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Abstract

Back to 1766, Euler conjectured that "a closed spacial figure allows no changes, as long as
it is not ripped apart" which led to one of the oldest and most beautiful unsolved problems
in geometry at that time. The closed spacial figures in Euler’s thinking were closed
polyhedral surfaces made up of rigid polygon plates that are hinged along the edges where
plates meet. The conjecture that all such closed surfaces are rigid drew great attentions
over hundreds of years. The major contribution was made by Cauchy in 1813 when
he proved that strictly convex surfaces were rigid. Then in 1975, Gluck indicated that
Euler’s conjecture is almost always true for closed simply connected polyhedral surfaces
and Connelly finally disproved Euler’s conjecture by giving a counterexample that is a
closed polyhedral surface (topologically a sphere), embedded in three-space, which flexes.
The thing making difference here is that Gluck concentrated on generic graphs, in which
there is no algebraic dependencies between the coordinates of vertices, while Connelly’s
construction is non-generic. The history shows the significant impact of being generic or
non-generic toward the graphs’ rigidity. In my thesis, I only deal with generic frameworks,
in which case rigidity and global rigidity only depend on the underlying graph.
Although rigidity has been studied for such a long time, it is only the last 45 years that
it began to find applications in the basic sciences. Laman’s theorem (1970), which made
the combinatorial approach to the subject rigorous in 2-dimensions, can be seen as the
foundation for multiple important applications arising from rigidity theory. The miracu-
lous development of computer science as well as human’s demand make the applications
of rigidity theory more and more abundant and practical. In my thesis, I try to refer to
some applications that we can see how interesting rigidity theory is in reality.
The structure of my thesis is as follows. After preliminaries in chapter 1, existing results
about minimal k-vertex-rigidity are provided in chapter 2. Chapter 3 continues with mini-
mal k-vertex-global-rigidity but especially, the second part of this chapter is my own work
on strongly and weakly minimal 3-vertex-global-rigidity in the two-dimensional space.
Some partial results about minimal k-edge-rigidity and minimal k-edge-global-rigidity are
presented in chapter 4. Finally, my thesis ends with some applications of rigidity theory
in biomolecules, sensor networks, formation control, statics and truss structures. Since
rigidity theory is still challenging with many open questions, I shall list few of them in
each chapter and hopefully, we will have the answer for those questions in the near future.
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Chapter 1

Preliminaries

Consider finite graphs without loops, multiple edges or isolated vertices. A d-dimensional
bar-joint framework (G, p) is a graph G = (V,E) and a configuration p : V → Rd. We
consider the framework to be a straight line realization of G in Rd.
Given frameworks (G, p) and (G, q), we say that:

• (G, p) and (G, q) are equivalent if ‖p(vi)−p(vj)‖ = ‖q(vi)−q(vj)‖ for all vivj ∈ E,
where ‖.‖ denotes the distance.

• (G, p) and (G, q) are congruent if ‖p(vi)−p(vj)‖ = ‖q(vi)−q(vj)‖ for all vi, vj ∈ V .

• (G, p) is rigid if there exists an ε > 0 such that every framework (G, q) which is
equivalent to (G, p) and satisfies ‖p(v) − q(v)‖ < ε for all v ∈ V , is congruent to
(G, p).

• (G, p) is globally rigid if every framework that is equivalent to (G, p) is congruent
to (G, p).

Roughly speaking, a rigid framework is one that preserves its shape during a smooth
motion, while a globally rigid framework keeps its unique shape throughout all motions.

Figure 1.1: The framework in (a) is nonrigid since it can be deformed by a smooth motion
without affecting the distance between the vertices connected by edges, as shown in (b).
The frameworks represented in (c) and (d) are rigid and moreover, the formation (d) is
globally rigid.
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The rigidity matrix Rd(G, p) of a framework (G, p) in Rd is the |E| × d|V | matrix, whose
rows correspond to the edges and whose columns correspond to the coordinates of the
vertices, where |.| denotes the cardinality of a set. If e = vivj ∈ E, then the entry in the
row e and d columns of vi is p(vi) − p(vj), the entry in the row e and d columns of vj is
p(vj)− p(vi) and the other entries in the row e are zeros.
For integers n ≥ 2 and d ≥ 1, let

S(n, d) =

{
dn−

(
d+1
2

)
if n ≥ d+ 2(

n
2

)
if n ≤ d+ 1.

(1.1)

Theorem 1.1. [15] Let (G, p) be a d-dimensional framework with n ≥ 2 vertices. Then
rank Rd(G, p) ≤ S(n, d). Furthermore, if equality holds, then (G, p) is rigid.

Proof. We consider the case when (G, p) is properly embedded in Rd i.e. the affine hull
of the points p(v), v ∈ V , is equal to Rd. (This implies in particular that n ≥ d + 1.)
Let Z(G, p) be the null space of the matrix Rd(G, p) and consider vectors in Z(G, p) as
instantaneous motions of the framework (G, p). Each translation and rotation of Rd gives
rise to a smooth motion of (G, p) and hence to an instantaneous motion of (G, p). Let
Z0(G, p) be the subspace of Z(G, p) generated by these special instantaneous motions.
The subspace Z0(G, p) contains a linearly independent set of instantaneous motions cor-
responding to the translations along each vector in the standard basis, and the rotations
about the (d − 2) dimensional subspaces containing each set of (d − 2) vectors in the
standard basis. Thus

dimZ(G, p) ≥ dimZ0(G, p) ≥ d+

(
d

d− 2

)
=

(
d+ 1

2

)
(1.2)

and hence rank Rd(G, p) ≤ dn−
(
d+1
2

)
.

