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Introduction

This thesis is a glimpse into the theory of typical compact sets. Our goal is
to demonstrate how to exploit the sheer power of the Baire category theorem
(hereafter referred to as BCT) in a special setting.

The BCT is one of the important theorems which provide non-constructive
methods. As the random method does in graph theory, the BCT allows analysts
to reach out for objects which are quite complicated to construct explicitly. If
we say that a property P is typical in a given space, then this means intuitively
that almost all elements satisfy P . Another huge advantage of proving typicality
is that if one accumulates several (even countably many) typical properties, then
their conjunction is still typical.

Let us introduce two examples. In 1872 Weierstrass published the �rst example
of a continuous nowhere di�erentiable function. Since then mathematicians have
constructed several other examples. However, the proof of nowhere di�erentiability
usually involves tedious calculations. A more elegant and much more meaningful
approach is to prove that the property of being nowhere di�erentiable is typical in
the complete metric space C[0, 1] (which is the set of all continuous functions on
the interval [0, 1] with the usual supremum metric d(f, g) = supx∈[0,1] |f(x)−g(x)|).
We discuss this in Section 1.2. The same applies for nowhere monotonic continuous
functions.

Another interesting problem is the existence of Nikodym sets. A Nikodym set
is a set N ⊆ Rn of Lebesgue measure zero which contains a punctured hyperplane
through every point of Rn. The �rst example of such a subset in the plane was
constructed by Otto Nikodym in 1927 [1]. Higher dimensional Nikodym sets were
found by Kenneth Falconer [2]. More than the existence may be proved roughly
as follows. We code the arrangement of hyperplanes in a suitable way, and then
we use typical code sets. For a precise proof see [3]. This method illustrates a
stunning possibility. Even when the objects we are interested in do not form a
complete metric space naturally we may �nd a way to transform the problem into
another to which the BCT is applicable. See [4] for a survey on the applications
of the BCT.

This thesis is divided into three chapters.
Chapter 1 contains all the groundwork. First we introduce the basic notions

and the BCT itself. Then we present the above-mentioned typicality argument
about continuous functions as a nice and direct application. In Section 3 we prove
Alexandro�'s theorem about topological completeness which allows one to apply
the BCT for a wide class of subspaces of a complete metric space. In Section 4 we
introduce the hyperspace of compact sets, where most of our latter arguments take
place. As we will see, for any complete metric space X the set of all nonempty
compact subsets of X form a complete metric space with respect to a natural
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metric. In the end of Chapter 1 we sketch the basics of Hausdor� dimension and
box dimension which show up in Chapter 2.

In Chapter 2 we go for a journey of discovery. One question leads us: How
does a typical compact set look like? We explore the hyperspace of compact
sets by asking several natural questions and answering them. First we look at the
size: we investigate measure and dimension. After that we look for patterns and
order. Then we turn to topological properties and we characterize typical compact
sets up to homeomorphism. We encounter distance sets on the way which leads
us to product spaces. Finally we prove a theorem of Mycielski and Kuratowski.
In this chapter the author presents his own proofs for almost all results. Most of
them are well-known and many of them can be found in textbooks. We do not
claim that our proofs are new.

In Chapter 3 we discuss a more subtle application which takes advantage of the
above-mentioned code set method. First we introduce the motivation: Besicovitch
sets and the famous Kakeya conjecture. Then we explain the duality (or code set)
method in details and we present some important observations. We use a result
of M. Talagrand [5] and a theorem of K. Simon and B. Solomyak [6] to obtain a
typical property for code sets. Finally we prove a theorem on Besicovitch sets. In
this last chapter the author presents his own results based on his paper
[7].

Notations are listed on the next page. Note that we use some non-standard
notations throughout the thesis.
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Notations

N, Q, R the set of natural, rational and real numbers respectively
N+ the set of positive natural numbers
:= equals by de�nition
∪̇ disjoint union
Ac the complement of A
B(a, r) the open ball of radius r and center a

Ḃ(a, r) B(a, r) \ {a}
Bd(a, r) the open ball of radius r and center a with respect to the metric d

BH(A, δ)
the open ball of radius δ and center A with respect to the
Hausdor� metric

B(a, r) the closed ball of radius r and center a

A the closure of A
Aε the open ε-neighbourhood of the set A
A∗ε the closed ε-neighbourhood of the set A
Aε,d Aε with respect to the metric d
A∗ε,d A∗ε with respect to the metric d

xn
d→ x xn converges to x with respect to the metric d

C[a, b] the space of continuous functions on the interval [a, b]
[A]<ω the set of �nite subsets of A
∼= homeomorphic to
λ(A) the 1-dimensional Lebesgue measure of A
λd(A) the d-dimensional Lebesgue measure of A
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Chapter 1

Preliminaries

1.1 The Baire category theorem

The Baire category theorem (BCT) is a theorem in general topology which has nu-
merous important applications in many �elds of mathematics, especially in func-
tional analysis. However, in this thesis we focus on direct applications of BCT
yielding sets of interesting properties.

For the sake of clarity we start with basic de�nitions.

De�nition 1.1.1. Let X be a topological space and E ⊆ X.

• E is dense in X if its closure is X.

• E is nowhere dense in X if its closure has empty interior.

• E is of �rst category in X if it is the countable union of nowhere dense
sets.

• E is of second category in X if it is not of �rst category.

• E is residual in X if its complement is of �rst category.

Remark 1.1.2. It is easy to check that:
(1) E is dense in X ⇐⇒ it meets every nonempty open subset of X.
(2) E is nowhere dense ⇐⇒ every nonempty open subset of X contains an

open set disjoint to E ⇐⇒ X \ E contains a dense open set.

De�nition 1.1.3. A topological space X is a Baire space if every nonempty
open subset of X is of second category in X.

De�nition 1.1.4. A topological space X is topologically complete (or com-
pletely metrizable) if it is homeomorphic to a complete metric space.
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The Baire category theorem has many formulations, we present two of them
here.

Theorem 1.1.5. (Baire category theorem)
(1) Every topologically complete space is a Baire space.
(2) Every locally compact Hausdor� space is a Baire space.

Proof. (1) Let X be topologically complete space and d a metric which makes it a
complete metric space. Let U ⊆ X be a nonempty open set. We need to show that
U cannot be covered by countably many nowhere dense sets Ni ⊆ X (i ∈ N+).

Let B0 ⊆ U be a closed ball. We de�ne a nested sequence of closed balls Bi

such that Bi ∩
⋃
j≤iNi = ∅. Suppose that Bj (j ≤ i) are de�ned. Since Ni+1 is

nowhere dense, we can choose a closed ball Bi+1 ⊆ Bi of diameter at most 1
i+1

which is disjoint to Ni+1. Pick xi ∈ Bi for every i ∈ N. The points xi form a
Cauchy-sequence because of the assumption on diameters, hence xi → x for some
x ∈ X by the completeness of X. Now x ∈ Bi for every i since Bi is closed. This
gives us x ∈ U \ (

⋃∞
i=1Ni).

(2) The proof goes similarly as the previous one. Let X be a locally compact
Hausdor� space, U and Ni as before. Let K0 ⊆ U be an arbitrary compact set
with nonempty interior (the local compactness is used here). We de�ne a nested
sequence of compact sets Ki with nonempty interior such that Ki ∩

⋃
j≤iNj = ∅.

Suppose that Kj (j ≤ i) are de�ned. Now int(Ki) contains an open set Ui which
is disjoint to Ni+1 because the latter is nowhere dense. Ki is a compact Hausdor�
space; therefore we may choose an open set Vi ⊆ Ui such that Vi ⊆ Ui. Let
Ki+1 = Vi. Now

⋂∞
i=0Ki ⊆ U is the intersection of nested nonempty compact sets,

so it is nonempty and clearly disjoint to
⋃∞
i=1Ni.

Note that we need the notion of topological completeness because complete-
ness is not a topological property. For example, (0, 1) is not complete but it is
homeomorphic to R. However, being a Baire space is a topological property by
de�nition.

De�nition 1.1.6. In a Baire space X the property P is typical (or generic) if
{x ∈ X : P (x)} is residual.

By the de�nition of Baire space a residual set is nonempty. Consequently, if
P is typical in X, then there exists x ∈ X such that P (x) holds. We often use a
less formal phrasing: instead of saying that P is typical in X we simply say that
a typical element x in X is of property P .

A simple way to check if a set is residual is given by the following:

Proposition 1.1.7. In a Baire space X, a set E is residual if and only if E
contains a dense Gδ set.
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Proof. Note that N is nowhere dense ⇐⇒ N is nowhere dense.

E is residual
def⇐⇒ Ec is of �rst category

def⇐⇒ Ec =
⋃∞
i=1Ni for some nowhere

dense sets Ni ⇐⇒ Ec ⊆
⋃∞
i=1 Fi for some closed nowhere dense sets Fi ⇐⇒

E ⊇
⋂∞
i=1Gi for some open dense sets Gi

BCT⇐⇒ E contains a dense Gδ set.

Before going deeper in the theory we discuss a nice direct application which
shows the strength of BCT.

1.2 Typical continuous functions

In this section we show that nowhere di�erentiable continuous functions exist.
Let C[0, 1] denote the set of all real-valued continuous functions on the interval
[0, 1]. It is a complete metric space with respect to the usual supremum metric
d(f, g) = supx∈[0,1] |f(x)− g(x)|. We prove more than nowhere di�erentiability:

Theorem 1.2.1. A typical continuous function in C[0, 1] does not have bounded
di�erence quotients on either side at any point.

Proof. The union of two sets of �rst category is of �rst category, therefore it su�ces
to verify that

B :=

{
f ∈ C[0, 1] : ∃x0 ∈ (0, 1] sup

x∈[0,x0)

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ <∞
}

is of �rst category. This may be written as a countable union:

B =
∞⋃
N=1

{
f ∈ C[0, 1] : ∃x0 ∈

[
1

N
, 1

]
sup

x∈[0,x0)

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ ≤ N

}
︸ ︷︷ ︸

BN

We want to prove that BN is nowhere dense in C[0, 1].

