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Abstract

In this report, we propose to study some forcings of two kinds: the forcings with
partial functions and the Prikry-type forcings. The motivation is to construct different
models of the Zermelo-Fraenkel with Choice axiom system with the help of forcings
and see how this way of construction may implie some properties to the models. We
will follow the work of Kenneth Kunen and Moti Gitic. Thus no original result or
proof will be presented here.
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1 Introduction
Forcing is a mathematical method used in set theory and developped in 1963 by the

American mathematician Paul Cohen. It is a strong tool to prove consistency and inde-
pendence results. Indeed, in his publication of 1963 The independence of the continuum
hypothesis, Paul Cohen shows that the continuum hypothesis is independent from the
Zermelo-Fraenkel with Choice axiom system. Meaning that, it cannot be decided whether
the continuum hypothesis is true or not in the Zermelo-Fraenkel with Choice axiom system.
The continuum hypothesis is probably one of the most famous hypothesis of mathematics,
it has been formulated by the German mathematician Georg Cantor in 1878 and states
that:

There is no set whose cardinality is strictly between that of the set of the integers and of
the real numbers.

Showing it was the first of Hilbert’s problems presented in 1900. But, by forcing, Paul
Cohen gave the proof that this hypothesis was neither true nor false.

In this report, we propose to prove some results with the help of different forcings.
The philosophy will be, for each forcing, to create an extension of a model of the Zermelo-
Fraenkel with Choice axiom system in which the desired property is satisfied. This is an
interesting way to proceed because the extension model we construct by forcing is also a
model of the Zermelo-Fraenkel with Choice axiom system (Theorem 2.18). In this way,
we will work with five different forcings of two kinds: the forcings with partial functions
and the Prikry-type forcings. They will compose the third and the fourth chapter.

But before working with forcings, we have to define what is a forcing. That will be
the motivation of the second chapter. This chapter will define some notions and give some
results that will be necessary for the good understanding of the following chapters. It will
be composed by two sections, the first one will be focused on the notion of forcing and the
second one on the notion of complete embeddings. It is clear to see why the first section
will be useful, it is not necessary the case for the second section. In fact, this section will
be useful for only one forcing, the Easton forcing that will be studied in the third chapter.
Hence the next chapter will be a preparation of the others.

The third chapter will be the one of the forcings with partial functions. The motivation
of this chapter will be to go directly further than the 1963’s publication of Paul Cohen. It
will be composed by two sections that will use two different forcings. In the first one, we
want to construct a model in which 2ℵn = ℵn+2 for every n < ω is satisfied. This property
reminds the generalized continuum hypothesis which is, as its name says, a generalization
of the continuum hypothesis and states that 2ℵα = ℵα+1 for every ordinal α. Thus we
propose to do a slight shifting of the generalized continuum hypothesis by forcing. The
second section will go deeper in this way by building a model in which we can choose,
respecting some constraints, the cardinality of the power sets of the cardinals. It will be
done by forcing, called the Easton forcing.

The fourth and last chapter of this report will introduce a new type of forcings, the
Prikry-type forcings. The name comes from the American mathematician Karel Prikry
who developped these forcings. They differ from the previous forcings we studied by
the fact that they are based on ultrafilters. Hence, a good understanding of ultrafilters
is necessary. That is why the first section will be a small recap of the definitions and
results important about ultrafilters for the following. There will be three other sections
composing this chapter where each of them will introduce a Prikry-type forcing. The first
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two will have exactly the same goal, the only difference between them is the assumption
we will need. For the first one, the basic Prikry forcing, we will need a κ-complete,
normal ultrafilter, instead of the second one, the tree Prikry forcing, for which we will
only need a κ-complete ultrafilter. Thus the second section will give a stronger result by
using a weaker assumption. Their common goal will be to construct a model in which
cardinalities are preserved but not cofinalites. This is an interesting result because we will
show in the second chapter that if a model constructed by forcing preserves cofinalities
then it preserves also cardinalities (Lemma 2.20). Finally, we will conclude this report by
a last forcing that will add to our basic model a sequence with a dominating property. It
will use twice the construction made with the two previous Prikry-type forcings, making
remarkable the common construction done by Prikry-type forcing.
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2 Forcing Tools
In this chapter, we will introduce the notion of forcing and some important results for

the constructions done in the two following chapters. This chapter will be splitted into two
sections. In the first one, we will show the construction of a forcing starting from a partial
order with largest element and some properties kept in the new model created from the
original model. This section will give a necessary knowledge for the good understanding
of the whole report. In the second section, we will focus, as its name says, on the complete
embeddings. Contrary to the first section, this section will only be useful to understand
the Easton forcing that will be introduced in the second chapter. That is why it can easily
be omitted by the reader if he is not interested by the Easton forcing construction. Or,
in the opposite case, it may be clever to skip, at first, this section and come back before
starting to read about the Easton forcing.

The goal of this chapter is to give a general background of the forcing. It is a kind of
tool box. Thus there will be a lot of definitions and some of the results will not be proved.
None of the results reached in this chapter is a goal in itself, it will be used later in the
report. That is why, some of them may appear a bit randomly and without consistency. If
a result is not proved, we will always give a reference where the proof can be found. More
details can be found in [2] and [5].

As a matter of simplicity and readability, we will directly introduce a notation for the
whole report, M will denote a countable transitive model for the Zermelo-Fraenkel with
Choice axiom system (also written ZFC).

2.1 Forcing

As said previously, in this section, a lot of definitions will be given in the perspective of
introducing the notion of forcing and some necessary results for the report. The main result
of this section is the Theorem 2.18. It is because of this theorem that the construction
of a model extension using a forcing is relevent. But let us start this report by defining
partial orders.

Definition 2.1. Let P be a non-empty set and ≤ be a relation on P.
≤ is a transitive relation if p ≤ q and q ≤ r implies that p ≤ r for every p, q, r ∈ P.
≤ is a reflexive relation if p ≤ p for every p ∈ P.

Definition 2.2. Let P be a non-empty set, ≤P be a transitive and reflexive relation on
P and 1P be an element of P such that p ≤P 1P for every p ∈ P. Then the pair 〈P,≤P〉
is a partial order and the triple 〈P,≤P,1P〉 is a partial order with largest element. If no
confusion is possible, we will usually denote them by 〈P,≤〉 and 〈P,≤,1〉.
1 is called a largest element of P with respect to ≤.
Elements of P are called conditions and we say that p extends q when p ≤ q for some
conditions p and q.

The distinction between partial order and partial order with largest element may look
irrelevant at the first sight but it will be essential when we will work with Prikry-type forc-
ings (in the fourth section) and, especially, to understand the so-called Prikry condition.
The next proposition is an obvious relation between partial orders and partial orders with
largest elements.

Proposition 2.3. Any partial order with largest element is a partial order.
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Proof. Let 〈P,≤,1〉 be a partial order with largest element. Then ≤ is a transitive and
reflexive relation on P. Thus 〈P,≤,1〉 is a partial order.

In the same way as we could define, in algebra, the product of two algebraic structures,
we define, in a natural way, the partial order that we get by taking the product of two of
them.

Definition 2.4. Let 〈P,≤P,1P〉 and 〈Q,≤Q,1Q〉 be partial orders with largest element.
Then the product partial order with largest element 〈P,≤P,1P〉 ⊕ 〈Q,≤Q,1Q〉 is defined in
such a way:

〈P,≤P,1P〉 ⊕ 〈Q,≤Q,1Q〉 = 〈P⊕Q,≤,1〉

where
〈p0, q0〉 ≤ 〈p1, q1〉 ⇐⇒ p0 ≤P p1 and q0 ≤Q q1

and
1 = 〈1P,1Q〉

The product partial order is defined the same way without largest element.

The following definition introduce some vocabulary and notations that will be used
during the whole report.

Definition 2.5. Let 〈P,≤〉 be a partial order. A chain in P is a set C ⊆ P such that:

∀p, q ∈ C, p ≤ q or q ≤ p

Let p, q ∈ P, then p and q are compatible if:

∃r ∈ P such that r ≤ p and r ≤ q

p and q are incompatible (we write p ⊥ q) if:

¬∃r ∈ P such that r ≤ p and r ≤ q

An antichain in P is a subset A ⊆ P such that ∀p, q ∈ A:

p 6= q ⇒ p ⊥ q

The two following definitions (2.6 and 2.9) are essential properties for a partial order
in the forcing constructions we want to do later. The lemmas in between will only be used
during the Easton forcing construction.

Definition 2.6. Let 〈P,≤〉 be a partial order and θ be an ordinal in M . Then 〈P,≤〉
satisfies the θ-chain condition (we write also θ-c.c.) if and only if every antichain in P has
cardinality smaller than θ.

Lemma 2.7. Let 〈P,≤〉 be a partial order such that P ∈M , A,B be two sets in M and θ
be a cardinal in M . Moreover, let G be a P-generic over M and f ∈M be a maps from A
to B. If 〈P,≤〉 satisfies the θ-c.c., then there is a map F : A → P (B) with F ∈ M such
that f(a) ∈ F (a) and (|F (a)| < θ)M ∀a ∈ A.

Lemma 2.8. (König). If κ is infinite and cf(κ) ≤ λ, then κ < κλ.

The proofs are not given but can be found, respectively, in [5][Chapter VII, Lemma
5.5] and [5][Chapter I, Lemma 10.40].
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Definition 2.9. Let 〈P,≤〉 be a partial order and λ be an ordinal in M . Then 〈P,≤〉
is λ-closed if and only if whenever γ < λ and 〈pξ | ξ < γ〉 is a ≤-decreasing sequence of
elements of P, then

∃q ∈ P such that ∀ξ < γ, q ≤ pξ

Now that partial orders have been defined and some of their properties given, we
introduce partial order generic, which we will central elements of the model extension we
will create with forcing. The following lemmas are useful results concerning these partial
order generic.

Definition 2.10. Let 〈P,≤〉 be a partial order. D ⊆ P is dense in P if ∀p ∈ P ∃q ∈ D
such that q ≤ p.
F ⊆ P is a filter in P if:

(a) ∀p, q ∈ F ∃r ∈ F such that r ≤ p and r ≤ q
(b) ∀p ∈ F and ∀q ∈ P such that p ≤ q implies that q ∈ F

Definition 2.11. Let 〈P,≤,1〉 be a partial order with largest element. G is 〈P,≤,1〉-
generic (we will write P-generic if no confusion is possible) over M if G is a filter on P
and, for all dense set D of P such that D ∈M , G ∩D 6= ∅.

Lemma 2.12. Let 〈P,≤,1〉 be a partial order with largest element in M , E ⊆ P be a set
in M and G be P-generic over M . Then either G ∩ E 6= ∅ or ∃q ∈ G such that ∀r ∈ E,
r ⊥ q.

Proof. Let us consider the set

D = {p ∈ P | ∃r ∈ E such that p ≤ r} ∪ {q ∈ P | ∀r ∈ E, r ⊥ q}

We want to show that D is dense. Let p ∈ P \D and r ∈ E such that ∃q ∈ P such that
q ≤ p and q ≤ r. But, then q ∈ D and q ≤ p. Hence D is dense. The first set composing
D shows the first part of the lemma and the second set shows the second part.

Lemma 2.13. Let 〈P,≤,1〉 be a partial order with largest element in M and G ⊆ P. Then
G is P-generic over M if:

(a) ∀p, q ∈ G, ∃r ∈ P such that r ≤ p and r ≤ q
(b) ∀p ∈ G and ∀q ∈ P such that p ≤ q, q ∈ G
(c) ∀D ⊆ P such that D ∈M and D is dense in P, G ∩D 6= ∅

Proof. (b) and (c) are the same properties as the ones of the Definition 2.11, thus we only
need to show that the property (a) of the Definition 2.10 is satisfied when we assume the
three properties of the lemma.
Let p, q ∈ G and consider the set:

D = {r ∈ P | r ⊥ p or r ⊥ q or (r ≤ p and r ≤ q)}

We want to show that D is dense. Let p̄ ∈ P, then there are three possibilities:
• If ∀r ≤ p̄, ¬(r ≤ p):

p̄ ⊥ p⇒ p̄ ∈ D

• If ∀r ≤ p̄, ¬(r ≤ q):
p̄ ⊥ q ⇒ p̄ ∈ D
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• If ∃r ≤ p̄ such that r ≤ p and r ≤ q:

r ∈ D

This shows that D is dense. Thus D ∩G 6= ∅ so ∃r ∈ G such that r ⊥ p or r ⊥ q or r ≤ p
and r ≤ q. But, by (a), r ⊥ p and r ⊥ q are impossible.