To indicate why the second part of the theorem holds we suppose that (G, p) is not
rigid. One may use the definition of rigidity to show that this assumption will imply
that there exists a smooth motion P (t, v) of (G, p) such that ‖P (t, x) − P (t, y)‖2 6=
‖p(x) − p(y)‖2 for all t > 0 and some fixed x, y ∈ V . Differentiating with respect to t
and putting t = 0 we deduce that there exists an instantaneous motion q of (G, p) such
that [p(x) − p(y)][q(x) − q(y)] 6= 0. Since translations and rotations preserve distances
between all points of Rd, q /∈ Z0(G, p). Thus strict inequality must occur in (1.2) and rank
Rd(G, p) < dn−

(
d+1
2

)
. ♠

A framework (G, p) is called infinitesimally rigid if rank Rd(G, p) = d|V | −
(
d+1
2

)
. In-

finitesimal rigidity of (G, p) implies rigidity. The converse is not true in general. However,
infinitesimal rigidity is equivalent to rigidity for generic frameworks (G, p) where the
(multi)set containing the coordinates of all the points p(v), v ∈ V , is algebraically inde-
pendent over Q. Hence, for generic frameworks, infinite rigidity as well as rigidity depends
only on graph G. Also, it is proved that the global rigidity of d-dimensional frameworks
is a generic property for all d ≥ 1 [11]. Therefore, from now on, we only consider generic
frameworks. A graph G is called rigid in Rd if every (or equivalently, if some) generic
realization of G in Rd is rigid. Similarly, a graph G is called globally rigid in Rd if every
(or equivalently, if some) generic realization of G in Rd is globally rigid.
From the rigidity matrix Rd(G, p), we consider a special matroid. In this matroid, in-
dependent sets is edge sets F of G such that the rows of the rigidity matrix indexed
from F is linearly independent. Since the entries of the rigidity matrix are polynomial
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functions with integer coefficients, any two generic frameworks (G, p) and (G, q) have the
same rigidity matroid. We call this the rigidity matroid of graph G, denoted byMd(G).
Denote rd(G) be the rank of Md(G). It follows from the above that a graph G on n
vertices is rigid in Rd if and only if rd(G) = S(n, d). We say that a graph G = (V,E) is
M -independent if E is independent in Md(G) and G is M -circuit if E is a circuit (i.e.
minimal dependent set) inMd(G). The following is a corollary from theorem 1.1.

Theorem 1.2. If G = (V,E) is M -independent in Rd then iG(X) ≤ d|X| −
(
d+1
2

)
for all

X ⊆ V with |X| ≥ d+ 2 where iG(X) is the number of edges in the graph G induced by
the vertex set X.

Definition 1.1. A graph G = (V,E) is called minimally rigid if it is rigid and G− e is
nonrigid for all e ∈ E.

Hence, a graph G = (V,E) on n vertices is minimally rigid in Rd if and only if G is
M -independent and |E| = S(n, d). Also, if G is rigid in Rd, then the edge sets of the
minimally rigid spanning subgraphs of G are bases ofMd(G). This leads to the following
result.

Theorem 1.3. [39] Let G = (V,E) be minimally rigid in Rd. If |V | ≥ d + 1 then
|E| = d|V | −

(
d+1
2

)
.

We can easily see that in R, a graph is rigid if and only if it is connected. Thus, one-
dimensional minimally rigid graphs are trees.
In R2, Laman (1970) gave a fully combinatorial characterization of minimally rigid graphs,
marking an important milestone for the whole development of rigidity theory later.

Theorem 1.4. [28] (Laman’s Theorem) A graph G = (V,E) is minimally rigid in R2 if
and only if |E| = 2|V | − 3 and for all X ⊆ V with |X| ≥ 2, iG(X) ≤ 2|X| − 3. The graph
is rigid if and only if it has a minimally rigid spanning subgraph.

According to that, a graph with n vertices is minimally rigid in R2 if and only if it has
exactly 2n− 3 edges and every nonempty subgraphs induced by n0 vertices have at most
2n0 − 3 edges. This is also known as the 2n− 3 edge count condition.

Theorem 1.5. [35] [14] A graph is minimally rigid in R2 if and only if it can be constructed
from the complete graph on two vertices K2 by a sequence of vertex addition operations
(2-dimensional Henneberg 0-extensions) and edge splitting operations (2-dimensional Hen-
neberg 1-extensions).

It is involved to see the full characterization of rigidity in higher dimensions. The problem
of characterizing when a graph is rigid in Rd for d ≥ 3 remains a major open problem of
rigidity theory so far.

Remark. There are some operations known to preserve rigidity in Rd such as d-dimensional
0-extension, d-dimensional 1-extension and d-dimensional simplex-based X-replacement
[35] [22] but which operations that are necessary and sufficient to build and construct all
minimally rigid graphs in three-space or higher dimensions is still a matter of conjecture.

• A d-dimensional Henneberg 0-extension adds a new vertex to a graph and connects
it to d distinct vertices of the graph.
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Figure 1.2: Representation of (a) vertex addition operation and (b) edge splitting opera-
tion.

• A d-dimensional Henneberg 1-extension deletes an edge of a graph, adds a new
vertex v and connects it to two vertices of the deleted edge and d− 1 other vertices
of the graph.

• Let a, b, w1, ..., wd−2 be a complete subgraph of d-dimensional graph G = (V,E) and
cd ∈ E be an edge which is vertex-disjoint from the simplex. The d-dimensional
simplex-based X-replacement extension deletes ab, cd, adds a new vertex v and con-
nects it to a, b, c, d, w1, ..., wd−2.

Obviously, global rigidity is stricter than rigidity. Hendrickson gave the necessary condi-
tions for global rigidity in all dimensions.

Theorem 1.6. [13] Let G be a globally rigid graph in Rd with at least (d + 1) vertices.
Then G is (d+ 1)-connected and redundantly rigid in Rd.

Note that G is (d+ 1)-connected if at least d+ 1 vertices must be removed to disconnect
the graph. "Redundantly rigid" means the graph maintains rigidity after the deletion of
an arbitrary edge. More formally, a graph G = (V,E) is called redundantly rigid if
G− e is rigid for all e ∈ E.

