP2 is represented by the 1×1 identity matrix: QCP2 = 〈1〉.

b) The complex projective plane CP2 with the opposite orientation has the second
homology class H2(CP2;Z) ∼= Z whose generator is −h. The intersection form QCP2

is represented by the 1× 1 matrix: QCP2 = 〈−1〉.
c) The intersection form of the manifold S2 × S2 is represented by the following

matrix:

QS2×S2 = H =

[
0 1
1 0

]
.

d) We denote by E8 the intersection form which is represented by the following
matrix: 

−2 1 0 0 0 0 0 0
1 −2 1 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 1
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 0
0 0 0 0 1 0 0 −2


.
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Theorem 1.5 ([11], Theorem 1.2.1). Suppose that Q is a symmetric, bilinear,
unimodular form. If Q is indefinite, then Q is equivalent over Z to b+2 〈1〉⊕ b

−
2 〈−1〉

when Q is odd; and to nH ⊕mE8 for some non-negative integers n,m, when Q is
even.

We recall the following fundamental theorem about homeomorphic classification
of topological 4-manifolds due to Michael Freedman.

Theorem 1.6 (Freedman, [8]). For every symmetric, bilinear, unimodular form Q
over Z, there exist a closed, simply connected topological 4-manifold X such that
QX and Q are equivalent over Z.

If Q is even, then such manifold is unique up to homeomorphims. If Q is odd,
then there are exactly two such manifolds up to homeomorphisms, and at least one
of them does not admit differentiable structure.

If X carries smooth structures, then its intersection form has more special prop-
erties.

Theorem 1.7 (Rokhlin, [28]). If a simply connected 4-manifold X admits a smooth
structure and QX is even, then the signature of X is divisible by 16.

Theorem 1.8 (Donaldson, [6]). If a simply connected 4-manifold X admits a
smooth structure and QX is definite, then QX is diagonalisable over Z.

Combining Theorem 1.5, Theorem 1.6 and Theorem 1.8 leads to the following
criterion for smooth 4-manifolds being homeomorphic.

Theorem 1.9 (Donaldson, [6]). If two closed, simply connected differentiable 4-
manifolds have the same Euler characteristic, signature and parity, then they are
homeomorphic.

1.2. The blow-up process. Blow-up is a type of geometric transformations origi-
nated from algebraic geometry. The idea is to replace a point of an algebraic variety
with the projectivised tangent cone at that point. It is usually used for resolving
singular points. Here, we are only interested in the differential topology of blow-up
at a point in smooth 4-manifolds. We give a brief review of blow-up process at a
point in a smooth 4-manifold. A complete explanation can be found in Chapter 2
of [11].

Definition 1.10. For a oriented smooth 4-manifold X, the connected sum X ′ =

X]CP2 is called the blow-up of X.

There is a map π : X ′ −→ X called the projection map with the property that
π is a diffeomorphism between X ′ −CP1 and X −P , where P is a point of X, and
π−1(P ) = CP1. The sphere CP1 lies in the CP2 summand of X ′, and is called the
exceptional sphere.

The homology class of the exceptional sphere is denoted by e ∈ H2(X ′;Z) =

H2(X;Z) ⊕ H2(CP2;Z). Note that QX(e, e) = e2 = −1. Since X ′ = X]CP2,
we have that b+2 (X ′) = b+2 (X) and b−2 (X ′) = b−2 (X) + 1, χ(X ′) = χ(X) + 1 and
σ(X ′) = σ(X)− 1.

Definition 1.11. If we perform a blow-up at a point P on a smooth surface Σ ⊂ X
in a smooth 4-manifold X, and denote the projection by π : X ′ −→ X, then the
inverse image Σ′ = π−1(Σ) ⊂ X ′ is called the total transform of Σ, and the closure
Σ̃ = π−1(Σ− {P}) is called the proper transform.
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The homology class of the proper transform is [Σ̃] = [Σ] − e ∈ H2(X ′;Z). If
two smooth surfaces Σ1,Σ2 in X intersect each other transversally at one point P
with the sign of intersection is positive, then after blowing-up X at P , the proper
transforms Σ̃1, Σ̃2 are disjoint in X ′.

Example 1.12. a) Blow-up at the intersection of two complex projective curves is
illustrated below.

P

a b a-e b-e

e

+

Figure 1. Two complex projective curves intersect each other
transversally at P in a smooth 4-manifold X. The sign of the in-
tersection point P is positive. Homology classes of the curves are
a, b ∈ H2(X;Z). After blowing-up at P , homology classes of the
two proper transforms are a− e, b− e ∈ H2(X]CP2;Z), homology
class of the exceptional sphere is e ∈ H2(X]CP2;Z).

b) Blow-up at the intersection of three complex projective curves is illustrated
below.

P
a

cb

c− e

b− e

a− e

e
Figure 2. Three complex projective curves intersect each other
transversally at P . The sign of the intersection point P is posi-
tive. Homology classes of the curves are a, b, c ∈ H2(X;Z).After
blowing-up at P , homology classes of the proper transforms are
a − e, b − e, c − e ∈ H2(X]CP2;Z), homology class of the excep-
tional sphere is e ∈ H2(X]CP2;Z).

c) Blow-up at the tangent point of a complex projective quadratic curve and a
complex projective line is illustrated below.



9

P

q

2h

l

h

e

h− e2h− e

q̃ l̃
Figure 3. A projective quadratic curve q and a projective line l
in CP2 are tangent to each other at P . The homology class of q
is 2h ∈ H2(CP2;Z).The homology class of l is h ∈ H2(CP2;Z).

After blowing-up at P , the proper transforms q̃, l̃ and the ex-
ceptional sphere intersect each other transversally at one point.
Homology classes of the proper transforms are [q̃] = 2h − e ∈
H2(CP2]CP2;Z), [l̃] = h− e ∈ H2(CP2]CP2;Z), homology class of
the exceptional sphere is e ∈ H2(CP2]CP2;Z).

1.3. The plumbing construction. Plumbing is a way to associate 4-manifolds
to graphs with weighted vertices. Let E1, E2 be two D2-disk bundles over the 2-
spheres S1, S2 with Euler numbers k1, k2 respectively. On each Si, we pick a disk
Bi and the trivialisation of Ei on Bi as Bi × D2. Now gluing two disk products
over the Bi’s by the switching diffeomorphism B1 × D2 ∼= D2 × B2 gives us the
plumbing of E1 and E2. This manifold is presented by a graph with one edge and
two vertices weighted by k1, k2 (see Figure 4).

k1 k2

Figure 4. A plumbing graph with one egde and two vertices
weighted by k1, k2.

By iterating this process, we can construct a 4-manifold denoted by PΓ from any
tree Γ of finite number of vertices and edges with vertices weighted by intergers.

Lemma 1.13. The 4-manifold PΓ is simply connected for any tree Γ of finite
number of vertices and edges.

Proof. As it is explaned in [11, Example 4.6.2], PΓ admits a handlebody decom-
position consisting only a 0-handle and a set of 2-handles. The fundamental group
of PΓ admits a presentation whose generators are 1-handles. Thus, this gives a
presentation of fundamental group of PΓ with empty set of generators, i.e the
fundamental group of PΓ is trivial. �

Consider the case when Γ is a star-shaped graph with s branches l1, l2, · · · , ls
and with the central vertex of weight b. Weights along the branch li are given by
the negatives of the continued fraction coefficients of ni

mi
> 1.
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By Theorem 5.1 in [24], ∂PΓ is a Seifert manifold with Seifert invariant {0; (n1,m1),
· · · (ns,ms)}, that is ∂PΓ can be described as an S1-fibration over a 2-sphere with
a finite number of singular fibers corresponding to the branches of Γ (see [24],[15]).

The fundamental group of ∂PΓ admits an explicit presentation as follows.

Theorem 1.14 ([15], Theorem 6.1).

(1.1) π1(∂PΓ) = 〈q1, · · · qs, h|[h, qi] = 1, qni
i h

mi = 1, i = 1, · · · , s〉.

Moreover, qi can be represented by normal circle of the singular fiber corresponding
to branch li for each i.

The Seifert manifold ∂PΓ can be obtained by performing Dehn surgeries along
s + 1 knots K1, · · · ,Ks+1 in S3 with coefficients ni/mi. Recall that for a knot K
in S3, a Dehn surgery on K with coefficient p/q is an operation done by removing
an open neighbourhood of K from S3, and then gluing back a solid torus S1 ×D2

by a diffeomorphism of the boundary tori in such a way that the meridian curve on
the solid torus goes to the (p, q)-curve on the boundary of the knot exterior in M .
This is explaned in [15, Section 1].

The first homology group of ∂PΓ has the following presentation.

Proposition 1.15 ([11], Proposition 5.3.11).

(1.2) H1(∂PΓ;Z) = {µ1, · · · , µs|niµi +mi

∑
j 6=i

lk(Ki,Kj)µj = 0},

where µi’s are meridian curves and lk(Ki,Kj) is the linking number between Ki,Kj.

For each star-shaped plumbing graph Γ, its dual graph is defined as follows.

Definition 1.16. The dual graph Γ′ of a star-shaped plumbing graphd Γ is defined
to be the star-shaped graph with s branches l′1, l′2, · · · , l′s and with the central vertex of
weight b−s. Weights along the branch l′i are given by the negatives of the continued
fraction coefficients of ni

ni−mi
.

Lemma 1.17 ([32],Section 8.1). The boundary of PΓ is orientation reserving dif-
feomorphic to the boundary of PΓ′: ∂PΓ ∼= −∂PΓ′. In addition, the union PΓ∪PΓ′

is diffeomorphic to CP2]nCP2 for some positive integer n.

A proof of Lemma 1.17 can be found in [4, Lemma 2.8].

Example 1.18. Of particular interest for us is the plumbing graph A2 defined in
[32, Example 8.12]. The plumbing tree A2 and its dual graph A′2 are given below.
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-3 -2 -2 -4 -4

-3

-3

-3

Figure 5. The plumbing tree A2 : The Seifert invariant of ∂PA2

is {(0; (3, 1), (3, 1), (3, 1), (37, 26)}. Here, we calculate the contin-
ued fraction [2; 2, 4, 4] to obtain (37, 26).

-1 -4 -2 -3 -2

-2

-2

-2

-2

-2

-2

-2

Figure 6. The dual graph A′2 of the plumbing tree A2.

1.4. A rational homology ball. We give a brief discussion about the fact that
the 3-manifold ∂PA2 bounds a four dimensional rational homology ball B.

Theorem 1.19 ([32], Theorem 1.8, Example 8.12). The 3-manifold ∂PA2 bounds a
four dimensional rational homology ball B, that is, there exists a smooth 4-manifold
B such that ∂B is diffeomorphic to ∂PA2, and the rational homology groups of
B are the same as the rational homology groups of the 4-dimensional disk D4:
Hi(B;Q) ∼= Hi(D

4;Q) for any non-negative integer i.

In [4, Section 4.3, Figure 13], Bhupal and Stipsicz give an explicit construction
of a rational homology ball B as follows. By blowing-up intersection points of
a special configuration of projective curves in CP2 as in [4, Figure 13], one can
obtain an embedding of PA′2 into CP2]11CP2. Now take B to be the complement
B = CP2]11CP2−int(PA′2). Notice that the second homology groups of CP2]11CP2

and PA′2 both have rank 12. Their first and third homology groups have rank 0.
Both of them are simply connected oriented 4-manifolds. Thus, a homological
calculation by Mayer-Vietoris sequence shows that B is a rational homology ball.
From this construction we can see that ∂B ∼= −∂PA′2. Since ∂PA2

∼= −∂PA′2, we
conclude that ∂B ∼= ∂PA2, i.e ∂PA2 bounds the rational homology ball B.
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Moreover, the generators h, e1, · · · , e11 of H2(CP2]11CP2;Z) can be arranged
so that the homology classes of embedding spheres at vertices of A′2 are given as
follows.

e5

3h− e1 − e2
−e3 − e4 − e5
−2e6 − e7 − e9
−e10 − e11

e6 − e7

e7 − e8 − e9

e9 − e10

3h− 2e1 − e2
−e3 − e4 − e5
−e6 − e7 − e8h− e3

−e4 − e5

e4 − e5

h− e6
−e7 − e8

e1 − e2

e3 − e4

e10 − e11

Figure 7. Homology classes of embedding spheres of PA′2.

For the sake of completeness, we give detailed explanation of blow-up processes
and explicit homological computations of the above construction of Bhupal and
Stipsicz in the Appendix.

The embedding j : ∂PA′2 ↪→ B induces a map j∗ : π1(∂PA′2) −→ π1(B).

Proposition 1.20. The map j∗ is surjective.

Proof. Applying the van Kampen theorem to the decomposition

CP2]11CP2 = PA
′

2

⋃
∂PA′2

B

yields
π1(PA

′

2) ∗N π1(B) = π1(CP2]11CP2) = 1,

where N = 〈i∗(x).j∗(x)−1|x ∈ π1(∂PA′2)〉 with i : ∂PA′2 ↪→ PA′2 and j :

∂PA′2 ↪→ B are two embeddings of the boundary. Since PA′2 is simply con-
nected by Theorem 1.13, we obtain that π1(B)/〈j∗(x)−1|x ∈ π1(∂PA′2)〉 = 1, or
equivalently j∗ is surjective. �

1.5. A topological construction. Suppose that we have an embedding of a
plumbing manifold PΓ into a smooth 4-manifold X. When the boundary of PΓ
bounds a rational homology ball B, we can construct a new smooth 4-manifold as
follows.

