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Preface

It is a well-known fact that deciding whether a graph has a clique of size
1000 is in P. However, the known algorithm is too slow to allow comput-
ers to actually compute it. On the other hand, finding a vertex cover of
size k, where k is part of the input is NP-hard, but there are algorithms
that can compute it very efficiently for small £’s. Fixed parameter tractable
algorithms were introduced to make it easier to differentiate polynomial al-
gorithms that are fast enough to be useful in practice. The difference to the
classical complexity theory is that with parameterized algorithms we can an-
alyze the complexity of algorithms in a much more detailed way. We not only
express the running time as a function of the input, but we introduce one or
more parameters, which are also taken into account. There were some im-
portant fixed parameter algorithms before the definition and the theory was
built. Lenstra’s algorithm [29] in integer linear programming and Robertson
and Seymour’s disjoint paths algorithm [35] are good examples of this. Only
in the early 1990s, Downey and Fellows introduced and defined the basics of
fixed parameter tractability [17], their book with more detailed results [18]
appeared in 2012. This view has lead to a practically very well applicable
theory in these days. Now, it is a topic, which produces a huge amount of
papers every year. Google scholar gives 10.000 results on the key-word “fixed
parameter tractable”, 4000 of them are published after 2012. This shows
us, how mainstream the topic is in current computer science. Three other
detailed books appeared in this topic: [22], [32], [13].

In the first chapter, we can find the basic techniques shown on the example
of the vertex cover problem. In the second chapter, other techniques are
presented on the feedback vertex set problem. In chapter four, we can read
about a randomized algorithm on the exact path problem. In chapter five,
a general approach is presented on graphs with small tree-width. So far, we
could learn about techniques proving that certain problems are in FPT, while
in chapter six, we can find the most famous method to prove the opposite: a
problem is not likely to be in FPT. In chapter seven, the author presents his
own results on a group of problems about shortest paths in various graphs.
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Chapter 1

Definitions

Given a graph G = (V| E), we denote n = |V| and m = |E| throughout the
whole thesis. The number of adjacent edges to a vertex v is d(v). For an
X CV, we call G[X] the graph induced by X and N(X)={v eV | Iz €
X : z and v are adjacent} — X. We say that X is independent, if G[X] has
no edges. A matching M is a set of disjoint edges.

We proceed with a couple of basic definitions used in this thesis.

Definition 1.1 A parameterized problem is a language L C > " xN,
where > is a fived, finite alphabet. For an instance (v, k) € >." xN, k
s called the parameter. The size of an instance is the number of bits in a
description of the instance and is denoted by |(x, k)| .

Definition 1.2 A parameterized problem L C Y " XN is called fized-para-
meter tractable (FPT), if there exists an algorithm A (called a fized-
parameter algorithm), a computable function f : N — N, and a constant
c such that, given (z,k) € Y. x N, the algorithm A correctly decides whether
(z,k) € L in time bounded by f(k)-|(x,k)|°. The complexity class containing
all fized-parameter tractable problems is called FPT.

Definition 1.3 A parameterized problem L C >." x N s called slice-wise
polynomial (XP), if there exists an algorithm A and two computable func-
tions f,g : N — N such that, given (x,k) € >." xN, the algorithm A
correctly decides whether (x,k) € L in time bounded by f(k) - |(x, k)[9%),
That means for every fixzed constant k, algorithm A runs in polynomial time.

The complexity class containing all slice-wise polynomial problems s called
XP.
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Chapter 2

Vertex cover

In this chapter, we are going to see a wide range of methods for solving the
vertex cover problem. This serves also as an introduction, where we can find
the basic techniques for the topic. The current best algorithm of Chen, Kanj
and Xia [10] runs in O(1.2738% + kn) time.

Definition 2.1 Let G be a graph and X C V(G). We say that X is a vertex
cover, if for every edge of G at least one of its end vertices lies in X. For
the vertex cover problem, we are given a graph G and a parameter k. We
have to decide if G has a vertex cover of size at most k.

2.1 Kernelization

The main idea is to solve an N P-hard problem by preprocessing it first. A
reduction rule for a parameterized problem Q is a function ¢ : >." x N —
S" x N that maps an instance (I,k) of Q to an equivalent instance (I’, k')
of @ such that ¢ is computable in time polynomial in |/| and k. We say
that two instances of @) are equivalent whenever (I,k) € @ if and only if

(I'. k) € Q.

Definition 2.2 A kernel for a parameterized problem Q) is a reduction rule
such that for the produced instance (I',k') the inequality |I'| + k' < f(k)
holds, for some computable function f : N — N. A polynomazal kernel is
a kernel of size p(k), where p is a polynomial.

If the instance is big in terms of the parameter, we can take its kernel,
where the new, equivalent instance is thought as being ’small’ compared to

the new parameter k’. It is particularly useful when k' < k, as at an intuitive

9



10 CHAPTER 2. VERTEX COVER

level, this makes the problem easier. In this thesis, we will only deal with
this type of kernelization.
First we prove a very important theorem about kernelization.

Theorem 2.3 [7] Every problem QQ € FPT admits a kernel.

Proof. From @Q € FPT follows that there is an algorithm A, which runs in
time f(k)-|(I, k)| for a given instance (I, k) and returns whether (I, k) € Q.
The kernelization algorithm starts with running A for at most |7[*™! time. If
it terminates, we can return if it is a yes- or a no-instance. Note that |I]|¢*!
is polynomial in the input size. If A does not end within |I|°*! steps, we
stop it and return (I, k) as the kernel. In this case |I|°T1 < f(k)-|(x, k)|, so
|I| < f(k). This means, that for the computable g(k) = f(k) + k, we have
|I| + k < g(k), which was the definition of a kernel. =

This example also shows us that kernels might be quite large. So a good
question for a problem might be whether it admits a polynomial kernel.

We can find a kernelization algorithm for the above defined vertex cover
problem from Buss and Goldsmith in [6]. Let G and k be given. First observe
that if G has an isolated vertex v, we can remove it, since it does not change
the solution. Also, if for a vertex v d(v) > k, we can create a new instance:
G' =G —wv and k' = k — 1. This is because we have to put v into the vertex
cover. If not, we would have to add all of its neighbors, but that would be
already more than k vertices.

(i) If a vertex v has d(v) = 0, remove it.

(ii) If a vertex v has d(v) > k, remove it and decrement k by one.

For as long as possible, we apply one of these rules. This algorithm is
obviously polynomial in the input size. We can even do it in O(n +m) time,
if we loop through all the vertices and process the ones of degree greater than
k. After that we loop through all the vertices again and process the ones of
degree zero. Let us call (G*, k*) the equivalent instance, we got this way.