Proof. Since we can reflect the vertices on one side of a hyperplane through any separating
set of d vertices, the first condition (d + 1)-vertex connectivity must hold for a unique
realization.
The second condition is more subtle. Here we only mention the general idea. Suppose by
contradiction, G− e is not rigid for some edges e ∈ G. Let the resulting framework flex,
then there exists an equivalent, but not congruent framework to the initial framework.
Hence, G is not globally rigid, which contracts with the hypothesis. ♠

These conditions are not suffice for a graph to be globally rigid in three or higher dimen-
sional spaces. One example showing their failure in Rd (d ≥ 3) is a class of complete
bipartite graphs Ka,b with a + b =

(
d+1
2

)
and a, b ≥ d + 2. It is (d + 1)-connected and

redundantly rigid but not globally rigid [6]. So characterizing the globally rigid graphs in
three-space and in higher dimensions is another important future work.
In one and two dimensions, Hendrickson’s conditions give the complete characterization
of globally rigid graphs.
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Theorem 1.7. [15] A graph G is a globally rigid on the line if and only if either G = K2

or G is 2-connected. In the latter case, there is a construction from K3, using only
1-dimensional Henneberg 1-extensions and edge additions.

Note that Kn denotes the complete graph on n vertices.

Theorem 1.8. [16] A graph G be a globally rigid in the plane if and only if G is a complete
graph on at most three vertices or G is 3-connected and redundantly rigid. Moreover, if G
has more than 3 vertices then it can be obtained from K4 by a sequence of 2-dimensional
Henneberg 1-extensions and edge additions.

As we can see above, Henneberg 1-extension operation preserves global rigidity in R and
R2. Connelly answered the question of whether or not it holds in higher dimensional
spaces.

Theorem 1.9. [6] Let G be a graph obtained from a globally rigid graph H in Rd by a
d-dimensional Henneberg 1-extensions. Then G is globally rigid in Rd.

There is a special operation that augments the (global) rigidity in d-dimensional space
to the (global) rigidity in d + 1-dimensional space, called the coning. The cone graph of
G is the graph that arises from G by adding a new vertex v and connecting v to all the
vertices of G. We denote this graph by G ∗ v.

Theorem 1.10. (Coning theorem)
[37] A graph G is rigid in Rd if and only if the cone graph G ∗ v is rigid in Rd+1 .
[8] A graph G is globally rigid in Rd if and only if the cone graph G ∗ v is globally rigid
in Rd+1 .

We say that a graph G = (V,E) is vertex-redundantly rigid in Rd if G− v is rigid in
Rd for all v ∈ V .

Theorem 1.11. [17] If G is rigid in Rd+1 then it is vertex-redundantly rigid in Rd.

Proof. For a contradiction, suppose that G− v is not rigid in Rd for some vertex v ∈ V .
It follows from the above theorem that the cone graph (G − v) ∗ u is not rigid in Rd+1.
Since G is a spanning subgraph of (G − v) ∗ u, we obtain that G is not rigid in Rd+1, a
contradiction. ♠

Theorem 1.12. [33] If G is vertex-redundantly rigid in Rd then it is globally rigid in Rd.

Two above theorems implies the sufficient condition of global rigidity.

Theorem 1.13. [17] If G is rigid in Rd+1 then it is globally rigid in Rd.

Another operation related to (global) rigidity is the gluing operation, which is stated
below.

Theorem 1.14. (Gluing theorem)
[39] If G1 = (V1, E1) and G2 = (V2, E2) are rigid graphs in Rd sharing at least d vertices,
then G = (V1 ∪ V2, E1 ∪ E2) is rigid in Rd .
[5] If G1 = (V1, E1) and G2 = (V2, E2) are globally rigid graphs in Rd sharing at least
d+ 1 vertices. Then G = (V1 ∪ V2, E1 ∪ E2 −G1[V1 ∩ V2]) is globally rigid in Rd .

9



Chapter 2

Minimal k-vertex-rigidity

Definition 2.1. A graph G = (V,E) is called k-vertex-rigid in Rd if |V | ≥ k + 1 and
after deleting any set of at most k − 1 vertices, the resulting graph is rigid in Rd.

Definition 2.2. A k-vertex-rigid graph G is called minimally k-vertex-rigid if the
omission of an arbitrary edge results in a graph that is not k-vertex-rigid.

Actually, the expression "deleting any set of at most k − 1 vertices" can be replaced by
deleting any set of k − 1 vertices due to the following theorem.

Theorem 2.1. Suppose that G is a graph on at least k + 2 vertices that satisfies G− S
is (globally) rigid in Rd for every subset S of vertices with cardinality exactly k. Then
G−S ′ is (globally) rigid in Rd for every subset S ′ of vertices with cardinality at most k.

Proof. If |V | ≤ k+d+1, then for any subset S ⊆ V with |S| = k we have that G−S is a
(globally) rigid graph on at most d+1 vertices, thus it is complete. Since |V | ≥ k+2, for
any pair of vertices, we can choose S such that it avoids the given pair. These observations
together imply that in this case G is complete, so the statement is true. Now suppose that
|V | ≥ k+d+2. It is clearly sufficient to prove the statement for S ′ ⊆ V with |S ′| = k−1.
Fix some such S ′. Pick two vertices v1, v2 in G− S ′ and let Gi = G− S ′ − vi for i = 1, 2.
By our assumption, G1 and G2 are both (globally) rigid. Now G − S ′ = G1 ∪ G2, while
G1 intersects G2 at |V | − (k − 1) − 2 = |V | − k − 1 ≥ d + 1 vertices. Since the gluing
operation is known to preserve (global) rigidity, G− S ′ is (globally) rigid, as desired. ♠

For k = 1, minimal 1-vertex-rigidity becomes minimal rigidity, which we already men-
tioned in chapter 1. Recall that the edge set of a minimally rigid graphG in Rd corresponds
to a base of the rigidity matroidMd(G). Thus, the edge sets of d-dimensional minimally
rigid graphs (that is, minimal 1-vertex-rigid graphs) on the same vertex set have the same
cardinality. However, this is not true for k ≥ 2, there are minimally k-vertex-rigid graphs
for any k ≥ 2 with different edge numbers [22], which leads to two different concepts:
Strongly minimal k-vertex-rigidity and weakly minimal k-vertex-rigidity.