Lemma 2.14. If 〈P,≤,1〉 is a partial order with largest element and p ∈ P, then there is
a P-generic G over M such that p ∈ G.

The proof is not given but can be found in [5][Chapter VII, Lemma 2.3].

We can, now, define the model extension given by forcing with a partial order with
largest element and a partial order generic. But, to do that, we need, first, to introduce
the notion of name.
Definition 2.15. Let 〈P,≤,1〉 be a partial order with largest element, then τ is called a
P-name if it is a relation and ∀〈σ, p〉 ∈ τ , σ is a P-name and p ∈ P. Any element x ∈ M
is represented, in a canonical way, by a P-name, called x̌.

We denote by VP the class of P-names and by MP the class of P-names in M . Thus
MP = VP ∩M .
Definition 2.16. Let 〈P,≤,1〉 ∈ M be a partial order with largest element and G be a
P-generic over M . Then M [G] = {τG : τ ∈MP}, where τG = {σG : ∃p ∈ G(〈σ, p〉 ∈ τ)}.

If ϕ is a formula, we will write ϕM to say that ϕ is a formula in M and ϕM [G] to say
that ϕ is a formula in M [G].

To reduce the study of the set theory ofM [G] to that ofM , one works with the forcing
language, which is built up like ordinary first-order logic, with membership as the binary
relation and all the P-names as constants.
Definition 2.17. Let 〈P,≤,1〉 ∈ M be a partial order with largest element. If ψ is a
sentence of the forcing language, we say that p forces ψ (and write p 
 ψ) to mean that
for all G that are P-generic over M , if p ∈ G, then ψ is true in M [G].

It is because of the two facts that are statted below and the following theorem that the
study of forcings is relevent. The two facts say that we can understand what happens in
M [G] by working in M . A good analogy would be to think of a field extension in algebra.
For example, the study of the field extension Z[

√
2] is essentially a study of Z. Then the

Theorem 2.18 shows that a model extension of a model of ZFC given by a forcing remains
a model of ZFC. Hence, the goal of constructing forcings is to create a model of ZFC in
which some properties are satisfied.

Fact 1: It may be decided within M whether or not p 
 ψ.
Fact 2: If G is P-generic over M and ψ is true in M [G], then for some p ∈ G, p 
 ψ.

Theorem 2.18. Let 〈P,≤,1〉 ∈ M be a partial order with largest element and G be a
P-generic over M . Then M [G] satisfies ZFC.

The proof is not given but can be found in [5][Chapter VII, Theorem 4.2].

Finally, we are interested in how cardinals and cofinalities act in a model extension
given by forcing. The last lemma shows that preservation of cofinalities implies preser-
vation of cardinals. But the opposite is not true and we will create a model extension
showing it thanks to Prikry-type forcings.
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Definition 2.19. Let 〈P,≤,1〉 ∈M be a partial order with largest element.
P preserves cardinals if whenever G is P-generic over M ,

(β is a cardinal in M) ⇐⇒ (β is a cardinal in M [G])

P preserves cofinalities if whenever G is P-generic over M and γ is a limit ordinal in
M ,

cf(γ)M = cf(γ)M [G]

Lemma 2.20. Let 〈P,≤,1〉 ∈ M be a partial order with largest element. If P preserves
cofinalities, then it preserves cardinals.

Proof. We assume that P preserves cofinalities and we want to show that

(β is a cardinal)M ⇐⇒ (β is a cardinal)M [G].

⇐: If (β 6= |β|)M , then (β 6= |β|)M [G]. Thus a cardinal in M [G] is a cardinal in M .
⇒: If β < ω, then it is clear. So let us suppose that β is an infinite cardinal in M . Then
β is a regular cardinal, a limit cardinal or both.

If β is a regular cardinal in M , then cf(β)M = β. Thus, by assumption,

cf(β)M [G] = cf(β)M = β

Hence β is a regular cardinal in M [G].
If β is a limit cardinal inM , then the regular cardinals less than β ofM are unbounded

in β. By the previous argument, they remain regular in M [G] and unbounded in β. So β
is a limit cardinal in M [G].

Thus, in any case, β remains a cardinal in M [G].

2.2 Complete Embeddings

This section is a preparation for the Easton forcing that will be constructed later and
has no other meaning. We will define complete embeddings and use them on product
of partial orders in the perspective of studying extensions with product of partial order
generics and extensions of model extensions. Every lemma, theorem and corollary of this
section will be used to show the Theorem 2.26.

Definition 2.21. Let 〈P,≤P,1P〉 and 〈Q,≤Q,1Q〉 be two partial orders with largest ele-
ment. Then i : P→ Q is a complete embedding if:

(a) ∀p, p′ ∈ P:
p′ ≤P p⇒ i(p′) ≤Q i(p)

(b) ∀p, p′ ∈ P:
p ⊥ p′ ⇐⇒ i(p) ⊥ i(p′)

(c) ∀q ∈ Q, ∃p ∈ P such that ∀p′ ∈ P:

p′ ≤P p⇒ ∃q′ ∈ Q such that q′ ≤Q q and q′ ≤Q i(p′)

In this case, p is called a reduction of q to P.
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Lemma 2.22. Let 〈P0,≤P0 ,1P0〉 and 〈P1,≤P1 ,1P1〉 be two partial orders with largest ele-
ments. Then

i0 : P0 → P0 × P1 i1 : P1 → P0 × P1

p0 7→ 〈p0,1P1〉 p1 7→ 〈1P0 , p1〉

are complete embeddings.

Proof. The proof is the same for i0 and i1 so we will only show that i0 is a complete
embedding. To show that, we just need to check if i0 satisfy the properties of the Definition
2.21.

(a) Let p, p′ ∈ P0 such that p′ ≤P0 p. Then:

i0(p′) = 〈p′,1P1〉 ≤ 〈p,1P1〉 = i0(p)

(b) ⇒: Let p, p′ ∈ P0 such that p ⊥ p′ and let us suppose, for contradiction, that
i0(p) 6⊥ i0(p′). Hence ∃〈p0, p1〉 ∈ P0 × P1 such that 〈p0, p1〉 ≤ i0(p) = 〈p,1P1〉
and 〈p0, p1〉 ≤ i0(p′) = 〈p′,1P1〉. But, then, p0 ≤P0 p, p

′ which is a contradiction
to p ⊥ p′.

⇐: Let p, p′ ∈ P0 such that i0(p) ⊥ i0(p′) and let us suppose, for contradiction,
that p 6⊥ p′. Hence ∃p0 ∈ P0 such that p0 ≤P0 p, p′. But, then, i0(p0) =
〈p0,1P1〉 ≤ 〈p,1P1〉 = i0(p) and i0(p0) = 〈p0,1P1〉 ≤ 〈p′,1P1〉 = i0(p′) which is a
contradiction to i0(p) ⊥ i0(p′).

(c) Let 〈p0, p1〉 ∈ P0 × P1 and p ∈ P0 such that p ≤P0 p0. Then consider 〈p, p1〉:

〈p, p1〉 ≤ 〈p,1P1〉 = i0(p) and 〈p, p1〉 ≤ 〈p0, p1〉

Thus p0 is a reduction of 〈p0, p1〉 to P0

Theorem 2.23. Let 〈P,≤P,1P〉 and 〈Q,≤Q,1Q〉 be two partial orders with largest element,
i : P→ Q be a complete embedding and H be Q-generic over M . Then i−1(H) is P-generic
over M and M [i−1(H)] ⊆M [H].

Proof. Let us show first that i−1(H) is P-generic over M . To do that we will show that G
satisfies the three properties of the Lemma 2.13

(a) Let q1, q2 ∈ H. Since H is a filter in Q, ∃q̃ ∈ H such that q̃ ≤Q q1 and q̃ ≤Q q2 so
q1 6⊥ q2. As i is a complete embedding, i−1(q1) 6⊥ i−1(q2) so

∃p ∈ P such that p ≤P i
−1(q1), i−1(q2)

(b) Let q ∈ H and p ∈ P such that i−1(q) ≤P p. Hence, since i is a complete embedding,
q ≤Q i(p). As H is a filter in Q,

i(p) ∈ H so p ∈ i−1(H)

(c) Let D be a dense set of P and suppose, for contradiction, that i−1(H) ∩ D = ∅.
Then H ∩ i(D) = ∅ so, by the Lemma 2.12, ∃q ∈ H such that ∀q′ ∈ i(D), q ⊥ q′.
Hence,

∀p ∈ D, q ⊥ i(p)
Since i is an complete embedding, ∃p′ ∈ P which is a reduction of q to P. Thus

i(p̄) 6⊥ q ∀p̄ ≤ p′

As D is a dense set, ∃p̄ ∈ D such that p̄ ≤ p′. But, then, i(p̄) 6⊥ q and i(p̄) ⊥ q
which is impossible.
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Thus i−1(H) is P-generic over M .
Let us show now that M [i−1(H)] ⊆ M [H]. Since i ∈ M ⊆ M [H] and H ∈ M [H], we

have that i−1(H) ∈M [H]. Thus, by construction of M [i−1(H)], M [i−1(H)] ⊆M [H].

Corollary 2.24. Let 〈P,≤P,1P〉 and 〈Q,≤Q,1Q〉 be two partial orders with largest element,
i : P→ Q be an isomorphism and a complete embedding and G ⊆ Q. Then G is Q-generic
over M if and only if i−1(G) is P-generic over M . Moreover, M [G] = M [i−1(G)].

Proof. Since i is an isomorphism, we can use the Theorem 2.23 with i and i−1, which is
enough to prove this corollary.

Lemma 2.25. Let 〈P0,≤P0 ,1P0〉 and 〈P1,≤P1 ,1P1〉 be two partial orders with largest ele-
ments such that P0,P1 ∈M and G be a P0×P1-generic over M . Consider the embeddings:

i0 : P0 → P0 × P1 i1 : P1 → P0 × P1

p0 7→ 〈p0,1P1〉 p1 7→ 〈1P0 , p1〉

Then i−1
0 (G) is P0-generic overM , i−1

1 (G) is P1-generic overM and G = i−1
0 (G)×i−1

1 (G).

Proof. By the Lemma 2.22, we know that i0 and i1 are complete embeddings. Then,
we can apply the Theorem 2.23, to get that i−1

0 (G) is P0-generic over M and i−1
1 (G) is

P1-generic over M .
Let us show now that G = i−1

0 (G)× i−1
1 (G):

⊆: Let 〈p0, p1〉 ∈ G, then 〈p0, p1〉 ≤ 〈p0,1P1〉 = i0(p0) and 〈p0, p1〉 ≤ 〈1P0 , p1〉 = i1(p1).
Hence i0(p0), i1(p1) ∈ G so p0 ∈ i−1

0 (G) and p1 ∈ i−1
1 (G). Thus 〈p0, p1〉 ∈ i−1

0 (G)× i−1
1 (G).

⊇: Let 〈p0, p1〉 ∈ i−1
0 (G) × i−1

1 (G), then we have that 〈p0,1P1〉 = i0(p0) ∈ G and
〈1P0 , p1〉 = i1(p1) ∈ G. But, then, ∃〈q0, q1〉 ∈ G such that 〈q0, q1〉 ≤ 〈p0,1P1〉, 〈1P0 , p1〉.
Thus q0 ≤P0 p0 and q1 ≤P1 p1 so 〈q0, q1〉 ≤ 〈p0, p1〉. Hence, finally, 〈p0, p1〉 ∈ G.

Theorem 2.26. Let 〈P0,≤P0 ,1P0〉 and 〈P1,≤P1 ,1P1〉 be two partial orders with largest
elements such that P0,P1 ∈M , G0 ⊆ P0 and G1 ⊆ P1. Then the following are equivalent:

(1) G0 ×G1 is P0 × P1-generic over M
(2) G0 is P0-generic over M and G1 is P1-generic over M [G0]
(3) G1 is P1-generic over M and G0 is P0-generic over M [G1]

Furthermore, if one of these is satisfied, then M [G0 ×G1] = M [G0][G1] = M [G1][G0].

Proof. We only need to show (1) ⇐⇒ (2) because (1) ⇐⇒ (3) is shown in the same
way.