Claim 1.2.2. BN is closed.

Proof. If f /∈ BN , then for every x0 ∈
[
1
N
, 1
]
we have

sup
x∈[0,x0)

∣∣∣∣f(x)− f(x0)

x− x0

∣∣∣∣ > N.

Thus there exists x′0 ∈ [0, x0) and η > 0 such that
∣∣∣f(x′0)−f(x0)x′0−x0

∣∣∣ > N + 2η. By

continuity there exists |x′0 − x0| > δ > 0 such that for all y ∈ (x0 − δ, x0 + δ) we
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have
∣∣∣f(x′0)−f(y)x′0−y

∣∣∣ > N + η. Now the absolute value of the denominator is bounded

from below, so there exists ε0 > 0 such that if sup |f−g| < ε0, then
∣∣∣g(x′0)−g(y)x′0−y

∣∣∣ > N

for all y ∈ (x0 − δ, x0 + δ). Since
[
1
N
, 1
]
is compact, it is covered by �nitely many

intervals of the form (x0 − δ, x0 + δ) giving us �nitely many conditions. Hence we
can choose ε > 0 such that if sup |f − g| < ε, then for every x0 ∈

[
1
N
, 1
]

sup
x∈[0,x0)

∣∣∣∣g(x)− g(x0)

x− x0

∣∣∣∣ > N.

This means that a neighbourhood of f lies in the complement of BN . Consequently,
BN is closed. �

Now we need to show that int(BN) = ∅. In fact, it is easy to prove that Bc
N is

dense in C[0, 1]. The following lemma is a useful tool in general.

Lemma 1.2.3. The set of piecewise linear functions is dense in C[0, 1].

Proof. Let f ∈ C[0, 1] and ε > 0 be arbitrary. We have to �nd a piecewise linear
function in the 2ε-neighbourhood of f . Since f is uniformly continuous on [0, 1],
there exists M ∈ N such that for every interval of the form

[
i
M
, i+1
M

]
(0 ≤ i < M)

we have

sup
x∈[ iM , i+1

M ]

∣∣∣∣f(x)− f
(
i

M

)∣∣∣∣ < ε.

Simply let g be the function which takes the same values at i
M

(0 ≤ i ≤ M) as f
and linear between these points. Now let x ∈ [0, 1] be arbitrary and

[
i
M
, i+1
M

]
is

the interval containing x.

|f(x)− g(x)| ≤
∣∣f(x)− f

(
i
M

)∣∣+
∣∣f ( i

M

)
− g(x)

∣∣ < ε+ ε

�
Thus it su�ces to approximate an arbitrary piecewise linear function g. By the

previous proof we may assume that its partition is of the form
[
i
M
, i+1
M

]
(0 ≤ i < M)

for some M ∈ N. Fix ε > 0. Let K ∈ N be such that Kε is larger in absolute
value than all the slopes occurring in the graph of g and larger than N as well.
Let h : R → R be the �sawtooth� function: h(x) is the distance of x from the
nearest integer. Now h∗(x) := 2εh(Kx) is a piecewise linear continuous function
with supremum ε consisting only of segments of slope 2εK. Therefore g + h∗ is
a piecewise linear continuous function with slopes strictly larger in absolute value
than 2εK − εK ≥ N . For such a function it is clear that

sup
x∈[0,x0)

∣∣∣∣(g + h∗)(x)− (g + h∗)(x0)

x− x0

∣∣∣∣ > N
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for all x0 ∈
[
1
N
, 1
]
. In other words, g+h∗ ∈ Bc

N and it is ε-close to g. Consequently,
Bc
N is dense in C[0, 1], and this completes the proof.

A similar proof can be found in [8] Chapter 11.

1.3 Topological completeness

In this section we prove the theorem of Alexandro� and its converse to obtain a
criterion on topological completeness. We altered the proofs of [8] Chapter 12 to
improve clarity.

Theorem 1.3.1. In a complete metric space (X, d) the subspace E is topologically
complete if and only if E is Gδ.

Proof. (1) Gδ implies topologically complete:
Let E =

⋂∞
i=1Gi for some open sets Gi. We shall introduce a compatible metric

(i.e., a metric which induces the same topology) which makes E a complete metric
space. We may assume that Gc

i is nonempty for every i.
We want to prevent the Cauchy sequences in E to converge to a point not in E.

So we should remetrize E to avoid the Cauchy property of these �wrong� sequences
while not changing the topology. Let

σ(x, y) := d(x, y) +
∞∑
i=1

1

2i
·min

(
1,

∣∣∣∣ 1

d(x,Gc
i)
− 1

d(y,Gc
i)

∣∣∣∣) (∀x, y ∈ E).

Here d(x,Gc
i) denotes the distance of x from the closed set Gc

i . The idea behind
this formula is to enlarge the distances near the boundaries.

First of all, we need to check that σ is a metric on E. The symmetry is clear,
and σ(x, y) = 0 =⇒ d(x, y) = 0 =⇒ x = y. The triangle inequality holds
because it is satis�ed by each term (it is very easy to check).

Now we show that σ is compatible with d. A simple characterization of com-
patible metrics is the following:

Lemma 1.3.2. Let d1 and d2 be metrics on the set X. They induce the same

topology on X if and only if (xn
d1→ x) ⇐⇒ (xn

d2→ x) holds for every sequence
{xn : n ∈ N} ⊆ X and point x ∈ X.

Proof. Convergence is a topological property, hence one implication is obvious.
For the converse, recall that in a metric space (X, d) the set F is closed if

and only if for every sequence {xn : n ∈ N} ⊆ F and point x ∈ X we have

(xn
d→ x) =⇒ x ∈ F . �

It is clear that xn
σ→ x implies xn

d→ x.
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To prove the converse �x a convergent sequence xn
d→ x in E and ε > 0. We

should �nd N ∈ N such that σ(xn, x) < ε for all n ≥ N . Let N1 ∈ N be such that
d(xn, x) < ε

3
whenever n ≥ N1 and

1
2N1

< ε
3
which makes

∞∑
i=N1+1

1

2i
·min

(
1,

∣∣∣∣ 1

d(x,Gc
i)
− 1

d(y,Gc
i)

∣∣∣∣) <
ε

3
.

Now we have to deal with �nitely many terms. Clearly it su�ces to �nd N such
that ∣∣∣∣ 1

d(x,Gc
i)
− 1

d(xn, Gc
i)

∣∣∣∣ < ε

3N1

for every 1 ≤ i ≤ N1 and n ≥ N . This is possible since every 1
d(x,Gci )

is a continuous

function on E (with respect to d).

Let us prove that we really unmade the �wrong� Cauchy sequences. Let xn
d→ x

for some {xn : n ∈ N} ⊆ E and x /∈ E. Then x ∈ Gc
i for some i ∈ N+, and for

any m ∈ N
1

2i
·min

(
1,

∣∣∣∣ 1

d(xm, Gc
i)
− 1

d(xn, Gc
i)

∣∣∣∣) =
1

2i

if n is su�ciently large since 1
d(xn,Gci )

diverges. Therefore {xn : n ∈ N} is not

Cauchy with respect to σ.
(2) Topologically complete implies Gδ:
Let f : E → Y be a homeomorphism onto some complete metric space (Y, %).

By continuity for every n ∈ N+ and x ∈ E there exists 0 < δ(x, n) < 1
n
such that

f
(
Bd(x, δ (x, n)) ∩ E

)
⊆ B%

(
f(x), 1

n

)
.

Let

Gn :=
⋃
x∈E

Bd

(
x,
δ(x, n)

2

)
.

Each Gn is an open set containing E. Hence it su�ces to show E ⊇
⋂∞
n=1Gn.

Pick x ∈
⋂∞
n=1Gn. For every n ∈ N+ there exists a point xn ∈ E such that

d(x, xn) < δ(xn,n)
2

< 1
2n

which implies xn
d→ x. Thus for n, m large enough we have

d(xn, xm) ≤ d(xn, x) + d(x, xm) ≤ δ(xn,n)
2

+ δ(xm,m)
2

< max(δ(xn, n), δ(xm,m)).

Therefore f(xn) is Cauchy in Y . Let y be its limit. Then xn
d→ f−1(y)

because f−1 is continuous. However we already noted xn
d→ x which gives us

x = f−1(y) ∈ E. The proof is complete.
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1.4 The hyperspace of compact sets

In this section we introduce the space where most of our latter arguments take
place. A slightly di�erent approach is presented in [9].

De�nition 1.4.1. Let (X, d) be a metric space and A,B ⊆ X bounded subsets.
The Hausdor� distance of A and B is

dH(A,B) := inf{δ > 0 : B ⊆ Aδ, A ⊆ Bδ}.

As one notes easily dH((0, 1), [0, 1]) = 0 for X = R, so dH is not a metric in
general on the set of bounded subsets. It turns out to be a pseudometric. However
we do not need this general setting, so we focus our attention to compact subsets.
Let K(X) denote the set of nonempty compact subsets of X.

Proposition 1.4.2. K(X) is a metric space with respect to the Hausdor� distance.

Proof. To simplify calculations observe that we get an equivalent de�nition of dH
if we switch the open neighbourhoods to closed ones. Let A∗δ denote the closed
δ-neighbourhood of the set A. Moreover, if we use closed neighbourhoods, then
in�mum becomes minimum since A∗δ =

⋂
ε>δ A

∗
ε.

(1) dH is non-negative. Also dH(K1, K2) = 0 means K1 = K2: if one of them
would have a point not contained in the other, then that point would have a
positive distance from the other set because that set is compact.

(2) The de�nition is symmetric.
(3) To check the triangle inequality let K, M and N be nonempty compact

sets, d1 := dH(K,M) and d2 := dH(M,N). We need to verify that M ⊆ K∗d1+d2
and K ⊆M∗

d1+d2
. The triangle inequality for (X, d) gives us

N ⊆M∗
d2
⊆ (K∗d1)

∗
d2
⊆ K∗d1+d2 .