2.1 Strongly minimal k-vertex-rigidity
Definition 2.1.1. A k-vertex-rigid graph is called strongly minimal if it has the min-
imum number of edges on a given number of vertices.
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As we know, k-vertex-rigidity in R corresponds to k-connectivity. Searching for strongly
minimally k-vertex-rigid graphs in R, we need to find k-vertex-connected graphs that have
minimum number of edges on a given number of vertices. A family of that was given by
Frank Harary in his paper [12]. For detail, every vertex in a k-vertex-connected graph
has degree at least k. Then a k-vertex-connected graph with n vertices (n ≥ k + 1) has
at least dkn

2
e edges. The Harary graph Hn,k (with dkn2 e edges) is a graph on the n vertices

v1, v2, . . . , vn defined by the following construction:

• If k is even, then each vertex vi is adjacent to vi±1, vi±2, . . . , vi± k
2
, where the indices

are subjected to the wraparound convention that vi ≡ vi+n (e.g. vn+3 represents
v3).

• If k is odd and n is even, then Hn,k is Hn,k−1 with additional adjacencies between
each vi and vi+n

2
for each i.

• If k and n are both odd, thenHn,k isHn,k−1 with additional adjacencies {v1, v1+n−1
2
},

{v1, v1+n+1
2
}, {v2, v2+n+1

2
}, {v3, v3+n+1

2
}, . . . , {vn−1

2
, vn}.

Let kH be the connectivity of the Harary graph H. The connectivity of a connected graph
is at most the minimum of the degrees of its vertices, so kH ≤ k. To show that kH ≥ k,
we merely have to show that at least k vertices must be removed to disconnect the graph.
In the case of k is even, it is necessary (and sufficient) to remove two separate subsets of
k
2
consecutive vertices each, along the circumference of the polygon. For k is odd and n

is even, it is still necessary to remove two such subsets of k−1
2

vertices each to break the
circumferential connections, but at least one more vertex must also be removed to break
the diametral connection. Similar argument applies to the last case when k and n are
both old. Hence, kH = k and Harary graph Hn,k (n ≥ k + 1) is an example of strongly
minimal k-vertex-rigid graphs in R.
Before going to other higher dimensional spaces, we recall a result that is proved by
authors in paper [22].

Theorem 2.1.1. If a graph G = (V,E) is k-rigid in Rd with |V | ≥ d2 + d + k then
|E| ≥ d|V | −

(
d+1
2

)
+ (k− 1)d+max

{
0, dk− 1− d+1

2
e
}
. (See proof in Theorem 4.1 [22].)

This lower bound is sharp for all 2-vertex-rigid graphs in all dimensions, and for 3-vertex-
rigid graphs in R2 and R3, as we will see later.
A complete characterization of strongly minimal 2-vertex-rigid graphs in R2 follows from
the next theorems.

Theorem 2.1.2. [31] In R2, let G = (V,E) be a strongly minimal 2-vertex-rigid graph
on 5 or more vertices. Then G has exactly two vertices with degree 3 and the remaining
have degree 4, which implies |E| = 2|V | − 1. On 4 or fewer vertices, G must be complete
to be strongly minimally 2-vertex-rigid.

Theorem 2.1.3. [31] In R2, a graph G = (V,E) is strongly minimally 2-vertex-rigid if
and only if G has exactly two vertices of degree 3 and there is a partition of the edge set
E

E = E1 ∪ E2 ∪ · · · ∪ Ek
such that the graph induced by E \Ei is minimally redundantly rigid for all i, and either

• E1 and E2 are the edges incident to the two non-adjacent vertices of degree 3,
respectively, and Ei is a single edge for 3 ≤ i ≤ k, or

11



• E1 is the union of the edges incident to the two adjacent vertices of degree 3, and
Ei is a single edge for 2 ≤ i ≤ k.

This can be thought of as a Laman-type characterization, analogous to minimal rigidity:
There must be a minimum number of edges (|E| = 2|V | − 1), and the edges must be
properly distributed, as described in the conditions of the theorem. The two possible
partitions of the edge set correspond to whether or not the two degree 3 vertices are
adjacent.

Figure 2.1: Examples of the two possible partitions of the edge set for strongly minimal
2-vertex-rigid graphs: (a) the degree three vertices are adjacent, and (b) the degree three
vertices are non-adjacent.

Remark. Servatius also provides a way to “grow” all strongly minimal 2-vertex-rigid
graphs in R2 using an operation (which is referred as "1-extendability" in [31]) similar to
the edge splitting operation mentioned previously. Thus, we have a complete character-
ization of 2-dimensional strongly minimal 2-vertex-rigid graphs and a way to construct
them.

Theorem 2.1.4. [22] If G = (V,E) is a strongly minimal 2-vertex-rigid graph in Rd with
|V | ≥ d2 + d+ 2 then |E| = d|V | −

(
d
2

)
.

Proof. It follows from theorem 2.1.1 that all strongly minimal 2-vertex-rigid graphs G =
(V,E) in Rd satisfy |E| ≥ d|V | −

(
d
2

)
. Consider graph Cd

n (the dth power of Cn, or
equivalently, E(Cd

n) = vivj : i− d ≤ j ≤ i+ d where vn+i := vi) and its subgraph Ld
induced by vertices vn−d+1, ..., vn. Hd

n,2 = Cd
n − E(Ld) denotes the graph we get from

Cd
n after deleting the edge set of Ld. It is easy to see that |E(Hd

n,2)| = d|V | −
(
d
2

)
and

moreover, if n ≥ 3d, Hd
n,2 is 2-vertex-rigid in Rd (see proof in Lemma 6.1 [22]). ♠

For strongly minimal 3-vertex-rigidity in R2, we have the following result.