(1)⇒ (2): Considering the embedding:

i0 : P0 → P0 × P1

p0 7→ 〈p0,1P1〉

and, by the Lemma 2.25, we have that G0 = i−1
0 (G0 × G1) is P0-generic over M . Hence,

it just remains to show that G1 is P1-generic over M [G0]. Let D ∈ M [G0] be a dense set
in P1 and we want to show that G1 ∩D 6= ∅. Since D ∈M [G0], there is a name τ ∈MP0

such that D = τG0 . Moreover, by the Fact 2 of the forcing language, there is p0 ∈ G0 such
that p0 
 (τ is dense in P̌1). Then consider the set:

D′ = {〈q0, q1〉 ∈ P0 × P1 | q0 ≤P0 p0 and q0 
 q̌1}
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Let 〈r0, r1〉 ≤ 〈p0,1P1〉, then r0 ≤P0 p0. Thus, as p0 
 (τ is dense in P̌1),

r0 
 (∃x ∈ P1 such that x ∈ τ and x ≤P1 ř1)

Hence, there is q1 ∈ P1 and q0 ≤P0 r0 such that q0 
 (q̌1 ∈ τ and q̌1 ≤P1 ř1). Then we
have that 〈q0, q1〉 ≤ 〈r0, r1〉 and 〈q0, q1〉 ∈ D′. Thus D′ is dense below 〈p0,1P1〉. But
〈p0,1P1〉 ∈ G0 × G1, so 〈q0, q1〉 ∈ ((G0 × G1) ∩ D′). Then q0 
 q̌1 ∈ τ so q1 ∈ τG0 = D.
Hence q1 ∈ (G1 ∩D) so G1 ∩D 6= ∅. Moreover, since G0 ×G1 is P0 × P1-generic over M ,
G1 is a filter in P1. Thus G1 is P1-generic over M [G0].

(2)⇒ (1): Let D ∈M be a dense set in P0 × P1 and consider the set:

D∗ = {p1 ∈ P1 | ∃p0 ∈ G0 such that 〈p0, p1〉 ∈ D}

D∗ ∈ M [G0] and if D∗ ∩ G1 6= ∅, we would have D ∩ (G0 × G1) 6= ∅. Thus, since G1 is
P1-generic over M [G0], we only need to show that D∗ is dense in P1. Let r1 ∈ P1 and

D0 = {p0 ∈ P0 | ∃p1 ≤P1 r1 such that 〈p0, p1〉 ∈ D}

D0 ∈ M and, since D is dense in P0 × P1, D0 is dense in P0. Moreover, G0 is P0-generic
over M , so there is p0 ∈ D0 ∩ G0. Thus there is p1 ≤P1 r1 such that 〈p0, p1〉 ∈ D. But,
then, p1 ≤P1 r1 and p1 ∈ D∗ so D∗ is dense in P1.

Let us show now that M [G0 × G1] = M [G0][G1] = M [G1][G0]. We will only show
M [G0 ×G1] = M [G0][G1] because M [G0 ×G1] = M [G1][G0] is shown in the same way.
⊆: M ⊆M [G0][G1] and G0 ×G1 ∈M [G0][G1] so M [G0 ×G1] ⊆M [G0][G1].
⊇: M ⊆ M [G0][G1] and G0 ∈ M [G0 × G1] so M [G0] ⊆ M [G0 × G1]. Moreover

G1 ∈M [G0 ×G1] so M [G0][G1] ⊆M [G0 ×G1].
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3 Forcing with partial functions
This chapter is a the real start of the report. Indeed, we will construct two model

extensions by forcing. The two constructions will compose the two sections of this chapter.
Both of the forcings will be based on partial functions. The goal is to create models in
which every cardinals satisfy some rules about the size of their power set. In the first
construction, we start with a model, in which the Generalized Continuum Hypothesis
(also written GCH) is assumed, and create an extension of it, in which 2ℵn = ℵn+2 for
every n ∈ ω. In the second construction, given by the so-called Easton forcing, we will
create a model, in which the size of the power set of every cardinal can be, respecting some
constraints, more or less chosen. This second forcing, as you could think, will be more
complicated to construct and will use a stronger machinery. A part of the results used for
the Easton forcing is due to the study of complete embeddings done in the Chapter II.

These two sections are constructed in a more consistent way than the previous chapter.
Indeed, the two sections will be organised in such a way: first, we will introduce partial
orders with largest element, with which we will extend M by forcing and then, we will
show that the model constructed in this way satisfies the required properties. That is why
the last theorem of the two sections is the most important result of the section. In both
forcings, M is assumed to be a model of ZFC in which GCH is assumed. Further details
and results concernings these forcings can be found in [2] and [5].

3.1 Consistency of 2ℵn = ℵn+2

In this section, we will proceed by recursion to extendM with ω different partial orders
with largest element. These partial orders with largest element will be based on sets of
functions from a cardinal ofM to 2. 2 is obviously not chosen randomly and come directly
from the left hand-side of the equality we have to show in the constructed model. The
most important result of this section is the Theorem 3.11. It is the last of the section and
will use every proposition, lemma or theorem that are showed before.

Let us, first, introduce these sets of functions and then the partial orders with largest
element.

Definition 3.1. Let κ and λ be some cardinals in M , then we define:

Add(κ, λ) = {p | p is a function, Dom(p) ∈ [κ× λ]<κand Ran(p) ⊆ {0, 1}}

Where [κ× λ]<κ denote the set of the subsets of κ× λ of size smaller than κ.
We order Add(κ, λ) in the following way:

∀p, q ∈ Add(κ, λ) : p ≤ q ⇐⇒ q ⊆ p

Proposition 3.2. Let κ, λ be some cardinals in M and 0 be the empty function. Then
〈Add(κ, λ),≤, 0〉 is a partial order with largest element.

Proof. ⊆ is a transitive and reflexive relation so ≤ is also a transitive and reflexive relation
on Add(κ, λ). Moreover ∀p ∈ Add(κ, λ), 0 ⊆ p so p ≤ 0.

The ∆-system Lemma (Theorem 3.4) is a very general result that can be used in many
cases of set theory. It will be recalled here because we will use it later but it does not
depend on the context of these forcings. The next definition introduces some notions used
in the ∆-system Lemma.
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Definition 3.3. A family A of sets is called a ∆-system, or a quasi-disjoint family if there
is a set R, called the root of the ∆-system, such that A ∩ B = R whenever A and B are
distinct members of A.

Theorem 3.4. (∆-system Lemma). Let κ be any infinite cardinal. Let θ > κ be regular
and satisfy ∀α < θ(|α<κ| < θ). Assume |A| ≥ θ and ∀x ∈ A(|x| < κ), then there is a
B ⊆ A, such that |B| = θ and forms a ∆-system.

The proof is not given but can be found in [2][Chapter 13, Theorem 13.1].

The following lemma will show the chain-condition of some partial order. It is an
essential point of every forcing that we will do during this report.

Lemma 3.5. Let τ be a cardinals in M and P = Add(τ, τ++). Then 〈P,≤, 0〉 satisfies the
τ+-c.c.

Proof. Let us consider the set A = {Dom(pα) | pα ∈ P, α < τ+}. Then we can apply
the ∆-system Lemma (Theorem 3.4) with κ = τ and θ = τ+. Thus we can assume that
∀α < τ+:

Dom(pα) = S ∪ Sα
Here S is the root of the ∆-system so S ∩ Sα = ∅ and |S| < τ . Since Sα ∩ Sβ = ∅ ∀α 6= β,
pα ∪ pβ ∈ P. But pα ∪ pβ is a common extension of pα and pβ. Thus two elements of P are
compatible if they coincide on S.

Then the number of functions from S to {0, 1} is smaller or equal to 2|S| which is itself
smaller or equal, by GCH, to τ . Hence the number of elements of an antichain in P cannot
be bigger than τ .

In a similar way to the ∆-system Lemma, the Erdős-Rado Partition Theorem (Theorem
3.7) is a very general result and does not depend on the context of these forcings. But it
will be useful later so we recall it. The next definition introduces some notions that are
used in the Erdős-Rado Partition Theorem.

Definition 3.6. Let κ, µ and λ be regular cardinals such that µ < κ and λ < κ. Then
we write κ→ (µ, λ)2 if for every f : [κ]2 → {0, 1}, one of the following occurs:

(a) There is a homogeneous set A of size µ such that f(a1, a2) = 0 ∀a1, a2 ∈ A
(b) There is a homogeneous set B of size λ such that f(b1, b2) = 1 ∀b1, b2 ∈ B

Where [κ]2 is the set of pairs of elements of κ.

Theorem 3.7. (Erdős-Rado Partition Theorem). Let κ be a regular cardinal and λ
be a regular cardinal such that λ < κ and

∀κ̃ < κ, ∀λ̃ < λ (κ̃λ̃ < κ)

Then
κ→ (κ, λ)2

The proof is not given but can be found in [2][Chapter 14, Theorem 14.5].

The two following lemmas will show the chain condition for the product of finitely
many partial orders with largest element. We will proceed by induction on the number of
partial orders, where the Lemma 3.5 will be the base step and the Lemma 3.8 will be the
induction step.
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Lemma 3.8. Let τ be a cardinal in M . If 〈P,≤, 0P〉 satisfies the τ+-c.c. and Q =
Add(τ+, τ+++), then 〈P⊕Q,≤, 0̃〉 satisfies the τ++-c.c. where 0̃ = 〈0P, 0Q〉.

Proof. Let 〈pα, qα〉 be some conditions of P⊕Q for every α < τ++. We need to show that
some two of them are compatible.

By Lemma 3.5, Q satisfies the τ++-c.c. Thus, without loss of generality, for every
α, β < τ++, qα and qβ are compatible. Then, we can apply the Erdős-Rado partition
Theorem (Theorem 3.7) with κ = τ++ and λ = τ+. Hence, we have τ++ → (τ++, τ+)2 so

(a) there are τ+ pα’s such that any two are incompatible or
(b) there are τ++ pα’s such that any two of them are compatible

Since (a) is impossible by hypothesis (〈P,≤, 0P〉 satisfies the τ+-c.c.), (b) applies. Thus
any two 〈pα, qα〉 are compatible.

Lemma 3.9. Let Qn = Add(ℵn,ℵn+2), then Q1 ⊕Q2 ⊕ . . .⊕Qn satisfies the ℵn+1-c.c.

Proof. We will proceed by induction on n:
• Q1 = Add(ℵ1,ℵ3) so 〈Q1,≤Q1 , 0Q1〉 satisfies the ℵ2-c.c. by the Lemma 3.5.
• We suppose that 〈Q1 ⊕Q2 ⊕ . . .⊕Qk,≤, 0̃〉 satisfies the ℵk+1-c.c. and we need to
show that 〈Q1 ⊕Q2 ⊕ . . .⊕Qk+1,≤, 0̃〉 satisfies the ℵk+2-c.c.
Since Qk+1 = Add(ℵk+1,ℵk+3) = Add(ℵ+

k ,ℵ
+++
k ), we can apply the Lemma 3.8.

Thus 〈Q1⊕Q2⊕ . . .⊕Qk+1,≤, 0̃〉 = 〈Q1⊕Q2⊕ . . .Qk,≤, 0̃〉⊕ 〈Qk+1,≤Qk+1 , 0Qk+1〉
satisfies the ℵk+2-c.c.

The following lemma will show that combining the chain-condition of the first partial
orders and the closeness of the other partial orders give the property that we were looking
for. In fact, the proof of this lemma is the most important of the section. The last theorem
will just put together all the results of the section to give the consistency of 2ℵn = ℵn+2.

Lemma 3.10. Let τ be a cardinal in M , 〈P,≤P, 0P〉 and 〈Q,≤Q, 0Q〉 be partial orders
with largest element. If 〈P,≤P, 0P〉 satisfies the τ+-c.c. and 〈Q,≤Q, 0Q〉 is τ+-closed, then
〈P⊕Q,≤, 0̃〉 does not collapse τ+.

Proof. Suppose, for contradiction, that 〈p, q〉 ∈ P⊕Q forces that f : τ → τ+ is surjective.
Let us choose 〈pξ, qξ〉 ∈ P⊕Q by recursion in such a way:

• pξ ≤P p such that pξ and pη are incompatible if ξ 6= η.
• qξ ≤Q qη if η ≤ ξ.