Lemma 2.4 If (G*,k*) is a yes-instance then V(G*) < k*(k* + 1).

Proof. (G*,k*) is a yes-instance, so there is a vertex cover X of size maxi-
mum k*. Because of (ii), for every z € X, d(z) < k*. (i) implies that there
are no isolated vertices, so V(G*) = | X|+V(G* - X) < k*+k*-k*. =m

So far, we reached a polynomial kernel with an O(n + m) algorithm.
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Corollary 2.5 The vertex cover problem is in FPT.

Proof. First apply the kernelization algorithm to the vertex cover problem
and then solve it on the kernel with a brute force algorithm of running time
O(f(k)), where f is a computable function. m

For other kernelizations of the vertex cover problem, see [1].

2.2 Bounded search tree

We are going to solve the vertex cover problem in a different way. Also we
are going to apply this method to the previous section’s vertex cover kernel
to achive a fast algorithm. Here we want to solve a modified version of the
vertex cover problem: given an X C V(G) and a parameter k, we would like
to find a vertex cover C' O X of size at most k. Melhorn designed a recursive
algorithm in [30] for this problem. We start the algorithm with the empty
set X.

(i) If there are no edges remaining in G|V — X], return X.
(ii) If |X| > k return “NO”.

(iii) Take an edge uv whose end vertices are disjoint from the elements X,
and run the program recursively on X' = X +u, G’ = G — u and on
X' =X +wv, G =G —wv. If any of these returned “YES”, return with
“YES”, else return “NO”.

The proof of the correctness relies on the observation that for every edge
in the graph, a vertex cover must contain at least one of its endpoints. Note
that the depth of the recursion is at most k, since at every step |X| increases
by one and it can never grow larger than k. This provides us an O(2* - n)
algorithm, proving again (Corollary 2.5) that vertex cover is in FPT.

Let us apply this algorithm on the kernel, we constructed in the previous
section. There, n = O(k?), so we have an O(n +m + 2* - k?) algorithm. The
first part comes from the linear preprocessing, and the second part from the
search tree algorithm.

2.3 Iterative compression

The idea of iterative compression first appeared in [34]. We present the
algorithm from [9]. Let’s order the vertices of G arbitrarily: vy, ...,v,. Let
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G; be the induced graph on vertices vy, ...,v;. We are going to construct a
vertex cover of size maximum k for Gy, ..., G, iteratively, or conclude that
it does not exist. For Gy the set X = {vy,...,v;} is a vertex cover. In each
step, we have |X| < k for G; and we want to construct a vertex cover X'
with | X'| < k for G,41, or conclude that it does not exist. First, observe
that Y = X + v;,1 is obviously a vertex cover for G; ;. Now, we would like
to compress it to a smaller vertex cover, if possible. Let us guess (in every
possible way) a subset Z C Y and try to find a vertex cover |X'| < k, for
which X' NY = Z. If there is an edge in G[Y — Z], then this is impossible,
since we can only add vertices from V —Y to Z. Also, N(Y — Z) C X’ for
the same reason.

Lemma 2.6 X' = ZUN(Y — Z) is a vertezx cover if G[Y — Z| has no edges.

Proof. There are no edges in G[V — Y], because Y was a vertex cover.
There are no edges in G[Y — Z] either. Every edge entering Y must come
from N(Y — Z), or it also enters Z. Thus every edge is covered. ®

If for some guess Z the set | X'| =[ZUN((Y — Z)| <k and G[Y — Z] is
empty, we can return it as a vertex cover for G, ;. If we do not find a vertex
cover for any Z we conclude that it is a no-instance. We do this increasingly
for every k < ¢ < n, so at the end we know whether G,, = G has a vertex
cover of size at most k.

Theorem 2.7 If we have a compression algorithm in time f(k)-n°, then we
can solve the problem in time f(k) - n°tl.

The running time of the compression is O(2**! . m), as it is enough to
check each guess Z in linear time. We iterate this over n, so the total running
time is O(n - 2" - m). If we use the previous kernel instead of the whole
graph, we get a better time complexity: O(n + m + k? - 281 . k3), because
the kernel has maximum O(k%) edges.

2.4 Crown decomposition

The crown rule, which we will present in this section, was introduced by
Chor, Fellows and Juedes in [11] and also shown in [26].

Definition 2.8 A crown decomposition of a graph G = (V, E) is a parti-
tion of V into three sets: V = C U H U B, such that C is independent, there
are no edges between C' and B and the bipartite graph between C' and H has
a matching covering H.
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The following lemma shows us the importance of a crown reduction in
solving the vertex cover problem.

Lemma 2.9 A graph G has a vertex cover of size at most k if and only if
the graph G — H — C has a vertex cover of size at most (k — |H]).

Proof. Suppose that G has a vertex cover X of size at most k. In order to
cover G[H U C], one needs at least |H| vertices in X from H U C, because
G[H U C] has |H| independent edges. To prove the opposite direction, if
G — H — C has a vertex cover X' of size at most (k —|H|) then X = X" UH
is a vertex cover of G. =

We would like to design an algorithm that either outputs that there is no
vertex cover of size at most k, or finds a kernel of size at most 3k.

Let us delete the isolated vertices of G, this produces an equivalent in-
stance. Take an inclusion-wise maximal matching M in G. If | M| > k, we
can output “NO”, as we have more than k independent edges, which cannot
be covered by at most k vertices. Let X be the set of end vertices of M and
I the set of the vertices not covered by M. Note that I is independent, since
M is maximal and also every vertex in [ is connected to X, because we have
no isolated vertices.

Take the bipartite graph G* between X and [, and calculate the maximum
matching M* in G*. Also find the minimum vertex cover 7" in G*. Again, if
M* > k, we can return “NO”.

HTNX #0,denote H=TNX,C=1-Tad B=V - H-C.
By Koénig’s theorem, we know that |T'| = |M*| and exactly one end vertex
of each edge in M* lies in T. We received a crown decomposition, because
|M*| = |T|, so M* is covering H in the bipartite graph between C' and H. By
Lemma 2.9 we can continue our algorithm on G[B] by setting k' = k — |H|
and finding a new crown decomposition of G[B].

On the other hand if TN X = 0, we get that T'= I. We already know
that |T'| = |M*| < k and |[M| < k. Since the set of end vertices of M was X,
we also get that |X| < 2k. Together this means that |V| = |X U I| < 3k, so
we arrived at a kernel of size at most 3k. Applying the bounded search tree
algorithm on this kernel results in an O(k - 2¥) algorithm.