The other inclusion follows by symmetry.

There are two easy observations both of which are of key importance.

Proposition 1.4.3. For any metric space (X, d) the set of �nite subsets of X is
dense in (K(X), dH).

Proof. For any K ∈ K(X) and ε > 0 there exists a �nite ε-net F ⊆ K. By the
de�nition of Hausdor� distance, we have d(F,K) ≤ ε.

Proposition 1.4.4. If (X, d) is a metric space, U ⊆ X is an open set, then
AU = {K ∈ K(X) : K ⊆ U} and BU = {K ∈ K(X) : K ∩ U 6= ∅} are open sets
in K(X).
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Proof. Fix K ∈ AU . Since K and U c are disjoint, they have positive distance.
Also K ′ ∈ BdH (K, ε) implies K ′ ⊆ Kε for any ε > 0, hence K is an interior point.

Fix K ∈ BU . There is some x ∈ K ∩ U which has positive distance from U c.
However, for any ε > 0 and K ′ ∈ BdH (K, ε) the set K ′ must contain a point ε-close
to x. Thus for suitably small ε we have BdH (K, ε) ⊆ BU . Consequently, BU is
open.

This could serve as a starting point: for any topological space X one can de�ne
the topology on K(X) by taking sets of the form AU and BU for a base. Again,
we do not need this general setting because our focus is on metric spaces.

We will see in the following theorems that (K(X), dH) inherits several properties
of (X, d).

Theorem 1.4.5. Let (X, d) be a metric space. Then (X, d) is separable if and
only if (K(X), dH) is separable.

Proof. (1) Let S be a countable dense set in X. Let S := [S]<ω, that is, the set
of �nite subsets of S. We claim that S is dense in K(X). By Proposition 1.4.3
it su�ces to approximate �nite subsets of X. Let {x1, . . . , xN} ⊆ X. Since S
is dense, there exists x′i ∈ S for all 1 ≤ i ≤ N such that d(xi, x

′
i) < ε. Then

d({x1, . . . , xN}, {x′1, . . . , x′N}) < ε and {x′1, . . . , x′N} ∈ S.
(2) Let S be a countable dense set in K(X). Form S by picking a point from

each K ∈ S. Now S is dense in X since for any x ∈ X and ε > 0 there exists
K ∈ S such that d(x, y) ≤ dH({x}, K) < ε holds for any y ∈ K, speci�cally, it
holds for some y ∈ S.

Remark 1.4.6. Observe that the singletons constitute a closed subspace in K(X),
and x 7→ {x} is an isometry from X onto this subspace.

Theorem 1.4.7. The metric space (X, d) is complete if and only if (K(X), dH) is
complete.

Proof. (1) If K(X) is complete, then X is complete by Remark 1.4.6.
(2) Let X be complete and Kn (n ∈ N) be a Cauchy sequence in K(X). By

the Cauchy property there is a subsequence Kni (i ∈ N) such that

dH(Kni , Km) <
1

2i+1
(1.1)

for each i and m ≥ ni. Speci�cally, for i < j we have Knj ⊆ (Kni) 1

2i+1
which

implies (Knj)
∗
1

2j
⊆ (Kni)

∗
1

2i
. A natural candidate for the limit is the intersection

K̃ :=
∞⋂
i=0

(Kni)
∗
1

2i
.
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To verify our foreknowledge �x ε > 0. Clearly K̃ is closed. It is totally bounded
because for any δ > 0 a �nite 1

2i
-net in Kni is a δ-net in (Kni)

∗
1

2i
⊇ K̃ if 1

2i
< δ

2
.

Thus K̃ is compact.
It su�ces to show that dH(Kni , K̃) ≤ 1

2i
since this and (1.1) together say that

if 1
2i−1 < ε, then ni is a suitable threshold for ε. We have K̃ ⊆ (Kni)

∗
1

2i
by the

de�nition of K. To prove Kni ⊆ K̃ 1

2i
�x any point xi ∈ Kni . Let xj := xi for all

j ≤ i. We can pick xj ∈ Knj for each j > i such that d(xj, xj+1) <
1

2j+1 for every
j ∈ N because of (1.1). The Cauchy sequence xi converges to some point x ∈ X
since X is complete. Clearly d(xj, x) < 1

2j
for each j ∈ N which means x ∈ K̃. For

i = j this gives us xi ∈ K̃ 1

2i
. Note that this proves K̃ 6= ∅ as well.

Theorem 1.4.8. The metric space (X, d) is compact if and only if (K(X), dH) is
compact.

Proof. (1) If K(X) is compact, then X is compact by Remark 1.4.6.
(2) Recall that a metric space is compact if and only if it is complete and totally

bounded. Let X be compact and thereby complete. By Theorem 1.4.7 K(X) is
complete as well. Let ε > 0 and N be an ε-net in X. Observe that P(N) is a
ε-net in K(X) since dH(Kε ∩N,K) < ε as one checks easily.

Since we already dedicated a section to a remetrization problem, it is quite
natural to ask whether compatible metrics d1 and d2 on X give rise to compatible
metrics d1H and d2H on K(X). To investigate this we need another criterion.

Lemma 1.4.9. The metrics d1 and d2 on the set X are compatible if and only if
for every x ∈ X and ε > 0 there exist δ1, δ2 > 0 such that

Bd1(x, δ1) ⊆ Bd2(x, ε) and Bd2(x, δ2) ⊆ Bd1(x, ε).

Proof. (1) Suppose that d1 and d2 are compatible. Then Bd2(x, ε) is open with
respect to d1 as well, hence some ball witnesses that x is an interior point. The
other inclusion follows by symmetry.

(2) For the converse recall that G ⊆ X is open if and only if all of its points
are interior points (and balls witness this). Notice that our criterion says that
witnesses exist for d1 if and only if they exist for d2. �

Theorem 1.4.10. If the metrics d1 and d2 on the set X are compatible, then d1H
and d2H are compatible metrics on K(X).

Proof. We rely on Lemma 1.4.9. By symmetry it su�ces to show that for any
K ∈ K(X) and ε > 0 there exists δ > 0 such that Bd1(K, δ) ⊆ Bd2(K, ε). Fix K
and ε.
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Let us denote the ε-neighbourhood of A with respect to the metric d by Aε,d.
We need δ > 0 such that

(1) K ′ ⊆ Kε,d2 and (2) K ⊆ K ′ε,d2 whenever d1H(K,K ′) < δ.

Note that the set B0 := {K ′ ∈ (K(X), d1H) : K ′ ⊆ Kε,d2} is open in (K(X), d1H)

by Proposition 1.4.4. Consider a �nite ε
2
-net {x1, . . . , xN} inK. Now

⋃N
i=1B

d2
(
xi,

ε
2

)
is a cover ofK with the following property: ifK ′ intersects each of these balls, then
K ⊆ K ′ε,d2 . Note that the set Bi :=

{
K ′ ∈ (K(X), d1H) : K ′ ∩Bd2

(
xi,

ε
2

)
6= ∅
}
is

open in (K(X), d1H) by Proposition 1.4.4. Thus
⋂N
i=0Bi is an open neighbourhood

of K such that for all K ′ ∈
⋂N
i=0Bi (1) and (2) holds. Hence there exists a suitable

δ.

1.5 Hausdor�, box and similarity dimensions

For the sake of clarity we present a brief outline for the notion of Hausdor� and
box-counting dimensions. Much more detailed discussion may be found in [10].

The problem of investigating the notion of dimension may arise when one
encounters fractals, or more concretely, self-similar sets. If we apply a similarity of
ratio c to a d-dimensional set, we get a set whose d-dimensional Lebesgue measure
is cd-times larger. Let us informally assume the existence of some nice translation-
invariant measure which assigns a �nite positive value to the triadic Cantor set
C. If we apply a similarity of ratio 3 to C, we get a bigger Cantor set which
is the disjoint union of 2 copies of C. This suggests 3dim(C) = 2 which results
dim(C) = log 2

log 3
.

More generally, let K be a self-similar compact set generated by similarities fi
of ratio 0 < qi < 1 for 1 ≤ i ≤ m. That is, K =

⋃m
i=1 fi(K). The unique s ≥ 0 for

which
∑m

i=1 q
s
i = 1 holds is the similarity dimension of K.

To back up arguments of the previous kind we introduce a measure. Let (X, %)
be a metric space and denote the diameter of E ⊆ X by |E|.

De�nition 1.5.1. For every s ≥ 0 and δ > 0 we de�ne an s-dimensional Haus-
dor� premeasure as Hs

δ : P(X)→ R,

Hs
δ(E) := inf

{
∞∑
i=1

|Ai|s :
∞⋃
i=1

Ai ⊇ E, |Ai| < δ

}
.

De�nition 1.5.2. The s-dimensional Hausdor� (outer) measure is

Hs : P(X)→ R, Hs(E) := lim
δ→0
Hs
δ(E).
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The outer measure Hs restricted to the σ-algebra of Hs-measurable sets (in-
cluding all Borel sets) is called the s-dimensional Hausdor� measure.

Remark 1.5.3. Notice that for �xed E and s the function δ 7→ Hs
δ(E) is mono-

tonically decreasing. Thus

Hs(E) = 0 ⇐⇒ ∀δ > 0 Hs
δ(E) = 0.

Remark 1.5.4. Another quite useful fact is that in the de�nition of Hs
δ one may

suppose that all sets Ai are open, or all of them are closed.

We enumerate some important properties without proof to show that Hs is an
appropriate generalization of the Lebesgue measure. Some of these are very easy
and none of them is hard to prove. Let λd denote the d-dimensional Lebesgue
measure.