Theorem 2.1.5. [30] There exists a strongly minimal 3-vertex-rigid graph G = (V,E) in
R2 with |E| = 2|V | + 2 for any |V | ≥ 6. In G, there are exactly 4 vertices with degree
of 5 which are all adjacent (forming a complete K4 subgraph) and all other vertices have
degree of 4.

Proof. It follows from theorem 2.1.1 that a 2-dimensional minimal 3-vertex-rigid graph
on n vertices must have 2n + 2 edges at least. The existence of 2-dimensional strongly
minimal 3-vertex-rigid graphs satisfying the lower bound follows from the fact that there
is a strongly minimal 3-vertex-rigid graph on 6 vertices with 14 edges (shown in figure
2.2) and one operation preserving the 3-vertex-rigidity in R2 (mentioned later). Now, we
prove the necessary condition of strongly minimal 3-vertex-rigidity in R2.
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The condition |E| = 2n+2 implies that the graph has an average degree of 4+ 4
n
(n denotes

the number of vertices of the graph). Therefore, there is at least one vertex with degree of
more than 4. Now suppose v1, v2 ∈ V with degrees k1, k2, respectively. Then, G− v1− v2
has n−2 vertices and at most |E(G−v1−v2)| = 2n+2−(k1+k2−1) = 2(n−2)−(k1+k2−7)
edges (when v1, v2 are neighbors). Since G−v1−v2 is rigid, |E(G−v1−v2)| ≥ 2(n−2)−3
holds. Hence, k1 + k2− 7 ≤ 3 or k1 + k2 ≤ 10. By considering k1 ≥ 4, k2 ≥ 4 we conclude
that 4 ≤ k1 ≤ 6 and 4 ≤ k2 ≤ 6. Finally, if there are m vertices of degree 6 and t vertices
of degree 5, we have 6m+ 5t+ 4(n−m− t) = 2(2n+ 2), which gives 2m+ t = 4. There
are 3 possible cases:
a. m = 1, t = 2: In this case if we remove the 6-degree vertex in addition to a 5-degree one,
the number of edges will be at most |E(G−v1−v2)| = 2n+2−(6+5−1) = 2n−8 = 2(n−
2)−4 which contradicts the fact that G−v1−v2 is rigid and |E(G−v1−v2)| ≥ 2(n−2)−3.
Therefore, this case cannot occur.
b. m = 2, t = 0: With the same argument as the case a, by removing two vertices with
degree of 6 we have |E(G− v1 − v2)| = 2n+ 2− (6 + 6− 1) = 2n− 9 = 2(n− 2)− 5 and
it is obvious that the resulting graph is not rigid. Hence again, this case cannot occur.
c. m = 0, t = 4: The proof of this case is trivial. The only important condition is that
all 5-degree vertices should be adjacent. Otherwise, removing any 2 of them results in a
nonrigid graph (|E(G− v1 − v2)| = 2(n− 2)− 4 < 2(n− 2)− 3). ♠

Figure 2.2: Examples of 2-dimensional strongly minimal 3-vertex-rigid graphs.

Remark. [30] So, all strongly minimal 3-vertex-rigid graphs in R2 must have exactly 4
vertices with degree 5 which form a complete subgraph and other vertices having degree
4. However, that condition is not sufficient to ensure strongly minimal 3-vertex-rigidity
in R2. Consider the graph G shown in Figure 2.3a. It is easy to observe that this graph
satisfies Theorem 2.1.5. However, as shown in Figure 2.3b, removing two vertices from
this graph results in a nonrigid graph. Therefore, G is not 3-vertex-rigid.

For growing strongly minimal 3-vertex-rigid graphs in R2, we consider 4-5 X-replacement:
Suppose that the original graph is G = (V,E). Choose two edges e1 = ab and e2 = cd
and e1, e2 ∈ E so that a, c have degree 4 and are non-adjacent and b, d have degree 5
(such edges choice always exists) (see proof in Lemma 12 [30]). Remove e1, e2 and add
a new vertex called z. Connect z to a, b, c, d. In the 4-5 X-Replacement operation, the
degree of the original vertices remains the same and a new vertex of degree 4 is added to
G. Therefore, the new graph satisfies the conditions of theorem 2.1.5.
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Figure 2.3: The left graph is not 3-vertex-rigid but still satisfies the conditions in theorem
2.1.5.

Theorem 2.1.6. Suppose G = (V,E) is a strongly minimal 3-vertex-rigid graph in R2.
After applying the 4-5 X-replacement operation on G, the resulting graph G is strongly
minimal 3-vertex-rigid on |V |+ 1 vertices in R2 (see proof in Theorem 13 [30]).

Remark. Two above theorems give partial results about strongly minimal 3-vertex-
rigidity in R2. The sufficient condition for a graph to be strongly minimally 3-vertex-rigid
in R2 and "necessary and sufficient" operations to build all such graphs remain open
questions.

In R3, strongly minimal 3-vertex-rigidity is more complicated. However, theorem 2.1.1
implies that for a strongly minimal 3-vertex-rigid graph G = (V,E), the condition |E| ≥
3|V | must hold. In addition, C3

n (n ≥ 9), the third power of Cn, has 3n edges and is
proved to be 3-dimensional 3-vertex-rigid (Lemma 7.1 [22]). This gives us the following.

Theorem 2.1.7. [22] If G = (V,E) is a strongly minimally 3-vertex-rigid graph in R3

with |V | ≥ 15, then |E| = 3|V |.

The question of full characterization of strongly minimal 3-vertex-rigid graphs in three-
space or higher dimensions as well as operations to build them is still open. There is a
conjecture of the authors in paper [22] (Conjecture 8.1) about that question.

Conjecture 2.1.8. If a graph G = (V,E) is strongly minimal 3-vertex-rigid graph in
Rd, d > 3 with |V | ≥ d2 + d+ 3 then |E| = d|V | −

(
d+1
2

)
+ 2d.

2.2 Weakly minimal k-vertex-rigidity
Definition 2.2.1. A k-vertex-rigid graph is called weakly minimal if it is minimally
k-vertex-rigid graph but not strongly minimally k-vertex-rigid. Equivalently, it has more
edges compared to strongly minimal graphs but still has the property that removing any
edge destroys k-vertex-rigidity.