Definition 1.21. The rational blow-down of X along the plumbing manifold PΓ
is defined to be

X1 = (X − int(PΓ))
⋃
∂PΓ

B.

The rational blow-down procedure was first introduced by Fintushel and Stern
in [7] for certain cases of linear plumbing trees. It has been extended and applied to
construct new exotic 4-manifolds by Park in [25], Stipsicz and Szabó in [31], Park,
Stipsicz and Szabó in [26] and Michalogiorgaki in [18].
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We will apply the rational blow-down procedure along PA2 to construct a new
exotic manifold. In order to do that, we first give a construction of the plumbing
manifold PA2 by embedding as a submanifold in CP2]17CP2.

Proposition 1.22. The 4-manifold PA2 embeds into CP2]17CP2.

Proof. We consider two complex projective quartic curves C1 and C2 in the pro-
jective plane CP2 given as follows. Let q1 be a complex projective quadratic curve
in CP2 and l1 be a complex projective line which is tangent to q1. Choose another
complex projective quadratic curve q2 which intersects q1 and l1 transversely at
their intersection point. The curve q2 meets q1 at three further points, and l1 at
one other point. Now choose three complex projective lines l2, l3, l4 such that their
intersection points with each other all lie on either q1 or q2, while their intersection
points with l1 do not, and also each of l3, l4 goes through each of two intersection
points of q1 and q2. Finally, let

C1 = {[x : y : z] ∈ CP2|q1(x, y, z)q2(x, y, z) = 0},

C2 = {[x : y : z] ∈ CP2|l1(x, y, z)l2(x, y, z)l3(x, y, z)l4(x, y, z) = 0}.
The configurations of C1 and C2 are indicated as below.

P9

P7

P1

P2

P6

P5

P4

P3

P8

l1
l2

l3

l4

q1

q2

Figure 8. Depiction of the configurations of C1 and C2 in CP2 :
The curve C1 is the union of the complex projective quadratic
curves q1, q2. The curve C2 is the union of the complex projective
lines l1, l2, l3, l4. C1 and C2 intersect each other at nine point
P1, P2, · · · , P9.

For an explicit example, one can take

q1(x, y, z) = xy + z2,

q2(x, y, z) = xz + y2,

l1(x, y, z) = z,

l2(x, y, z) = (−ζ3) · x+ (1− ζ3) · y + z,

l3(x, y, z) = x+ y,
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l4(x, y, z) = x+ (ζ3 − 1) · y + ζ3 · z,

where ζ3 = −1+i
√

3
2 is the primitive cube root of unity.

One can verify that l1 intersects q1 at a single point P1 = [1 : 0 : 0], and l1
intersects q2 at two points P1 and P2 = [0 : 1 : 0]. l2 intersects q1 at two points

P4 = [−(
i+
√

3 + i
√

2(7− 9i
√

3)

2i+ 2
√

3
)2 :

i+
√

3 + i
√

2(7− 9i
√

3)

2i+ 2
√

3
: 1] and

P5 = [−(
i+
√

3− i
√

2(7− 9i
√

3)

2i+ 2
√

3
)2 :

i+
√

3− i
√

2(7− 9i
√

3)

2i+ 2
√

3
: 1],

and l2 intersects q2 at two points P3 = [−1, 1,−1] and P6 = [1 : −1 : 1 − 2ζ2
3 ].

l3 intersects q1 and q2 transversally at an intersection point P7 = [−1, 1, 1] of q1

and q2. l3 intersects q1 at another point P3 and l3 intersects q2 at another point
P8 = [1 : −1 : 2− ζ2

3 ]. l4 intersects l3 and q2 transversally at P8. l4 intersects q1, q2

transversally at an intersection point P9 = [(1 − ζ3)2 : −1 : 1 − ζ3] of q1 and q2.
Finally, l4, l3 and q1 intersect each other transversally at P6.

Let us consider the pencil of quartic curves defined by C1 and C2:

Ct = {z ∈ CP2|pt(z) = t1.q1(z)q2(z)+t2.l1(z)l2(z)l3(z)l4(z) = 0, t = [t1 : t2] ∈ CP1}.

The pencil Ct gives us a map from CP2 to CP1 which is well-defined away from
nine intersection points of C1 and C2 by sending z ∈ CP2 to t ∈ CP1 such that
pt(z) = 0. By performing blow-ups at the intersection points of C1 and C2 totally
16 times, we get a fibration over CP1. More precisely, we need to perform
i) three infinitely close blow-ups at P1,
ii) one blow-up at P2,
iii) two infinitely close blow-ups at P3,
iv) one blow-up at P4,
v) one blow-up at P5,
vi) two infinitely close blow-ups at P6,
vii) two infinitely close blow-ups at P7,
viii) two infinitely close blow-ups at P8,
ix) two infinitely close blow-ups at P9.
Here, by infinitely close blow-ups we mean that the blow-ups are performed at

different points on exceptional curves.
The blow-up processes are illustrated below. We also calculate the homology

classes of proper tranforms in each step so that at the end we will obtain a fibration:
After each blow-up, the proper transforms of two curves will be choosen together
with possibly a certain multiple of exceptional curves (this depends on whether the
blowing-up point is a multiple point of the curves on which we perform blow-ups or
not) so that they define a pencil on the blown-up manifold, i.e they must represent
the same homology classes. We will explain the first blow-up at P1, the remaining
15 blow-ups can be done in the same way.
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P1

q2 2h

q1

2h

l1

h

h− e1

2h− e1

2h− e1

e1

h− e1 − e2

e2 2h− e1 − e2

2h− e1

e3

e2 − e3
2h− e1 − e2

e1 − e2
2h− e1

2h− e1
−e2 − e3

Figure 9. Three infinitely close blow-ups at P1: The arrows can
be regarded as the projection maps. Counter-clockwise: i) At the
start, the intersection point P1 is a double point of C1 and a single
point of C2; q2 intersect q1, l1 transversally; and P1 is also the
tangent point of q1 and l1. ii) After the first blow-up, we get
the second configuration: in the pencil, we need to take the curve
given by the proper transform of C1 together with the exceptional
curve of multiplicity one whose homology class is e1; the proper
transform of q2 is disjoint from the proper transforms of q1, l1; the
proper transform of q1 and l1 and the exceptional curve intersect
each other transversally at one point. iii) The first blow-up can
be done in a similar way as in Example 1.12 a) and c). The second
and the third blow-ups can be done in a similar way as in Example
1.12 b) and a) respectively.

P2

q2

2h− e1

l1

h− e1 − e2 − e3

h− e1 − e2
−e3 − e4

2h− e1 − e4

e4

Figure 10. One blow-up at P2: This can be done in a similar way
as in Example 1.12 a).
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P3

q1

2h− e1 − e2

l2

h

l3

h

2h− e1
−e2 − e5

h− e5

h− e5

e5

h− e5

e5 − e6

e6

2h− e1

2h− e1 − e2 − e5 − e6

Figure 11. Two infinitely close blow-ups at P3: The first blow-up
can be done in a similar way as in Example 1.12 b). The second
blow-up can be done in a similar way as in Example 1.12 a).

P4

q2

2h− e1 − e4
l2

h− e5

2h− e1 − e4 − e7

h− e5 − e7

e7

Figure 12. One blow-up at P4: This can be done in a similar way
as in Example 1.12 a)
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P5

q2 2h− e1
−e4 − e7l2

h− e5 − e7

2h− e1 − e4
−e7 − e8

h− e5 − e7 − e8

e8

Figure 13. One blow-up at P5: This can be done in a similar way
as in Example 1.12 a)

P6

l4

h

l2

h− e5 − e7 − e8

2h− e1 − e2
−e5 − e6

q1

2h− e1 − e2
−e5 − e6 − e9

h− e9

h− e5 − e7
−e8 − e9

e9

h− e9

e9 − e10

e10

h− e5 − e7
−e8 − e9

2h− e1 − e2
−e5 − e6
−e9 − e10

Figure 14. Two infinitely close blow-ups at P6: The first blow-up
can be done in a similar way as in Example 1.12 b). The second
blow-up can be done in a similar way as in Example 1.12 a)
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q2 2h− e1 − e4
−e7 − e8

h− e5

l3

q1

2h− e1 − e2 − e5
−e6 − e9 − e10

P7

2h− e1 − e2 − e5
−e6 − e9 − e10 − e11

2h− e1 − e4
−e7 − e8 − e11

h− e5 − e11

e11

2h− e1
−e4 − e7
−e8 − e11

e12

e11 − e12

h− e5
−e10 − e12

2h− e1 − e2
−e5 − e6 − e9
−e10 − e11

Figure 15. Two infinitely close blow-ups at P7: The first blow-up
can be done in a similar way as in Example 1.12 b). The second
blow-up can be done in a similar way as in Example 1.12 a).
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q2

2h− e1
−e4 − e7
−e8 − e11

h− e5
−e11 − e12

l3

l4

h− e9

P8

2h− e1 − e4 − e7
−e8 − e11 − e13

h− e5 − e11
−e12 − e13

h− e9 − e13

e13

e13 − e14

e14

h− e5 − e11
−e12 − e13

h− e9 − e13

2h− e1 − e4
−e7 − e8 − e11
−e13 − e14

Figure 16. Two infinitely close blow-ups at P8: The first blow-up
can be done in a similar way as in Example 1.12 b). The second
blow-up can be done in a similar way as in Example 1.12 a).
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q2

2h− e1 − e4
−e7 − e8 − e11
−e13 − e14

2h− e1 − e2
−e5 − e6 − e9
−e10 − e11

q1

l4

h− e9 − e13

P9

2h− e1 − e4
−e7 − e8 − e11
−e13 − e14 − e15

h− e1 − e2
−e5 − e6 − e9
−e10 − e11 − e15

h− e9
−e13 − e15

e15

e16

e15 − e16

h− e9 − e13
−e15 − e16

h− e1 − e2
−e5 − e6 − e9
−e10 − e11 − e15

2h− e1 − e4
−e7 − e8 − e11
−e13 − e14 − e15

Figure 17. Two infinitely close blow-ups at P9: The first blow-up
can be done in a similar way as in Example 1.12 b). The second
blow-up can be done in a similar way as in Example 1.12 a).
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Finally, blowing-up another point on e3 we have the desired configuration of
embedding curves in CP2]17CP2 as follows.

h− e1 − e2
−e3 − e4

h− e5 − e7
−e8 − e9

h− e5 − e11
−e12 − e13

h− e9 − e13
e15 − e16

e3 − e17
e2 − e3 2h− e1 − e2

−e5 − e6 − e9
−e10 − e11 − e15

2h− e1 − e4
−e7 − e8 − e11
−e13 − e14 − e15

Figure 18. Embedded curves in CP2]17CP2 obtained from the
above blow-up processes: By taking the square of the correspond-
ing homology class at each vertex, we obtain weight at the corre-
sponding vertex of the plumbing graph A2.

Thus, we obtain an embedding of PA2 into CP2]17CP2. �

Definition 1.23. We define X1 as the rational blow-down of CP2]17CP2 along
PA2:

X1 = (CP2]17CP2 − int(PA2))
⋃
∂PA2

B.

Proposition 1.24. X1 is simply connected.

Proof. We write

U = CP2]17CP2, V = CP2]17CP2 − int(PA2) and W = ∂PA2.

Thus, X1 = V
⋃
W

B. First, we show that V = CP2]17CP2 − int(PA2) is simply

connected, i.e π1(V ) = 1. Applying the van Kampen theorem to the following
decomposition

U = V
⋃
W

PA2,

we have
π1(U) = π1(V ) ∗N π1(PA2),

where N = 〈i∗(x).j∗(x)−1|x ∈ π1(W )〉 with i : W ↪→ V , j : W ↪→ PA2 are two
embeddings of the boundary W .

Since CP2 and CP2 are simply connected, we have π1(U) = 1. By Theorem
1.13, we also have π1(PA2) = 1. We will show that the map i∗ : π1(W ) −→ π1(V )
has trivial image. Notice that W is a Seifert fibered 3-manifold over S2 with 4
exceptional fibers corresponding to 4 branches of the plumbing graph A2. By
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applying Theorem 1.14, the fundamental group ofW = ∂PA2 admits a presentation
with 5 generators a1, a2, a3, a4, h and a set of relations :

a1a2a3a4 = 1;

[h, a1] = [h, a2] = [h, a3] = [h, a4] = 1;

a3
ih = 1, for i = 1, 2, 3; and a37

4 h
26 = 1.

Furthermore, the homotopy classes a1, a2, a3 can be represented by normal cir-
cles of L̃2, L̃3, L̃4, the proper transforms of l2, l3, l4, respectively, after 17 blow-ups
at the intersections of C1, C2. This is because the branches of A2 corresponding
to L̃2, L̃3, L̃4 only contain one vertex, and therefore, the normal circles of these
branches are exactly the normal circles of L̃2, L̃3, L̃4.

L̃1

-3

L̃2

-3

L̃3

-3

L̃4

-3

h

a1

a1

a3
a2

a2

E5 − E6

E12
E13 − E14

E16

E9 − E10

Figure 19. Homotopy classes a1, a2, a3 are presented by normal
circles of L̃2, L̃3, L̃4.