Proposition 1.5.5. The Hausdor� measure has the following properties:
(1) Hd(E) = C(d) · λd(E) for each d ∈ N+ if X = Rd.
(2) H0 is the counting measure.
(3) Hs is a metric1 outer measure.
(4) Hs is translation-invariant if X = Rd.
(5) Hs(λE) = λs · Hs(E).
(6) For any set E ⊆ X if Hs(E) <∞, then Ht(E) = 0 for all t > s.

Property (6) implies that for any E ⊆ X there exists s ≥ 0 such that

Ht(E) =

{
∞ if t < s
0 if t > s.

This �break point� is the dimension of E.

De�nition 1.5.6. The Hausdor� dimension of E ⊆ X is

dimH(E) := sup{s ≥ 0 : Hs(E) =∞} = inf{t ≥ 0 : Ht(E) = 0}.

The following are easy consequences of the de�nition.

Corollary 1.5.7. The Hausdor� dimension is σ-stable. That is, for sets Ei ⊆ X
of Hausdor� dimension at most s we have dimH (

⋃∞
i=1Ei) ≤ s.

Corollary 1.5.8. Lipschitz maps do not increase the Hausdor� dimension. In
separable metric spaces this holds for locally Lipschitz maps as well.

1An outer measure µ on a metric space (X, %) is metric if µ(A∪B) = µ(A) + µ(B) whenever
A,B ⊆ X and %(A,B) > 0.
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Hausdor� dimension meets most of our expectations. For simple sets like linear
subspaces and balls it gives the expected value. For self-similar sets with disjoint
parts it agrees with the similarity dimension.

However, Hausdor� dimension may be di�cult to calculate. This gives rise
to other dimension concepts. One of them is box dimension. Relations between
di�erent dimension concepts are intensively studied.

Box dimension applies to bounded sets E ⊆ Rd. The idea is to count the diadic
cubes of �xed side length 1

2k
intersecting E and �compare� this number (in order

of magnitude) to 2k. As k →∞ we see an increasingly accurate picture.
Let Qk be the set of closed diadic cubes of side length 1

2k
in Rd, that is,

Qk :=
{[

i1
2k
, i1+1

2k

]
× . . .×

[
id
2k
, id+1

2k

]
: i1, . . . , id ∈ Z

}
.

Let Nk(E) := |{Q ∈ Qk : Q ∩ E 6= ∅}|.

De�nition 1.5.9. The upper box dimension of a bounded set E ⊆ Rd is

dimB(E) := lim sup
k→∞

logNk(E)

log 2k
.

The lower box dimension is

dimB(E) := lim inf
k→∞

logNk(E)

log 2k
.

If the limit exists, then it is the box dimension of E denoted by dimB(E).

Box dimension lacks an important property which makes it second �ddle to
Hausdor� dimension: it is not σ-stable. Follows from the de�nition that Q∩ [0, 1]d

has box dimension d despite being a countable set.
Straightforward calculations show that dimH(E) ≤ dimB(E) for every bounded

set E ⊆ Rd.
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Chapter 2

Properties of typical compact sets

In this chapter we study the behaviour of typical compact sets. More precisely,
we look for typical properties in complete metric spaces of the form K(X) for
some complete metric space X. A series of naturally occurring questions leads our
investigations.

How does a typical compact set look like? We have already observed in Propo-
sition 1.4.3 that the �nite sets constitute a dense set in K(X). Following this clue
we inspect concepts of size.

Propositions 1.1.7, 1.4.3 and 1.4.4 together serve as essential tools.
The results in this chapter are known. However, we present our own proofs for

most of them.

2.1 Measure and dimension

First let us consider Lebesgue measure as a property in K
(
Rd
)
. Recall that

Lebesgue measure is regular, that is, any measurable set A ⊆ Rd may be ap-
proximated in measure by compact sets from the inside and by open sets from the
outside. Speci�cally, if A is compact, then limε→0 λ

d(Aε) = λd(A).
Observe that for any c ≥ 0 the set

Gc := {K ∈ K
(
Rd
)

: λd(K) < c}

is open. Indeed, for every K ∈ Gc there exists a suitably small ε > 0 such that
λd(Kε) < c, and therefore λd(K ′) < c for every element of BdH (K, ε).

Proposition 2.1.1. A typical K ∈ K
(
Rd
)
is of Lebesgue measure zero.

Proof. We shall prove that C :=
{
K ∈ K

(
Rd
)

: λd(K) = 0
}
is residual. It is dense

because even the �nite sets constitute a dense set by Proposition 1.4.3. It is Gδ

since C =
⋂∞
n=1G 1

n
. Thus C is residual by Proposition 1.1.7.
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This illustrates a general rule: Typical compact sets are small.
The following theorem strengthens and generalizes Proposition 2.1.1 at the

same time.

Theorem 2.1.2. Let (X, %) be a complete metric space. Then a typical K ∈ K(X)
has Hausdor� dimension 0.

Proof. We may use the same method as in the previous proof. Let us de�ne
C := {K ∈ K(X) : dimH(K) = 0}. Proposition 1.4.3 guarantees that C is dense.
We show that it is Gδ.

Claim. For any s ≥ 0 the set Us := {K ∈ K(X) : dimH(K) ≤ s} is Gδ.
Observe that

dimH(K) ≤ s ⇐⇒ ∀k ∈ N+ Hs+ 1
k (K) = 0.

By Remark 1.5.3 we have

Hs+ 1
k (K) = 0 ⇐⇒ ∀m ∈ N+ Hs+ 1

k
1
m

(K) = 0.

Furthermore, it is clear that

Hs+ 1
k

1
m

(K) = 0 ⇐⇒ ∀n ∈ N+ Hs+ 1
k

1
m

(K) <
1

n
.

Thus

Us =
∞⋂
k=1

∞⋂
m=1

∞⋂
n=1

{
K ∈ K(X) : Hs+ 1

k
1
m

(K) <
1

n

}
︸ ︷︷ ︸

Us(k,m,n)

.

We shall show that for �xed k, m and n the set V := Us(k,m, n) is open. If K ∈ V ,
then by Remark 1.5.4 there is an open cover

⋃∞
i=1Ai ⊇ K which witnesses this.

By Proposition 1.4.4 {K ′ ∈ K(X) : K ′ ⊆
⋃∞
i=1Ai} ⊆ V is an open neighbourhood

of K. Consequently, V is open which proves the claim.
Finally, note that C = U0.

Remark 2.1.3. Notice that we have already used each of our �essential tools�
1.1.7, 1.4.3 and 1.4.4 in one proof.

The following theorem provides a nice counterpoint to the previous one.

Theorem 2.1.4. A typical K ∈ K
(
Rd
)
has upper box dimension d.

Proof. Again, the key is to prove that Us := {K ∈ K
(
Rd
)

: dimB(K) ≥ s} is Gδ

for any 0 ≤ s ≤ d.
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It is easy to see that in the de�nition of lower and upper box dimension one may
replace Nk(E) by a variant Ñk(E) which is de�ned as follows. Instead of counting
the number of diadic cubes intersecting E, we scale up every cube by ratio 2 and
count the intersections with the interiors of these bigger cubes. Unravelling the
new de�nition we get

dimB(K) ≥ s ⇐⇒ lim sup
k→∞

log Ñk(K)

log 2k
≥ s ⇐⇒

⇐⇒ inf
n∈N

sup
k≥n

log Ñk(K)

log 2k
≥ s ⇐⇒ ∀n ∈ N sup

k≥n

log Ñk(K)

log 2k
≥ s ⇐⇒

⇐⇒ ∀n ∈ N ∀m ∈ N+ ∃k ≥ n
log Ñk(K)

log 2k
≥ s− 1

m
.

Thus we may write Us as

∞⋂
n=0

∞⋂
m=1

∞⋃
k=n

{
K ∈ K

(
Rd
)

:
log Ñk(K)

log 2k
≥ s− 1

m

}
︸ ︷︷ ︸

Us(n,m,k)

.

It su�ces to show that for �xed n, m and k the set V := Us(n,m, k) is open. We
rearrange the inequality:

log Ñk(K)

log 2k
≥ s− 1

m
⇐⇒ Ñk(K) ≥

(
2k
)s− 1

m .

Now we take advantage of the technical convenience given by our alternative de�-
nition. Fix K ∈ V and suppose that Q1, . . . , Ql are the modi�ed diadic open cubes
which meet K. Then the set {K ′ ∈ K

(
Rd
)

: K ′∩Qi} is open for each 1 ≤ i ≤ l by

Proposition 1.4.4. Hence the intersection
⋂l
i=1{K ′ ∈ K

(
Rd
)

: K ′ ∩Qi} is an open
neighbourhood of K which witnesses that K is an interior point of V . Therefore
V is open and Ud is Gδ.

Also Ud is dense because even{
K ∈ K

(
Rd
)

: ∃ε > 0 ∃x1, . . . , xn ∈ Rd K =
n⋃
i=1

B(xi, ε)

}
is dense (this follows from Proposition 1.4.3), which completes the proof.

We will dedicate the third chapter to a construction which takes heavy use of
the intuitive rule that smallness is a typical property. Now we turn to explore
another general rule.
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2.2 Disorder

How organized is a typical compact set? Let us inspect algebraic dependency �rst.

Theorem 2.2.1. A typical K ∈ K(R) is algebraically independent over Q.

Proof. Consider the set

B :=

{
K ∈ K(R) : ∃n ∈ N+ ∃p ∈ Q[z1, . . . , zn] \ {0}

∃x1, . . . , xn ∈ K pairwise distinct p(x1, . . . , xn) = 0

}
.

For x1, . . . , xn pairwise distinct there exists M ∈ N+ such that |xk − xl| ≥ 1
M

for
all k 6= l. Since there are only countably many such (n, p,M) triple, it su�ces to
show that for arbitrary �xed n, p and M the set

C :=
{
K ∈ K(R) : ∃x1, . . . , xn ∈ K |xk − xl| ≥ 1

M
for k 6= l, p(x1, . . . , xn) = 0

}
is nowhere dense. We show that (1) C is closed and (2) it has no interior points.