The only remaining thing is to check the running time of the reduction
rule. Finding an inclusion maximal matching takes O(m) time. Finding the
maximum matching of a bipartite graph can be done easily in O(|M*|m) <
O(km) time. Since k is decreasing in every step, we can only have at most
k reduction steps, so the reduction algorithm runs in O(k?m) algorithm for
solving the kernel. These together result in the following theorem.
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Theorem 2.10 There is an O(k*m + k - 2%) algorithm for the vertex cover
problem.

The following theorem is a consequence of the theorem of Nemhauser and
Trotter [31].

Theorem 2.11 (Nemhauser-Trotter) There is an algorithm that builds
a kernel of size at most 2k with complezity O(m + k*).

Proof. Let us take V' = {¢v' | v € V} and form a bipartite graph P =
(v, v’ E) by connecting uv’ if and only if uv was an edge in G. By applying
the algorithm of Hopcroft and Karp, we can find a maximum matching M
and a minimum vertex cover 7' in time O(y/n - m). Kénig’s thoerem states
that |M| = |T|. If |T| > 2k, we can stop and output “NO7”, since a matching
M in P corresponds to a vertex-disjoint set of cycles and paths in G. The
edges of these cycles and paths need at least @ vertices to be covered.

Let H={veV|veT A eT}, Bp=TNV—-H, B,=TnV'—H
and B= By UB,, =V — H— B. Let us observe that both end vertices
of an edge in M cannot be in T, since 7' is a minimum vertex cover and M
is a maximum matching and |M| = |T|. But M is covering T, so C = {v €
V]iveV-TAv € V'—T'} is independent in G and there is no edge
between C' and B. For example, there cannot be a cby edge, since ¢'by would
not be covered in P. As M is covering By in P, the other end vertices must
lie in B{. Similarly the other end vertices of the edges of M covering B, lie in
B!, This implies that in P the other end vertices of the edges of M covering
H' are in C. The edges of M covering H' are the matching edges from H to
C in graph G.

As |B|+2|H| = |T| < 2k, the number |B| of remaining vertices after the
crone reduction is not more than 2k.

First, we use the kernel of size k* + k, we got in the first part of this
chapter after applying the linear-time algorithm, we described there. Also,
we know that the degree of each vertex is at most k, so the the number of
edges in this kernel is at most (k* + £k?)/2. As n = O(k?) and m = O(k?),
the algorithm of Hopcroft and Karp runs in time O(k*). This immediately
gives us the crown decomposition. Altogether the algorithm of Nemhauser
and Trotter applied to the kernel (built in O(m) time) in the first part runs
in time O(k'). =



Chapter 3

Feedback vertex set

Let us turn to another famous problem and see some different techniques
applied to that. For the feedback vertex set problem, the running time was
improved over the years ([33], [24], [15], [9], [8]) resulting in the current best
deterministic algorithm running in time O*((2+)*)-n°® in [28]. (¢ < 1.619
is the golden ratio.) If we allow randomization, then the problem admits an
algorithm with running time 3% - n®W | see [14].

Definition 3.1 Given a graph G, we say that X CV is a feedback vertex
set if G — X contains no cycles.

The problem here is for a given instance (G, k), where G is an undirected
graph and k is the parameter, decide if there exists a feedback vertex set of
size at most k. We also allow G to be a multigraph (multiple edges and also
loop edges can be present in the graph).

First we would like to reduce the problem to a smaller instance. We
observe that in case v € V has a loop edge, it must be contained in X. Also,
if we have an edge of multiplicity more than 2, we can reduce it to 2. As
vertices with degree one do not have to be included in X, we can just delete
them. We always apply the first possible rule from the following set:

(i
(ii

(ii

) Delete a vertex with loop edges and decrease k by 1.
) Reduce edge multiplicities to a maximum of 2.

) Delete a vertex of degree 1.

(iv) Delete a vertex of degree 2 and connect its two neighbors.

The last rule produces an equivalent instance, because if one included v
of degree 2 in X, one could also include one of its neighbors instead, as a

15



16 CHAPTER 3. FEEDBACK VERTEX SET

cycle has to go through them as well. It also works for double edges, since
we get a loop edge and then we include the neighbor in X. Also if once
k gets negative, we can return “NO”. Observe that this reduction is indeed
polynomial.

This way, we reached an equivalent instance, which has the following
properties:

(i) G has no loops.
(ii) Every edge multiplicity is at most 2.

(iii) The minimum degree is 3.

3.1 Bounded search tree

Now we prove two lemmas, before describing the actual search tree algorithm
from [36]. We would like to branch on vertices with large degrees.

Lemma 3.2 For every graph G and feedback verter set X

D (dw)—1) =m-—n+1,

veX

where n is the number of vertices and m 1s the number of edges.

Proof. Since F' = G — X is a forest, it has at most n — | X|—1 edges. Notice
that every edge not in F' has at least one of its end vertices in X. So by
counting every edge

m <Y dw)+ (n—|X]-1),

veX

which ends our proof. m

Lemma 3.3 Let B contain the 3k vertices of V' with largest degrees. Every
feedback vertex set X of size at most k has to contain at least one vertex from
B.

Proof. Let us order the vertices of V' is descending order of their degree:
(v1, Vg, ..., v,) for which d(vq) > d(vg) > ... > d(v,). Suppose that BNX = 0,
we get from our previous lemma that

3k

D (dwi) =1) >3- (D (dv) — 1)) >3- (m—n+1).

i=1 veX
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Also because of our assumption

Together they give us

n

2m—n:Z(d(vi)—1)24-(m—n+1).

i=1

The first equality holds, because Y ., d(v;) = 2m. This means 2m < 3n,
which is a contradiction with all degrees being at least 3. =

Theorem 3.4 There is an O((3k)*-n°W) algorithm for feedback vertex set.

Proof. First, we reduce our instance by the rules above. If we get £k > 0 and
G is a forest, we can instantly return our X. Otherwise, we branch on the
first 3k largest degree vertices. One of them must be in X by our previous
lemma, so we choose one of them: v (we examine all possibilities) and do a
recursion on (G — v, k— 1, X 4+ v). If once we arrive at a forest, we found
a solution. If our parameter gets under zero, we do not search any more on
that path. As k decreases by one at each recursive call, we can see that the
tree has depth at most k. If we keep track of the degrees of the vertices, at
a function call, we have to find one of the 3k maximum degree vertices in
O(n) and modify its neighbor’s degrees in O(n). m

3.2 Iterative compression

First, we are going to present some generic steps in designing iterative com-
pression algorithms. Here we follow the definitions from section 2.3. During
our iterative compression, we have an instance (G, Z, k), where Z is a feed-
back vertex set of size £ + 1 and we would like to produce a feedback vertex
set in GG of size k. Following the idea presented in section 2.3, we are going
to guess a Xz C Z and we would like to find a feedback vertex set X in
G — Xz, such that | X| <k —|Xz| and X N (Z — Xz) = 0.
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Figure 3.1: Graph G

In this step, we have W = Z — X of size k + 1 — | Xz|, so our goal is
for a given W to find a feedback vertex set in G' = G — X that is disjoint
from W and of size { = |W| — 1 =k — | Xz|. This is the disjoint feedback
vertex set problem.