Now we observe that the circles i(a1), i(a2), i(a3) in V have the following prop-
erties:
i) The circle i(a2) can be homotopically moved to the sphere E12 in such a way

that it bounds a disk which completely lies in V . Thus, we have i∗(a2) = 1.
ii) The circle i(a3) can be homotopically moved to the sphere E16 in such a way

that it bounds a disk which completely lies in V . Thus, we have i∗(a3) = 1.
iii) The circles i(a1) and i(a2) can be homotopically moved to the sphere E5 −

E6 in such a way that together they bound an annulus which completely lies in
V . Thus, i(a1) and i(a2) represent the same homotopy class in π1(V ) : i∗(a1) =
i∗(a2) = 1.

Combining these with the relations of π1(W ) gives us i∗(h) = 1 and i∗(a4) = 1.
Since all generators of π1(W ) map to 1, we conclude that i∗(x) = 1 for any x ∈
π1(W ).
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Now to prove that V = CP2]17CP2− int(PA2) is simply connected, or in other
words π1(V ) = 1, it is enough to show that the map j∗ : π1(W ) −→ π1(PA2) is
surjective. Since PA2 is simply connected, this follows immediately.

Applying van Kampen theorem once again to the decomposition

X1 = V
⋃
W

B

yields
π1(X1) = π1(V ) ∗N ′ π(B),

where N
′

= 〈i′∗(x).j
′

∗(x)−1|x ∈ π1(W )〉 with i
′

: W ↪→ V , j
′

: W ↪→ B are two
embeddings of the boundaryW . Since π1(V ) = 1 and j

′

∗ is surjective by Proposition
1.20, we conclude that π1(X1) = 1. �

Remark 1.25. i) In the construction of X1, we glue together two smooth manifold
CP2]17CP2− int(PA2) and B along their boundaries. In order to do that, we need
to specify an orientation reserving self-diffeomorphism of ∂PA2. For each such
self-diffeomorphism of ∂PA2, we can construct a smooth 4-manifold X1. Thus, we
possibly obtain many smooth 4-manifold X1’s. In what follows, we fix a choice of
X1.
ii) In [25], [31], [26], the blowing-down configurations are linear plumbing trees

whose boundaries are lens spaces of the form L(p2, pq − 1), where p, q are rela-
tively prime integers. By a theorem of Bonahon [3], any lens space of the form
L(p2, pq − 1), where p, q are relatively prime integers, bounds a rational homology
ball in such a way that any self-diffeomorphism of the boundary can be extended to a
self-diffeomorphism of the rational homology ball. It can be shown that in this case,
the rational blow-down 4-manifolds obtained from different self-diffeomorphisms of
the boundary are all diffeomorphic to each other. In [18], as well as in our case,
it is not known whether every self-diffeomorphism of the boundary can be extended
to a self-diffeomorphism of the rational homology ball. Nevertheless, any rational
blow-down 4-manifold obtained in [18] and in our case is still exotic.

We are now able to apply Theorem 1.9 to X1.

Theorem 1.26. The 4-manifold X1 is homeomorphic to CP2]9CP2.

Proof. Both X1 and CP2]9CP2 are simply conneted. Since B is a rational homology
ball, we have b+2 (X1) = b+2 (CP2]17CP2) − b+2 (PA2) = 1 − 0 = 1 and b−2 (X1) =

b−2 (CP2]17CP2) − b−2 (PA2) = 17 − 8 = 9. Thus σ(X1) = −8 and χ(X1) = 12.
Theorem 1.9 implies that X1 and CP2]9CP2 are homeomorphic. �

In conclusion, we have constructed a smooth 4-manifold X1 which is homeomor-
phic to CP2]9CP2. The rest of this thesis is devoted to show that there exists a
smooth structure on X1 which is non-diffeomorphic to the standard smooth struc-
ture on CP2]9CP2.

1.6. Homological calculations. In order to show that two smooth structures on a
4-manifold are different, one can use the Seiberg-Witten invariants which are defined
on the set of characteristic elements. Recall that for a closed, oriented, smooth 4-
manifold X, a second cohomology class K ∈ H2(X;Z) is called a characteristic
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element if K ≡ w2(X) (mod 2), i.e 〈K,α〉 ≡ α2 = QX(α, α) (mod 2) for every
homology class α ∈ H2(X;Z).

Let us denote the standard basis of H2(CP2]17CP2;Z) by h, e1, · · · , e17. We
write K = PD(3h−

∑17
i=1 ei).

Lemma 1.27. K is a characteristic element of H2(CP2]17CP2;Z).

Proof. For a second homology class α = x0h +
∑17
i=1 xiei, where xi’s are integers,

we have

〈K,α〉 = 3x0 +

17∑
i=1

xi ≡ x2
0 −

17∑
i=1

x2
i = α2 (mod 2)

as x2
0 ≡ 3x0 (mod 2) and xi ≡ −x2

i (mod 2) for any integer xi, i = 0, · · · , 17. �

The cohomology class K restricts to a cohomology class K|CP2]17CP2− int(PA2)
of

CP2]17CP2 − int(PA2), and a cohomology class K|PA2
of PA2. Our goal is to

show that the cohomology class K|CP2]17CP2− int(PA2)
extends to a characteristic

element K̃ of X1 which will be used later for computing the Seiberg-Witten in-
variants in Theorem 2.60. In order to do that, we need to find a cohomology class
K̄ of the manifold CP2]11CP2 = PA′2

⋃
B such that K̄|∂B and K|∂PA2

can be
identified under the isomorphisms H1(∂B;Z) ∼= H1(∂PA′2;Z) ∼= H1(∂PA2;Z) ∼=
H1(CP2]17CP2 − int(PA2);Z), and then glue the cohomology classes K̄|B and
K|CP2]17CP2− int(PA2)

together to get the desired cohomology class K̃.

Lemma 1.28. The first homology group of ∂PA2 admits the following presentation

(1.3) H1(∂PA2;Z) = {µ1, µ2, µ3, µ8|
3∑
i=1

µi = 85µ8, 3µi = 37µ8, i = 1, 2, 3}

where the homology classes µi can be represented by normal circles to the disks
bundles ui’s, as illustrated in Figure 20.

-3u4 -2
u5

-2
u6

-4
u7

-4
u8

-3u1

-3
u2

-3u3

µ1

µ2

µ3

µ8

Figure 20. Generators of H1(∂PA2;Z) as normal circles to the
far most disk bundles of PA2: The disk bundles are denoted by
ui’s. The homology classes of the embedding spheres at the corre-
sponding vertices of A2 are also denoted by ui’s.
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Proof. Recall from Figure 18 that the homology classes ui’s are

u1 = h− e5 − e7 − e8 − e9,

u2 = h− e5 − e11 − e12 − e13,

u3 = h− e9 − e13 − e15 − e16,

u4 = h− e1 − e2 − e3 − e4,

u5 = e3 − e17,

u6 = e2 − e3,

u7 = 2h− e1 − e2 − e5 − e6 − e9 − e10 − e11 − e15,

u8 = 2h− e1 − e4 − e7 − e8 − e11 − e13 − e14 − e15.

By the Equation (1.2),H1(∂PA2) admits a presentation with generators µ1, · · · , µ8

which can be represented by the normal circles to the disk bundles u1, · · · , u8 re-
spectively, and the following relations:

−4µ8 + µ7 = 0,

−4µ7 + µ6 + µ8 = 0,

−2µ6 + µ5 + µ7 = 0,

−2µ5 + µ4 + µ6 = 0,

−3µ4 + µ1 + µ2 + µ3 + µ5 = 0,

−3µ1 + µ4 = 0,

−3µ2 + µ4 = 0,

−3µ3 + µ4 = 0.

⇐⇒



µ7 = 4µ8,

µ6 = 15µ8,

µ5 = 26µ8,

µ4 = 37µ8,

µ1 + µ2 + µ3 = 85µ8,

3µ1 = 3µ2 = 3µ3 = µ4.

Thus, we obtain Equation (1.3).
�

Proposition 1.29. We have PD(K|∂PA2
) = −132µ8.

Proof. For the pair (PA2, ∂PA2), the homological long exact sequence reads as

· · · H2(PA2;Z) H2(PA2, ∂PA2;Z)
j

H1(∂PA2;Z)
δ · · ·

Since K|PA2
is an element of H2(PA2;Z), its Poincare dual PD(K|PA2

) is an
element of H2(PA2, ∂PA2;Z) by Poincare duality. We have δ(PD(K|PA2

)) =
PD(K|∂PA2

) ∈ H1(∂PA2;Z).
Since the homology classes {u1, · · · , u8} form a basis of H2(PA2;Z), there is a

basis {γ1, · · · , γ8} of H2(PA2;Z) called dual basis such that

〈γi, uj〉 =

{
1 if i = j,

0 if i 6= j.

By Poincare duality, {PD(γ1), · · · , PD(γ8)} form a basis of H2(PA2, ∂PA2;Z).
Since PD(γi) can be represented by a generic fiber of the disk bundle ui, the bound-
ary map δ sends PD(γi) to an element of H1(∂PA2;Z) which can be represented
by the boundary of a generic fiber of the disk bundle ui, i.e the normal circle to the
disk bundle ui. Thus, we obtain that δ(PD(γi)) = µi.
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Notice that

〈K,u1〉 = (3h−
17∑
i=1

ei).(h− e5 − e7 − e8 − e9)

= 3h2 + e2
5 + e2

7 + e2
8 + e2

9

= 3.1 + (−1) + (−1) + (−1) + (−1) = −1.

The remaining 〈K,ui〉’s can be calculated in the same way:

〈K,u2〉 = −1, 〈K,u3〉 = −1, 〈K,u4〉 = −1,

〈K,u5〉 = 0, 〈K,u6〉 = 0, 〈K,u7〉 = −2, 〈K,u8〉 = −2.

Thus, we have

PD(K|PA2
) =

8∑
i=1

〈K,ui〉PD(γi)

= −(PD(γ1) + PD(γ2) + PD(γ3) + PD(γ4))− 2(PD(γ7) + PD(γ8)).

It follows that

PD(K|∂PA2
) = δ(PD(K|PA2

))

= δ(−(PD(γ1) + PD(γ2) + PD(γ3) + PD(γ4))− 2(PD(γ7) + PD(γ8)))

= −(µ1 + µ2 + µ3 + µ4)− 2(µ7 + µ8).

Since µ7 = 4µ8, µ4 = 37µ8 and
3∑
i=1

µi = 85µ8, we have

PD(K|∂PA2
) = −(85µ8 + 37µ8)− 2(4µ8 + µ8) = −132µ8.

�

We need to find a charateristic element K̄ ∈ H2(PA′2
⋃
B;Z) such that

PD(K̄|∂PA′2) and PD(K|∂PA2
) = −132µ8 are identified under the isomorphism

H1(∂PA′2;Z) ∼= H1(∂PA2;Z). Without any confusion, in the rest of this sec-
tion, we denote the standard basis of H2(CP2]11CP2;Z) = H2(PA′2

⋃
B;Z) by

h, e1, · · · , e11. We choose K̄ = PD(−h−
∑8
i=1 ei + 11(e9 + e10 + e11)).

Lemma 1.30. K̄ is a characteristic element of H2(CP2]11CP2;Z).

Proof. For a second homology class α = x0h +
∑11
i=1 xiei ∈ H2(CP2]11CP2;Z),

where xi’s are integers, we have

〈K̄, α〉 = −x0 +

8∑
i=1

xi − 11(x9 + x10 + x11) ≡ x2
0 −

11∑
i=1

x2
i = α2 (mod 2)

as (2k + 1)x ≡ x2 (mod 2) for any integers x and k. �

Now we can do calculations for the case of PA′2, ∂PA′2 and K̄ in a similar way
as we did above for the case of PA2, ∂PA2 and K. Recall that ∂PA′2 ∼= −∂PA2,
and the generators of H1(∂PA′2) can be represented by the normal circles to the
disk bundles of the plumbing manifold PA′2 (see Figure 21). Denote by τi the
homology class in H1(∂PA′2) represented by the normal circle to the disk bundle
vi in the plumbing manifold PA′2, 1 ≤ i ≤ 12.

From equation (1.2), we also obtain the relations between τi’s as follows:
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−2τ12 + τ11 = 0,

−2τ11 + τ10 + τ12 = 0,

−3τ10 + τ9 + τ11 = 0,

−2τ9 + τ8 + τ10 = 0,

−4τ8 + τ7 + τ9 = 0,

−2τ1 + τ2 = 0,−2τ2 + τ1 + τ7 = 0,

−2τ3 + τ4 = 0,−2τ4 + τ3 + τ7 = 0,

−2τ5 + τ6 = 0,−2τ6 + τ5 + τ7 = 0,

−τ7 + τ2 + τ4 + τ6 + τ8 = 0.

⇐⇒



τ11 = 2τ12,

τ10 = 3τ12,

τ9 = 7τ12,

τ8 = 11τ12,

τ7 = 37τ12,

τ2 = 2τ1, τ4 = 2τ3, τ6 = 2τ5,

3τ1 = 3τ3 = 3τ5 = τ7,

2(τ1 + τ3 + τ5) = 26τ12.

-1v7 -4
v8

-2
v9

-3
v10

-2
v11

-2
v12

-2v2

-2v1

-2
v3

-2
v4

-2v5

-2v6

τ1

τ2

τ3

τ12

Figure 21. Generators of H1(∂PA′2;Z) as normal circles to the
far most disk bundles of PA′2: The disk bundles are denoted by
vi’s. The homology classes of the embedding spheres at the cor-
responding vertices of A2 are also denoted by vi’s. The homology
classes in H1(∂PA′2;Z) represented by τ1, τ2, τ3, τ12 are identified
under the isomorphism H1(∂PA′2) ∼= H1(∂PA2)to the homology
classes in H1(∂PA2;Z) represented by µ1, µ2, µ3, µ8 respectively.