Theorem 2.2.1. [22] Let G = (V,E) be a minimally k-vertex-rigid graph in R with
|V | ≥ 3k − 1. Then |E| ≤ k|V | − k2.

It comes out that the number of edges a 1-dimensional weakly minimal k-vertex-rigid
graph with n vertices (n ≥ 3k − 1) is between d1

2
nke + 1 and kn − k2 . The complete

bipartite graph Kk,n−k (n ≥ 3k−1) is an example for this. Indeed, the complete bipartite
graph Kk,n−k is a 1-dimensional weakly minimal k-vertex-rigid graph as long as n > 2k.
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When n = 2k, the complete bipartite graph Kk,n−k = Kk,k is an example for strongly
minimal k-vertex-rigidity in R.
As proved in paper [22] (Section 8.1), for k, d ≥ 2, there exists minimal k-vertex-rigid
graphs on Rd with the same number of vertices but different number of edges. Such a pair
of graphs show that the graph with larger number of edges has to be weakly minimally
rigid and then there always exists weakly minimally k-vertex-rigid graphs in Rd for all
k, d ≥ 2.
Some examples for weakly minimal 2-vertex-rigid graphs in R2 are given in paper [32].

Figure 2.4: An example of 2-dimensional weakly minimal 2-vertex-rigid graph consists of
two complete subgraphs on four vertices connected by four edges.

Figure 2.5: Another example of weakly minimal 2-vertex-rigid graph in R2.

Theorem 2.2.2. [32] The graph G = (V,E) in Figure 2.5 is weakly minimally 2-vertex-
rigid in R2.

Proof. Every vertex has degree 4; thus, |E| = 2|V |, which is excess three (excess =
|E| − (2|V | − 3)). Observe that the subgraphs induced by the left and right nine vertices
(call them GL and GR) both have excess one. Removing any vertex in G results in a
graph of excess one that has exactly one subgraph of excess one, which is rigid. Thus, the
graph is 2-vertex-rigid. Now remove any edge outside of GL; call the new graph G′. Then
remove any degree 4 vertex in G′ \ GL. The resulting graph, call it G”, has an excess
of zero with a subgraph of excess one (viz GL), and so G” is not rigid. Therefore, G′ is
not 2-vertex-rigid. Obviously, the same argument applies if we remove any edge outside
of GR. Hence, removing any edge in G destroys 2-vertex-rigidity, and thus G is weakly
minimally 2-vertex-rigid. ♠

Remark. The question of finding an inductive construction for the class of 2-dimensional
weakly minimal 2-vertex-rigid graphs remains unanswered. But at least, according to
papers [3] [31], we know that 2-dimensional X-replacement operation, degree 3 vertex
addition operation (under certain conditions) preserve weakly minimal 2-vertex-rigidity
in R2.
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• Given two non-adjacent edges ux and wy in a graph G(V,E), an X-replacement
adds a degree 4 vertex z to construct the graph G′(V ′, E ′), where V ′ = V ∪ z and
E ′ = E \ {ux,wy} ∪ {uz, wz, xz, yz}.

• Let i, j, and k be three distinct vertices in a graph G(V,E). A degree 3 vertex
addition operation adds a vertex l and edges il, jl, and kl to the graph G.

Figure 2.6: Representation of the X-replacement operation.

Since the X-replacement preserves 2-vertex-rigidity, it can be applied successively to each
2-vertex-rigid subgraph in figure 2.4 (that is, each complete subgraph on four vertices) to
create a class of weakly minimal 2-vertex-rigid graphs with excess three, which includes
the example in figure 2.5. Indeed, one can easily verify that the graph in figure 2.4 can
be obtained by repeatedly applying the reverse X-replacement operation on the left and
right subgraphs in figure 2.5.

Figure 2.7: (a) A 2-dimensional weakly minimal 2-vertex-rigid graph with excess three,
(b) Adding a degree 3 vertex to create a 2-dimensional weakly minimal 2-vertex-rigid
graph with excess four. By successively adding a degree 3 vertex to either end, one can
obtain weakly minimal 2-vertex-rigid graphs with arbitrarily large excess in R2.

Theorem 2.2.3. [32] The class of graphs illustrated in figure 2.7 (which is obtained by
successively adding a degree 3 vertex) is weakly minimally 2-vertex-rigid.

Proof. Let G = (V,E) be the graph in figure 2.7(a). One can easily verify that |E| = 2|V |
(excess three) and that removing any vertex from G results in a rigid graph; thus, G is
2-vertex-rigid. Now, remove any edge not incident to the top vertex, then remove the top
vertex, resulting in a graph G′ = (V ′, E ′). We have |E ′| = 2|V ′| − 4, which implies that
G′ is not rigid. The same argument holds when removing any edge not incident to the
bottom vertex, then removing the bottom vertex. Thus, removing any edge in G destroys
2-vertex rigidity, and therefore G is weakly minimally 2-vertex-rigid. The same analysis
holds for the graph in figure 2.7(b) and all other graphs in this class. ♠
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In [32], Summers, Yu and Anderson conjectured that the degree 3 vertex addition and the
2-dimensional X-replacement operations are sufficient to build up every weakly minimally
2-vertex-rigid graph in R2 with at least nine vertices.

Conjecture 2.2.4. [32] Let G(V,E) be a weakly minimal 2-vertex-rigid graph in R2 with
at least 9 vertices. Then there exists either
(a) a degree 4 vertex on which a reverse X-replacement operation can be performed to
obtain a weakly minimal 2-vertex-rigid graph or
(b) there exists a degree three vertex on which a reverse degree 3 vertex addition can be
performed to obtain a weakly minimal 2-vertex-rigid graph.

Later, this one is disproved by authors in paper [22] by using the K4-extension operation.
Figure 2.8 illustrates a 2-dimensional weakly minimal 2-vertex-rigid graph, which does not
have a vertex at which the reverse degree 3 vertex addition or the reverse X-replacement
can be performed.