(1) Let Ki
dH→ K̃ and Ki ∈ C. Then for every i ∈ N there are xi1, . . . , x

i
n in Ki,

having at least 1
M

distance from each other, such that p(xi1, . . . , x
i
n) = 0. For every

1 ≤ k ≤ n and ε > 0 we have xik ∈ Ki ⊆ K̃ε if i is suitably large. Thus every xik
(i ∈ N) is bounded in R, so it has a convergent subsequence. Moreover, we can
�nd a common subsequence im (m ∈ N) such that ximk converges for every k. Let
xk := limm→∞ x

im
k .

Now xk ∈ K̃ because for every ε > 0 we have xik ∈ K̃∗ε for all except
�nitely many i. Clearly |xk − xl| ≥ 1

M
holds as well. On the other hand, p

represents a continuous function on Rn, so (xim1 , . . . , x
im
n ) → (x1, . . . , xn) implies

p(xim1 , . . . , x
im
n )→ p(x1, . . . , xn). This gives us p(x1, . . . , xn) = 0 which means that

x1, . . . , xn witnesses K̃ ∈ C.
(2) We know that the �nite sets constitute a dense set in K(R). Therefore, it

su�ces to approximate �nite sets by �nite independent sets. Fix {y1, . . . , yN} ⊆ R
and ε > 0. We can pick algebraically independent elements y′j ∈ B(yj, ε) over
Q for each 1 ≤ j ≤ N because for y′1, . . . , y

′
j already chosen they exclude only

countably many possibilities for y′j+1.

This suggests another rule. Typical compact sets are irregular.

Proposition 2.2.2. A typical K ∈ K
(
Rd
)
has no d + 1 points in a hyperplane.

Speci�cally, it has no 3 collinear points.

Proof. We need to show that

B :=
{
K ∈ K

(
Rd
)

: ∃x0, . . . , xd ∈ K distinct det(x1 − x0, . . . , xd − x0) = 0
}
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is of �rst category. We may write B as the countable union of the sets

Bn :=

{
K ∈ K

(
Rd
)

: ∃x0, . . . , xd ∈ K d(xi, xj) ≥ 1
n

(i 6= j)
det(x1 − x0, . . . , xd − x0) = 0

}
.

We prove that (1) Bn is closed and (2) its complement is dense in K
(
Rd
)
.

(1) Let Km
dH→ K̃ and Km ∈ Bn. We may assume Km ⊆ K̃ 1

m
(replace Km

with a subsequence if necessary). Let xm0 , . . . , x
m
d ∈ Km be points which witness

Km ∈ Bn. Again, by taking a subsequence �nitely many times if necessary, we
may assume that for every 0 ≤ i ≤ d the sequence xmi (m ∈ N+) converges to some

point xi ∈ K̃.
Now d(xi, xj) ≥ 1

n
for i 6= j since d(xi, xj) <

1
n
would imply d(xmi , x

m
j ) < 1

n

for large m which contradicts Km ∈ Bn. Speci�cally, they are distinct. Since
det(y1−y0, . . . , yd−y0) is a continuous function in d+1 variables, (xm0 , . . . , x

m
d )→

(x0, . . . , xd) implies det(xm1 − xm0 , . . . , xmd − xm0 )→ det(x1− x0, . . . , xd− x0). Thus
det(x1 − x0, . . . , xd − x0) = 0 which witnesses K̃ ∈ Bn.

(2) Finite sets constitute a dense set in K
(
Rd
)
. Hyperplanes are nowhere dense

in Rd, therefore we can reach general position by arbitrarily small perturbation of
a �nite set.

Now we turn to topological properties.

2.3 Topological characterization

Theorem 2.3.1. If (X, d) is a complete metric space with no isolated points, then
a typical K ∈ K(X) is perfect.

Proof. Let Ḃ(a, r) denote the punctured ball B(a, r) \ {a}.
It su�ces to verify that B := {K ∈ K(X) : K has an isolated point} is of �rst

category since every K ∈ K(X) is closed. Clearly

B =
∞⋃
n=1

{
K ∈ K(X) : ∃x ∈ K Ḃ

(
x, 1

n

)
∩K = ∅

}
︸ ︷︷ ︸

Bn

.

We show that (1) Bn is closed and (2) it has no interior points.

(1) Let Km
dH→ K̃ and Km ∈ Bn for every m ∈ N. We may suppose that

Km ⊆ K̃ 1
m

(replace Km with a subsequence if necessary). By the de�nition of

Bn there exist xm ∈ Km such that Ḃ
(
xm,

1
n

)
∩Km = ∅. Pick x′m ∈ K̃ such that

d(xm, x
′
m) < 1

m
for every m ∈ N. Now x′m is a sequence in the compact set K̃, so
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we may suppose that it is convergent (once more replacing Km with a subsequence

if necessary): x′m → x′ for some x′ ∈ K̃.

Claim. The point x′ witnesses K̃ ∈ Bn.
Suppose that there exists some y ∈ Ḃ

(
x′, 1

n

)
∩ K̃. Let ε > 0 be such that

d(x′, y) + 3ε < 1
n
. For suitably large m we have

d (x′m, x
′) < ε, d (xm, x

′
m) < 1

m
< ε and ym ∈ B(y, ε)

for some ym ∈ Km. Thus

d(xm, ym) ≤ d(xm, x
′
m) + d(x′m, x

′) + d(x′, y) + d(y, ym) < d(x′, y) + 3ε < 1
n

contradicting Ḃ
(
xm,

1
n

)
∩Km = ∅ which proves the claim.

(2) We can approximate any K̃ ∈ K(X) by a �nite set, which can be approxi-
mated by another one not in Bn. (Change every point to two nearby points. Note
that isolated points would ruin this argument.)

One might have thought that the real reason behind the smallness rule is that
a typical compact set is countable. Our result on perfectness dispels doubts as we
show in the following theorem.

Theorem 2.3.2. In a metric space (X, d) every compact perfect set K has con-
tinuum cardinality.

Proof. First we show that |K| ≥ c := 2ℵ0 . Let x0 and x1 be distinct points in K.
Let B(x0, ε0) and B(x1, ε1) be disjoint closed balls separating x0 and x1.

Now we proceed as follows. If xs and B(xs, εs) are already de�ned for some
�nite binary sequence s, then we can �nd distinct points xs0, xs1 ∈ B(xs, εs) ∩K
since xs is not isolated, and we can separate them by disjoint closed balls B(xs0, εs0)
and B(xs1, εs1) contained in B(xs, εs).

For any in�nite binary sequence s let us form the intersection of elements of
the nested sequence of nonempty compact sets associated to s:

∞⋂
i=1

(
B
(
xs|i, εs|i

)
∩K

)
.

Clearly these intersections are pairwise disjoint nonempty subsets of K for each
s ∈ 2ω. Thus |K| ≥ c.

On the other hand, in a metric space every compact set is a separable since it
has a �nite 1

n
-net for every n ∈ N+. A separable metric space must have cardinality

at most c: if S is a countable dense set, then every point may be identi�ed by a
countable sequence of elements of S. Consequently, |K| ≤ ℵ0ℵ0 = c.
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At this point it is quite natural to ask about connectedness. In fact, we can
settle this problem without further investigations. However, we need the notion of
topological dimension (or more precisely, the small inductive dimension).

De�nition 2.3.3. Let (X, d) be a metric space. Let −1 be the topological di-
mension of the empty set. We de�ne the topological dimension by induction. If
(n− 1)-dimensional sets are de�ned, then E ⊆ X has topological dimension n,
if E is not at most (n − 1)-dimensional but E has a basis B such that for every
B ∈ B the boundary of B is at most (n− 1)-dimensional. Let dimt(E) denote the
topological dimension of E.

The following theorem is well-known, see [11] for example.

Theorem 2.3.4. Let (X, d) be a metric space. Then for any E ⊆ X we have
dimt(E) ≤ dimH(E).

Note that by De�nition 2.3.3 the metric space X is zero dimensional if and
only if it is nonempty and it has a basis consisting of clopen sets. Therefore every
zero dimensional metric space is totally disconnected. We already discovered that
a typical compact set has Hausdor� dimension zero, hence Theorem 2.3.4 answers
our question.

Corollary 2.3.5. Let (X, d) be a complete metric space. Then a typical K ∈ K(X)
has topological dimension 0. Speci�cally, it is totally disconnected.

It might be of some interest that we do not need the full joint power of Theorem
2.1.2 and Theorem 2.3.4. It is possible to detect the existence of a clopen basis
directly. For this reason we present a proof for Corollary 2.3.5.

Our guess is as simple as possible: we show that in a typical compact set clopen
balls form a basis. More explicitly, around every point of a typical compact set
K there are spheres of arbitrarily small radius which are disjoint to K. These
spheres witness the clopen property of the corresponding balls. However, it is easy
to prove even more: K lacks arbitrarily small distances.

Now we make this precise.

De�nition 2.3.6. Let (X, d) be a metric space and E ⊆ X. The distance set of
E is

D(E) := {d(x, y) : x, y ∈ E}.

Or equivalently, D(E) is the image of E × E by the distance function.

Proof of Corollary 2.3.5. We show that for every n ∈ N+

Bn :=
{
K ∈ K(X) : D(K) ⊇

[
0, 1

n

]}
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is nowhere dense.
(1) The set Bn is closed:

Let Ki
dH→ K̃ and Ki ∈ Bn. Note that D(K̃) is compact because the distance

function is continuous, so it su�ces to �nd distances in K̃ arbitrarily close to
any z ∈

[
0, 1

n

]
. Fix ε > 0. From every Ki we can pick xi and yi such that

d(xi, yi) = z. If i is large enough, then there exist x′i, y
′
i ∈ K̃ such that d(xi, x

′
i) <

ε
2

and d(yi, y
′
i) <

ε
2
. Thus z − ε < d(x′i, y

′
i) < z + ε by the triangle inequality.