Proposition 1.31. We have PD(K̄|∂PA′2) = −132τ12.

Proof. Calculations can be carried out in a similar way as in the proof of Propo-
sion 1.31. We refer to Figure 7 for the values of homology classes vi in the basis
h, e1, · · · , e11 of H2(CP2]11CP2;Z). We have

〈K̄, v1〉 = (−h−
8∑
i=1

ei+11(e9 +e10 +e11))(e1−e2) = −e2
1 +e2

2 = −(−1)+(−1) = 0.

We can calculate the remaining 〈K̄, vi〉’s in the same way to obtain:

〈K̄, v2〉 = −12, 〈K̄, v3〉 = −4, 〈K̄, v4〉 = −4, 〈K̄, v5〉 = 0, 〈K̄, v6〉 = 0,
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〈K̄, v7〉 = 1, 〈K̄, v8〉 = 22, 〈K̄, v9〉 = 0, 〈K̄, v10〉 = 11, 〈K̄, v11〉 = 0, 〈K̄, v12〉 = 0.

It follows that

PD(K̄|∂PA′2) =

12∑
i=1

〈K̄, vi〉τi = −12τ2 − 4τ3 − 4τ4 + τ7 + 22τ8 + 11τ10

= −8(3τ1)− 4τ3 − 4(2τ3) + τ7 − 22τ8 + 11τ10

= −8(37τ12)− 4(37τ12) + 37τ12 − 22(11τ12) + 11(3τ12)

= −11(37τ12) + 25.11τ12 = −11.12τ12 = −132τ12.

�

Since τ12 and µ8 are identified under the isomorphismH1(∂PA′2;Z) ∼= H1(∂PA2;Z),
the cohomology classes K and K̄ restrict to the same cohomology class of the
boundaries ∂PA2

∼= −∂PA′2.

Definition 1.32. The cohomology class K̃ ∈ H2(X1;Z) is defined as

K̃|CP2]17CP2− int(PA2)
= K|CP2]17CP2− int(PA2)

, K̃|B = K̄|B

and
K̃|∂PA2

= K|∂PA2
= K̄∂PA′2 .

Proposition 1.33. K̃ is a characteristic element.

Proof. Since ∂PA2 is a rational homology ball, for an arbitrary homology class
α ∈ H2(X1;Z), we have

〈K̃, α〉 = 〈K|CP2]17CP2− int(PA2)
, α|CP2]17CP2− int(PA2)

〉+ 〈K̄|B , α|B〉
∼= 〈α|CP2]17CP2− int(PA2)

, α|CP2]17CP2− int(PA2)
〉+ 〈α|B , α|B〉 = α2 (mod 2).

�

To summerise, we have constructed a smooth 4-manifold X1 which is homeo-
morphic to CP2]9CP2, together with a characteristic element K̃ ∈ H2(X1;Z) such
that K̃|CP2]17CP2− int(PA2)

= K|CP2]17CP2− int(PA2)
.

2. Seiberg-Witten invariants of smooth 4-manifolds

Seiberg-Witten invariants are differential topological invariants of smooth 4-
manifolds introduced by Witten in [34]. In this section, we will define these invari-
ants and discuss some of their properties which will be used to show that X1 carries
a smooth structure which is non-diffeomorphic to the standard smooth structure
on CP2]9CP2. Our main references are [23], [22] and [14].

2.1. Spinc-structures. The Seiberg-Witten invariants of a smooth 4-manifold are
defined on the set of its Spinc-structures which we will define in this section. We
also discuss equivalent descriptions of Spinc-structures as they will be used later.

For n ≥ 3, the Lie group SO(n) has fundamental group Z2. Therefore, its double
covering manifold exists and admits a unique Lie group structure which makes the
covering map countinuous.

Definition 2.1. The group Spin(n) is defined to be the double covering Lie group
of SO(n) for n ≥ 3.
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Write π : Spin(n) −→ SO(n) for the double covering map. Spin(n) contains Z2

as a subgroup in such a way that Z2
∼= ker(π). The group U(1) also contains Z2 as

a subgroup of the identity element and the rotation by 1800.

Definition 2.2. The group Spinc(n) is defined to be Spin(n)×Z2
U(1).

Concretely, Spinc(n) = (Spin(n)×U(1))/{(I, 1) ∼ (−I,−1)} where I and 1 are
the identity elements of Spin(n) and U(1) respectively. The map π̃ : Spinc(n) −→
SO(n) which sends (x, λ) to π(x) is an S1-fibering map.

For an orientable smooth n-dimensional manifoldM , fixing a Riemannian metric
on M reduces the structure group of the tangent bundle TM −→ M from GL(n)
to O(n). An orientation on M reduces the structure group from O(n) to SO(n).
Thus, we obtain a principal SO(n)-bundle φ : PSO(n) −→M on M .

Definition 2.3. A Spin-structure on an oriented Riemannian manifold M is a
principal Spin(n)-bundle ψ : PSpin(n) −→ M such that there exists a map α :
PSpin(n) −→ PSO(n) which has the properties that ψ = φ ◦ α and α is the the
covering map Spin(n) −→ SO(n) fiberwise.

In particular, α : PSpin(n) −→ PSO(n) is a double covering map.

Definition 2.4. A Spinc-structure on an oriented Riemannian manifold M is
a principal Spinc(n)-bundle ψ : PSpinc(n) −→ M such that there exists a map
α : PSpinc(n) −→ PSO(n) which has the properties that ψ = φ ◦ α and α is the
S1-fibering map Spinc(n) −→ SO(n) fiberwise.

In particular, α : PSpinc(n) −→ PSO(n) is an S1-fibering map.
The set SM of Spinc-structures on M is parametrized by H2(M ;Z) as it will be

explained below.
If we consider a good covering {Uα} of M , which means that multiple intersec-

tions of Uα-s are contractible or empty, then the corresponding transition functions
{gαβ} of the tangent bundle take values in SO(n). A Spinc-structure s on M is
given by a collection of transition functions {g̃αβ}:

g̃αβ : Uα ∩ Uβ −→ Spinc(n)

which satisfies the cocycle conditions g̃αβ g̃βγ g̃γα ≡ 1 and π̃ ◦ g̃αβ = gαβ .
If we write g̃αβ = (±hαβ ,±zαβ), then we have two maps

hαβ : Uα ∩ Uβ −→ Spin(n)

and
zαβ : Uα ∩ Uβ −→ U(1)

satisfying π̃ ◦ hαβ = gαβ and (hαβhβγhγα, zαβzβγzγα) ∈ {(I, 1), (−I,−1)}.
The collection of transition functions {εαβγ = hαβhβγhγα} satisfying the 2-

cocycle conditions represents the second Stiefel-Whitney class w2(M) of M .
The collection of U(1)-valued transition functions {λαβ = z2

αβ} satisfying the
cocycle conditions determines a principal U(1)-bundle on M , and equivalently, a
complex line bundle L on M .

Definition 2.5. The complex line bundle L is called the determinant line bundle
of the Spinc-structure, and we write det(s) = L.
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We write c1(s) = c1(L) as the first Chern class of the complex line bundle L. The
cohomology class c1(L) in H2(M ;Z) is represented by the collection of transition
functions {ηαβγ = 1

2πi log(λαβλβγλγα)} which gives a Z-valued Cech 2-cocyle.
The condition (hαβhβγhγα, zαβzβγzγα) ∈ {(I, 1), (−I,−1)} implies that

c1(L) ≡ w2(M)( mod 2).

In conclusion, a Spinc-structure on M gives rise to a complex line bundle on M
for which c1 reduces (mod 2) to the second Stiefel-Whitney class of M .

Denote by CX the set of all characteristic elements of X. For a given Spinc-
structure s on X, the first Chern class of the determinant line bundle c1(det(s)) ∈
H2(X;Z) is a characteristic element. Conversely, for every characteristic element
K ∈ CX , there is a Spinc-structure s on X such that c1(det(s)) = K. If X is simply
connected, then H2(X;Z) does not have 2-torsions and the map

SM −→ CX

s 7→ c1(det(s))

is bijective.
In dimension 4, Spinc-structures always exist by a theorem of Hopf and Hirze-

bruch [13].

Proposition 2.6 ([11], Proposition 2.4.16). Spinc-structures on a simply con-
nected, oriented 4-manifold X always exist, and the set of Spinc-structures SX can
be identified with the set of characteristic elements CX .

Spin-structures on the other hand do not always exist. If a smooth 4-manifold
admits a Spin-structure, then its intersection form is even. When the 4-manifold
is simply connected, then the converse is also true.

Theorem 2.7 (Rokhlin,[28]). If a compact, smooth 4-manifold admits a Spin-
structure, then its signature is divisible by 16.

2.2. Spinc(3) and Spinc(4). We now return to the case of dimensions 3 and 4.
Viewing R3 as the set of imaginary quaternions Im(H). The group S3 of unit

quaternions in H comes with the adjoint action on its Lie algebra Im(H) defined
by q · h = qhq−1, where q ∈ S3 and h ∈ Im(H). This action induces a map
S3 −→ SO(3) which is a continuous double covering. Thus, we have

Spin(3) ∼= S3.

Every element of SU(2), the special unitary group of degree 2, is of the form

x =

(
a −b̄
b ā

)
, where a, b ∈ C such that |a|2 + |b|2 = 1. The map x 7→ (a, b) is an

isomorphism between SU(2) and S3.
Notice also that U(2) ∼= (SU(2)× U(1))/{(I, 1) ∼ (−I,−1)}. In conclusion, we

have

Spinc(3) ∼= (Spin(3)× U(1))/(I, 1) ∼ (−I,−1)

∼= (SU(2)× U(1))/(I, 1) ∼ (−I,−1)

∼= U(2).
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For the descriptions of Spinc(4), we choose two copies SU+(2) and SU−(2) of
the group

SU(2) = {
(
a −b̄
b ā

)
: a, b ∈ C such that |a|2 + |b|2 = 1}.

Using the fibration SO(3) −→ SO(4) −→ S3, we see that SO(4) is homeomor-
phic to S3×SO(3). Considering S3 as the group of unit quaternions and R4 as the
set of all quaternions H, we have a double covering map

S3 × S3 −→ SO(4)

(q1, q2) 7→ φ

where the rotation φ is defined by φ(h) = q1hq
−1
2 for h ∈ H. Thus, we have

Spin(4) ∼= S3 × S3 ∼= SU+(2)× SU−(2)

and

Spinc(4) ∼=
(
S3 × S3 × S1

)
/{(1, 1, 1) ∼ (−1,−1,−1)}

∼= (SU+(2)× SU−(2)× U(1)) /{(I, I, 1) ∼ (−I,−I,−1)}.

The bijective map from (SU+(2)× SU−(2)× U(1)) /{(I, I, 1) ∼ (−I,−I,−1)}
to {(A,B) ∈ U(2) × U(2) : detA = detB} which sends (x, y, λ) to (λx, λy) allows
us to write

Spinc(4) = {(A,B) ∈ U(2)× U(2) : detA = detB}.
Also, we can define two representations of Spinc(4) into U(2) as

(2.1) s±([h+, h−, λ]) = [h±, λ].

2.3. Clifford multiplication. In general, for a principal G-bundle P −→M and
a given representation ρ : G −→ GL(V ), where V is a complex vector space, we
can define an associated vector bundle by considering

E = P ×ρ V = (P × V )/{(p.g, v) ∼ (p, ρ(g)v)}.
The maps s± given in (2.1) give two representations of Spinc(4) into GL(C2).

Thus, we can define two complex vector bundles from PSpinc(4) −→ X as

Definition 2.8. Two spinor bundles associated to PSpinc(4) −→ X are defined by

W± = PSpinc(4) ×s± C2.

Note that we have det(W+) = det(W−) = det(s).

Again, regarding R4 as the set {
(
a −b̄
b ā

)
: a, b ∈ C}, we can define a map

from R4×C2 to C2 by matrix multiplication (x, v) 7→ xv. Since this map commutes
with the representations of Spinc(4) by

(h+x(h−)−1)(h−λv) = h+λxv

for all [h+, h−, λ] ∈ Spinc(4), it gives rise to a global map

T ∗X ⊗W− −→W+.

There is also a map T ∗X ⊗W+ −→W− if we replace the matrix multiplication
by the map (x, v) 7→ −x̄T v.
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These two bundle maps together give rise to a bundle map called the Clifford
multiplication

γ : T ∗X −→ HomC(W+,W−).

Note that γ(v)2 = −|v|2, and if |v| = 1, then γ(v) is a unitary tranformation
fiberwise.

From now on, for a 1-form α and a spinor ψ, we write α · ψ for the Clifford
multiplication γ(α)(ψ).

In conclusion, we have another description of a Spinc-structure on the 4-manifold
X as a pair of spinor bundles W± together with a Clifford multiplication

γ : T ∗X −→ HomC(W+,W−).

2.4. Connections and curvatures. For a principal G-bundle π : P −→ M , at
any point p ∈ P there is an identification of the subspace of vertical vectors Ker(dπ)p
in TpP and the Lie algebra Lie(G) of G: since an element of Ker(dπ)p can be repre-
sented by {p.γt} where {γt} is an 1-parameter subgroups in G, the identification φp
simply takes {p.γt} to {γt} which is an element of Lie(G) viewed as an 1-parameter
subgroups in G.