Since 〈P,≤P, 0P〉 satisfies the τ+-c.c., the recusion stops after ν steps where ν < τ+. Since
〈Q,≤Q, 0Q〉 is τ+-closed, there is q̃ ∈ Q such that q̃ ≤Q qξ ∀ξ < ν.

Claim: Let αξ be the forced value of f(0) by 〈pξ, qξ〉, then 〈p, q̃〉 
 f(0) ∈ {αξ | ξ < ν}.

Suppose, for contradiction, that there exists 〈p̃, q̃〉 ≤ 〈p, q̃〉 such that 〈p̃, q̃〉 
 f(0) = β
for some β /∈ {αξ | ξ < ν}. By construction of the pξ’s and the fact that p̃ ≤P p, there is
some ξ < ν such that p̃ and pξ are compatible. Hence there is p∗ ∈ P such that p∗ ≤P p̃
and p∗ ≤P pξ. Then

〈p∗, q̃〉 ≤ 〈pξ, qξ〉 
 f(0) = αξ
〈p∗, q̃〉 ≤ 〈p̃, q̃〉 
 f(0) = β

}
Contradiction

Thus the claim is proved.
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Let us now choose a ≤Q-decreasing sequence 〈qξ | ξ ≤ τ〉 by recursion in such a way:
• q0 = q
• If qξ is already choosen, we choose qξ+1 ≤ qξ such that qξ+1 
 f(ξ) < αξ for some
αξ < τ+.
• If qη is choosen for every η < ξ, we choose qξ as a lower bound of {qη | η < ξ}. It
is possible because 〈Q,≤Q, 0Q〉 is τ+-closed.

Hence 〈p, qτ 〉 
 f(ξ) < αξ for every ξ < τ . Thus

Ran(f) ⊆ sup{αξ | ξ < τ} < τ+

This is in contradiction with the surjectivity of f .

As we said before, this theorem is the goal of the section but its proof is just using all
the results showed in the section together to show that the extension of M that we get by
these forcings satisfies that 2ℵn = ℵn+2 for every finite ordinal n.

Theorem 3.11. 2ℵn = ℵn+2 for every n < ω is consistent.

Proof. Let P =
⊕
n<ω

Qn where Qn = Add(ℵn,ℵn+2). We need to show that ωn+1 is not
collapsed for every n < ω. Let n < ω and let us split P in such a way:

P = (Q0 ⊕Q1 ⊕ . . .⊕Qn)⊕ (Qn+1 ⊕Qn+2 . . .)

We know that:
• 〈Q0 ⊕Q1 ⊕ . . .⊕Qn,≤, 0̃〉 satisfies the ℵn+1-c.c. by the Lemma 3.9.
• 〈Qn+1 ⊕Qn+2 . . . ,≤, 0̃〉 is ℵn+1-closed.

Hence we can apply the Lemma 3.10, which shows that 〈P,≤, 0̃〉 does not collapse ωn+1.

3.2 Easton Forcing

In a similar way to the previous forcing, the Easton forcing is a forcing made from
partial orders based on partial functions. The goal is also to build a model of ZFC in
which the cardinality of the power set of the cardinals is different than in M . In the
previous section, these cardinals were modified in a regular way (2ℵn = ℵn+2) but the
Easton forcing gives more freedom in the modification of these cardinals. The partial
orders we will work with are based on so-called Easton index functions. These sets of
functions will be more complicated to handle than the sets of functions we worked with
in the previous section and we will need some results about complete embeddings get
through it. We studied these results in the section Complete Embeddings of the second
chapter. The aim of this section is to show the last theorem (Theorem 3.20). We will,
at first, construct partial orders with largest element and, then, show that these partial
orders extend M into a model in which the cardinality of the power set of the cardinals
are defined by an Easton index function. This section will follow, on the main lines,
[5][Chapter 8, §4].

Hence, let us start by defining some sets of functions and, then, the Easton index
functions.

Definition 3.12. Let λ be an infinite cardinal in M , then we define:

Add(I, J, λ) = {p | p is a function, |p| < λ,Dom(p) ⊆ I and Ran(p) ⊆ J}
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We order Add(I, J, λ) in the following way:

∀p, q ∈ Add(I, J, λ) : p ≤ q ⇐⇒ q ⊆ p

Definition 3.13. An index function is a function E, such that Dom(E) is a set of regular
cardinals.
An Easton index function is an index function E such that:

(a) ∀κ ∈ Dom(E), E(κ) is a cardinal and cf(E(κ)) > κ
(b) ∀κ, κ′ ∈ Dom(E) such that κ < κ′, E(κ) ≤ E(κ′)

If E is an index function, P(E) is the set of functions p such that:
(a) Dom(p) = Dom(E)
(b) ∀κ ∈ Dom(p), p(κ) ∈ Add(E(κ), 2, κ)
(c) For every regular λ, |{κ ∈ (λ ∩Dom(E)) | p(κ) 6= 0}| < λ

We order P(E) is ordered in the following way:

∀p, p′ ∈ P(E) : p ≤ p′ ⇐⇒ p′(κ) ⊆ p(κ) ∀κ ∈ Dom(E)

The next proposition constructs the partial orders with largest element based on Easton
index functions that we will work with during this section.

Proposition 3.14. Let 1 ∈ P(E) be such that 1(κ) = 0 for every κ ∈ Dom(E). Then
〈P(E),≤,1〉 is a partial order with largest element.

Proof. ⊆ is a transitive and reflexive relation so ≤ is also a transitive and reflexive relation
on P(E).
Let p ∈ P(E) and κ ∈ Dom(E), then 1(κ) = 0 ⊆ p(κ). Thus p ≤ 1 and 1 is a largest
element of P(E).

As we did in the previous forcing, we will split the partial order with largest element
into two parts. We will show that the first part satisfies a chain-condition (Lemma 3.17)
and the second part satisfies a closeness property (Lemma 3.18). The last step, which
will be the last theorem (Theorem 3.20), will use this partition of P(E) and combine the
properties of the two parts to show that the model M [G] satisfies the properties that we
are looking for.

Definition 3.15. Let E be an index function, then we define E+
λ = E � {κ | κ > λ} and

E−λ = E � {κ | κ ≤ λ}.

The next lemma splits the partial orders into two parts and shows that it is a correct
partition.

Lemma 3.16. Let E be an index function and λ be a cardinal, then P(E) is isomorphic
to P(E+

λ )× P(E−λ )

Proof. Consider the natural map:

f : P(E)→ P(E+
λ )× P(E−λ )

p 7→ 〈p � E+
λ , p � E

−
λ 〉

Lemma 3.17. If E is an index function, λ a regular cardinal, Dom(E) ⊆ λ+ and 2<λ ≤ λ,
then 〈P(E),≤,1〉 satisfies the λ+-c.c.
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Proof. Let p ∈ P(E) and d(p) =
⋃
{{κ} ×Dom(p(κ)) | κ ∈ Dom(E)}. Since λ is regular,

|d(p)| ≤ |{κ ∈ (λ ∩Dom(E)) | p(κ) 6= 0}| < λ

Consider now 〈pα ∈ P(E) | α < λ+〉, we need to show that λ+ elements of this set are
compatible.

We can apply the ∆-system Lemma (Theorem 3.4) with κ = λ and θ = λ+. Thus
there is X ⊆ λ+ such that |X| = λ+ and {d(pα) | α ∈ X} is a ∆-system with root R.
Moreover |R| < λ so, by assumption, 2|R| ≤ λ. But then we can find Y ⊆ X such that
|Y | = λ+ and

∀α, β ∈ Y, ∀〈κ, i〉 ∈ R, pα(κ)(i) = pβ(κ)(i)

Hence the pα’s are compatible for every α ∈ Y .

Lemma 3.18. If E is an index function and Dom(E) ∩ λ+ = 0, then 〈P(E),≤,1〉 is
λ+-closed.

Proof. Let ν ≤ λ and 〈pα | α < ν〉 be a ≤-decreasing sequence of length ν. Let us consider
p =

⋃
α<ν

pα, we claim that p ≤ pα for every α < ν and p ∈ P(E).

Let β < ν and κ ∈ Dom(E), then:

pβ(κ) ⊆ (
⋃
α<ν

pα)(κ) = p(κ)

Thus p ≤ pα for every α < ν. Let us show that p ∈ P(E).
(a) Dom(p) = Dom(

⋃
α<ν

pα) =
⋃
α<ν

Dom(pα) =
⋃
α<ν

Dom(E) = Dom(E)

(b) Let κ ∈ Dom(E), then
p(κ) = (

⋃
α<ν

pα)(κ)

so p is a function, Dom(p(κ)) ⊆ E(κ) and Ran(p(κ)) ⊆ κ. Moreover

ν ≤ λ⇒ ν /∈ Dom(E)

Since κ ∈ Dom(E), ν < κ. Thus

|p(κ)| = |(
⋃
α<ν

pα)(κ)| ≤
⋃
α<ν

|pα(κ)| < ν × κ = κ

Hence p(κ) ∈ Add(E(κ), 2, κ)
(c) Let µ be regular and suppose, for contradiction, that

|{κ ∈ (µ ∩Dom(E)) | p(κ) 6= 0}| ≥ µ

But, then, by construction of p, there must be β < ν such that

|{κ ∈ (µ ∩Dom(E)) | pβ(κ) 6= 0}| ≥ µ

which is a contradiction.
Hence p ∈ P(E) and 〈P(E),≤,1〉 is λ+-closed.
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The following lemma is the last detail needed before beeing able to show the Theorem
3.20. Since the Easton index function is defined in M , it is important to know that the
Easton forcing preserves the cardinalities. Otherwise, the cardinalities of the power set of
the cardinals in M [G] would not be defined by an Easton index function.

Lemma 3.19. Let E be an index function, then P(E) preserves cardinals.

Proof. By the Lemma 2.20, we only need to show that P(E) preserves cofinalities. We
suppose, for contradiction, that P(E) does not. Thus there is a P(E)-generic G over M
and θ > ω such that θ is regular in M and singular in M [G]. Let λ = cf(θ)M [G], then
λ < θ since θ is singular in M [G]. Moreover λ is regular in M [G] and, hence, in M .

Let us work first in M . Consider then P0 = P(E−λ ), P1 = P(E+
λ ), the complete

embeddings (by the Proposition 2.22):

i0 : P0 → P0 × P1 i1 : P1 → P0 × P1

p0 7→ 〈p0,1P1〉 p1 7→ 〈1P0 , p1〉

and the isomorphism:

j : P0 × P1 → P(E)
〈p0, p1〉 7→ p0 ∪ p1

By the Corollary 2.24, we know that j−1(G) is P0 × P1-generic over M and M [G] =
M [j−1(G)].

Then let G0 = i−1
0 (j−1(G)) and G1 = i−1

1 (j−1(G)). Thus, by the Lemma 2.25, G0 is
P0-generic over M , G1 is P1-generic over M and G = G0×G1. Moreover, by the Theorem
2.26, G0 is P0-generic over M [G1] and M [G] = M [G1][G0].

Let us work now in M [G] and let f : λ→ θ be a cofinal map so Ran(f) is unbounded
in θ. We can apply the Lemma 3.18 to P1 to get that (〈P1,≤,1〉 is λ+-closed)M . Moreover,
since (2<λ = λ)M [G1] by GCH, we can apply the Lemma 3.17 and have that (〈P0,≤,1〉
satisfies the λ+-c.c.)M [G1]. Then, we can apply the Lemma 2.7 with A = λ, B = θ,
M = M [G1], θ = λ+, G = G0 and P = P0 to get that there is a map F : λ → P (θ)
such that F ∈M [G1] and, f(α) ∈ F (α) and (|F (α)| ≤ λ)M [G1] ∀α < λ. But (〈P1,≤,1〉 is
λ+-closed)M so F ∈M and (|F (α)| ≤ λ)M [G] ∀α < λ.

Let us finally come back to work in M . Since (|F (α)| ≤ λ)M [G] ∀α < λ, we have
that

⋃
α<λ

F (α) has cardinality smaller or equal to λ. Moreover, as f(α) ∈ F (α) ∀α < λ,⋃
α<λ

F (α) is cofinal in θ. Then, by the two last observations,

cf(θ)M = |
⋃
α<λ

F (α)| ≤ λ < θ

Thus θ is not regular in M which is a contradiction.

The last theorem of these section is using all the results we proved to show that the
extension model of M constructed by the Easton forcing satisfies that 2θ is given by the
Easton index function used for every infinite cardinal θ.