(2) The interior of Bn is empty since �nite sets are not in Bn.
Consequently, a typical K ∈ K(X) lacks arbitrarily small distances, which

provides us arbitrarily small clopen balls around every point of K.

Now we gained enough information to characterize typical compact sets up
to homeomorphism. The following result is Theorem 7.4 in [9] and it is due to
Brouwer. For completeness we present a proof.

Theorem 2.3.7. The Cantor space C = 2ω is the unique, up to homeomorphism,
perfect nonempty, compact metrizable, zero-dimensional space.

Proof. It is well-known that the Cantor space has these properties. Let X be a
topological space with these properties and d a compatible metric. We construct
a Cantor scheme {Cs : s ∈ 2<ω} on X such that

(1) C∅ := X.
(2) Cs is a nonempty clopen set for every s ∈ 2<ω.
(3) Cs = Cs0 ∪̇ Cs1.
(4) limn→∞|Cx|n| = 0 for every x ∈ 2ω (here |·| denotes the diameter as in

Section 1.5).
Assuming this can be done, let f : C → X, {f(x)} =

⋂∞
n=0Cx|n. Then f is well-

de�ned by (4). It is injective by (3) and surjective by (1) and (3). Furthermore, f
is an open map because it maps the canonical basis of C to open sets of the form
Cs by (2). Since f is a bijection between compact Hausdor� spaces, there is no
need to check the continuity.

At �rst we partition X into nonempty disjoint clopen sets X1, . . . , Xn of diame-
ter < 1

2
. (We may take a �nite cover of X by clopen sets of diameter < 1

2
and make

them disjoint.) Split X into C0 = X2 ∪ · · · ∪Xn and C1 = X1. Then split C0 into
C00 = X3∪· · ·∪Xn and C01 = X2, and so on: split C0i into C0i+1 = Xi+2∪· · ·∪Xn

and C0i1 = Xi+1 for every 0 ≤ i ≤ n− 2.
Repeat this process within eachXi using diameters< 1

3
, and so on by induction.

Now along every branch the diameter converges to zero, which gives us (4). The
other conditions are clearly satis�ed.

Corollary 2.3.8. If (X, d) is a complete metric space without isolated points, then
a typical K ∈ K(X) is homeomorphic to the Cantor space.
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Proof. A typical K ∈ K(X) is perfect by Theorem 2.3.1 and zero dimensional
by Corollary 2.3.5, therefore it is homeomorphic to the Cantor space by Theorem
2.3.7.

2.4 Products

In the (direct) proof of Corollary 2.3.5 we used the distance set as a tool. However,
it is quite an interesting problem in itself to say something about the size of the
distance set. In this section we show that even the distance set of a typical compact
set has Hausdor� dimension 0. This is nontrivial since sets of Hausdor� dimension
0 may have much larger distance sets as the following example shows.

Example 2.4.1. We construct sets A,B ⊆ [0, 1] of Hausdor� dimension 0 such
that A + B = [0, 1]. This is equivalent to A − (−B) = [0, 1] which means that
the set A ∪ (−B) has Hausdor� dimension 0 and its distance set covers the [0, 1]
interval. Let xi denote the ith decimal digit of the number x ∈ [0, 1]. If the
decimal representation is not unique, then we choose the one with a trailing in�nite
sequence of zeros.

Let A be the set of those x ∈ [0, 1] such that for every n ∈ N+ we have xi = 0
for all (2n)2n ≤ i < (2n+ 1)2n+1.

Similarly, B is the set of those x ∈ [0, 1] such that for every n ∈ N+ we have
xi = 0 for all (2n− 1)2n−1 ≤ i < (2n)2n.

Follows directly from the construction that exactly the elements of [0, 1] can
be written as a + b for some a ∈ A and b ∈ B. Straightforward calculation shows
that dimH(A) = dimH(B) = 0.

Remark 2.4.2. Recall that if (X, d) is a metric space, then the topological product
Xn can be metrized by

d′ : Xn ×Xn → R, d′((x1, . . . , xn), (y1, . . . , yn)) = d(x1, y1) + . . .+ d(xn, yn).

The following theorem strengthens Theorem 2.1.2.

Theorem 2.4.3. Let (X, d) be a complete metric space and n ∈ N+. Then for a
typical K ∈ K(X) even Kn ⊆ Xn has Hausdor� dimension 0.

Proof. We need only a small modi�cation of the proof of Theorem 2.1.2. Using
the original notations, we should show that

V :=

{
K ∈ K(X) : Hs+ 1

k
1
m

(Kn) <
1

n

}
is open. Fix an open set U covering Kn which witnesses K ∈ V as in the original
proof. The set {K ′ ∈ K(Xn) : K ′ ⊆ U} is open by Proposition 1.4.4. On the
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other hand, it is easy to check that the map K 7→ Kn from K(X) to K(Xn) is
continuous (use Remark 2.4.2). Consequently, V is open.

Direct products of �nite sets are �nite, so they have Hausdor� dimension 0.
Thus compact sets of zero dimensional power constitute a dense set in K(X). This
completes the proof.

Corollary 2.4.4. If (X, d) is a complete metric space, then the distance set of a
typical K ∈ K(X) has Hausdor� dimension 0.

Proof. Consider the distance function d : X × X → R, (x, y) 7→ d(x, y). If
we endow X × X with the sum metric as above, then the distance function is
Lipschitz-1. That is, for (x1, x2), (y1, y2) ∈ X ×X we have

|d(x1, x2)− d(y1, y2)| ≤ d(x1, y1) + d(x2, y2),

because of the triangle inequality. Then Theorem 2.4.3 and Corollary 1.5.8 to-
gether imply that for a typical K ∈ K(X) the image of K × K, which is the
distance set, has Hausdor� dimension 0.

The following theorem, which is due to Mycielski and Kuratowski, can be found
in [9].

Theorem 2.4.5. Let (X, d) be a complete metric space and U ⊆ Xn a dense open
set. De�ne (A)n := {x ∈ An : xi 6= xj whenever i 6= j}.

(1) Then B(U) := {K ∈ K(X) : (K)n ⊆ U} is residual in K(X).

(2) Moreover, if Ri ⊆ Xni are residual sets for every i ∈ N, then even the set
{K ∈ K(X) : ∀i (K)ni ⊆ Ri} is residual in K(X).

(3) Speci�cally, if X has no isolated points, then there exists a Cantor set C ⊆ X
such that (C)ni ⊆ Ri for all i.

Proof. (1) We show that B(U) is a dense Gδ set.
Let D := {x ∈ Xn : xi = xj for some i 6= j}. Note that (K)n ⊆ U ⇐⇒

Kn ⊆ U ∪ D. Clearly D is closed; therefore U ∪ D is Gδ. By Proposition 1.4.4
the set {K ′ ∈ K(Xn) : K ′ ⊆ U ∪ D} is Gδ. As we have already noted in the
proof of Theorem 2.4.3 the map K 7→ Kn from K(X) to K(Xn) is continuous, so
{K ∈ K(X) : Kn ⊆ U ∪D} is Gδ as well.

It su�ces to show that for any ε > 0 and �nite set L = {x1, . . . , xm} ⊆ X
there exists L′ ∈ BdH (L, ε) such that (L′)n ⊆ U . Enumerate all subsets of the
form {xi1 , . . . , xin} ⊆ {x1, . . . , xm}. Since U is dense, for any �xed subset we can
achieve (xi1 , . . . , xin) ∈ U by an arbitrarily small change in the coordinates. Also
U is open, which gives us some space: if we do suitably small changes, then we do
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not unmake what we have already achieved. Thus we are done in �nitely many
steps.

(2) If Ri is residual, then it contains a dense Gδ set:
⋂∞
j=0 U

j
i ⊆ Ri. Here

every U j
i is dense open, so we may apply (1): B(U j

i ) is residual. Taking countable
intersections twice we get that {K ∈ K(X) : ∀i (K)ni ⊆ Ri} is residual.

(3) Theorem 2.3.8 and (2) implies that a typical K ∈ K(X) satis�es the pre-
scribed properties.
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Chapter 3

An application: Besicovitch sets

3.1 Short history

In 1917 S	oichi Kakeya asked if there is a minimum area of convex planar sets in
which one can turn a needle through 360◦. The answer is positive. However, it
turned out that the problem is much more interesting if we drop the restriction
about convexity. Then it is possible to turn a needle in a set of arbitrarily small
area. There is an elementary construction called Perron tree which gives a solution.
But there exists another approach which uses an important tool.

A Besicovitch set is a set B ⊆ Rd (d ≥ 2) which contains a unit line segment in
every direction. Besicovitch showed that there exists a Besicovitch set of measure
zero in R2 ([12], see also [13] Chapter 7). It is easy to see that this gives us a Besi-
covitch nullset in every dimension d ≥ 2. Knowing the existence of a Besicovitch
nullset it was natural to ask if it is possible to make it even smaller.

Kakeya conjecture: A Besicovitch set in Rd necessarily has Hausdor� di-
mension d.

This conjecture is still open except for d = 2 in which case it turned out
to be true ([14] Davies 1971). The Kakeya conjecture is connected to several
famous open questions in various �elds of mathematics such as number theory,
geometric combinatorics, arithmetic combinatorics, oscillatory integrals, and even
the analysis of dispersive and wave equations [15].

Tom Körner proved that if we consider a well-chosen closed subspace of K(R2)
in which every element contains a unit segment in every direction between π

3
and

2π
3
, then a typical element in this subspace is of measure zero ([16] Theorem 2.3).

The union of three rotated copies of such a set is a Besicovitch set of measure zero.
In this sense it is typical for a Besicovitch set to have measure zero.

There is a variation of the de�nition of Besicovitch set:
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De�nition 3.1.1. A Besicovitch set is a set B ⊆ Rd (d ≥ 2) which contains a
line in every direction.

This gives us a variation of the Kakeya conjecture which is open as well. It is
conjectured to be equivalent to the previous form. We will work with De�nition
3.1.1 throughout this chapter.