Definition 2.9. A Lie(G)-valued 1-form ω : TP −→ Lie(G) is a connection if it
satisfies the following two conditions:

i) ω|Ker(dπ)p = φp for all p in P ,
ii) ωgp(dg(v)) = g−1.ωp(v).g for all g in G.

Definition 2.10. Given a Lie(G)-valued 1-form ω on P , the horizontal distribution
{Hp} given by ω is defined at every point p in P to be the subspace Hp = Ker ωp
of TpP .

For every point p in P , the map (dπ)p gives an isomorphism between Hp and
Tπ(p)M , thus a connection ω allows us to lift curves uniquely from M to P by its
horizontal distribution, and therefore makes sense of taking directional differentia-
tion on P .

For a given Riemannian manifold (M, g), there is a unique connection ∇ on the
tangent bundle TM which is compatible with the metric g and torsion-free:

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) and ∇XY −∇YX = [X,Y ].

Definition 2.11. The connection ∇ is called the Levi-Civita connection on M .

Definition 2.12. For a Riemannian 4-manifold X, there exists a canonical con-
nection ω called Levi-Civita connection on the principal SO(4)-bundle PSO(4):

ω : TPSO(4) −→ Lie(SO(4)).

Since Spin(4) −→ SO(4) is a double covering map, we have

Lie(Spin(4)) ∼= Lie(SO(4)).

The Lie algebra Lie(Spinc(4)) splits as Lie(Spinc(4)) ∼= Lie(Spin(4))⊕ Lie(U(1)).
Therefore, the generalization of Levi-Civita connection on principal Spinc-bundle

PSpinc(4) −→ X needs a complement factor to the pull back connection π∗ω :
PSpinc(4) −→ Lie(Spin(4)) which comes from a connection A on the determinant
line bundle p : L −→ X.
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Definition 2.13. Fixing a connection A on the determinant line bundle, we define
a generalization of Levi-Civita connection on the principal Spinc-bundle PSpinc(4)

to be ω̃ = π∗ω ⊕ p∗A.

The connection ω̃ allows us to take the covariant derivative

∇A : Γ(TX)× Γ(W+) −→ Γ(W+).

Definition 2.14. For a given Spinc-structure (W±, γ), the Dirac-operator

/∂A : Γ(W+) −→ Γ(W−)

is defined to be the composition of the following two maps:

∇A : Γ(W+) −→ Γ(T ∗X ⊗W+)

and
γ : Γ(T ∗X ⊗W+) −→ Γ(W−).

For a Riemannian manifold (X, g) with Levi-Civita connection ∇, we have var-
ious notions of curvature: Riemannian curvature tensor, Ricci curvature, scalar
curvature.

Definition 2.15. The Riemannian curvature tensor is a 2-form with values in the
skew adjoint endomorphisms of the tangent bundle

R : Γ(TX) −→ Γ(TX ⊗ ∧2(X))

defined by
R(U, V )W = ∇U∇VW −∇V∇UW −∇[U,V ]W,

where U, V,W ∈ Γ(TX).

We write R(U, V,W,Z) = g(R(U, V )W,Z).

Definition 2.16. The Ricci curvature of X is a bilinear form on TX defined by

Ric(U, V ) = g(−
n∑
i=1

R(ei, U)(ei), V ),

where {e1, · · · , en} is an othonormal basis of TxX and U, V ∈ Γ(TX).

Note that the Ricci curvature is a symmetric bilinear form.

Definition 2.17. The scalar curvature of X is a real valued function

κ : X −→ R
defined by

κ(x) = Tr(Ric) =

n∑
i=1

R(ei, ei).

Suppose that (X, g) is an oriented Riemannian 4-manifold with a Spinc-structure
s = (W+,W−, γ). For a U(1)−connection A on the determinant line bundle L, the
formal adjoint ∇∗A of the covariant derivative ∇A is well-defined by∫

X

〈∇Aψ, ξ〉 =

∫
X

〈ψ,∇∗Aξ〉

for ψ ∈ Γ(W+), ξ ∈ Γ(T ∗X ⊗W+).
We recall the following important formula due to Bochner and Lichnerowicz.
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Theorem 2.18. [17](Bochner-Lichnerowicz) For any spinor ψ ∈ Γ(W+), we have

(2.2) /∂A /∂Aψ = ∇∗A∇Aψ +
κ

4
ψ +

F+
A

4
· ψ,

where the last term is the Clifford multiplication of 2-form on a spinor.

Recall that the Lie algebra of SO(n) consists of n × n matrices A such that
A + AT = 0. Fixing a symmetric, bilinear, positive definite form <,> on the
Euclidean space Rn, there is an isomorphism between Lie(SO(n)) and ∧2(Rn) given
by wA(x, y) = 〈Ax, y〉 for each A ∈ Lie(SO(n)).

Definition 2.19. The linear map ∗ : ∧i(Rn) −→ ∧n−i(Rn) is defined in an oth-
onormal oriented basis {e1, · · · , en} of Rn by

∗(ej1 ∧ · · · ∧ eji) = ek1 ∧ · · · ∧ ekn−i

where {j1, · · · , ji, k1, · · · , kn−i} is an even permutation of {1, 2, · · · , n}.

When n = 4 and i = 2, we have ∗2 = Id which induces a splitting of vector
spaces

∧2(R4) ∼= ∧+(R4)⊕ ∧−(R4),

where ∗|∧+(R4) = Id and ∗|∧−(R4) = −Id.
We can globalise this construction to get a splitting of the vector bundle of

differential 2-forms:

∧2(T ∗X) ∼= ∧+(T ∗X)⊕ ∧−(T ∗X).

We write Ω+(X) = Γ(∧+(T ∗X)) and Γ(Ω−(X) = ∧−(T ∗X)).

Definition 2.20. An element of Ω+(X) is called a self-dual 2-form, and an element
of Ω−(X) is called an anti-self-dual 2-form.

The splitting of ∧2(R4) is compatible through the isomorphism

w : Lie(SO(4)) −→ ∧2(R4)

with the splitting of the Lie algebra Lie(SO(4)):

Lie(SO(4)) ∼= Lie(SO(3))⊕ Lie(SO(3)) ∼= Im(H)⊕ Im(H),

and we have
Im(H) ∼= ∧+(R4) ∼= ∧−(R4).

There is also a splitting of the Lie algebra Lie(Spinc(4)):

Lie(Spinc(4)) ∼= Lie(SO(3))⊕ Lie(SO(3))⊕ Lie(S1) ∼= Im(H)⊕ Im(H)⊕ iR.

The adjoint representation of Spinc(4) on Lie(Spinc(4)) gives rise to two rep-
resentations r± of Spinc(4) on Im(H): for [q+, q−, λ] ∈ Spinc(4) with two unit
quaternions q± and a complex unit λ, and an imaginary quaternion h ∈ Im(H),
these two maps are defined explicitely by

r±([q+, q−, λ])(h) = q±h(q±)−1.

Definition 2.21. The map σ : H −→ Im(H) is given by σ(q) = −q.i.q̄ for q ∈ H.

Lemma 2.22. The map σ is Spinc(4)-equivariant with respect to the representa-
tions s± and r± of Spinc(4) into C2 ∼= H and Im(H) respectively.
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Proof. For an element [q+, q−, λ] ∈ Spinc(4) and h ∈ H, we have

r+(σ(h)) = r+(−h.i.h̄) = −q+.h.i.h̄.(q+)−1,

and
σ(s+(h)) = σ(q+hλ) = −q+.h.λ.i.λ̄.h̄.(q+)−1.

Since λ ∈ U(1), we have r+(σ(h)) = σ(s+(h)).
Similarly, we have r−(σ(h)) = σ(s−(h)). �

The map σ therefore can be globalised to a map

σ : Γ(W+) −→ iΩ+(X)

by noticing that a fiber of W+ is C2 ∼= H, and a fiber of ∧+(T ∗X) is ∧+(R4) ∼=
Im(H).

Lemma 2.23. [23, Lemma 4.1.1] For ψ ∈ Γ(W+), the map σ reads

(2.3) σ(ψ) = ψ ⊗ ψ∗ − 1

2
|ψ|2Id,

where ψ ⊗ ψ∗ acts as an endomorphism on W+ which sends φ to 〈φ, ψ〉w.

For a principal G-bundle π : P −→ X, the set of connections on P is an affine
space. It means that if A1, A2 are two connections on P , then A1 − A2 is the
pull-back by π of a Lie(G)-valued 1-form on X:

A1 −A2 = π∗α, where α ∈ Ω1(X, Lie(G)).

Recall that if A1 is a Lie(G)-valued k-form, and A2 is a Lie(G)-valued l-form,
then the wedge product A1∧A2 of A1 and A2 is defined as a Lie(G)-valued (k+ l)-
form by matrix multiplication on Lie(G).

Definition 2.24. For a connection A on principal G-bundle π : P −→ X, the
curvature of A is a Lie(G)-valued 2-form defined by FA = dA+A ∧A.

That is, FA is the pull-back by π of a 2-form on X

FA = π∗ω, where ω ∈ Ω2(X, Lie(G)).

When the bundle is a principal U(1)-bundle L −→ X, i.e L is a complex line
bundle over X, we denote by AL the set of U(1)-connections on L.

Notice that

Ω2(X, Lie(U(1))) = iΩ2(X,R) = iΓ(∧2(T ∗X)) ∼= iΓ(∧+(T ∗X))⊕ iΓ(∧−(T ∗X)).

Any differential 2-form ω ∈ Ω2(X) can be decomposed as a direct sum

ω = ω+ + ω−,

where

ω+ =
1

2
(ω + ∗ω) ∈ Ω+(X), and ω− =

1

2
(ω − ∗ω) ∈ Ω−(X).

Thus, for a U(1)-connection A ∈ AL, the curvature of A splits as

FA = F+
A + F−A , where F

±
A ∈ iΩ±(X).

WhenX is a compact, oriented Riemannian manifold, we can define a symmetric,
bilinear, positive definite form on Ωk(X) by

(ω1, ω2) =

∫
X

ω1 ∧ ∗ω2.
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There is an adjoint operator of the exterior derivative d : Ωk−1(X) −→ Ωk(X)
defined by

d∗ = − ∗ d∗ : Ωk(X) −→ Ωk−1(X)

which satisfies (dα, β) = (α, d∗β) for α ∈ Ωk−1(X) and β ∈ Ωk(X).
The Hodge-Laplacian then is defined by

∆ = dd∗ + d∗d : Ωk(X) −→ Ωk(X).

Definition 2.25. The space of harmonic k-forms on X is defined to be

Hk(X) = {ω ∈ Ωk(X) : ∆(ω) = 0}.
We recall the following fundamental theorem of Hodge.

Theorem 2.26. For a compact, oriented Riemannian manifold X, we have

Hk
dR(X;R) ∼= Hk(X).

Since ∗ interchanges kernels of d and δ, we also have the decomposition

Ω2(X) ∼= H2(X)⊕ d(Ω1(X))⊕ δ(Ω3(X)).

Thus, self-dual and anti-self-dual parts of a harmonic 2-form are again harmonic
2-forms, which means that

H2(X) ∼= H+(X)⊕H−(X),

where H+(X) and H−(X) are spaces of self-dual and anti-self-dual harmonic
2-forms respectively.

2.5. The Seiberg-Witten equations. We are now able to define the Seiberg-
Witten equations.

Let X be a closed, oriented, simply connected smooth 4-manifold, g be a Rie-
mannian metric, and s be a Spinc-structure on X. The Spinc-structure s is given
by a triple (W+,W−, γ) of two spinor bundles W± and a Clifford multiplica-
tion γ : T ∗X −→ HomC(W+,W−). The associated determinant line bundle is
L = detW+ = detW−.

Definition 2.27. The Seiberg-Witten equations for (X, g, s) are{
/∂Aψ = 0

F+
A = σ(ψ),

where A ∈ AL and ψ ∈ Γ(W+).

Applying the Bochner-Lichnerowicz formula (2.2) to solutions of the Seiberg-
Witten equations, we obtain the following:

Proposition 2.28. For a solution (A,ψ) of the Seiberg-Witten equations, we have

(2.4) ‖∇Aψ‖2L2 +
1

4
〈κψ, ψ〉+

1

4
‖ψ‖4L2 = 0.

In particular, we have

(2.5) κ−X .‖ψ‖
2
L2 ≥ ‖ψ‖4L2

where κ−X = max{0,−κ(x) : x ∈ X}.
We also have the following pointwise bound for any x ∈ X

(2.6) |ψ(x)|2 ≤ κ−X .
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Proof. Notice that /∂Aψ = 0 and F+
A = ψ ⊗ ψ∗ − |ψ|

2

2 Id, hence taking the integral∫
X
〈., ψ〉 with two sides of (2.2) gives us the desired formula (2.4).
For (2.5), we observe that ‖∇Aψ‖2L2 ≥ 0 implies 〈κψ, ψ〉+ ‖ψ‖4L2 ≤ 0, or equiv-

alently
‖ψ‖4L2 ≤ −〈κψ, ψ〉 ≤ κ−X .‖ψ‖

2
L2 .

For (2.6), it is enough to show that if x0 ∈ X is a point where the function
|ψ(x)|2 with x ∈ X obtains its maximal value, then |ψ(x0)|2 ≤ max(0,−κ(x0)).
Notice that for any x ∈ X, taking the product 〈., ψ(x)〉 with two sides of (2.2)
implies that

0 = 〈∇∗A∇Aψ(x), ψ(x)〉+
κ(x)

4
|ψ(x)|2 +

1

4
|ψ(x)|4.