Theorem 3.5 If we can solve the disjoint feedback vertex set with parameter
{ in time of - n¢, then we can solve the compression problem in time (k+1) -
(a+1)* - ne.

Proof. By looping through each guess X, of size i, we can add up the
running time of our algorithm:

i(kJrl) (@) < (k+1) - (a4 1)F 0,

- 1
=0

which completes our proof. m

From now on, we denote by G’ the graph G — X, as discussed above, we
need to examine this graph. Note that I is a feedback vertex set. The only
thing remaining is to actually solve the disjoint feedback vertex set problem
for an instance (G’, W) that is find a feedback vertex set X disjoint from W.
Let ¢ = |[W]| — 1, so we would like a vertex set X for which |X| < ¢. This
is a recursive solution, so formally, we write (G',W, ¢, X), where X is the
empty set at the beginning and a solution if the program exits with “YES”.
As usual, first we make some observations about the structure of the graph,
while reducing it to a smaller equivalent instance. If G'[IV] is not a forest,
return “NO”, since we cannot add any vertices from W to the feedback vertex
set. Let H = G’ — W and apply the following reduction rules:

(i) Delete vertices in G’ of degree 1.
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(ii) If there is a vertex v € V(H), such that G'[W + v] contains a cycle,
proceed with (G' — v, W, £ — 1, X + v), as v has to be included in the
solution.

(iii) If there is a vertex v € V(H) of degree 2, such that at least one
neighbor of v is from V(H), then delete this vertex and connect its
neighbors (the graph can become a multigraph).

We can easily see that these reduction rules produce an equivalent in-
stance, indeed. After applying the rules above as long as possible, if [ < 0
return “NO”. If X is a feedback vertex set, return it. Let us suppose that
none of these are applicable. Also, we know that H is a forest, because W is
a feedback vertex set in G'. Take a leaf ¢ of H. We will branch on ¢ being
in X or not. Recursively, solve the problem for (G' — ¢, W,¢ —1, X + ¢q) and
for (G,W + ¢, ¢, X). If one of them has a solution, return it as the answer.
G'[W +q] is a forest, as we could not apply rule (ii). This algorithm is correct,
because we always got an equivalent instance by applying reduction rules.

Observe that by the choice of ¢, it has at least two neighbors in W, because
it cannot have 0 by (i) or 1 by (iii). Those neighbors have to be in different
connected components of G[W], by (ii). Let u(I) = [4+comp(/) be a measure
for an instance I, where comp(/) is the number of connected components of
G[W]. At the recursion, when we include ¢ in X, [ decreases by one, whereas
the number of components stay the same. If we do not include ¢ in X, then
[ stays the same but the number of components strictly decreases, since the
neighbors of ¢ in W were in different components. So, by every recursion p (/)
decreases. At the beginning (1) < k+|W| < k+(k+1), so we have a solution
for the disjoint version of the problem in time O(2%*1.n2) = O(4% - n?). So
with our previous theorem, we have a reduction algorithm in time O(5* - n?).
Combining it with Theorem 2.7 we arrived at the following theorem.

Theorem 3.6 Feedback vertex set has a solution in time O(5* - n3).

3.3 Randomized algorithm for feedback vertex
set

In this section, we are going to present a randomized algorithm for the feed-
back vertex set defined above. We are going to deal with multigraphs, again.
First apply the reduction from the beginning of this chapter, so every vertex
is of degree 3 at least. The key observation is the following lemma:
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Lemma 3.7 Let G be a multigraph with minimum degree at least 3 and X
be a feedback vertex set. Then at least half of the edges in G are adjacent to
X.

Proof. Again, let H = G — X and observe that H is a forest, because X
is a feedback vertex set. So, |F(H)| < |V (H)|. We would like to prove that
|E(G)|—|E(H)| > |E(H)|, since every edge not in H is by definition adjacent

to X.
wx
| W P

s

J
V:=1 V=2 V

=2

Figure 3.2: Graoh G

With our previous observation, it is enough to see that |E(G)|—|E(H)| >
|V(H)|. Let J denote the edges connecting X and H. Furthermore let V<,
V_o, V>3 be the vertex sets of H with degree (in H) as indicated in the index.
As the minimum degree in G is at least 3, every vertex in V< contributes
at least 2, every vertex in V_y contributes at least 1 edge to J. Since H is a
forest, we get that |V<;| > |V53]. So we obtain the inequality

[EG)] = EH)| = [J] =2 2- [Va| + [Vl > [Var| + V| + [Vas| = [V(H)),
which finishes our proof. m

Theorem 3.8 There exists a polynomial time randomized algorithm for the
feedback vertexr set problem that for a yes-instance as an input, returns a
feedback vertex set of size at most k with probability at least 4% and for a
no-instance, it always returns "NO*.

Proof. Apply the reductions seen at the beginning of this chapter, so we
get (G',K). If k' < 0 return “NO”. Otherwise, G’ has minimum degree at
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least 3. We already have some vertices, we got from the reduction that are
surely inside of any solution X. Denote these by X,. We only need to find
a solution X’ for G’ and return X, + X'. If G’ is a forest, we can instantly
return X = Xy. Lemma 3.7 tells us that if we choose an edge in G uniformly
randomly, then with probability at least %, one of its endpoints will be in X.
So if we choose one of its endpoints ¢ uniformly randomly, it will be in X
with probability at least }1. Now we do a recursion on (G’ — ¢, k" — 1). If this
returns a solution X', we return X, + X’ + ¢, otherwise we return that we
have not found a solution. We can easily verify that X = X,+ X'+ ¢ will be
indeed a solution, since X’ is a feedback vertex set of G’ — ¢ of size at most
k' —1 and we also included ¢ in the solution. If there exists a feedback vertex
set of G of size at most k, then because of the reduction rules there must be
a feedback vertex set of G’ of size at most &’. As we do the recursion at most
k' times and k' < k, we arrive that the probability that we find a solution is
at least 4%, m

Theorem 3.9 There exists a randomized algorithm for the feedback vertex
set problem that runs in time 4°-n°W) and returns “NO” if there is no feedback
vertex set of size at most k. If there is a solution, it returns a solution with
constant probability.