It is clear from Fubini's theorem that if we intersect a planar Besicovitch nullset
with lines of a �xed direction, then almost every intersection is of measure zero.
We will use Baire category arguments combined with duality methods to obtain
Besicovitch sets with stronger properties.

3.2 Duality and special code sets

We denote the orthogonal projection of the set A ⊆ R2 in the direction v by prv(A)
(where v is a nonzero vector or sometimes just its angle if it leads to no confusion).
Similarly

Pv(A) :=

{
x− v
|x− v|

∈ S1 : x ∈ A \ {v}
}

is the radial projection of A from the point v. We may refer to elements of S1

as angles causing no confusion. Let Ax denote the vertical section of the set A
corresponding to x.

De�nition 3.2.1. Let l(a, b) denote the line which corresponds to the equation
y = ax + b. We say that L is the dual of K ⊆ R2 (or L is coded by K) if
L = {l(a, b) : (a, b) ∈ K}.

A well-known consequence of this de�nition is the following.

Proposition 3.2.2. Let K ⊆ R2 be a set and L its dual. Then the vertical sections
of L :=

⋃
L are scaled copies of the corresponding orthogonal projections of K.

More precisely, Lx = |(x, 1)| · pr(−1,x)(K).

Proof. By De�nition 3.2.1 we have

Lx = {ax+ b : (a, b) ∈ K} =

{
|(x, 1)| (x, 1)

|(x, 1)|
· (a, b) : (a, b) ∈ K

}
.

And this is exactly the orthogonal projection of K in the direction (−1, x) scaled
by the constant |(x, 1)|.

We need to prove a generalization of the previous observation. This general-
ization will play a key role in the main proof.
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Proposition 3.2.3. Let L be the dual of the set K ⊆ R2, L :=
⋃
L, and let e /∈ L

be a line in R2. Then the intersection e ∩ L is
(1) a scaled copy of an orthogonal projection of K if e is vertical,
(2) otherwise it is the image of P(a0,b0)(K)\

{
π
2
, 3π

2

}
by a locally Lipschitz func-

tion, where the equation of e is y = a0x+ b0.

Proof. (1) is just the previous proposition.
(2): Note that L does not contain vertical lines because it is the dual of K.

Then
e ∩ L = {(x, y) ∈ R2 : ∃(a, b) ∈ K y = a0x+ b0 = ax+ b}.

So in the intersection x = b−b0
a0−a holds (we have a 6= a0 because e does not intersect

lines parallel to itself). It is enough to determine the projection of e ∩ L to the
x-axis since e ∩ L is the image of this projection by a Lipschitz function.

On the other hand, the projection of e ∩ L to the x-axis is{
b−b0
a0−a : (a, b) ∈ K

}
=
{

(−1) · b−b0
a−a0 : (a, b) ∈ K

}
,

which is the set of slopes of the lines connecting points of K to (a0, b0) multiplied
by (−1). It is easy to see that this set is the image of P(a0,b0)(K) \

{
π
2
, 3π

2

}
by the

function − tan(ϕ) which is locally Lipschitz.

We will need the following.

Proposition 3.2.4. The union of the dual of a compact set is closed.

Proof. Let K be a compact set, L be its dual and L =
⋃
L.

Let (xn, yn) → (x, y) be a convergent sequence such that (xn, yn) ∈ L for all
n ∈ N. Here (xn, yn) ∈ L means that there exists a pair (an, bn) ∈ K such that
yn = anxn + bn. Then the sequence (an, bn) has a convergent subsequence because
K is compact. Let (a, b) ∈ K be its limit. Now y = ax + b holds since an → a,
bn → b, xn → x, yn → y, and yn = anxn + bn along the subsequence. Hence (x, y)
is on the line coded by (a, b) ∈ K which means (x, y) ∈ L. Consequently, L is
closed.

For the main proof we need two compact sets with special properties.
The following theorem is due to Michel Talagrand [5]. For a direct proof in

English, see [17] Appendix A.

Theorem 3.2.5. For any non-degenerate rectangle [a, b]× [c, d] ⊆ R2 there exists
a compact set K ⊆ [a, b] × [c, d] such that its orthogonal projection to the x-axis
is the whole [a, b] interval, but in every other direction its projection is of measure
zero.
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De�nition 3.2.6. A set A ⊆ R2 is invisible from a point a ∈ R2 if λ(Pa(A)) = 0.

We will use a theorem of Károly Simon and Boris Solomyak [6]:

Theorem 3.2.7. Let Λ be a self-similar set of Hausdor� dimension 1 in R2 satis-
fying the Open Set Condition, which is not contained in a line. Then, Λ is invisible
from every a ∈ R2.

It is an easy exercise to check that the four corner Cantor set of contraction
ratio 1

4
projects orthogonally to an interval in four di�erent directions. It is well-

known that this set satis�es the conditions of Theorem 3.2.7. Rotate it to have
an interval as projection to the x-axis. Now by an a�ne transformation we can
make it �t to the rectangle [a, b]× [c, d] while not losing its properties required by
Theorem 3.2.7. By these easy observations we get the following corollary.

Corollary 3.2.8. For any non-degenerate rectangle [a, b]× [c, d] ⊆ R2 there exists
a compact set K ⊆ [a, b]× [c, d] such that its projection to the x-axis is the whole
[a, b] interval, but it is invisible from every point of the plane.

3.3 A theorem on Besicovitch sets

We could construct a Besicovitch set by simply taking the dual of the compact set
given by Corollary 3.2.8. It would have intersections of measure zero with every
non-vertical line not contained in it by Proposition 3.2.3. However, we will go
further to obtain the following stronger result:

Theorem 3.3.1. There exists a Besicovitch set B =
⋃
L (where L is a family of

lines) in the plane such that:
(1) B is closed.
(2) B is of 2-dimensional Lebesgue measure zero.
(3) For every line e /∈ L the intersection B ∩ e is of 1-dimensional Lebesgue

measure zero.
(4) For every e ∈ L the intersection e∩

⋃
(L\{e}) is of 1-dimensional Lebesgue

measure zero.
Moreover, we claim that these properties are typical in the sense described be-

low.

We work in K([0, 1]2) which is a complete metric space with the Hausdor�
distance. Consider the subspace

C :=
{
K ∈ K

(
[0, 1]2

)
: prπ

2
(K) = [0, 1]

}
.

It is easy to check that C is a closed subspace hence a complete metric space as
well. The typicality in the main theorem means that a typical K ′ ∈ C codes a
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family of lines L′ for which L′ =
⋃
L′ is an almost Besicovitch set: the union of

four rotated copies of L′ satis�es all the properties in Theorem 3.3.1.
The following theorem strengthens Theorem 3.2.5 and it is due to Alan Chang

[18]. Here we present our own proof (found independently of Chang) to provide a
useful analogue for the proof of the next theorem.

Theorem 3.3.2. A typical element of C has orthogonal projections of measure
zero in every non-vertical direction.

We will need the following lemma.

Lemma 3.3.3. Let A be a compact set and fA : S1 → R, fA(ϕ) = λ(prϕ(A)).
Then fA is upper semicontinuous.

Talagrand proved in [5] that {fA : A ∈ K(R2)} is the set of non-negative upper
semicontinuous functions. We need only the easy direction, hence we present a
proof only for that.
Proof. Let c ∈ R be arbitrary. We have to verify that f−1A ((−∞, c)) is open. Let
ϕ be such that λ(prϕ(A)) < c. Since prϕ(A) is compact as well, it can be covered

by �nitely many open intervals Ij (1 ≤ j ≤ l) for which λ
(⋃l

j=1 Ij

)
< c holds.

This cover shows that A can be covered by rectangles R1, . . . , Rl whose projections
in the direction ϕ are the intervals I1, . . . , Il. But for the union of �nitely many
rectangles it is clear that if we change ϕ by a suitably small (< δ) angle we keep the
measure of its projection less than c. This implies that for any ϕ′ ∈ (ϕ− δ, ϕ+ δ)
we have

λ(prϕ′(A)) ≤ λ

(
prϕ′

(
l⋃

j=1

Rj

))
< c.

In other words, a neighbourhood of ϕ also lies in f−1A ((−∞, c)), therefore the
preimage is open. �

Proof of Theorem 3.3.2. We have to prove that{
K ∈ C : ∃ϕ ∈ [0, π] \

{
π
2

}
λ(prϕ(K)) > 0

}
is of �rst category. Let Tn =

{
ϕ ∈ [0, π] : |ϕ− π

2
| ≥ 1

n

}
. It su�ces to show that

for every n
Bn :=

{
K ∈ C : ∃ϕ ∈ Tn λ(prϕ(K)) ≥ 1

n

}
is nowhere dense in C.

Fix a compact set K ∈ C and ε > 0. Denote the open ball of center A and
radius δ by BH(A, δ) (with respect to the Hausdor� distance). We need to �nd
K ′ ∈ C and ε′ > 0 such that BH(K ′, ε′) ⊆ BH(K, ε) and BH(K ′, ε′) ∩Bn = ∅.
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At �rst we construct K ′. Take a �nite ε
3
-net in K: {(x1, y1), . . . , (xN , yN)}.

Consider the squares of the form

Qi :=
[
xi −

ε

3
, xi +

ε

3

]
×
[
yi −

ε

3
, yi +

ε

3

]
(1 ≤ i ≤ N).

Some of the squares may not lie in [0, 1]2. We cut o� the parts sticking out of
[0, 1]2 making Qi a rectangle if necessary. Since it was created from an ε

3
-net,⋃N

i=1Qi covers K. Hence its projection to the x-axis is the whole [0, 1]. For every
rectangle Qi, Theorem 3.2.5 gives us a compact set K ′i ⊆ Qi which has orthogonal
projections of measure zero in every non-vertical direction and prπ

2
(K ′i) = prπ

2
(Qi).

Now let K ′ =
⋃N
i=1K

′
i.