For the given metric g on X and an orthonormal basis {e1, e2, e3, e4} of TX, the

Laplacian ∆g is defined by ∆g = −
4∑
i=1

∂2

∂e2i
. We have

∆g|ψ(x)|2 = −2|∇Aψ(x)|2 + 2Re〈∇∗A∇Aψ(x), ψ(x)〉.
Since the maximal value of the function |ψ(x)|2 attained at x0, we have
4∑
i=1

∂2|ψ(x0)|2
∂e2i

≤ 0, i.e −2|∇Aψ(x)|2 + 2Re〈∇∗A∇Aψ(x), ψ(x)〉 = ∆g|ψ(x0)|2 ≥ 0.

Since 0 ≥ −2|∇Aψ(x0)|2 and 2〈∇∗A∇Aψ(x0), ψ(x0)〉 = 2Re〈∇∗A∇Aψ(x0), ψ(x0)〉,
we obtain

−κ(x0)

4
|ψ(x0)|2 − 1

4
|ψ(x0)|4 = 2〈∇∗A∇Aψ(x0), ψ(x0)〉 ≥ 0

which implies that either |ψ(x0)|2 = 0 or |ψ(x0)|2 ≤ −κ(x0). It follows that
|ψ(x0)|2 ≤ max(0,−κ(x0)).

If |ψ(x0)|2 = 0, then we also have 0 ≤ |ψ(x)|2 ≤ |ψ(x0)|2 = 0, i.e ψ(x) ≡ 0. �

Corollary 2.29. For any solution (A,ψ) of the Seiberg-Witten equations with mod-
uli space of non-negative dimension, we have

(2.7) ‖F+
A ‖

2
L2 ≤

(κ−X)2

4
vol(X),

(2.8) ‖F−A ‖
2
L2 ≤

(κ−X)2

4
vol(X)− 8π2χ(X)− 12π2σ(X).

Proof. Since F+
A = ψ ⊗ ψ∗ − 1

2 |ψ|
2Id, we have |F+

A (x)| = 1
2 |ψ(x)|2 ≤ 1

2κ
−
X for any

x ∈ X by the inequality (2.6). By integrating over X, we obtain the inequality
(2.7). For the inequality (2.8), notice that we have c1(L) = 1

2πi [FA], which implies

c21(L) =
1

4π2

∫
X

FA ∧ FA =
1

4π2

∫
X

(F+
A ∧ F

+
A + F−A ∧ F

−
A )

=
1

4π2

∫
X

(F+
A ∧ ∗F

+
A − F

−
A ∧ ∗F

−
A ) =

1

4π2
(‖F+

A ‖
2 − ‖F−A ‖

2).

Here we use the fact that F+
A ∧ F

−
A = 0, ∗F+

A = F+
A and ∗F−A = −F−A .

Since d = 1
4 (c21(L)− 2χ(X)− 3σ(X)) ≥ 0, we have

c21(L) ≥ 2χ(X) + 3σ(X).
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Thus, we obtain the inequality 1
4π2 (‖F+

A ‖2 − ‖F
−
A ‖2) ≥ 2χ(X) + 3σ(X) which

together with (2.7) imply the inequality (2.8). �

Consider the map

SW : Γ(W+)×AL → Γ(W−)× iΩ+(X)

(ψ,A) 7→ (/∂Aψ, F
+
A − σ(ψ)).

The solution space SW−1(0, 0) is usually an infinite dimensional space. It admits
an action of an infinite dimensional Lie group G of symmetries of the Spinc-structure
s which is isomorphic to the group Map(X,S1) with the group structure given by
pointwise multiplication. The group G is called the gauge group.

The group G acts on Γ(W+) × AL coordinate-wise. On Γ(W+), G acts by
pointwise multiplication on X

G × Γ(W+)→ Γ(W+)

(u, ψ) 7→ u∗ψ = u.ψ

which means that u∗ψ(x) = u(x)ψ(x) for all x ∈ X.
On AL, G acts by

G × AL → AL
(u,A) 7→ u∗A = A+ udu−1.

In term of covariant derivative ∇A, G acts by

u∗∇A(ψ) = u(∇A(u−1ψ)).

Lemma 2.30. The solution space SW−1(0, 0) is invariant under the action of G.

Proof. Since u∗∇A(u∗ψ) = u(∇A(u−1(uψ))) = u∇A(ψ), we have

/∂u∗A(u∗ψ) = u/∂A(ψ)

which means that G sends a solution of the equation /∂A(ψ) = 0 to another
solution of it.

Since the manifold X is simply connected, a map u ∈Map(X,S1) can be written
in the form u = eif for some real valued function f on X. We have

u∗A = A+ udu−1 = A− idf.

The curvature is left invariant under the action of G as

Fu∗A = d(u∗A) + u∗A ∧ u∗A
= d(A− idf) + (A− idf) ∧ (A− idf)

= dA+A ∧A = FA.

Notice here that df is an exact 1-form which makes d(df) = 0 and df ∧ df = 0.
For any x ∈ X we have

σ(u∗ψ(x)) = σ(u(x)ψ(x)) = −ψ(x).u(x).i.u(x).ψ(x)

= −ψ(x).i.ψ(x) = σ(ψ(x)),

as u(x) is a complex unit.
Both sides of the equation F+

A = σ(ψ) are invariant under the action of G.
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In conclusion, the action of G sends a given solution to another solution of the
Seiberg-Witten equations. �

We now define the Seiberg-Witten moduli spaces as

M = SW−1(0, 0)/G,
M0 = SW−1(0, 0)/G0.

Here G0 = Map((X,x0), (S1, 1)) = {u : M −→ S1|u(x0) = 1} is the based gauge
group for a fixed point x0 in X.

Lemma 2.31. The action of G0 on SW−1(0, 0) is always free.

Proof. Note that for u ∈ G0 and (A,ψ) ∈ SW−1(0, 0) such that (u∗A, u∗ψ) =
(A,ψ), we have u∗A = A+ udu−1 = A. Thus udu−1 = 0, which means that u is a
constant map. Since u(x0) = 1, we have u ≡ 1 is the identity element in G0. �

However, the action of G might have non-trivial stabilizers which make the mod-
uli spaceM to be singular.

Lemma 2.32. Under the action of G, the stabilizer of (A,ψ) ∈ SW−1(0, 0) is
trivial when ψ is not identically zero. When ψ ≡ 0, the stabilizer contains all
constant maps from X to S1.

Proof. For u ∈ G such that (u∗A, u∗ψ) = (A,ψ), the equation u∗A = A+udu−1 = A
implies that u is a constant map. From the second equation u∗ψ = u.ψ = ψ, we
see that when u is not a constant map whose value is not 1, then ψ ≡ 0. When ψ
is not identically equal 0, then u ≡ 1 is the identity element of G. �

Since G/G0
∼= S1, we have a mapM0 −→M which is an S1-bundle away form

those points where ψ ≡ 0.
The topologies onM andM0 are obtained from the topology of Γ(W+) × AL

considered as a space of smooth functions.
Sometimes, M is not a smooth manifold and we need to modify the Seiberg-

Witten equations.

Definition 2.33. For (X, g, s) and g-self-dual 2-form δ, the perturbed Seiberg-
Witten equations are {

/∂Aψ = 0

F+
A = σ(ψ) + iδ,

where A ∈ AL and ψ ∈ Γ(W+).

In a similar fashion as in Proposion 2.28, we can obtain the following bounds for
solutions of the perturbed Seiberg-Witten equations.

Proposition 2.34. If (A,ψ) is a solution of the perturbed Seiberg-Witten equations,
then we have the following pointwise bound for any x ∈ X
(2.9) |ψ(x)|2 ≤ max(0, 4|δ(y)| − κ(y) : y ∈ X).

Proof. The proof can be done in the same way as in the proof of Proposition
2.28, now with the additional term iδ in the second equation of the Seiberg-Witten
equations. Applying formula 2.2 gives us

0 = ∇∗A∇Aψ +
κ

4
ψ +

|ψ|2

4
· ψ + iδ · ψ.
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If |ψ(x)|, x ∈ X attains its maximal value at x0, then

−κ(x0)

4
|ψ(x0)|2−1

4
|ψ(x0)|4−Re(〈iδ(x0)·ψ(x0), ψ(x0)〉) = 2〈∇∗A∇Aψ(x0), ψ(x0)〉 ≥ 0.

Now (2.9) is obtained by noticing that |δ(x0)||ψ(x0)|2 ≥ |Re(〈iδ(x0)·ψ(x0), ψ(x0)〉)|.
�

In the same way, we define the perturbed moduli spaces as

Mδ = SW−1(0, iδ)/G,
M0

δ = SW−1(0, iδ)/G0.

Now, if the action of the gauge group onMδ has a non-trivial stabilizer at the
solution (A,ψ) with ψ ≡ 0, then the second equation is of the form F+

A = iδ.

Definition 2.35. Reducible solutions of the perturbed Seiberg-Witten equations are
those of the form (A, 0).

Fixing a metric on X, the Hodge theorem reads as

H2(X;R) ∼= H2(X) = H+(X)⊕H−(X),

with b+2 (X) = dimH+(X).
For a given Spinc-structure s with the determinant line bundle L = det(s), the

curvature FA represents c1(L) as a 2-form: c1(L) = 1
2πi [FA], and therefore, F+

A is
the self-dual part of a fixed harmonic 2-form. Thus, when b+2 (X) > 0, the equation
F+
A = 0 does not have any solution for generic choice of the metric g. If δ is

choosen to have norm ‖δ‖ =
∫
X
δ ∧ δ small enough, then F+

A = iδ also does not
admit any solution, which means that no solution with non-trivial stabilizer exists,
and therefore, the moduli space Mδ does not have any singular point for generic
choice of metric g. Because of this reason, we will consider the case when b+2 > 0.

Fixing the Spinc-structure s, the perturbed moduli spaces have following prop-
erties:

Theorem 2.36. [23, Proposition 6.4.1] The moduli spaceMδ is always compact.

Proof. We only sketch the proof. Detailed treatments can be found in [23, Section
5.3] and [22, Section 3.3].

We need to show that if {(An, ψn)} is a sequence of solutions to the perturbed
Seiberg-Witten equations, then there exists a sequence of gauge transformations
{un} such that {u∗nAn, u∗nψn} contains a subsequence which converges smoothly to
a solution of the perturbed Seiberg-Witten equations.

By fixing a base connection A0 on the determinant line bundle L, any U(1)-
connection on L can be written as A = A0 + α0 for α0 ∈ Ω1(X, iR). More-
over, for any connection A there is a gauge transformation u ∈ Map(X,S1) such
that u∗(A) = A0 + α1, where α1 has the properties that d∗α1 = 0 and ‖α1‖2 ≤
c1.‖F+

A ‖2 + c2 for some constants c1, c2.
Recall that in this case the adjoint operator d∗ of derivative d : Ω0(X, iR) −→

Ω1(X, iR) is defined by d∗ = −∗d∗. Since (df, α0) = (f, d∗α0) = 0 for any constant
function f on X, d∗(α0) is orthogonal to all constant functions on X. Denote the
orthogonal complement of the constant functions on X by I. The restriction of the
Laplace operator to I has an inverse ∆−1 : I −→ I. Define an iR-valued function
s0 = −1

2 ∆−1(d∗α0) on X, and a gauge transformation u = exp(s0). Consider
α1 = α0 + 2du, we have u∗(A) = A0 + α1 and d∗(α1) = 0.
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For the determinant line bundle L with a given connection A0, we can define the
following norms on Γ(L):

For p > 1, k ≥ 1 and f ∈ Γ(L), let

‖f‖Lp
k

=
(∫
X

(|f |p + |dA0f |p + · · ·+ |dkA0
f |p)dx

)1/p
.

The completion Lpk of Γ(L) with respect to the norm ‖.‖Lp
k
are called the Sobolev

spaces. For any p > 1, Lpk is a Banach space. In our case of the 4-dimensional man-
ifold X, the Sobolev embedding theorem says that there is a countinous embedding
of Lpk into the space of Cr sections of the line bundle L when k−4/p > r. Moreover,
by the Rellich-Kondrachov theorem, the inclusion Lpk+1 −→ Lpk is compact for all
p, k, which means that any bounded sequence in Lpk+1 admits a subsequence which
converges in Lpk.

For two Sobolev spaces Lpk, L
q
l and a positive integer n such that k/n− 1/p < 0

and l/n− 1/q < 0, the pointwise multiplication of functions extends to a continous
multiplication, called the Sobolev multiplication of Sobolev spaces

Lpk × L
q
l −→ Lrm

when 0 ≤ m ≤ min(k, l) and 0 < m/n+ (−k/n+ 1/p) + (−l/n+ 1/q) ≤ 1/r ≤ 1.
Now for a sequence {(An, ψn)} = {(A0 +αn, ψn)}, αn ∈ Ω1(X, iR) of solutions to

the perturbed Seiberg-Witten equations, we can suppose d∗αn = 0 by using gauge
transformations. The perturbed Seiberg-Witten equations read as

/∂A0
ψn + αn · ψn = 0,

F+
A0

+ (dαn)+ = σ(ψn) + iδ,

d∗αn = 0,

which can be rewritten as

(2.10)

{
/∂A0

ψn = −αn · ψn,
(d∗ + d+)αn = σ(ψn) + iδ − F+

A0
.