Proof. We have to run the previous algorithm 4* times to achieve a constant
error probability. m
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Chapter 4

Color coding

The technique of color coding was introduced by Alon, Yuster and Zwick to
handle the problem of detecting a small subgraph in a large input graph. If
the input graph is a forest, or more generally a graph of constant tree-width,
then we can achieve an FPT algorithm of running time 20*)n0),

4.1 Exact path

We are going to show the color coding technique on the exact path problem,
which given an instance (G, k) asks, if there is a path of length & in G. The
length of the path is the number of edges, it consists of. The main idea
of color coding is to color all the vertices of G uniformly randomly with k
colors. Then, we are only looking for a colorful path, meaning a path, that
has each of the k colors amongst its vertices. First we prove a lemma, which
is essential in dealing with this problem.

Lemma 4.1 Let X C V(G) be of size k. Let us color all the vertices in
V(G) uniformly randomly with k colors. The probability that all the vertices
in X got pairwise distinct colors is at least e7F.

Proof. There are k" colorings of V(G) and k! - k"~* colorings for which X
is colorful. Since k! > (%)%, we proved the lemma. m

Now we can present the algorithm of finding a colorful path.

Theorem 4.2 There is an O(2F -n°W) algorithm for finding a colorful path
in a graph G, whose vertices are colored with k colors.
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Proof. Let us denote the colors with numbers 1, ...,k and let col(q) be the
color of vertex q. We use dynamic programming. For C' C {1,...,k} let
DI[C, q] be a boolean value, which is the answer for the following question:
does there exist a path of length |C| with pairwise distinct colors as indicated
in C, whose endpoint is ¢? For C' = {c} this value is true, if and only if
col(q) = c¢. We can apply the following recursion, if |C| > 1:

D[C,q] = \/ ({D[C = col(q),r]} A{col(r) € C — col(q)}).

reN(q)

We look for all neighbors r of g, which could be the last but one vertex of
this path. If D[C,q] is true, there had to be a correct last but one vertex for
which the appropriate D[C — col(q),r] is true. At the end, we return true,
if and only if D[{1,...,k},v] is true for any v € V. We only calculate every
DI[C, q] once, so there are 2% - n subproblems to calculate. One state can be
calculated in O(n) time, so the overall time complexity is 2% - n2. One can
observe that we can calculate the D’s for every C, by looping through every
edge once as indicated in the formula. This gives us a better 2¥ - m time
complexity. Also we can return the colorful path, if we memorize the last
vertex for each true D. Beginning for |C| = 1: Last[C,q] = 0, we can also
see that

Last[C, ¢] = r, if ({D[C — col(q), ]} A {col(r) € C — col(q)}).

So we always know the last vertex in the path. This way we can output the
whole path in O(k) time complexity. m

Theorem 4.3 There is a randomized algorithm for the exact path problem
that, given az instance (G, k), if it is a no-instance, returns "NO*, otherwise
it returns a path of length k with constant probability. This algorithm runs
in time (2e)* - m.

Proof. We will run the previous algorithm e* times, re-coloring all the
vertices before each run uniformly randomly and independently. By Lemma
4.1, if it was a yes-instance, at each run, we return a path of length k with
probability at least e *. Repeating this k times gives us a constant error
probability. m
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Tree-width

In this chapter, we are going to give an overview of FPT problems in relation
with tree-width (tw(G)). We refer to [13|, where you can find all the neces-
sary definitions and the proofs of the following theorems. From now on, we
suppose that the reader is familiar with the basics of tree-decomposition.

5.1 Results with dynamic programming
We are going to present the most important results.

Definition 5.1 The weighted independent set problem in a graph G is
to find a mazximum weight of an independent set in G. An independent set
s a set of vertices that are pairwise non-adjacent.

Let G be an undirected graph on n vertices and K C V(G) be a set
of terminals. A steiner tree for K in G is a connected subgraph H of
G containing K. In the weighted steiner tree problem, we are given an
undirected graph G, a weight function w : E(G) — Rso and the goal is to
find a steiner tree H, whose weight is minimized.

The mazcut problem asks for a partition of V(G) into sets A and B such
that the number of edges between A and B is maximized. The q-coloring
problem asks whether G can be properly colored using q colors, while in chro-
matic number the question is to find the minimum possible number of colors
needed to properly color G. Exact cycle asks for existence of a cycle on at
least | vertices in G, for a given integer l. In cycle packing the question is
whether one can find | vertex-disjoint cycles in G. Domainating set problem
is to find a vertex set X of size at most I, for which N(X) = V(G) — X.
In the odd cycle transversal problem, the objective is to find at most [
vertices whose removal makes the resulting graph bipartite. Problems con-
nected vertex cover, connected dominating set, connected feedback vertex set
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differ from their standard (non-connected) variants by additionally requiring
that the solution induces a connected graph in G.

Theorem 5.2 Let G be an n-vertex graph with weights on vertices given
together with its tree decomposition of width at most k. Then in G one can
solve

(i) vertex cover in time 2F - KO0 . n,
ii) dominating set in time 3% - KO . n
g s
i) odd cycle transversal in time 3* - kKO0 . n,
Yy
(iv) mazcut in time 2F - kOW . n,
(v) q-coloring in time ¢* - KO . n.

Also one can solve the problems: steiner tree, feedback verter set, hamil-
tonian path and exact path, hamiltonian cycle and exact cycle, chromatic
number, cycle packing, connected verter cover, connected dominating set,
connected feedback vertex set in time kO®) . n.

These solutions come from dynamic programming on the given tree de-
composition. For these algorithms, we need to be given a tree of width at
most k. Therefore, we need an algorithm that provides us a tree-decomposition.

Theorem 5.3 [}/ There exists an algorithm that, given an n-vertex graph G
and integer k, runs in time KO® ). and either constructs a tree decomposition
of G of width at most k, or concludes that tw(G) > k.

5.2 MBSO, logic and Courcelle’s theorem

Courcelle’s theorem provides us with FPT algorithms for certain problems
on a graph with given tree-width. Monadic second order logic (M.SO,) is a
formal language of expressing properties of graphs and objects inside these
graphs.