Figure 2.8: [22] A graph H is built by performing five K4-extensions on the subgraph
induced by vertices a, b, c, d. The complete K4 on a, b, c, d is minimally 2-vertex-rigid in
R2 hence H is 2-vertex-rigid in R2. It can be easily seen that deleting any of the edges
bc, cd, db from graph H − a results in a nonrigid graph. By symmetry the deletion of any
edge in the complete graph {a, b, c, d} results in a graph that is not 2-vertex-rigid in R2.
Combining with theorem 2.2.5, this implies that H is weakly minimal 2-vertex-rigid in
R2.

Remark. Let v1,v2,v3,v4 be four distinct vertices in a graph G. The K4-extension adds
four new vertices u1,u2,u3,u4 to G, connects vi to ui for every 1 ≤ i ≤ 4 and uk to ul
for every pair 1 ≤ k, l ≤ 4. It is easy to see that the K4-extension operation preserves
2-vertex-rigidity in R2.

Theorem 2.2.5. [22] If G = (V,E) is 2-vertex-rigid in R2 then G0 = (V0, E0) obtained
by applying a K4-extension from G is also 2-vertex-rigid in R2. Furthermore G0− e is not
2-vertex-rigid for any e ∈ E0 \ E.

Proof. Clearly, G0−v is rigid for any v ∈ V0. Consider the graphG0−e for some e ∈ E0\E.
Let ui ∈ V0 \ V be such that e is not incident to ui. We claim that G00 = G0 − ui − e is
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not rigid. G00 consist of G and a set of three vertices that is incident to five edges only.
Hence, there are only 2|V | − 3+5 = 2|V0| − 4 independent edges in G00. Thus, G00 is not
rigid as we claimed. ♠

Now let G0 = (V0, E0) be a 2-vertex-rigid graph in R2 with |V0| ≥ 4. Apply some K4-
extensions to vertices of V0, let the resulting graph be G1 = (V1, E1) (see figure 2.8).
Suppose that every vertex in V0 is incident to at least five edges from E1 −E0. After the
extensions, delete edges from E1 (if necessary) to obtain a minimally 2-vertex-rigid graph
G2 = (V1, E2) in R2. By the above theorem, deleting any edge from E1 − E0 results in
a graph that is not 2-vertex-rigid in R2. Hence, the minimum degree of vertices in G2 is
four (as we can choose applying more than 4 extensions K4 at the beginning) and all the
degree four vertices are in V1−V0. Clearly we cannot perform the reverse degree 3 vertex
addition in G2. Every vertex in V1 − V0 is contained in a complete K4 subgraph of G2

and every reverse X-replacement on one of these vertices creates a parallel pair of edges.
Thus no reverse X-replacement operation preserves minimal 2-vertex-rigidity in R2 of G2.
This disproves the conjecture.

Remark. For any positive integer t, graph G1 can be constructed in a way such that every
vertex in V0 is incident to at least t edges from E1−E0. Hence the minimum degree in G2

is 4 and the vertices in V0 have degree at least t. Since t can be arbitrarily large, it implies
that it may not be easy to find a constructive characterization of 2-dimensional weakly
minimal 2-vertex-rigid graphs that only uses operations that add low-degree vertices.

We have searched for other weakly minimal k-vertex-rigid examples so far. The following
result probably helps us in the future.

Theorem 2.2.6. Let G = (V,E) be a minimally k-vertex-rigid graph in Rd. Then

|E| ≤ (d+ k − 1)|V | −
(
d+ k

2

)
.

This bound is sharp for d ≥ 2. (See the detail in Theorem 5.2 [22].)

2.3 Open questions
1. Combinatorial characterization of strongly minimal rigid graphs in R3.

2. Full characterization/ Examples of strongly minimal k-vertex-rigid graphs in three-
space or higher dimensions.

3. Sufficient conditions of strongly minimal 3-vertex-rigid graphs in R2 and "necessary
and sufficient" operations to build them.

4. Strongly minimal k-vertex-rigidity in Rd, k ≥ 4 and d ≥ 2.

5. Inductive construction for weakly minimally k-vertex-rigid graphs in R2, k ≥ 2.

6. Weakly minimal k-vertex-rigidity in three-space or higher dimensions.
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Chapter 3

Minimal k-vertex-global-rigidity

3.1 About existing results
Definition 3.1.1. A graph G = (V,E) is called k-vertex-globally-rigid if |V | ≥ k + 1
and it remains globally rigid after deleting any set of at most k − 1 vertices.

Definition 3.1.2. A graph G = (V,E) is called minimal k-vertex-globally-rigid if it
is k-vertex-globally-rigid but G− e is not k-vertex-globally-rigid for any e ∈ E.

It follows from theorem 2.1 that the expression "deleting any set of at most k−1 vertices"
in the above definition can be replaced by deleting any k − 1 vertices.

Definition 3.1.3. A graph is called strongly minimally k-vertex-globally-rigid if it
is k-vertex-globally-rigid and there exists no k-vertex-globally-rigid graph with the same
number of vertices and a smaller number of edges.

Definition 3.1.4. A graph is called weakly minimally k-vertex-globally-rigid if it
is minimally k-vertex-globally-rigid but not strongly minimally k-vertex-globally-rigid.

In R, a graph is globally rigid if and only if it is 2-vertex-connected. So a graph is k-
vertex-globally-rigid in R if and only if it is k+1-vertex-connected. Hence, Harary graph
Hn,k (n ≥ k+1) and the complete bipartite graph Kk,k are examples for strongly minimal
(k − 1)-vertex-global-rigidity in R. Further, complete bipartite graph Kk,n−k(n > 2k) is
an example for weakly minimal k − 1-vertex-global-rigidity in R.
In R2, every strongly minimal global rigid graph G = (V,E) with more than 4 vertices
has |E| = 2|V | − 2. This is because the fact that global rigidity in R2 implies redundant
rigidity, which implies |E| ≥ 2|V | − 2, and moreover, wheel graph is a model of global
rigid graph in R2 with |E| = 2|V | − 2. It is also known that every strongly minimally
global rigid graph in R2 can be built up by repeatedly applying 2-dimensional Henneberg
1-extension operation from the initial complete graph K4 [4].
In R2, a 2-vertex-globally-rigid graph G = (V,E) on 5 or more vertices has the property
that every vertex has degree 4 at least, which results in |E| ≥ 2|V |. Moreover, a cycle on
n vertices (n ≥ 5) with 2-hop neighbors (Harary graph Hn,4) is a 2-vertex-globally-rigid
graph in R2. Hence, strongly minimal 2-vertex-globally-rigid graphs G = (V,E) on 5 or
more vertices in R2 have the following properties:

• |E| = 2|V |.