We have the pointwise bound (2.9) for ψn and an ‖.‖L2 upper-bound for ∇Anψn.
Since αn is bounded in L2

2, we obtain that ‖ψn‖L2
1

=
(∫
X

(|ψn|2 + |dA0
ψn|2)dx

)1/2 is

also bounded from the first equation of (2.10).
Using the Sobolev multiplications and the first equation of (2.10), one can showed

that ψn is bounded in L2
k, k = 1, 2, 3 (See [23, Theorem 5.3.6]). From the second

equation of (2.10), it follows that ‖F+
A ‖ is bounded in L2

3, and therefore, αn is
bounded in L2

4.
Suppose that for k ≥ 3, ψn and αn are bounded in L2

k. From the first equation
of (2.10) and the Sobolev multiplication L2

k × L2
k −→ L2

k, we obtain that /∂A0
ψn is

bounded in L2
k, and therefore ψn is bounded in L2

k+1. From the second equation of
(2.10), we have an L2

k bound for F+
A0

, which implies that αn is bounded in L2
k+1.

We conclude that ψn and αn are bounded in L2
k for all k. Therefore, (A0+αn, ψn)

contains a subsequence (A0 + αni
, ψni

) which converges in L2
k for all k by the

Rellich-Kondrachov theorem. The Sobolev embedding theorem then implies that
(A0 +αni

, ψni
) also converges in Cr for all r, i.e (A0 +αni

, ψni
) converges smoothly

to a solution of the perturbed Seiberg-Witten equations. �
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Theorem 2.37. [23, Theorem 6.1.1]M0
δ is a smooth manifold of finite dimension

for generic choices of g and δ. When b+2 > 0, Mδ is also a smooth manifold for
generic choice of δ and we have an principal S1-bundleM0

δ −→Mδ.

Theorem 2.38. [23, Corollary 6.6.3] For a generic choice of δ, the manifoldMδ is
orientable. Orientations onMδ are in one-to-one correspondence with orientations
of the vector space H0(X;R)⊕H2

+(X;R).

Here H2
+(X;R) is the maximal positive definite subspace of H2(X;R) with re-

spect to the quadratic form Q on H2(X;R) defined by Q(α, β) =
∫
X
α ∧ β.

Theorem 2.39. [23, Proposition 6.2.2] Suppose that b+2 (X) > 0. Fix a Riemannian
metric g on X and an orientation of the vector space H0(X;R)⊕H2

+(X;R). For a
generic choice of g-self-dual 2-form δ, the moduli spaceMδ is a smooth, compacted,
oriented manifold of dimension d(s) = 1

4 (c21(L) − 3σ(X) − 2χ(X)) for any Spinc-
structure s on X with determinant line bundle L = det(s).

2.6. The Seiberg-Witten invariants. Assuming that b+2 (X) > 0, we have an
principal S1-bundle M0

δ −→ Mδ. Denote the first Chern class of this bundle by
µ ∈ H2(Mδ;Z). We fix an orientation on the vector space H0(X;R)⊕H2

+(X;R).
This orientation induces an orientation on Mδ, and we have a homology class
[Mδ] ∈ Hd(Mδ;Z).

Definition 2.40. For a closed, oriented, simply connected smooth 4-manifold X
with b+2 (X) > 1, the Seiberg-Witten invariant of X

SWX : SX −→ Z

is defined for a generic metric g and a generic choice of a g-self-dual 2-form δ as
follows. Denote the dimensionMδ by d.

i) If d < 0 for a Spinc-structure s, then SWX(s) = 0.
ii) If d = 0 for a Spinc-structure s, then Mδ is a finite set of points. The

orientation on Mδ assigns +1 or −1 to each point. We define SWX(s) to be the
sum of these ±1 numbers overMδ.

iii) If d is positive and odd, then SWX(s) = 0.
iv) If d is positive and even, then SWX(s) = 〈µ d

2 , [Mδ]〉.

The fundamental property of Seiberg-Witten invariants is the following:

Lemma 2.41. [23, Lemma 6.7.1] If b+2 > 1, then the definition of SWX(s) does
not depend on the choice of pertubation δ and the choice of metric g.

Thus, we obtain that

Theorem 2.42. [23, Theorem 6.7.3] For a closed, oriented, simply connected
smooth 4-manifold X with b+2 (X) > 1, SWX(s) is a differential topological in-
variant which depends only on Spinc-structure s. Moreover, SWX vanishes for all
but finitely many Spinc-structures.

Since orienting moduli spaces is rather complicated, and in fact, we will only
need the cases when d(s) = 0, i.e when the moduli space is a finite set of points, the
following alternative definition of the Seiberg-Witten invariant allows us to avoid
orientation issues.
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Definition 2.43. The (mod 2) Seiberg-Witten invariant of X

SW
(2)
X : SX −→ Z

is defined by
i) If d(s) = 0, then SW (2)

X (s) = #Mδ (mod 2).

ii) If d(s) is positive and even, then SW
(2)
X (s) = 〈µ

d
2
2 , [Mδ]〉. Now without ori-

entations, we take the homology class [Mδ] ∈ Hd(Mδ;Z2), and µ2 ∈ H2(Mδ;Z2)
is the reduction (mod 2) of the first Chern class of the S1-bundleM0

δ −→Mδ .
iii) SW (2)

X (s) = 0 for all other values of d(s).

Remark 2.44. Although the (mod 2) Seiberg-Witten invariants are enough for us
to prove the exoticness of X1, the integral invariants are indispensable for other
purposes. For instance, Park, Stipsicz and Szabó showed in [26] that there are
infinitely many pairwise non-diffeomorphic structures on CP2]5CP2. This kind of
result clearly cannot obtained by using the (mod 2) invariants.

Since we are dealing with CP2]9CP2, we need to define the invariant for the case
b+2 (X) = 1. Note that for each Riemannian metric g of X, there exist a unique
g-self-dual 2-form ωg in Ω+(X) such that [ωg]

2 = 1 and 〈ω, h〉 > 0, where h is the
generator of H2(CP2;Z) and h is considered as an element of H2(CP2]9CP2;Z) .
Since we also have dimH2

+(X;R) = b+2 (X) = 1, the 2-form ωg is determined by
the metric g up to sign. As we already fixed an orientation on H2

+(X;R), we can
choose the sign of ωg to be positive.

Lemma 2.45. For a metric g on X and a g-self-dual 2-form δ, the perturbed
Seiberg-Witten equations have a reducible solution if and only if

(2πc1(L) + [δ]).[ωg] = 0.

Proof. The Seiberg-Witten equations have a reducible solution if F+
A = iδ. Since

c1(L) = 1
2πi [FA], we have (2πc1(L) + [δ])+ = 0 which means that 2πc1(L) + [δ] is

an anti-self-dual 2-form. Because [ωg] is a self-dual 2-form, this is equivalent to

(2πc1(L) + [δ]).[ωg] = 0.

�

Proposition 2.46. If a smooth 4-manifold X is simply connected with b+2 (X) = 1
and b−2 (X) ≤ 9, then the Seiberg-Witten invariant of X does not depend on the
choice of generic metrics.

Proof. Let L be a determinant line bundle of some Spinc-structure on X such that
the formal dimension d(L) = c21(L) − 3σ(X) − 2χ(X) is non negative and even.
Notice that we have

σ(X) = b+2 (X)− b−2 (X) = 1− b−2 (X) and χ(X) = 2 + b+2 (X) + b−2 (X) = 3 + b−2 (X).

Thus, c21(L) = d(L) + 3σ(X) + 2χ(X) = d(L) + 9 − b−2 (X). When b−2 (X) ≤ 9, we
have c21(L) ≥ 0.

If c1(L) = 0, then c21 = 0, i.e d(L) + 9 − b−2 (X) = 0. Since d(L) ≥ 0 and
b−2 (X) ≤ 9, we have d(L) = 0 and b−2 (X) = 9. Since L is a characteristic element,
we also have w2(X) ≡ c1(L) = 0 ( mod 2), which means that X admit a Spin-
structure. Rokhlin’s theorem (Theorem 2.7) implies that the signature of X is
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divisible by 16. But in this case, the signature σ(X) = 1− 9 = −8 is not divisible
by 16. This contradiction shows that c1(L) 6= 0.

Thus, we obtain that c1(L).[ωg] is not equal to zero and therefore has a fixed
sign for all generic metrics.

The harmonic 2-form representing c1(L) is non-zero and lies inH2
+(X;R). There-

fore, we have 2πc1(L).[ωg] 6= 0 for generic metric g. In conclusion, the sign of
(2πc1(L) + [δ]).[ωg] = 0 is independent of the choice of metric g for generic pertur-
bation δ with norm small enough. �

Now we can see that in the case of b+2 = 1 and b−2 arbitrary, the space of
generic metrics and generic perturbations with small norm for which the Seiberg-
Witten equations do not admit reducible solutions is divided into two disjoined
parts (exactly one of them is empty when b+2 ≤ 9). We call them plus and minus
chamber according to the sign of (2πc1(L)+[δ]).[ωg]. The Seiberg-Witten invariants
are now well defined in the following sense.

Theorem 2.47. [23, Theorem 6.9.2] Let X be a closed, oriented, simply connected
smooth 4-manifold with b+2 (X) = 1. Then for any Riemannian metric g and any
Spinc-tructure on X with determinant line bundle L for which c1(L).[ωg] 6= 0,
Seiberg-Witten invariants are well defined and constant on each of two chambers.

We write SWX,g,δ(s) and SW
(2)
X,g,δ(s) to indicate that the invariant depending

on metric, perturbation and Spinc−structure.
When b+2 (X) = 1 and b−2 (X) ≤ 9, one of two chambers is empty according to

Proposition 2.46.
When b+2 (X) = 1 and b−2 (X) > 9, there are two chambers and we fix cohomology

classes η+, η− with non-negative squares which represent the positively oriented har-
monic self-dual 2-forms for some metrics on plus and minus chambers respectively,
then we have the so called wall-crossing formula.

Theorem 2.48. [23, Proposition 6.9.4] For a Spinc-structure s of even formal
dimension d on X with b+2 (X) = 1 and b−2 (X) > 9, we have

SWX,g+,δ+(s) = SWX,g−,δ−(s)− (−1)
d
2 ,

where the pairs (g+, δ+) and (g−, δ−) are choosen arbitraryly from the two chambers
η+ and η− respectively.

In particular, when d = 0, crossing a wall once will change the Seiberg-Witten
invariants by 1.

Theorem 2.49. For a Spinc-structure s of formal dimension d = 0 on X with
b+2 (X) = 1 and b−2 (X) > 9, we have

SW
(2)
X,g+,δ+

(s) = SW
(2)
X,g−,δ−

(s) + 1.

2.7. The Seiberg-Witten invariants in the case of b+2 = 1. Inequality (2.5)
means that if the metric g on X has positive scalar curvature, then every solution of
the Seiberg-Witten equations must satisfy ψ ≡ 0. This already implies the following
vanishing result of Witten.

Theorem 2.50 (Witten, [34]). All Seiberg-Witten invariants of an oriented Rie-
mannian 4-manifold with metric of positive scalar curvature vanish.
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Of particular important for us, the 4-manifolds CP2 and CP2 admit metrics of
positive curvature. On CP2, we consider the (1, 1)−form

ωFS([z0 : z1 : z2]) =
i

2π

2∑
i,j=0

∂2

∂zi∂z̄j
log(|z0|2 + |z1|2 + |z2|2)dzidz̄j .

The complex structure on CP2 induces a vector bundle isomorphism J : TCP2 −→
TCP2 which satisfies J2 = −1. J is called an almost complex structure on CP2.
We can associate a Hermitian metric to ωFS as follows:

gFS(U, V ) = ωFS(U, JV ), where U, V ∈ TCP2.

Definition 2.51. The Hermitian metric gFS is called the Fubini-Study metric on
CP2.

The Fubini-Study metric on CP2 is the same as that on CP2. It is known
that the Fubini-Study metric have positive Ricci curvature, and therefore its scalar
curvatures are positive (see [5]).

Theorem 2.52. [12, Gromov-Lawson] If X1 and X2 are compact n-manifolds,
n ≥ 3, with positive scalar curvature, then their connected sum also carries positive
scalar curvature.

Thus, the connected sums of CP2’s and CP2’s also admit metrics with positive
scalar curvature.

Proposition 2.53. The smooth 4-manifold CP2]nCP2 admits a Riemannian met-
ric g0 with positive scalar curvature for any non-negative integer n.

Since b−2 (CP2]17CP2) = 17 > 9, the Seiberg-Witten invariants of CP2]17CP2

also depend on the choosen metric. Combining Theorem 2.50 and Proposition 2.53
implies that

Proposition 2.54. For all parameter δ with norm small enough or δ = 0, we have

SW
(2)

CP2]17CP2,g0,δ
(s) = 0

for every Spinc−structure s such that d(s) = 0.

Let us choose a second homology class h ∈ H2(CP2]17CP2;Z) such that PD(h) =

[ωg0 ]. We fix a basis of H2(CP2]17CP2;Z) by h, e1, e2, · · · , e17, and write K =

PD(3h −
17∑
i=1

ei). We will find a homology class representing the chamber which

does not contain PD(h).