Definition 5.4 Formulas of M.SOs can use four types of variables: for sin-
gle vertices, single edges, subsets of vertices, and subsets of edges. FEvery
formula ¢ of MSOy can have free variables, which often will be written in
parentheses besides the formula. The formula together with the free variables
is called the signature: S. The evaluation of the formula on a given graph can
result in a true/false value. Formulas of MSOy are constructed inductively
from smaller subformulas.
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(i) Ifu € S is a vertex (edge) variable and X € S is a vertex (edge) set
variable, then we can write formula u € X.

(i) If uw € S is a vertex variable and e € S is an edge variable, then we
can write formula inc(u, e), which denotes incidence.

(iii) For any two variables x,y € S of the same type, we can write formula
x=y.

(iv) Suppose thal ¢1, po are two formulas over the same signature S. Then
one can write =¢1; ¢1V Q2; 01 A\ 25 ¢1 = ¢2.

(v) One can also use quantifiers: Ypex®; Jpex®.
Let us see an example.
Example 5.5

3 — colorability = 3Jx, x, xscvpartition(Xy, Xo, X3)
Aindp(X;) A indp(Xs) A indp(X3)

Here, partition verifies that X, Xs, X3 partition V' and indp verifies that X;
is an independent set.

partition(Xy, Xo, X3) = Vvev{(v eXiNvg XoAv ¢ X3)
Vveg XiAveXsAv ¢ Xs)
\/(vgéXl/\vgéXz/\veXg)}
indp(X) = Vyyex—adj(z,y)

Theorem 5.6 (Courcelle’s theorem [12]) Assume that ¢ is a formula of
MSOy and G is an n-vertex graph with an evaluation of all the free variables
of ¢. Suppose, moreover, that a tree decomposition of G of width t is provided.
Then there exists an algorithm that verifies whether ¢ is satisfied in G in time
f{loll,t) - n, for some computable function f. Here, ||¢|| denotes the length
of the encoding of ¢ in a string.

With this theorem, we can easily prove that 3-colorability is in FPT, since
we have encoded it in constant size in example 5.5. Courcelle’s theorem gives
an f(c,t) - n time complexity algorithm, which is exactly an FPT algorithm
with parameter ¢. The natural encoding of the vertex cover problem quanti-
fies each vertex of the cover, which is an O(k) encoding, where k is the size of
the vertex cover. This results only in an f(k,t)-n algorithm, which is by far
weaker, than what we proved earlier. Therefore, we present a more general
version of Theorem 5.6.
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Theorem 5.7 [2] Let ¢ be an M SOy formula with p free monadic variables
X1, X, ..., X,, and let (x4, z2, ..., x,) be an affine function. Assume that we
are given an n-vertex graph G together with its tree decomposition of width
t, and suppose G 1is equipped with evaluation of all the free variables of ¢
apart from Xy, Xo, ..., X,. Then there exists an algorithm that in f(||¢|],t)-n
finds the minimum and mazimum value of a(|X1|,|Xal, ..., |Xp|) for which
o(X1, Xo, ..., X)) is true, where f is some computable function.

Now, using this theorem, we can prove again that vertex cover admits an
FPT algorithm.
veover(X) = VeepTpexine(z, e).

Let a(|X]|) = |X| be our affine function. By Theorem 5.7, we can find the
minimum cardinality vertex cover in time f(¢) - n, since ||¢|| is constant.



Chapter 6

Lower bound for kernelization

The so far best known technique to prove that under certain assumptions
there is no polynomial kernel for a problem is via compositionality. Here, we
will see all the definitions and also the sketch of the proof of the framework,
Bodlaender, Jansen, and Kratsch developped in [5]. At the end of this chapter
we see some application. For an introduction into complexity theory, we refer
to [3].

6.1 Distillation

We first aim to formally capture the intuition that some information has to
be lost when packing too many instances into a too small space in the kernel.

Definition 6.1 Let L, R C " be two languages. An OR-distillation of L
into R is an algorithm that, given a sequence of strings Ti,To, ..., Ty C >,
runs in time polynomial in Z:i:l |z;| and outputs one string y C >.° such
that

(i) |yl = p(maxi_, |z;|) for some polynomial p.
(i) y € R if and only if there exists at least one index i such that x; € L.

The answer to the output instance of R is equivalent to the logical OR of
the answers to the input instances of L. We give the definition of coNP /poly:

Definition 6.2 A language L belongs to the complexity class coNP /poly if
there is a Turing machine M and a sequence of strings a,, n = 0,1,2,...
called the advice, such that if M is given the input x of length n, it decides
whether x € L in co-nondeterministic polynomial time while using o,,. We
also require |a,| < p(n) for some polynomial p.

29
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This is an important theorem for which we omit the proof.

Theorem 6.3 /23] Let L, R € >." be two languages. If there exists an OR-
distillation of L into R, then L € coNP /poly.

This has an immediate corollary:

Theorem 6.4 If an NP-hard language L C >.° admits an OR-distillation
into some language R € >.°, then NP € coNP /poly.

Proof. This is an immediate consequence of L being NP-hard and L €
coNP/poly. =

The assumption that NP ¢ coNP/poly may be viewed as a stronger
variant of the statement that NP # co-NP. Also, we know that from NP C
coNP /poly, 25 = PH follows, that means the polynomial hierarchy collapses
to its third level as described in [37].

6.2 Composition

Now, we give the essential definitions of composing instances. The cross-
composition technique was developed in [5].

Definition 6.5 An equivalence relation R on the set " is called a polyno-
mazal equivalence relation, if one can check in polynomial time, whether
two elements are equivalent. Also R must have at most p(n) equivalence
classes restricted to ZS" for a polynomial p.

Definition 6.6 Let L C >." be a language and Q C >." XN be a param-
eterized language. We say that L cross-composes into () if there exists
a polynomial equivalence relation R and an algorithm A, called the cross-
composition, satisfying the following conditions. The algorithm A takes as
input a sequence of strings x1,Ta,....x; C Y. that are equivalent with re-

spect to R, runs in time polynomial in 2321 |z;|, and outputs one instance
(y, k) € >2" XN such that:

(i) for some polynomial p: k < p(max‘_; |z;| + logt) .

(i) (y,k) € Q if and only if there exists at least one index i such that
x; € L.
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Note that here, contrary to the OR-distillation, only the parameter has
to be small, while y can be large (but < > |x;|). Let’s see an example of
this.

Definition 6.7 The hamiltonian path problem asks whether there exists a
simple path P in the input graph G such that V(P) = V(G).