Theorem 3.20. Let E be an Easton index function, P = P(E) and G be a P-generic over
M . Then (2κ = E(κ), ∀κ ∈ Dom(E))M [G]. More generally, let θ be an infinite cardinal in
M [G], define

E′(θ) = max(θ+, sup{E(κ) | κ ∈ Dom(E) and κ ≤ θ})
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and
E∗(θ) =

{
E′(θ) if cf(E′(θ)) > θ
(E′(θ))+ otherwise

Then (2θ = E∗(θ))M [G].

Proof. Using Lemma 3.19, we know that P preserves cardinals. Since θ and E(κ) are
cardinals in M [G] for every κ ∈ Dom(E), E′(θ) is a cardinal in M [G] and, thus, E∗(θ) is
also a cardinal in M [G]. Hence E′ and E∗ are absolute for M and M [G].

At first, let us show that E∗(κ) = E(κ) for any κ ∈ Dom(E). By definition of E,
we know that E(κ) is a cardinal and cf(E(κ)) > κ so E∗(κ) = E′(κ). Let θ < κ, then,
again by definition of E, E(θ) < E(κ). Thus sup{E(θ) | θ ∈ Dom(E) and θ ≤ κ} = E(κ).
Moreover, since cf(E(κ)) > κ, E(κ) ≥ κ+. Hence E′(κ) = E(κ) and so E∗(κ) = E(κ).
Now, let θ be an infinite cardinal of M . We want to show that 2θ = E∗(θ) holds in M [G].
We will show that 2θ ≤ E∗(θ) and then that 2θ ≥ E∗(θ).

≤: To show this, we will need the following claim:

Claim: E(κ) ≤ 2κ in M [G] for any κ ∈ Dom(E).

Let us give the demonstration by showing that Add(E(κ), 2, κ)M in P forces an E(κ)-
sequence of distinct subsets of κ to be added. In M , let f : E(κ) × κ → E(κ) be any
injective map and in M [G], for some α < E(κ), let

Aα = {ξ < κ | ∃p ∈ G such that p(κ)(f(α, ξ)) = 1}

Thus, by injectivity of f , Aα 6= Aβ if α 6= β. Moreover, {Aα | α < E(κ)} ∈M [G]. We can
consider, now, the map:

s : E(κ)→ {Aα | α < E(κ)}
α 7→ Aα

Since s is an injective map from E(κ) to {Aα | α < E(κ)} and |Aα| = 2κ, we have that
E(κ) ≤ 2κ in M [G].

Then we can continue the proof with the general case of θ:

E′(θ) = max{θ+, sup{2κ | κ ∈ Dom(E) and κ ≤ θ}} ≤ max{θ+, 2θ} = 2θ

where the last equality is given by the König’s Lemma (Lemma 2.8). Thus, by GCH,
E∗(θ) ≤ 2θ. Hence, we only need to show that E(κ) ≤ 2κ for any κ ∈ Dom(E).

≥: The proof of the Lemma 3.19 can be repeated to show that P preserves cofinalities
so cf(θ)M = cf(θ)M [G]. Let λ = cf(θ)M = cf(θ)M [G], P0 = P(E−λ ) and P1 = P(E+

λ ). Then,
by applying the Lemma 3.16 in M , we know that P is isomorphic to P0 × P1. Moreover,
by the Lemma 3.17, 〈P0,≤,1〉 satisfies the λ+-c.c. and by the Lemma 3.18, 〈P1,≤,1〉 is
λ+-closed. Finally, by the Theorem 2.26, M [G] = M [G1][G0] where G1 is P1-generic over
M and G0 is P0-generic over M [G1].

Let us, firstly, investigate the case where λ = θ. We can see in M :

|Add(E(κ), 2, κ)| ≤ |Add(E∗(κ), 2, κ)| ≤ E∗(λ)λ ∀κ ∈ Dom(E−λ ) such that κ ≤ λ
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Thus |P0| ≤ (E∗(λ)λ)λ. But, since cf(E∗(λ)) > λ and GCH holds, E∗(λ)λ = E∗(λ).
Hence |P0| ≤ E∗(λ). Then, since 〈P1,≤,1〉 is λ+-closed in M , we have, in M [G1], that
E∗(λ)λ = E∗(λ), 〈P0,≤,1〉 satisfies the λ+-c.c. and |P0| ≤ E∗(λ). Thus there are, at
most, (E∗(λ)λ)λ = E∗(λ) nice P0-names for subsets of λ̌ in M [G1], which means that:

2λ ≤ E∗(λ) in M [G1][G0]

Thus, since θ is regular (λ = θ), 2θ = E∗(θ) in M [G].
We will now investigate the second and last case where θ is not regular. To do that,

we need to show that E∗(θ)λ = E∗(θ) in M [G]. Let us consider the map f in M [G] such
that f : λ→ E∗(θ). Then, since (〈P0,≤,1〉 satisfies the λ+-c.c.)M [G1] and by the Lemma
2.7, ∃F ∈ M [G1], F : λ × λ → E∗(θ) such that f(α) = F (α, β) ∀α < λ and β < λ. But
〈P1,≤,1〉 is λ+-closed in M , so F ∈M . Then, as GCH holds in M , there are only E∗(θ)
such map F . For each such map F , the set of f ∈ M [G] satisfying that f(α) = F (α, β)
∀α < λ and β < λ has size λλ = E∗(λ) ≤ E∗(θ) in M [G] because λ is regular in M [G].
Thus

(|λE∗(θ)| ≤ E∗(θ))M [G]

Then, in M [G], let B be the set of bounded subsets of θ and if δ < θ is regular, we
have that |P (δ)| = E∗(δ) ≤ E∗(θ) and that the regular cardinals are cofinal in θ. Hence
|B| ≤ E∗(θ). Finally, considering the map:

H : λB → P (θ)
h 7→

⋃
α<λ

{h(α)}

where g : λ→ B. Hence 2θ ≤ E∗(θ)λ = E∗(θ).
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4 Prikry-type Forcings
This chapter, which will be the last of the report, will introduce other forcings that

we have seen in the previous chapter. Instead of working with forcings based on partial
functions, we will work on forcings based on ultrafilter. Using four different of these
forcings, called Prikry-type forcings, we will construct different models of ZFC. Thanks to
the first two, the models constructed will preserve cardinalities but not cofinalites, showing
that the reverse of the Lemma 2.20 is not true. Thanks to the two other Prikry-type
forcings, we will add to a model a dominating sequence to a singular cardinal. The main
strategy of all of these forcings will be to provide partial orders and partial orders with
largest element and to show, thanks to the Prikry-condition, that we can also force with
elements of the partial order. Since the partial orders and the partial orders with largest
element will have different properties, we will be able to show the required properties of
the constructed model.

This chapter is composed by four sections. The first one is a short recall of some
results about ultrafilters that will be useful in the following. The second section will
provide, starting with a normal ultrafilter, the construction of a model of ZFC in which
cardinalities are preserved but not cofinalities. The third section has the same goal as the
second one but starts with a weaker assumption. Indeed, we will not start with a normal
ultrafilter but with a κ-complete ultrafilter where κ is a measurable cardinal. Finally, the
last section will use two different Prikry-type forcings to add to a model a dominating
sequence to a singular cardinal. This chapter will follow, on the main lines, [1][Chapter 1,
§1]. Further details and results concernings these forcings can be found in [1] and [2].

4.1 Ultrafilters

In this section, we will define ultrafilters and show some of their properties. The goal
of this section is to have a background on ultrafilters which will be necessary to the good
understanding of the following three sections.

Definition 4.1. Let X be a non-empty set, then F ⊆ P (X) is a filter on X if it is
non-empty, ∅ /∈ F and:

(a) A,B ∈ F ⇒ A ∩B ∈ F
(b) A ∈ F and A ⊆ B ⇒ B ∈ F

F is an ultrafilter on X if it is a filter on X and for every A ∈ P (X), A ∈ F or X \A ∈ F .
F is a principal ultrafilter on X if it is an ultrafilter on X and there is α ∈ X such that
{α} ∈ F .

Proposition 4.2. Let X be a non-empty set and F be an ultrafilter on X. If A,B ⊆ P (X)
such that A ∪B ∈ F , then A ∈ F or B ∈ F .

Proof. Suppose, for a contradiction, that A /∈ F and B /∈ F . Thus, by the ultrafilter
property, X \A ∈ F and X \B ∈ F .

We can then apply (a) of Definition 4.1, (X \A) ∩ (X \B) ∈ F . Hence

X \ (A ∪B) = (X \A) ∩ (X \B) ∈ F

Finally, by the ultrafilter property again, A ∪B /∈ F which is a contradiction.

Definition 4.3. Let X be a non-empty set and κ ≥ ω be a cardinal, then F ⊆ P (X) is
a κ-complete ultrafilter on X if it is an ultrafilter on X and for every F ′ ⊆ F such that
|F ′| < κ,

⋂
F ′ ∈ F .
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Definition 4.4. An infinite cardinal κ is called a measurable cardinal if there is a κ-
complete ultrafilter on κ that is not a principal filter.

Definition 4.5. Let κ be an infinite cardinal, then U ⊆ P (κ) is a normal ultrafilter on
κ if it is an ultrafilter on κ and for every A ∈ U and f : A \ {0} → κ such that f(α) < α
∀α ∈ A \ {0}, there is β ∈ A \ {0} such that f−1(β) ∈ U .

4.2 Basic Prikry Forcing

This section will build a partial order with largest element and a partial order. In the
previous chapter, we splitted the the partial order with largest element between a part
satisfying a chain-condition and part with a property of closeness. In this case, the partial
order with largest element will satisfy the chain-condition and the partial order will satisfy
the property of closeness. It is because of the Prikry condition (Lemma 4.16) that we can
link the two partial orders and prove the Theorem 4.18 which is the goal of the section.

To build and show that, we must fix a measurable cardinal κ and a non-principal,
κ-complete, normal ultrafilter U on κ. Let us start by constructing the partial order with
largest element.

Definition 4.6. Let P be the set of all pairs 〈p,A〉 such that:
(a) p is a finite subset of κ
(b) A ∈ U
(c) min(A) > max(p)

The following figure should help to visualize a pair 〈p,A〉 ∈ P.

0
max(p) min(A)

p A

κ

Definition 4.7. Let 〈p,A〉, 〈q,B〉 ∈ P. We say that 〈p,A〉 is stronger than 〈q,B〉 and
denote this by 〈p,A〉 ≤ 〈q,B〉 if:

(a) p is an extension of q, i.e. p ∩ (max(q) + 1) = q
(b) A ⊆ B
(c) p \ q ⊆ B

The following figure should help to visualize what 〈p,A〉 ≤ 〈q,B〉 means for two pairs
〈p,A〉, 〈q,B〉 ∈ P.

0

p A

q B

κ

Proposition 4.8. 〈P,≤, 〈0, κ〉〉 is a partial order with largest element.
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Proof. First, let us show that ≤ is a transitive and reflexive relation on P.
Let 〈p,A〉, 〈q,B〉, 〈r, C〉 ∈ P such that 〈p,A〉 ≤ 〈q,B〉 and 〈q,B〉 ≤ 〈r, C〉. We want to

show that 〈p,A〉 ≤ 〈r, C〉:
(a) p is an extension of q and q is an extension of r. Hence

p ∩ (max(r) + 1) = p ∩ (max(q) + 1) ∩ (max(r) + 1) = q ∩ (max(r) + 1) = r

Thus p is an extension of r.
(b) A ⊆ B and B ⊆ C so A ⊆ C.
(c) p \ q ⊂ B and q \ r ⊆ C. Let s ∈ p \ r, then s ∈ q \ r or s ∈ p \ q.

• If s ∈ q \ r:
q \ r ⊆ C so s ∈ C

• If s ∈ p \ q:
p \ q ⊆ B and B ⊆ C so s ∈ C

Thus, in any case, s ∈ C so p \ r ⊆ C.
Hence 〈p,A〉 ≤ 〈r, C〉 so ≤ is a transitive relation on P.
Moreover:

(a) p is an extension of itself
(b) A ⊆ A
(c) p \ p = 0 ⊆ A

Thus 〈p,A〉 ≤ 〈p,A〉 so ≤ is a reflexive relation on P.
Let us show now that 〈0, κ〉 is a largest element of P with respect to ≤:

(a) p ∩ (max(0) + 1) = p ∩ 1 = 0
(b) A ⊆ κ
(c) p \ 0 = p ⊆ κ

Thus 〈P,≤, 〈0, κ〉〉 is a partial order with largest element.