Lemma 2.55. There is a homology class α ∈ H2(CP2]17CP2;Z) such that α.h > 0,
α.v = 0 for all homology classes v at vertices of the plumbing diagram given in
Figure 18, and K(α) < 0.

Proof. Suppose that α = a.h+
17∑
i=1

bi.ei is a homology class to be determined later

with unknown integers a > 0, b1, · · · , b17. The condition α.v = 0 for all homology
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classes v at vertices of the plumbing diagram given in Figure 18 implies the following
system of linear equations

a+ b1 + b2 + b3 + b4 = 0

a+ b5 + b7 + b8 + b9 = 0

a+ b5 + b11 + b12 + b13 = 0

a+ b9 + b13 + b15 + b16 = 0

b3 − b17 = 0

b2 − b3 = 0

2a+ b1 + b2 + b5 + b6 + b9 + b10 + b11 + b15 = 0

2a+ b1 + b4 + b7 + b8 + b11 + b13 + b14 + b15 = 0,

which is equivalent to

b3 = b17 = b2

b4 = −a− b1 − 2b2

b9 = −a− b5 − b7 − b8
b13 = −a− b5 − b11 − b12

b14 = a+ b2 − b4 + 2b5 + b6 − b7 − b8 + b9 + b10 + b11 + b12

b15 = −2a− b1 − b2 − b5 − b6 − b9 − b10 − b11

b16 = 2a+ b1 + b2 + 2b5 + b6 − b10 + b12.

The second condition K(α) < 0 means that 3a +
17∑
i=1

bi < 0. We can choose a

solution, for instance, a = 1, b4 = b9 = b14 = −1, b13 = 1, b15 = −2 and bi = 0 for
all other values of i, and obtain a suitable homology class

α = h− e4 − e9 − 2e12 + e13 − e14 − 2e15,

for which K(α) = −1 as desired. �

Now we consider the Spinc−structure sK associated to the cohomology class
K = PD(3h−

∑17
i=1 ei). Note that we will prove later in the proof of Theorem 2.59

that d(sK) = 0.

Lemma 2.56. The cohomology classes PD(h) and PD(α) correspond to different
chambers.

Proof. This is obtained by noticing that K(h) = 3 > 0, h.α = 3 > 0 and K(α) =
−1 < 0. �

The chamber corresponding to PD(h) contains g0. Choose a metric g1 in the
chamber corresponding to PD(α). Theorem 2.49 implies that

Proposition 2.57. For all perturbed parameter δ with norm small enough, we have

SW
(2)

CP2]17CP2,g1,δ
(sK) = 1.
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2.8. Seiberg-Witten invariants of X1. Our goal is to show that the 4-manifold

X1 = (CP2]17CP2 − int(PA2))
⋃
∂PA2

B

admits a metric g̃1 such that SW (2)
X1,g̃1,δ

(sK̃) = 1, where δ is a perturbation with
norm small enough and sK̃ is the Spinc−structure asscociated to the cohomology
class K̃ defined in Definition 1.32, and we will show that d(sK̃) = 0 in the proof of
Theorem 2.59. To this end, we use a scheme for computing Seiberg-Witten invari-
ants of blow-downs along Wahl-type plumbing trees introduced by Michalogiorgaki
in [18].

We provide a brief review of Michalogiorgaki’s argument in [18] as follows. Let
Γ be a Wahl-type plumbing tree. Suppose that we have an embedding of PΓ into
a closed, oriented, simply connected smooth 4-manifold X. The boundary of PΓ
bounds a rational homology ball B. We define the rational blow-down of X along
PΓ as X ′ = (X − int(PΓ))

⋃
∂PΓB.

Using monopole Floer homology of Kronheimer and Mrowka, Michalogiorgaki
proved that

Theorem 2.58 (Michalogiorgaki, [18], Theorem 1). Suppose that H1(∂PΓ) is fi-
nite, P,B have negative definite intersection forms, and the first Betti numbers
of P and B are zero . If s ∈ SX and s′ ∈ SX′ are Spinc-structures such that
d(s) = d(s′) = 0 and s|X−int(PΓ) = s′|X−int(PΓ), then SW

(2)
X (s) = SW

(2)
X′ (s

′).
In the case b+2 (X) = 1, SW (2)

X,g1
(s) = SW

(2)
X′,g2

(s′), where g1 and g2 are metrics
induced by a1 ∈ H2(X;Z) and a2 ∈ H2(X ′;Z) homology classes with properties that
a1|P = a2|B = 0 and a1|X−int(PΓ) = a2|X−int(PΓ).

Note that ∂PΓ is a so called monopole L-space as explained in [18]. Applying
Theorem 2.58 to our case of the plumbing tree Γ = A2, X = CP2]17CP2, Z =

CP2]17CP2 − int(PA2) and the rational homology ball B defined in Section 1.4,
we obtain the following:

Proposition 2.59. We have SW (2)
X1,g̃1

(sK̃) = SW
(2)

CP2]17CP2,g1
(sK) = 1, where X1

is our rational blow-down 4-manifold, g̃1 is a metric on X1 induced by PD(K̃),
where K̃ is defined in Definition 1.32, and g1 is a metric on CP2]17CP2 defined in
Proposition 2.57.

Proof. We verify the conditions of Theorem 2.58 one by one. The fact thatH1(∂PA2)
is finite follows from Formula 1.3. The intersection form of PA2 is negative definite
by the definition of A2. Since PA2 admits a handlebody decompostion with only
one 0-handle and a collection of 2-handles, its first Betti number is 0. Since B
is a rational homology ball, the intersection form of B vanishes and its first Betti
number is also 0. We have d(sK) = 1

4 (c21(K)− σ(CP2]17CP2)− χ(CP2]17CP2)) =
1
4 ((9− 17)− 3(1− 17)− 2(2 + 1 + 17)) = 0. We can use familiar properties of the
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first Chern number, signature and Euler number to compute d(sK̃) as following:

d(sK̃|Z ) =
1

4
(c21(K̃|Z)− 3σ(Z)− 2χ(Z))

=
1

4
(c21(K|Z)− 3(σ(CP2]17CP2)− σ(PA2))

− 2(χ(CP2]17CP2)− χ(PA2) + χ(∂PA2))))

=
1

4
((c21(K)− c21(K|PA2

))− 3(1− 9)− 2(20− 10 + 1))

=
1

4
((9− 17 + 8)− 3(1− 9)− 2(20− 10 + 1)) =

1

2
,

d(sK̄|B ) =
1

4
(c21(K̄|B)− 3σ(B)− 2χ(B))

=
1

4
(c21(K̄)− c21(K̄|PA′2)− 3(σ(CP2]11CP2)− σ(PA′2))

− 2(χ(CP2]11CP2)− χ(PA′2)))

=
1

4
(0− 3.0− 2.1) =

−1

2
,

d(sK̃) = d(sK̃|Z ) + d(sK̄|B ) = 0.

Notice that we have constructed the homology classes K̃ and α in such away
that they satisfy the properties: α|P = K̃|B = 0 and α|CP2]17CP2−int(PA2)

=

K̃|CP2]17CP2−int(PA2)
. Thus, from Theorem 2.58 and Proposition 2.57 we obtain

SW
(2)
X1,g̃1

(sK̃) = SW
(2)

CP2]17CP2,g1
(sK) = 1 for the metric g̃1 on X1 induced by K̃. �

We are now in the position to prove that X1 is non-diffeomorphic to CP2]9CP2.

Theorem 2.60. There is a smooth structure on X1 which is non-diffeomorphic to
the standard smooth structure on CP2]9CP2.

Proof. By Theorem 2.50 and Proposition 2.53, if we denote by g0 the metric on
CP2]9CP2 induced by Fubini-Study metrics, then SW

(2)

CP2]9CP2,g0
(s) = 0 for any

Spinc-structure s on CP2]9CP2.
By Proposition 2.59, there exists a metric g̃1 and a Spinc-structure sK̃ on X1

such that SW (2)
X1,g̃1

(sK̃) = 1.
Thus, the fact that Seiberg-Witten invariant is a differential topological invariant

for smooth 4-manifolds implies that X1 with the smooth structure induced by the
metric g̃1 and the Spinc-structure sK̃ is non-diffeomorphic to the canonical smooth
structure on CP2]9CP2. �

In conclusion, we have constructed an exotic structure on CP2]9CP2 by rational
blowing-down along the four branched plumbing tree A2.
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Appendix: An embedding of PA′2 into CP2]11CP2

In Section 1.4, we use a topological construction of Bhupal and Stipsicz in [4]
to construct a rational homology ball B whose boundary is diffeomorphic to the
boundary of the manifold PA2. More precisely, Bhupal and Stipsicz give an em-
bedding of PA′2 into CP2]11CP2 by blowing-up intersection points of a special
configuration of complex projective curves (see [4, Section 4.3, Figure 13]). Since
we also need the homology classes represented by embedding spheres of the plumb-
ing manifold PA′2 (see Figure 7) for homological calculations in Section 1.6, we
give here a detailed explanation of the blow-up processes in the construction of
Bhupal and Stipsicz in [4], as well as compute homology classes of curves in each
step.

Recall from [4, Section 4.3] that the curves used by Bhupal and Stipsicz are:

L1 = {[x : y : z] ∈ CP2|z = 0},

L2 = {[x : y : z] ∈ CP2| − i
√

3(x+
8

9
z) + y = 0},

C1 = {[x : y : z] ∈ CP2|x3 + x2z − y2z = 0},

C2 = {[x : y : z] ∈ CP2|−1 + i
√

3

2
x3 + (−2 + i

√
3)x2z + (1− i

√
3)xyz

+
4(3− i

√
3)

9
xz2 + y2z

4(3− i
√

3)

9
yz2 = 0}.

which have the properties that: C1, C2 are rational nodal cubics; C1, C2 intersect
each other at 3 point P1 = [0 : 0 : 1], P2 = [0 : 1 : 0], P3 = [−12 : −4i

√
3 : 9], each

point with multiplicity 3; C1, C2 are triply tangent to L1 at P2; C1 intersects L2

at P3 with multiplicity 3; C2 is triply tangent to L2 at P3 (see Figure 22 for a
depiction of the curves L1, L2, C1, C2 in CP2).

L1 P2

P3

L2

P1

C1

C2

Figure 22. Depiction of the curves L1, L2, C1, C2. We will per-
form totally 11 blow-ups: 2 infinitely close blow-ups at P1, 3 infin-
itely close blow-ups at P2 and 6 infinitely close blow-ups at P3 to
get an embedding of PA′2 into CP2]11CP2.
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3h

P1

C1

C2

3h

3h− 2e1
e1

3h− e1

e2

3h− e1 − e2

e1 − e2

3h− 2e1 − e2

Figure 23. Two infinitely close blow-ups at P1: At the beginning,
homology classes represented by the curves C1, C2 are 3h ∈
H2(CP2;Z).

After the first 2 infinitely close blow-ups at P1, the proper transforms C̃1, C̃2 of
C1, C2 represent homology classes 3h − e1 − e2, 3h − 2e1 − e2 ∈ H2(CP2]2CP2;Z)
respectively.
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L1 P2 h

3h− e1 − e2

C̃1

C̃2

3h− 2e1 − e2

h− e3

3h− e1
−e2 − e3

3h− 2e1
−e2 − e3

e3

h− e3 − e4

3h− e1
−e2 − e3
−e4

3h− 2e1
−e2 − e3 − e4

e4

e3 − e4

h− e3
−e4 − e5

3h− e1
−e2 − e3
−e4 − e5

3h− 2e1
−e2 − e3
−e4 − e5

e5

e4 − e5

e3 − e4

Figure 24. Three infinitely close blow-ups at P2
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Without any confusion, we also denote the proper transforms of C1, C2 by C̃1, C̃2

after the first 5 blow-ups. The homology classes represented by C̃1, C̃2 are 3h −
e1 − e2 − e3 − e4 − e5, 3h− 2e1 − e2 − e3 − e4 − e5 ∈ H2(CP2]5CP2;Z) respectively.

L2

P3

hC̃2

C̃1

h− e6

C̃2 − e6

e6

C̃1 − 2e6

h− e6 − e7

C̃2 − e6 − e7

e7

C̃1 − 2e6 − e7
e6 − e7

e7 − e8

h− e6
−e7 − e8

C̃2 − e6
−e7 − e8

e8

C̃1 − 2e6
−e7

e6 − e7

Figure 25. The first three infinitely close blow-ups at P3
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e7 − e8

C̃1 − 2e6 − e7
e6 − e7

e7 − e8 − e9

e9

C̃1 − 2e6 − e7 − e9

e6 − e7

e7 − e8 − e9

e9 − e10

e10

e6 − e7

C̃1 − 2e6
−e7 − e9 − e10

e7 − e8 − e9

e9 − e10

e10 − e11

e6 − e7

C̃1 − 2e6 − e7
−e9 − e10 − e11

e11

Figure 26. The last three infinitely close blow-ups at P3

After blowing-up totally 11 times at the intersection points of L1, L2, C1, C2, the
proper transforms of L1, L2, C1, C2 represent the homology classes h − e3 − e4 −
e5, h− e6− e7− e8, 3h− e1− e2− e3− e4− e5− 2e6− e7− e9− e10− e11, 3h− 2e1−
e2 − e3 − e4 − e5 − e6 − e7 − e8 ∈ H2(CP2]11CP2;Z) respectively. Thus, we obtain
an embedding of PA′2 into CP2]11CP2 with the homology classes represented by
embedding spheres at vertices of PA′2 are exactly those in Figure 7.
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