Example 6.8 The hamiltonian path problem (which is NP-hard) cross-
composes into the exact path problem parameterized by the path length.
We call the instances that do not describe any graph malformed instances.
R can be defined as follows: put all malformed instances into one class and
all well-formed instances should be partitioned with respect to the number of
vertices in the graph. If A is given some malformed instances, it returns “NO”,
otherwise, given a sequence of well-formed n-vertex graphs, it returns their
disjoint union with parameter k = n. If the disjoint union has an n-vertex
path, then at least one of the input graphs has to contain a hamiltonian path.

Definition 6.9 A polynomial compression of a parameterized language
Q C > " XN into a language R C >_" is an algorithm that takes as input an
instance (x,k) € > xN, works in time polynomial in |z| + k, and returns
a string y such that:

(i) for some polynomial p: |y| < p(k).
(i) y € R if and only if (x,k) € Q.

Obviously, a polynomial kernel is also a polynomial compression by treat-
ing the output kernel as an instance of the unparameterized version of Q).
We get the unparameterized version of a parameterized language by writing
the parameter at the end in unary format. The main difference between
polynomial compression and polynomial kernelization is that the polynomial
compression is allowed to output an instance of any language R, even an un-
decidable one. If R is reducible in polynomial time back to (), then by first
applying the compression and then the reduction, we get a polynomial kernel
for (). But generally R can have much higher complexity than ). Now we
will see the main theorem, which we are going to apply on some examples at
the end of the section.

Theorem 6.10 Let us assume that NP ¢ coNP /poly. If an NP-hard lan-
guage L cross-composes into a parameterized language @), then ) does not
admit a polynomial compression.
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Proof. Let A be a cross-composition of L into ) and let R be the poly-
nomial equivalence relation used by A. Let us assume in contrary with the
theorem that ) admits a polynomial compression C into some language R.
Define OR(R) as the language of concatenating strings d; with some special
separator character. We require that for at least one d; € R. We are going to
construct an OR-distillation of L into OR(R), which, by Theorem 6.4 implies
that NP C coNP /poly.

This construction is as follows. As input, we get strings z;. Let n =
max |x;|. First we throw out the duplicates, so we result in at most | > [*™!
strings of size at most n. That means t = O(n), where ¢ is the number of
strings. Then by using the polynomial equivalence relation R, we partition
the strings into equivalence classes C;. The number of these classes is at most
p1(n) for a polynomial p;. We cross-compose these classes separately with
the cross-composition algorithm A, so we obtain instances (c¢;, k;). If any of
them is a yes-instance, then at least one x; € L. Also, we can check easily
that k; < po(max,cc; 7| + log |Cj|) for a polynomial py. With our previous
observation ¢ = O(n), we get that k; < p;(n) for some polynomial p;. Now,
we apply the assumed polynomial compression C to each instance. So we get
some strings d; for which d; € R if and only if (¢;, k;) € Q. We also get that
|d;| < p2(n), where py is a polynomial. We only need to concatenate our d;s
with some special separator character to obtain a d string. It follows that
d € OR(R) if and only if for at least one z; € L, which by Theorem 6.4 is a
contradiction to the NP ¢ coNP/poly assumption. m

6.3 Examples

We have already constructed a cross-composition algorithm of the hamilto-
nian path problem into the exact path problem at 6.8. Together with the
NP-hardness of the hamiltonian path problem, we can use Theorem 6.10 to
prove the following theorem.

Theorem 6.11 Fzxact path does not admit a polynomial kernel unless NP C
coNP /poly.

To be precise, exact path does not admit a polynomial compression, which
is in fact stronger. It is interesting that this method, which is by far the most
famous, cannot tell the difference between polynomial kernelization and poly-
nomial compression.

So far, we have been using the OR function in our theorems. One could
ask, if we can replace it by AND.
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Theorem 6.12 [19], [16] Let L, R C >." be two languages. If there exists
an AND-distillation of L into R, then L C coNP /poly.

The proof of this theorem is essentially the same as Theorem 6.4. Also
our main theorem will be true.

Theorem 6.13 Let us assume that NP € coNP /poly. If an NP-hard lan-
guage L AND-cross-composes into a parameterized language (), then () does
not admit a polynomial compression.

However the proof is completely different from the proof of Theorem 6.10.
We will see an example of the AND-cross-composition.

Example 6.14 Give a graph G and a parameter k, we would like to verify
whether tw(G) < k. This is called the tree-width problem. Observe that
the tree-width of disjoint graphs is the maximum tree-widths of the graphs,
we can say that tw(UG;) < k if and only if tw(G;) < k for all . This is an
AND-cross composition from tree-width into parameterized tree-width. It is
known that computing the tree-width is NP-hard, so putting this together
by Theorem 6.13 we can conclude that:

Theorem 6.15 Tree-width does not admit a polynomial kernel unless NP C
coNP /poly.

Remark 6.16 For more examples, we refer to [25], where you can also read
a stmilar way of describing the whole technique presented in this chapter. For
a more generalized description, see [5].
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Chapter 7

Shortest paths

The disjoint shortest paths problem is defined as follows. Given a graph G
and k pairs of distinct vertices (s;,¢;),1 < i < k, find whether there exist
k pairwise disjoint shortest paths P;, between s; and ¢;, for all 1 < < k.
We may consider directed or undirected graphs and the paths may be vertex
or edge disjoint. Eilam-Tzoreff in [20] showed that these four problems are
NP-complete when k£ is part of the input even for planar graphs with unit
edge-lengths. Also the problem: given a graph and two distinct pairs of
vertices, find whether there exist two disjoint paths P;, P, between them
such that P; is a shortest path is shown to be NP-complete for undirected
graphs with unit edge-lengths in the same article.

In the min-sum k& edge-disjoint paths problem the input is an undirected
graph G and ordered pairs (s;,t;),1 < ¢ < k and the goal is to find a path
between s; and ¢; so that these paths are edge-disjoint and the sum of their
lengths is minimum. For every fixed k > 2, the question of NP-hardness for
the min-sum k edge-disjoint paths problem has been open for more than two
decades. Fenner, Lachish and Popa gave an PTAS for this problem for k = 2
in [21].

In the min-max 2 disjoint paths problem the input is a graph G and
ordered pairs (s;,t;),1 < i < k and the goal is to find vertex-disjoint paths
between s; and t;. The goal is to minimize the length of the longest of these
k paths. This is known to be NP-hard for general graphs. It is also known
that the problem is weakly NP-hard for graphs with tree-width 3. Kobayashi
and Sommer presented an algorithm that solves the problem for graphs with
tree-width 2 in polynomial time in [27] .

The theorems presented in this chapter are the author’s own results.

Definition 7.1 Given a graph G with a special verter s and t, we call k
paths starting from s a k-fan if the paths are vertez-disjoint except for s and
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t and neither of the paths contains t as a degree 2 vertex.