Let us, now, construct the partial order.

Definition 4.9. Let 〈p,A〉, 〈q,B〉 ∈ P. We say that 〈p,A〉 is a direct (or Prikry) extension
of 〈q,B〉 and denote this by 〈p,A〉 ≤∗ 〈q,B〉 if:

(a) p = q
(b) A ⊆ B

Proposition 4.10. 〈P,≤∗〉 is a partial order.

Proof. ⊆ is a transitive and reflexive relation on κ so ≤∗ is also a transitive and reflexive
relation on P. Hence 〈P,≤∗〉 is a partial order.

The next lemma just shows how the two partial orders are related to each other.

Lemma 4.11. ≤∗⊆ ≤.

Proof. Let 〈〈p,A〉, 〈p,B〉〉 ∈ ≤∗, so A ⊆ B.
p is an extension of itself and p \ p = 0 ⊆ B. Thus 〈p,A〉 ≤ 〈p,B〉.
Hence 〈〈p,A〉, 〈p,B〉〉 ∈ ≤.

The following lemma is the first step of the Theorem 4.18 and, thus, of the goal of the
section. Indeed, it will show that cofinalities are not preserved in the model forced by the
Basic Prikry forcing.
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Lemma 4.12. Let G be a 〈P,≤, 〈0, κ〉〉-generic. Then
⋃
{p | ∃A(〈p,A〉 ∈ G)} is an ω-

sequence cofinal in κ.

Proof. We need to show that for every α < κ and 〈q,B〉 ∈ P, the set

Dα = {〈p,A〉 ∈ P | 〈p,A〉 ≤ 〈q,B〉 and max(p) > α}

is dense in 〈P,≤, 〈0, κ〉〉 below 〈q,B〉.
Let 〈r, C〉 ≤ 〈q,B〉. Since U is κ-complete and non-principal, C is cofinal in κ. Thus

∃c ∈ C such that c > α. Then consider 〈r ∪ {c}, C \ (c+ 1)〉:
(a) r ∪ {c} is an extension of r
(b) C \ (c+ 1) ⊆ C
(c) r ∪ {c} \ r = {c} ⊆ C

Hence 〈r ∪ {c}, C \ (c+ 1)〉 ≤ 〈r, C〉. Moreover

max(r ∪ {c}) ≥ c > α

So 〈r ∪ {c}, C \ (c + 1)〉 ∈ Dα. Thus Dα is dense in 〈P,≤, 〈0, κ〉〉 below 〈q,B〉. Hence
Dα ∩G 6= ∅ ∀α < κ. Finally,

⋃
{p | ∃A(〈p,A〉 ∈ G)} is an ω-sequence cofinal in κ.

The two next lemmas will show the chain-condition of the partial order with largest ele-
ment (Lemma 4.13) and the closeness of the partial order (Lemma 4.14). Those properties
are the essential properties of all the forcings we are studying in this report.

Lemma 4.13. 〈P,≤, 〈0, κ〉〉 satisfies the κ+-c.c.

Proof. Let 〈p,A〉, 〈p,B〉 ∈ P and consider 〈p,A ∩B〉:
(a) p is an extension of itself
(b) A ∩B ⊆ A and A ∩B ⊆ B
(c) p \ p = 0 ⊆ A ∩B

So 〈p,A ∩B〉 ≤ 〈p,A〉, 〈p,B〉.
Thus two elements of an antichain in 〈P,≤, 〈0, κ〉〉 must have different finite subset of

κ. But the number of finite subsets of κ has cardinality ≤ κ. Hence the cardinality of an
antichain in 〈P,≤, 〈0, κ〉〉 is ≤ κ. Thus 〈P,≤, 〈0, κ〉〉 satisfies the κ+-c.c.

Lemma 4.14. 〈P,≤∗〉 is κ-closed.

Proof. Let λ < κ and 〈〈pα, Aα〉 | α < λ〉 be a ≤∗-decreasing sequence of length λ. By
definition of ≤∗, we know that all the pα’s are the same so we recall them p. Then let
A =

⋂
α<λ

Aα. By κ-completeness of U , A ∈ U . Thus 〈p,A〉 ≤∗ 〈pα, Aα〉 ∀α < λ.

The next theorem is a needed result for the proof of the following lemma about the
Prikry condition. This Prikry condition is the reason why we are working with two different
partial orders in the Prikry-type forcings. We will also have a similar condition to show
in the two last sections.

Theorem 4.15. (Rowbottom). Let [κ]<ω be the set of the finite subsets of κ and γ < κ,
then for every f : [κ]<ω → γ there is A ∈ U such that f(s) = f(s′) ∀s, s′ ∈ [A]n ∀n < ω.

The proof is not given but can be found in [3][Theorem 70] or in [4][Chapter 7, Theorem
7.70].
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Lemma 4.16. (The Prikry Condition). Let 〈q,B〉 ∈ P and σ be a statement of the
forcing language of 〈P,≤, 〈0, κ〉〉. Then there is a 〈p,A〉 ≤∗ 〈q,B〉 such that 〈p,A〉 ‖ σ (i.e.
〈p,A〉 
 σ or 〈p,A〉 
 ¬σ).

Proof. Let [κ]<ω be the set of the finite subsets of κ and define a partition h : [B]<ω → 2
such that:

h(s) =
{

1 if there is a C such that 〈q ∪ s, C〉 
 σ
0 otherwise

We can apply the Rowbottom Theorem (Theorem 4.15) so there is A ∈ U,A ⊆ B such
that ∀n < ω and ∀s1, s2 ∈ [A]n we have h(s1) = h(s2).

Consider now 〈q, A〉 and suppose, for contradiction, that ¬(〈q, A〉 ‖ σ). Thus there
must be 〈q ∪ s1, B1〉, 〈q ∪ s2, B2〉 ≤ 〈q, A〉 such that 〈q ∪ s1, B1〉 
 σ and 〈q ∪ s2, B2〉 
 ¬σ.
Without loss of generality, we can assume that |s1| = |s2| = n. But then s1, s2 ∈ [A]n and
h(s1) 6= h(s2) which is in contradiction with the Rowbottom Theorem.

Hence 〈q, A〉 ≤∗ 〈q,B〉 and 〈q, A〉 ‖ σ.

The next lemma is another important step of the Theorem 4.18 and to attempt the
goal of the section. Indeed, it will be necessary to show that the model constructed with
the help of the Basic Prikry forcing preserves cardinalities.

Lemma 4.17. 〈P,≤, 〈0, κ〉〉 does not add new bounded subsets of κ.

Proof. Let t ∈ P, ā be a P-name, λ < κ such that t 
 ā ⊆ λ̌. Then let

σα be the statement "α̌ ∈ ā" for every α < λ

We will now define, by recursion, a ≤∗-decreasing sequence of conditions 〈tα | α < λ〉
such that tα ‖ σα ∀α < λ:

• ∃t0 ≤∗ t such that t0 ‖ σ0 by Lemma 4.16.
• We suppose, then, that 〈tβ | β < α〉 is defined: ∃tγ ≤∗ tβ ∀β < α by Lemma 4.14

and, then, ∃tα ≤∗ tγ ≤∗ tβ ∀β < α such that tα ‖ σα by Lemma 4.16.
We use again the Lemma 4.14 to find t∗ ≤∗ tα ∀α < λ. Thus, by construction of

t∗, we have that t∗ ≤∗ t and so t∗ ≤ t by Lemma 4.11. Hence t∗ 
 ā = b̌ where
b = {α < λ | t∗ 
 α ∈ ā}. ā is, then, not a new P-name and there is no new bounded
subsets of κ.

The last theorem will recap and assemble all the results that we showed in this section.

Theorem 4.18. The following holds in M [G] for any 〈P,≤, 〈0, κ〉〉-generic G:
(a) κ has cofinality ℵ0
(b) All the cardinals are preserved
(c) No new bounded subsets are added to κ

Proof. (a) κ is an infinite cardinal so cf(κ) ≥ ℵ0. But, by Lemma 4.12, we know that
there is an ω-sequence cofinal in κ so cf(κ) ≤ ℵ0. Hence cf(κ) = ℵ0.

(c) Lemma 4.17.
(b) By (c), all cardinals ≤ κ are preserved and, by Lemma 4.13, all the cardinals ≥ κ+

are preserved. Thus all the cardinals are preserved.
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4.3 Tree Prikry Forcing

This section will be organised in the same way as the previous one and will have
analogous definitions, propositions, lemmas and theorems to the ones of the previous
section. The only difference is the assumption, we start with a κ-complete ultrafilter
where κ is a measurable cardinal and not a normal ultrafilter. Because of this, the partial
orders that will be built will be based on trees which will make the visualization a bit more
complicated but the philosophy of the construction done with the Tree Prikry forcing is
exactly the same as the philosophy of the construction done with the Basic Prikry forcing.

To build and show that, we must fix a measurable cardinal κ and a non-principal,
κ-complete ultrafilter U on κ. Let us start by constructing the partial order with largest
element.

Definition 4.19. 〈T,E〉 is a tree if:
(a) T 6= ∅
(b) E is a transitive and reflexive relation on T
(c) For every x ∈ T , the set {y ∈ T | y E x} is well-ordered by E

Definition 4.20. A set T is called a U -tree with a trunk t if:
(a) T consists of finite increasing sequences of ordinals below κ
(b) 〈T,E〉 is a tree, where η E ν if ν � dom(η) = η
(c) t is a trunk of T , i.e. t ∈ T and, for every η ∈ T , η E t or tE η
(d) For every η ∈ T such that tE η, SucT (η) = {α < κ | η_〈α〉 ∈ T} ∈ U

Define Levn(T ) = {η ∈ T | length(η) = n} for every n < ω.

Definition 4.21. The set P contains all the pairs of the form 〈t, T 〉 such that T is a U -tree
with trunk t.

Definition 4.22. Let 〈t, T 〉, 〈s, S〉 ∈ P. We say that 〈t, T 〉 is stronger than 〈s, S〉 and
denote this by 〈t, T 〉 ≤ 〈s, S〉 if T ⊆ S.

Proposition 4.23. Let 〈t, T 〉, 〈s, S〉 ∈ P such that 〈t, T 〉 ≤ 〈s, S〉. Then t ∈ S and sE t.

Proof. 〈t, T 〉 ≤ 〈s, S〉 implies that T ⊆ S. But t ∈ T so t ∈ S. Since s is a trunk of S, we
have that sE t or tE s.

Suppose, for a contradiction, that t E s but t 6= s. Hence s � dom(t) = t. We can
assume, without loss of generality, that

∃α < κ such that s = t_〈α〉

We also know that SucT (t) ∈ U and U is not a principal filter. Thus SucT (t) 6= {α}. Hence
∃β 6= α such that β ∈ SucT (t) and so t_〈β〉 ∈ T . But ¬(s E t_〈β〉) and ¬(t_〈β〉 E s)
which is a contradiction to the fact that s is a trunk in S.

Proposition 4.24. Let T̃ be the set of all the finite increasing sequences of ordinals below
κ. Then 〈P,≤, 〈0, T̃ 〉〉 is a partial order with largest element.

Proof. ⊆ is a transitive and reflexive relation so ≤ is also a transitive and reflexive relation
on P.

Now let us show that 〈0, T̃ 〉 is a largest element of P. Let 〈t, T 〉 ∈ P, then T ⊆ T̃ and
0E t. Thus 〈t, T 〉 ≤ 〈0, T̃ 〉.
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Let us, now, construct the partial order.

Definition 4.25. Let 〈t, T 〉, 〈s, S〉 ∈ P. We say that 〈t, T 〉 is a direct (or Prikry) extension
of 〈s, S〉 and denote this by 〈t, T 〉 ≤∗ 〈s, S〉 if:

(a) T ⊆ S
(b) s = t

Proposition 4.26. 〈P,≤∗〉 is a partial order.

Proof. ⊆ is a transitive and reflexive relation so ≤∗ is also a transitive and reflexive relation
on P.

The two partial orders that we built are related with each other in the same way as the
partial orders of the previous section are related to each other. It is shown by this lemma.

Lemma 4.27. ≤∗⊆ ≤.