We need to check the following:
(1) K ′ ∈ C,
(2) K ′ ∈ BH(K, ε) and
(3) λ(prϕ(K ′)) < 1

n
for all ϕ ∈ Tn.

(1) This is clear since prπ
2

(⋃N
i=1Qi

)
= [0, 1] and prπ

2
(K ′i) = prπ

2
(Qi) for each

Qi.
(2) The following sequences of containments prove that dH(K,K ′) < ε.

K ′ ⊆
N⋃
i=1

Qi ⊆ {(x1, y1), . . . , (xN , yN)} 2
3
ε ⊆ K 2

3
ε

K ⊆ {(x1, y1), . . . , (xN , yN)} 1
3
ε ⊆

(
K ′√2

3
ε

)
1
3
ε
⊆ K ′√2+1

3
ε

(3) K ′ is the union of N sets whose projections are of measure zero in every
non-vertical direction.

Now we have to �nd ε′.
Recall that A∗δ denotes the closed δ-neighbourhood of the set A. It is very

easy to check that for any compact set A, positive real number δ and angle ϕ the
following holds: prϕ(A∗δ) = (prϕ(A))∗δ .

For every ϕ the projection prϕ(K ′) is compact, so we have

lim
δ→0

λ ((prϕ(K ′))∗δ) = λ(prϕ(K ′)).

Hence there exists εϕ > 0 for each ϕ ∈ Tn such that

λ
(
prϕ

(
(K ′)∗εϕ

))
= λ

(
(prϕ(K ′))∗εϕ

)
< 1

n
.

The upper semicontinuity ensured by Lemma 3.3.3 for A = (K ′)∗εϕ says that there
exists δϕ > 0 such that for any ϕ′ ∈ (ϕ − δϕ, ϕ + δϕ) the projection is small
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enough: λ
(
prϕ′

(
(K ′)∗εϕ

))
< 1

n
. On the other hand, Tn is compact; therefore it is

covered by �nitely many of these neighbourhoods. Hence we can choose ε′ so that
λ(prϕ(K ′ε′)) <

1
n
for all ϕ ∈ Tn. Since every element of BH(K ′, ε′) lies in K ′ε′ , we

proved BH(K ′, ε′) ∩Bn = ∅.
If necessary, we decrease ε′ further to satisfy BH(K ′, ε′) ⊆ BH(K, ε).

Theorem 3.3.4. A typical K ∈ C is invisible from every point of the plane.

Again, we will need a lemma about upper semicontinuity.

Lemma 3.3.5. If A ⊆ R2 is compact, then the function FA : R2 \ A → R,
FA(v) = λ(Pv(A)) is upper semicontinuous.

Proof. Let c ∈ R. We will check that F−1A ((−∞, c)) is open. Let v be a point
such that FA(v) = λ(Pv(A)) < c. Then by compactness we can take a �nite cover

of Pv(A) by open arcs I1, . . . , Il such that λ
(⋃l

j=1 Ij

)
< c. This cover shows

that A can be covered by l sectors R1, . . . , Rl of an annulus such that their radial
projections from v are I1, . . . , Il. For the union of �nitely many sectors of an
annulus and a point which has a positive distance from them it is clear that if we
move v by a suitably small distance we keep the measure of the radial projection
of
⋃l
j=1Rj less than c. In other words, a neighbourhood of v lies in F−1A ((−∞, c)),

so it is open. �

Proof of Theorem 3.3.4. The proof is very similar to the previous one. We need
to prove that {K ∈ C : ∃v ∈ R2 λ(Pv(K)) > 0} is of �rst category.

First observe that for any point v ∈ R2 and compact set K ⊆ R2

Pv(K) =
∞⋃
n=1

Pv

(
K \B

(
v,

1

n

))
,

which implies
λ(Pv(K)) = lim

n→∞
λ
(
Pv
(
K \B

(
v, 1

n

)))
.

Therefore, it su�ces to show that

Bn :=
{
K ∈ C : ∃v ∈ [−n, n]× [−n, n] λ

(
Pv
(
K \B

(
v, 1

n

)))
≥ 1

n

}
is nowhere dense.

Fix K ∈ C and ε > 0. Then take a �nite ε
3
-net {(x1, y1), . . . , (xN , yN)} in K

and consider the little squares of side length 2ε
3
around them. After chopping o�

the parts outside [0, 1]2 we get the rectangles Q1, . . . , QN .
Now for every Qi, Corollary 3.2.8 gives us a compact set K ′i ⊆ Qi which is

invisible from every point of the plane and satis�es prπ
2
(K ′i) = prπ

2
(Qi). Let

37



K ′ =
⋃N
i=1K

′
i. Then K

′ is also invisible from every point of the plane. Exactly the
same argument as in the previous proof shows that K ′ ∈ C and dH(K,K ′) < ε.

Now we have to �nd ε′.

Claim 3.3.6. For every n ∈ N+ and v ∈ [−n, n]× [−n, n] there exists εv such that
λ
(
Pv
(
(K ′)∗εv \B

(
v, 1

2n

)))
< 1

n
.

Proof. Fix n and v. Restricting the radial projection to an annulus of inner radius
1
4n

centered at v makes it a Lipschitz function with Lipschitz constant 4n. Since
Pv
(
K ′ \B

(
v, 1

4n

))
is a compact set of measure zero (recall that even K ′ is invisible

from v), we know that

lim
δ→0

λ
((
Pv
(
K ′ \B

(
v, 1

4n

)))
δ

)
= λ

(
Pv
(
K ′ \B

(
v, 1

4n

)))
= 0.

Thus for a suitably small δ ≤ 1 we have λ
((
Pv
(
K ′ \B

(
v, 1

4n

)))
δ

)
< 1

n
. Now we

show that

Pv

(
K ′δ

4n

\B
(
v, 1

2n

))
⊆
(
Pv
(
K ′ \B

(
v, 1

4n

)))
δ
. (3.1)

Indeed, if x ∈ K ′δ
4n

\ B
(
v, 1

2n

)
, then there exists y ∈ K ′ \ B

(
v, 1

4n

)
such that

|x−y| < δ
4n
≤ 1

4n
. Therefore |Pv(x)−Pv(y)| < δ because of the Lipschitz property,

and Pv(y) ∈ Pv
(
K ′ \B

(
v, 1

4n

))
, so Pv(x) ∈

(
Pv
(
K ′ \B

(
v, 1

4n

)))
δ
which proves

(3.1). By taking εv = δ
5n
, we prove the claim. �

Observe that for every v′ ∈ B
(
v, 1

2n

)
(K ′)∗εv \B

(
v′, 1

n

)
⊆ (K ′)∗εv \B

(
v, 1

2n

)
and therefore

λ
(
Pv′
(
(K ′)∗εv \B

(
v′, 1

n

)))
≤ λ

(
Pv′
(
(K ′)∗εv \B

(
v, 1

2n

)))
.

For A = (K ′)∗εv \ B
(
v, 1

2n

)
the function FA is upper semicontinuous on the com-

plement of A by Lemma 3.3.5. Hence there exists an open neighbourhood Uv ⊆
B
(
v, 1

2n

)
of v such that for all v′ ∈ Uv

λ
(
Pv′
(
(K ′)∗εv \B

(
v′, 1

n

)))
≤ λ

(
Pv′
(
(K ′)∗εv \B

(
v, 1

2n

)))
= FA(v′) < 1

n
.

Since [−n, n] × [−n, n] is compact, it can be covered by �nitely many such
neighbourhoods; therefore we may choose an ε′ which is suitable for every point
v ∈ [−n, n]× [−n, n].

We need to prove that Bn ∩ BH(K ′, ε′) = ∅ holds. Let L ∈ BH(K ′, ε′) and
v ∈ [−n, n]× [−n, n]. Then L ⊆ K ′ε′ hence

λ
(
Pv
(
L \B

(
v, 1

n

)))
≤ λ

(
Pv
(
K ′ε′ \B

(
v, 1

n

)))
< 1

n

by the choice of ε′. Consequently, L /∈ Bn.
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Now we have two typical properties in C by Theorem 3.3.2 and Theorem 3.3.4,
so we may merge them into one corollary.

Corollary 3.3.7. A typical element K ∈ C has orthogonal projections of measure
zero in every non-vertical direction, and it is invisible from every point of the plane.

Proof of Theorem 3.3.1. Let K ′ ∈ C be a set satisfying the properties described
in Corollary 3.3.7, L′ be its dual and L′ :=

⋃
L′. Then L′ contains a line of

slope m for every m ∈ [0, 1] because the slope is coded by the �rst coordinate and
prπ

2
(K ′) = [0, 1].
(1) L′ is closed by Proposition 3.2.4.
(3) Let e be any vertical line. Then its intersection with L′ is similar to a

non-vertical orthogonal projection of K ′ by Proposition 3.2.3. Therefore, it is of
measure zero by Corollary 3.3.7. This implies (2) immediately.

Now let e be any non-vertical line not in L′. Then its intersection with L′

is the image of Pv(K
′) \ {π

2
, 3π

2
} by a locally Lipschitz function for some point

v ∈ R2 \K ′ (Proposition 3.2.3 again). Therefore it is of measure zero by Corollary
3.3.7. (It is an easy exercise to show that locally Lipschitz maps from S1 to R
preserve nullsets.)

So L′ has an intersection of measure zero with every line not contained in it.
(4) Let e ∈ L′ and let y = a0x + b0 be its equation. Now L′ \ {e} is the dual

of K ′ \ {(a0, b0)}, thus the intersection e ∩
⋃

(L′ \ {e}) is the image of the set
P(a0,b0)(K

′ \ {(a0, b0)}) \ {π2 ,
3π
2
} by a locally Lipschitz function (Proposition 3.2.3

again). Therefore it is of measure zero by Corollary 3.3.7.
Let B be the union of four rotated copies of L′. It contains a line in every

direction and it still satis�es properties (1)�(4). The proof of the main theorem is
complete.
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