We will give special attention of special k-fans, for example, where each
of the k£ paths ends in the same vertex t.

Definition 7.2 A k-fan, where all paths end in t is called a t-fixed k-fan.

Let us define a length function to k-fans. This will be used to state a
couple of minimization problems.

Definition 7.3 For a k-fan F the maxlength(F) is the length of the longest
of the k paths in F'.

7.1 Minimizing in unweighted DAGs

We are going to present a dynamic programming approach for the following
theorem.

Theorem 7.4 An unweighted directed acyclic graph G with start vertex s,
end vertex t and a parameter k is given. There is a solution for finding the
minimal maxlength of t-fized k-fans in time O(n?*+1).

Proof. Let h be a vector of lenght £ of pairs of vertices and distances, h; is a
pair of a vertex and a distance associated to it: (v,dist) and vertex(h;) = v,
dist(h;) = v. Let Fans(h) be the set of k-fans with starting point s, such
that F' € Fans(h), if and only if for each 0 < i < k the i-th endpoint of F’
paired with the length of the i-th path is h;. Let DI[h| be true, if and only
if there exists a vertex disjoint k-fan of the set Fans(h). We would like to
calculate D[h] for certain hs. Observe that D](s,0), (s,0),...,(s,0)] = true.
The solution for the problem can be calculated easily, if we know all Ds,
because we look at DI(t, disto), (¢, disty), ..., (¢, dist,_1)] for all vectors dist,
where for each i <0 < k, dist; < n (as each path length is shorter than n).
We would like to find the minimum ||dist|| vector, for which the appropriate
D is true, where ||.|| denotes the max norm.

As G is directed and acyclic, the vertices have a topological ordering,
where edges are going from left to right. Let j < k be an index for which
vertex(h;) is the rightmost in the topological ordering.

Let us calculate D[h] now. The algorithm guesses all the last but one
vertices on path 7. It loops through all ¢ vertices for which (q, Vertex(hk)) is
a directed edge and ¢ # vertex(h;) for all 1.

D) =\/ {D[ho, by, (g dist(hy) — 1), by, oo hk,l]}.

q
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First, we can see that if D[h] is true, then there must exist some last but
one vertex ¢, for which the appropriate D is true. Also, have to prove that
the paths if for some ¢ the appropriate D is true, then we can find a k-
fan for proving that D[h] is true. We take F’ proving the trueness of the
previous D. Adding vertex(h;) at the end of the j-th path, we will indeed
get vertex disjoint paths, since the j-th path ended in the rightmost vertex
in the topological ordering. It could only intersect with previous vertices,
but F’ was also non-intersecting. These two observations together show the
correctness of this dynamic programming solution.

Our algorithm finds the minimizing k-fan for the problem, if for each
true D, we store the last but one vertex on the path ending in the rightmost
vertex of the topological ordering.

We turn to calculate the overall running time of the algorithm. We have
n*.nk sets for which we calculate the D value, as each h; is a pair of a vertex
and a distance less than n. We recurse at most on n vertices, that means,
the running time is O(n?**1). =

Proposition 7.5 Immediately follows from definition 1.3 that this problem
s 1n XP.

7.2 Minimizing in unweighted graphs

Let us fix £ as a global constant and let us introduce [, the length of the
longest path as a new parameter. We are also given an undirected or a
directed, unweighted graph GG. The problem is to minimize the maxlength of
t-fixed k-fans, where all the paths are inner-vertex disjoint and all the path
lengths are at most [. We are going to find an FPT algorithm for this case
(k is a global constant).

Theorem 7.6 There is a randomized algorithm for minimizing the maxlength
of t-fized k-fans, where all the paths are inner-vertex disjoint and all the path
lengths are at most 1, in time O(eF - 280 nk+L . ®) " It returns the minimum
maxlength with constant probability and returns a bigger value otherwise.

Proof. Start by coloring all vertices of G with randomly with & - [ colors.
The probability that for an optimal solution all vertices of the k paths are
distinctly colored, as proven in Lemma 4.1, is at least e ¥, since the union
of these k paths have at most k - [ vertices. We now proceed to solving the
problem only for colorful fans.

Let C' C {1,...,k - I} be the colors already used in a solution. Also let
e; be the end vertices and [; be the lengths of the k-fan respectively. Let
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DI[C,e1,ly, ..., ex, ] be true, if and only if there is a k-fan ending in vertices
e;, having length [; and using every color in C' exactly once. Let us suppose
that [, is the largest amongst all ;s.

DIC, e, 1y, en ] = ({D[C—col(ek),ebll,...r,lk—1]}
A{col(r) € C'—col(eg)} A {exr € E(G)})

Here, we did the recursion on the last but one vertex on the kth path in the
fan. Since we have 2%! . n* . [¥ subproblems (2! sets for C, n* vertex-sets
and [* lengths), each of which can be calculated in time O(n) by the above
formula, we have a computational upper bound of O(2¥!.nk*1.7%). Repeating
this algorithm e* times by recoloring every vertex uniformly randomly and
independently gives us a constant error probability. =

Let us introduce another new parameter: the tree-width. We are going
to show an FPT algorithm for this problem in undirected graph with pa-
rameters: k,l and w, where w denotes the tree-width. Note that the above
algorithm does not give us an FPT algorithm, even if we take £ and [ as
parameters. In Chapter 5.2 we have seen Courcelle’s theorem. With the
use of that, we are going to show the existence of an FPT algorithm with
parameters: k,l and w. In a graph G with maximal tree-width w the value
MaxFan (X7, ..., Xj) is true, if and only if there exists a k-fan with paths X;
with maxlength not more than /.

MaxFan(Xy,..., Xz) = (AL, isPath(X;)) A (AL |Xi] <)
A (isDisjoint (X7, ..., X)).

Here isPath(X) decides if X; is a path starting from s and ending at ¢:

isPath(X) = connected(X) A (s,t € X) A (deg(s) =1)
A (deg(t) = 1) A (Voex—gsydeg(v) = 2)

Also, isDisjoint (X7, ..., X) is true, if and only if all X; are pairwise dis-
joint:

iSDiSjOiIlt(Xl, “eey Xk) = vlﬁi#jﬁkvaXix ¢ Xj.
Finally,

‘X’ S l - Elvl,vz ,,,,, UlEvaGX( vi‘:l r = Ui)'
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This way, we encoded the problem as Theorem 5.6 requested. As ||¢|| =
O(k + 1), Courcelle’s theorem gives us the existence of an O(f(k,l,w) - n)
algorithm.
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