Proof. Let 〈〈t, T 〉, 〈t, S〉〉 ∈ ≤∗, so T ⊆ S.
Thus 〈t, T 〉 ≤ 〈t, S〉. Hence 〈〈t, T 〉, 〈t, S〉〉 ∈ ≤.

The next lemma is a nice observation that will be useful later. Since it is an observation
specific to the tree construction that we did, it has no analogous lemma in the previous
section.

Lemma 4.28. Let 〈Tα | α < λ〉 be a sequence of U -trees with the same trunk t and λ < κ.
Then T =

⋂
α<λ

Tα is a U -tree with trunk t.

Proof. (a), (b) and (c) of Definition 4.20 are satisfied by construction of T . Concerning
(d), let η ∈ T such that tE η. Then

SucT (η) =
⋂
α<λ

SucTα(η)

By κ-completeness of U , SucT (η) ∈ U .

The following lemma is the analogous of the Lemma 4.12.

Lemma 4.29. Let G be a 〈P,≤, 〈0, T̃ 〉〉-generic. Then
⋃
{t | ∃T (〈t, T 〉 ∈ G)} is an ω-

sequence cofinal in κ.

Proof. We need to show that for every α < κ and 〈s, S〉 ∈ P, the set

Dα = {〈t, T 〉 ∈ P | 〈t, T 〉 ≤ 〈s, S〉 and max(t) > α}

is dense in 〈P,≤, 〈0, T̃ 〉〉 below 〈s, S〉. Let 〈r,R〉 ≤ 〈s, S〉.
• If max(r) > α:

〈r,R〉 ∈ Dα

• If max(r) ≤ α:
Since U is a non-principal, κ-complete ultrafilter, SucR(r) ∈ U is cofinal in κ. Hence

∃β > α such that β ∈ SucR(r) so r_〈β〉 ∈ R

Since r E r_〈β〉, 〈r_〈β〉, R〉 ≤ 〈r,R〉. Moreover 〈r_〈β〉, R〉 ∈ Dα.
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Thus Dα is dense in 〈P,≤, 〈0, T̃ 〉〉 below 〈s, S〉. Hence Dα ∩ G 6= ∅ ∀α < κ. Finally,⋃
{t | ∃T (〈t, T 〉 ∈ G)} is an ω-sequence cofinal in κ.

This lemma is the analogous of the Lemma 4.13

Lemma 4.30. 〈P,≤, 〈0, T̃ 〉〉 satisfies the κ+-c.c.

Proof. Let 〈t, T 〉, 〈t, S〉 ∈ P.
By Lemma 4.28, T ∩ S is a U -tree with trunk t so 〈t, T ∩ S〉 ≤ 〈t, T 〉, 〈t, S〉. Thus two

elements of an antichain in 〈P,≤, 〈0, T̃ 〉〉 must have different trunk. But the number of
trunk has cardinality ≤ κ. Hence the cardinality of an antichain in 〈P,≤, 〈0, T̃ 〉〉 is ≤ κ.
Thus 〈P,≤, 〈0, T̃ 〉〉 satisfies the κ+-c.c.

The next lemma is the analogous of the Lemma 4.14

Lemma 4.31. 〈P,≤∗〉 is κ-closed.

Proof. Let λ < κ and 〈〈tα, Tα〉 | α < λ〉 be a ≤∗-decreasing sequence of length λ. By
definition of ≤∗, we know that all the tα’s are the same so we recall them t. Then let
T =

⋂
α<λ

Tα which is a U -tree with trunk t by Lemma 4.28. Thus 〈t, T 〉 ≤∗ 〈tα, Tα〉

∀α < λ.

As we did in the previous section, we will show that the Prikry condition is satisfied
for these partial orders. It also the analogous lemma of the Lemma 4.16.

Lemma 4.32. (The Prikry Condition). Let 〈t, T 〉 ∈ P and σ be a statement of the
forcing language of 〈P,≤, 〈0, T̃ 〉〉. Then there is a 〈s, S〉 ≤∗ 〈t, T 〉 such that 〈s, S〉 ‖ σ.

Proof. Suppose, for a contradiction, that ¬(〈s, S〉 ‖ σ) for every 〈s, S〉 ≤∗ 〈t, T 〉. Then let
us define three sets as follows:

X0 = {α ∈ SucT (t) | ∃Sα ⊆ T a U -tree with trunk t_〈α〉 such that 〈t_〈α〉, Sα〉 
 σ}

X1 = {α ∈ SucT (t) | ∃Sα ⊆ T a U -tree with trunk t_〈α〉 such that 〈t_〈α〉, Sα〉 
 ¬σ}

X2 = SucT (t) \ (X0 ∪X1)

By the same reasoning given in the proof of Lemma 4.30, conditions with same trunk are
compatible. Thus X0 ∩ X1 = ∅. Since X0 ∪ X1 ∪ X2 = SucT (t) ∈ U , we can apply the
Proposition 4.2 so X0 ∈ U , X1 ∈ U or X2 ∈ U .

Let us now shrink T to a tree T# with the same trunk t such that SucT#(t) = Xi.
• If i ∈ {0, 1}:

let T# be Sα above t_〈α〉∀α ∈ Xi

• If i = 2:
let T# be the same as T above t_〈α〉∀α ∈ X2
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We continue the shrinking of the initial tree T by recusion level by level. To do that, we
define a decreasing sequence 〈Tα | n < ω〉 of U -trees with trunk t so that:

(1) T0 = T#

(2) For every n > 0 and m > n:

Tm � (n+ |t|) = Tn � (n+ |t|)

i.e. after stage n, the n-th level above the trunk remains unchanged in all Tm’s for
m > n

(3) For every n > 0, if i ∈ {0, 1}:

η ∈ Levn+|t|(Tn) and for some U -tree S with trunk η we have 〈η, S〉 
 σi

where σ0 denotes σ and σ1 denotes ¬σ. Then
• 〈η, (Tn)η〉 
 σi where (Tn)η = {ν ∈ Tn | η E ν}
• For every ν ∈ Levn+|t|(Tn) having the same immediate predecessor as η:

〈ν, (Tn)ν〉 
 σi

Let us define T ∗ =
⋂
n<ω

Tn. By Lemma 4.28, T ∗ is a U -tree with trunk t so 〈t, T ∗〉 ∈ P.

Moreover T ∗ ⊆ T so 〈t, T ∗〉 ≤∗ 〈t, T 〉. Thus, by assumption, ¬(〈t, T ∗〉 
 σ). By the Fact 2
of the forcing language, we can find 〈s, S〉 ≤ 〈t, T ∗〉 such that 〈s, S〉 
 σ. We choose such
a 〈s, S〉 to have n = |s− t| as small as possible. Thus

s ∈ Levn+|t|(T ∗) = Levn+|t|(Tn) by (2)

Then, by (3), we have
〈s, (Tn)s〉 
 σ

and for every s′ ∈ Levn+|t|(Tn) with the same predecessor as s we have

〈s′, (Tn)s′〉 
 σ

But T ∗ ⊆ T so, by (2) again

〈s, (T ∗)s〉 
 σ and 〈s′, (T ∗)s′〉 
 σ

for every s′ ∈ Levn+|t|(Tn) with the same predecessor as s.
Let s∗ be the immediate predecessor of s and consider 〈s∗, (T ∗)s∗〉. Since for every

〈r,R〉 ≤ 〈s∗, (T ∗)s∗〉, r = s′_r′ for some s′ ∈ Levn+|t|(T ∗) and s∗ E s′, we have that
〈s∗, (T ∗)s∗〉 
 σ. But |s∗| = |s| − 1 so |s∗ − t| = |s − 1 − t| < n which is in contradiction
with the minimality of n.

The next lemma is the analogous lemma of the Lemma 4.17.

Lemma 4.33. 〈P,≤, 〈0, T̃ 〉〉 does not add new bounded subsets of κ.

Proof. The proof of Lemma 4.17 does not use intrinsic properties of the forcing it is talking
about. It only uses Lemma 4.11, Lemma 4.14 and Lemma 4.16 but 〈P,≤, 〈0, T̃ 〉〉 satisfies
the same properties (respectively Lemma 4.27, Lemma 4.31 and Lemma 4.32). Thus the
proof of Lemma 4.17 is also a proof for this Lemma.
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The last theorem, like the Theorem 4.18, will recap and assemble all the results that
we showed in this section. It shows the same properties as the Theorem 4.18.

Theorem 4.34. The following holds in M [G] for any 〈P,≤, 〈0, T̃ 〉〉-generic G:
(a) κ has cofinality ℵ0
(b) All the cardinals are preserved
(c) No new bounded subsets are added to κ

Proof. (a) κ is an infinite cardinal so cf(κ) ≥ ℵ0. But, by Lemma 4.29, we know that
there is an ω-sequence cofinal in κ so cf(κ) ≤ ℵ0. Hence cf(κ) = ℵ0.

(c) Lemma 4.33.
(b) By (c), all cardinals ≤ κ are preserved and, by Lemma 4.30, all the cardinals ≥ κ+

are preserved. Thus all the cardinals are preserved.

4.4 One-Element Prikry Forcing and Adding a Prikry sequence to a
Singular Cardinal

The goal of this section will be to add a dominating sequence to a singular cardinal,
it will be shown that the construction that will be done satisfies it by the last theorem
(Theorem 4.52). To get this result, we will construct two pairs of partial orders where
the second one will be built on the top of the first one. They will be constructed in the
same way as we did in the two first sections of this chapter. For both, we will construct
a partial order with largest element which satisfies a chain-condition (we will not need to
show it for the first one but it could be shown), a partial order which satifies a closeness
property and show that these two satisfy the Prikry condition.

To build and show that, we must fix an increasing sequence of measurable cardinals
〈κn | n < ω〉 with limit κ and a κn-complete ultrafilter Un on κn for every n < ω. Let us
begin by defining the partial order with largest element of the first pair.

Definition 4.35. For every n < ω, let Qn = Un ∪ κn. Then ∀p, q ∈ Qn, p ≤n q if one of
these conditions is satisfied:

(a) p, q ∈ Un and p ⊆ q
(b) p ∈ κn, q ∈ Un and p ∈ q
(c) p, q ∈ κn and p = q

Proposition 4.36. 〈Qn,≤n, κn〉 is a partial order with largest element for every n < ω.

Proof. Let n < ω.
We will first show that ≤n is a transitive relation on Qn. Let p, q, r ∈ Qn such that

p ≤n q and q ≤n r, then we must show that p ≤n r. There will be 8 cases depending on
the reason why p ≤n q and q ≤n r. But q ≤n r, p ≤n q and q ≤n r are impossible cases so
there remain 4 cases:

• If p, q, r ∈ Un:
⊆ is transitive so p ⊆ r and p ≤n r

• If q, r ∈ Un and p ∈ κn:

p ∈ q ⊆ r so p ∈ r and p ≤n r

• If r ∈ Un and p, q ∈ κn:

p = q ∈ r so p ∈ r and p ≤n r
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• If p, q, r ∈ κn:
= is transitive so p = r and p ≤n r

Thus ≤n is a transitive relation on Qn.
Since ⊆ and = are reflexive relations, ≤n is a also a reflexive relation. It only remains

to show that κn is a largest element of Qn. Let p ∈ Qn, then:
• If p ∈ Un:

p ⊆ κn so p ≤n κn
• If p ∈ κn:

p ≤n κn

We can now define the partial order.

Definition 4.37. For every n < ω, and p, q ∈ Qn, we write p ≤∗n q if one of these
conditions is satisfied:

(a) p, q ∈ Un and p ⊆ q
(b) p, q ∈ κn and p = q

Proposition 4.38. 〈Qn,≤∗n〉 is a partial order for every n < ω.

Proof. Let n < ω.
⊆ and = are transitive and reflexive relations so ≤∗n is also a transitive and reflexive

relation on Qn.

The next property was also satisfied by the previous partial orders we built in this
chapter, it will be the case for the last ones too.

Proposition 4.39. ≤∗n ⊆ ≤n for every n < ω.

Proof. (a) and (b) of the Definition 4.37 are the same as, respectively, (a) and (c) of the
Definition 4.35. Thus every element of ≤∗n is also an element of ≤n.

The following lemmas, which will be the last concerning the first forcing of this section,
are the ones showing, respectively, the closeness of the partial orders and the Prikry
condition. They are analogous to the Lemma 4.14 and the Lemma 4.16.

Lemma 4.40. 〈Qn,≤∗n〉 is κn-closed for every n < ω.

Proof. Let n < ω, λ < κn and 〈pα | α < λ〉 be a ≤∗n-decreasing sequence of length λ. By
definition of ≤∗n, all the pα’s are in Un or κn.

• If pα ∈ Un ∀α < λ:
Consider

⋂
α<λ

pα. It is in Un by κn-completeness of Un and
⋂
α<λ

pα ⊆ pα for every

α < λ.
• If pα ∈ κn ∀α < λ:
All the pα’s are the same so we can take pα itself.

Thus, in any case, we can find an element of Qn which is smaller or equal with respect to
≤∗n than all the pα’s.

36



Lemma 4.41. (The Prikry Condition). For every n < ω, let qn ∈ Qn and σ be a
statement of the forcing language of 〈Qn,≤n, κn〉. Then there is a pn ≤∗n qn such that
pn ‖ σ.

We can now introduce the last pair of partial orders of this report that will be con-
structed on the top of the one that we just defined. It will bring us to the last result of
this report, the Theorem 4.52. We start, as always, to define the partial order with largest
element and the partial order.

Definition 4.42. Let P be the set of all sequences p = 〈pn | n < ω〉 so that:
(a) For every n < ω, pn ∈ Qn

(b) There is an l(p) < ω so that for every n < l(p), pn ∈ κn and for every n ≥ l(p),
pn ∈ Un.

Definition 4.43. Let p = 〈pn | n < ω〉 and q = 〈qn | n < ω〉 be two elements of P. Then
p ≤ q (respectively p ≤∗ q) if pn ≤n qn (respectively pn ≤∗n qn) for every n < ω.

We denote 〈pm | m < n〉 by p � n and 〈pm | m ≥ n〉 by p \ n. Then let P � n = {p � n |
p ∈ P} and P \ n = {p \ n | p ∈ P}.

Proposition 4.44. 〈P,≤,
∏
n<ω

κn〉 is a partial order with largest element and 〈P,≤∗〉 is a
partial order.

Proof. ≤n and ≤∗n are reflexive and transitive relations on Qn for every n < ω so ≤ and
≤∗ are reflexive and transitive relations on P. Moreover, κn are largest elements of Qn

with respect to ≤n for every n < ω so
∏
n<ω

κn is a largest element of P with respect to ≤.

Like all the Prikry-type forcing we studied, the partial orders satisfy the next relation
between each other.

Proposition 4.45. ≤∗⊆ ≤.

Proof. ≤∗n ⊆ ≤n for every n < ω by the Proposition 4.39 so ≤∗⊆ ≤.

We will need, for this forcing, to split our partial order but this is more a detail for
the proofs later than an important observation.

Lemma 4.46. P ' P � n× P \ n for every n < ω.

Proof. Let n < ω and consider the natural map:

f : P→ P � n× P \ n
p 7→ 〈p � n, p \ n〉

We are now able to show the closeness of the partial order (Lemma 4.47) and the
chain-condition of the partial order with largest element (Lemma 4.48).

Lemma 4.47. 〈P \ n,≤∗〉 is κn-closed for every n < ω.
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Proof. Let n < ω, λ < κn and 〈pα \ n | α < λ〉 be a ≤∗-decreasing sequence of length λ.
By the Lemma 4.40, we know that 〈Qm,≤∗m〉 is κm-closed for every n ≤ m < ω. Since
n ≤ m, 〈Qm,≤∗m〉 is κn-closed. Thus, for every n ≤ m < ω, we can find an element p̃m of
Qm such that p̃m ≤∗m (pα \ n)m. Then

ω∏
n=m

p̃m ≤∗ pα \ n for every α < λ.

Lemma 4.48. 〈P,≤,
∏
n<ω

κn〉 satisfies the κ+-c.c.

Proof. Let p = 〈pn | n < ω〉 and q = 〈qn | n < ω〉 be elements of P such that l(p) = l(q)
and 〈pn | n < l(p)〉 = 〈qn | n < l(q)〉. Then, for every n ≥ l(p), by the ultrafilter property
of Un, pn ∩ qn ∈ Un and pn ∩ qn ⊆ pn, qn. Thus 〈pn | n < l(p)〉_〈pn ∩ qn | n ≥ l(p)〉 ≤ p, q
so p and q are compatible. Hence every two elements p and q of an antichain must be such
that l(p) 6= l(q) or if l(p) = l(q), p and q must have different initial sequences of length
l(p)− 1. But then the number of possible such elements is smaller or equal than κ.

The two following lemmas are again analogous to some lemmas that we showed during
the chapter. The first lemma shows that the Prikry condition is satisfied in the present
case and the second one is the analogous of the Lemma 4.17. After that, it will remain
show that the model constructed adds a dominating sequence to a singular cardinal and
the last theorem will recap everything.

Lemma 4.49. (The Prikry Condition). Let p = 〈pn | n < ω〉 ∈ P and σ be a statement
of the forcing language of 〈P,≤,

∏
n<ω

κn〉. Then there is a q ≤∗ p such that q ‖ σ.

Proof. We suppose, for contradiction, that ¬(q ‖ σ) for every q ≤∗ p. Without loss of
generality, we can assume that l(p) = 0. Then let pn = An ∈ Un for every n < ω and
define, by recursion on n < ω, a ≤∗-decreasing sequence 〈q(n) | n < ω〉 of ≤∗-extensions
of p satisfying:

(1) If n ≤ m:
q(m) � n = q(n) � n

(2) If q = 〈qn | n < ω〉 ≤ q(n), q ‖ σ and l(q) = n+ 1:

〈qm | m ≤ n〉_〈q(n)m | m > n〉 ‖ σ in the same way as q.

Moreover, for every τn ∈ q(n)n:

〈qm | m < n〉_〈τn〉_〈q(n)m | m > n〉 ‖ σ also in the same way.

Let us show that this construction is possible. Let n < ω, the number of possibilities
for initial sequences of length n − 1 below κn is |

∏
i≤n−1

κi| = κn−1 < κn. But Um is κn-

complete for every m ≥ n, so we can define s = 〈sn | n < ω〉 to be 〈q(n)n | n < ω〉 by
taking the intersection of the possible initial sequences of length n − 1 below κn. Then,
by construction, s ∈ P and s ≤∗ p.

Let q = 〈qn | n < ω〉 be an extension of s such that q ‖ σ with l(q) as small as possible.
We can find such an element by the Fact 2 of the forcing language. By assumption, l(q) > 0
so let n = l(q)− 1. Then, by (2) of the construction, for every τn ∈ q(n)n = sn:

〈qm | m < n〉_〈τn〉_〈sm | m > n〉 
 σ

But then 〈qm | m < n〉_〈sm | m > n〉 
 σ too, contradicting the minimality of l(q).
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Lemma 4.50. 〈P,≤,
∏
n<ω

κn〉 does not add new bounded subsets to κ.

Proof. The proof of the Lemma 4.17 does not use intrinsic properties of the forcing it is
talking about. It uses the Lemma 4.11 and the Lemma 4.16 but 〈P,≤,

∏
n<ω

κn〉 satisfies

the same properties (respectively the Lemma 4.45 and the Lemma 4.49). Concerning the
Lemma 4.14, the equivalent for 〈P,≤,

∏
n<ω

κn〉 is given by combining the Lemma 4.46 and
the Lemma 4.47. Thus the proof of Lemma 4.17 is also a proof for this Lemma.

More than the last theorem, this is this lemma that will show that the model extension
M [G] adds a dominating sequence to a singular cardinal, which was the goal of this forcing.

Lemma 4.51. Let G be a 〈P,≤,
∏
n<ω

κn〉-generic. Define an ω-sequence 〈tn | n < ω〉 ∈∏
n<ω

κn such that:

tn = τ if pn = τ for some p = 〈pm | m < ω〉 ∈ G with l(p) > n

Then for every 〈sn | n < ω〉 ∈ (
∏
n<ω

κn) ∩M , there is an n0 < ω such that tn > sn for
every n ≥ n0.

Proof. Let n0 < ω and suppose, for contradiction, that there is n ≥ n0 such that pn ≤ sn
∀p = 〈pm | m < ω〉 ∈ G with l(p) > n. Then consider the set:

D = {q = 〈qm | m < ω〉 ∈ P | l(q) > n and qn > sn}

This set is dense in P so, as G is a 〈P,≤,
∏
n<ω

κn〉-generic, G ∩ D 6= ∅. Thus there is

q = 〈qm | m < ω〉 ∈ G with l(q) > n such that qn > sn, which is a contradiction to the
assumption.

Finally and again, the last theorem will recap and assemble all the results that we
showed in this section.

Theorem 4.52. The following holds in M [G] for any 〈P,≤,
∏
n<ω

κn〉-generic G:

(a) All cardinals and cofinalities are preserved
(b) No new bounded subsets are added to κ
(c) There is a sequence in

∏
n<ω

κn dominating every sequence in (
∏
n<ω

κn) ∩M

Proof. (a) and (b) follow from the Lemma 4.50 and (c) follows from the Lemma 4.51.
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5 Further Topics
In this conclusion chapter, we will have a look, in an informal way, to some forcings

that we have not studied in the report. Some of them are similar to the forcings we have
seen and some others are going in a very different direction.

To continue in the same philosophy of our chapter about forcings with partial functions,
we could have studied a forcing called the Lévy collapsing order with which it is possible
to build a model extension in which every regular and uncountable cardinal collapses to
ω1. It is also an interesting forcing to study an important statement of set theory, the
Kurepa’s Hypothesis stating that:

There is an ω1-Kurepa tree, where an ω1-Kurepa tree is an ω1-tree with at least ω2 paths.

Indeed, thanks to the Lévy collapsing order, we can construct models of ZFC in which the
Kurepa’s Hypothesis is satisfied or not. Another interesting question we can ask ourself
is how to iterate forcings. We used, to show the consistency of 2ℵn = ℵn+2 in the third
chapter, countably many forcings but how to iterate forcings beyond limit ordinals? That
can also be done with the help of supports in ideals. If we work with iterated forcings
with finite supports, it possible to construct a model of ZFC satisfying another important
statement of set theory, the Martin’s Axiom which states that:

∀κ < 2ω, for any partial order 〈P,≤〉 satisfying the ω-c.c. and any family D of ≤κ dense
subsets of P, then there is a filter G in P such that G ∩D 6= ∅ ∀D ∈ D.

To continue the study of Prikry-type forcings that has been started in the fourth
chapter, it may be interesting to read [1]. To go further than we did in the last chapter with
the last forcing of the report, we can add multiple Prikry sequences to a singular cardinal.
Another possible notion to work on is super compact and strongly compact cardinals.
Indeed, since we have an ultrafilter, we can define these notions and build a Prikry-type
forcing on it. Then, a bit similarily to the Lévy collapsing order, it is possible to build,
by a Prikry-type forcing, a model in which every cardinal below a limit κ of measurables
cardinals collapse to ℵω and in which there are finitely many cardinals between ℵω and
2κ. We can also think of iterations of Prikry-type forcings. If we work with full support
iteration, we construct iterations called Magidor iterations after the Israeli mathematician
Menachem Magidor. We can then combine this idea of iteration with the Easton forcing
theory we studied in the thrid chapter to make iterated Prikry-type forcings with Easton
supports. Also considered as Prikry-type forcings, we can study Magidor forcings and
Radin forcings. We already saw quickly the name of Magidor but not Radin, it comes
from the American mathematician Lon Berk Radin.

As we can see, there are many different forcings. The strongeness of this tool make
them very useful in set theory and, more especially, to build specific models of ZFC. But, as
always in Mathematics, many results remain to be shown with the help or not of forcings.
Let us look at some unknown results that could maybe be solved by forcing.

We said previously that it was possible to build a model in which every cardinal below
a limit κ of measurables cardinals collapse to ℵω and in which there are finitely many
cardinals between ℵω and 2κ but we do not know if the same construction is possible with
uncountably many cardinals between ℵω and 2κ.

We do not know neither if it is possible to have a model of ZFC in which ℵω1 < 2ℵω if
2ℵn = ℵn+1 for every n < ω.
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Finally, using stationary sets, the question of finding a model in which 2ℵω1 = ℵω1+2 and
in which we can find two stationary sets S1 and S2 contained in ω1 such that S1∪S2 = ω1
and

(α ∈ S1 ⇒ 2ℵα = ℵα+2) and (α ∈ S2 ⇒ 2ℵα = ℵα+3)

is still unsolved.
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