• Every vertex in G has degree 4.
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Figure 3.1: A cycle on 8 vertices with 2-hop neighbors.

Moreover, we also have a complete characterization of strongly minimal 2-vertex-global-
rigidity in R2.

Theorem 3.1.1. [32] A graph G(V,E) is strongly minimally 2-vertex-globally-rigid in R2

if and only if the following conditions hold:

• |E| = 2|V |;

• G is 4-connected;

• G is redundantly strongly minimal 2-vertex-rigid (i.e. removing any edge results in
a strongly minimal 2-vertex-rigid graph).

Proof. For sufficiency, suppose the conditions hold for a graph G. Note first that since
G is 4-connected, a graph obtained by removing a vertex and its incident edges is 3-
connected. Further, 4-connectivity implies that every vertex has degree at least 4, and
since |E| = 2|V | then every vertex has precisely degree 4. Now choose any vertex v in G
and remove any edge incident to this vertex. The resulting graph is 2-vertex-rigid by the
third condition. Remove another edge incident to v. Via the edge partition in Theorem
2.1.3, the resulting graph consists of v with degree 2 attached to a redundantly rigid
graph. Now we can remove v and the resulting graph is redundantly rigid. By the second
condition, it is also 3-vertex-connected and therefore is globally rigid. The argument
holds for any vertex v in G, which proves that G is 2-vertex-globally-rigid, and thus the
conditions are sufficient. The 4-connectivity of G is obviously necessary because G minus
any vertex must be 3-connected. Further, |E| = 2|V | is obviously necessary. Now we
need to prove the necessity of the final condition. To obtain a contradiction, suppose G
is a 2-vertex-globally-rigid graph with an edge e that when removed does not result in a
2-vertex-rigid graph. Remove such an edge e and call the resulting graph G′. This implies
that there exists a vertex v in G′ that when removed results in a non-rigid graph G”.
There are two cases. First, if e is incident to v, then effectively we have removed v from
G to obtain a non-rigid graph G”. Thus, G is not 2-vertex-globally-rigid, contradicting
our assumption. Second, if e is not incident to v, then if G is 2-vertex-globally-rigid,
we should be able to reinsert e into G” to obtain a globally rigid graph. However, it is
impossible to add a single edge to a nonrigid graph to make it redundantly rigid. This
again contradicts our assumption, which proves the necessity of the final condition and
completes the proof. ♠

Remark. Another example of strongly minimal 2-vertex-globally-rigid graphs is a cycle
with 3-hop neighbors. The smallest strongly minimal 2-vertex-globally-rigid graph is the
complete graph on 5 vertices.
For 2-dimensional weakly minimal 2-vertex-global-rigidity, we can take the family of com-
plete graphs K4,n−4 (n ≥ 9) as an example. However, inductive constructions for weakly
minimal 2-vertex-globally-rigid graphs in R2 remains an open question.
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It is easy to see that in 2-dimensional 3-vertex-globally-rigid graph G(V,E), each vertex
has degree 5 at least since if one vertex has degree 4 at most, then after we remove 2
vertices incident with it, the vertex has degree 2 at most in the remaining graph that
cannot happen in a 2-dimensional globally rigid graph. It implies that if |V | is even,
|E| ≥ 5

2
|V | and if |V | is odd, then |E| ≥ 5|V |+1

2
. The authors in paper [30] gave examples

of 2-dimensional strongly minimal 3-vertex-globally-rigid graphs, when that strict bound
holds (see figure 3.2).

Figure 3.2: [30] (a) A strongly minimal 3-vertex-globally-rigid graph of size 10 in R2.
(b) A strongly minimal 3-vertex-globally-rigid graph of size 11 in R2.

Basically, the authors divided into 2 cases, when the graph has even number of vertices
and when the graph has odd number of vertices. In the former case, the graph is actually
Harary graph Hn,5 with n even, n ≥ 3. In the latter case, it is first formed from Harary
graph Hn,5 (n even, n ≥ 3), and then we apply an extension that is called "2-extension"
in [32]. The idea of their proof is first to show that the Harary graph Hn,5 is 3-vertex-
globally-rigid in R2 and then to prove that the 2-extension operation applied to the Harary
graph Hn,5 would preserve 3-vertex-global-rigidity. As we can see above, the Harary graph
Hn,5 is 5-connected. So we only need to prove that it becomes redundantly rigid after the
removal of any 2 vertices and the 2-extension operation preserves 3-vertex-global-rigidity
in R2. But detailed proofs are omitted due to space limitation of the paper. Complete
bipartite graphs K5,n−5 (n ≥ 11) are examples of weakly minimal 3-vertex-global-rigidity
in R2.

3.2 More about strongly and weakly minimal 3-vertex-
global-rigidity in R2

In this section, I will give another proof for the 2-dimensional 3-vertex-global-rigidity of
Harary graph H2n,5 (n ≥ 3) and then give another family of 2-dimensional strongly min-
imal 3-vertex-globally-rigid graphs. Some families of weakly minimal 3-vertex-globally-
rigid graphs in R2 are given at the end.

Theorem 3.2.1. A Harary graph H2n,5 (n ≥ 3) is 3-vertex-globally-rigid in R2.

Proof. One can check it holds for n = 3, n = 4 by removing two arbitrary vertices from
the graph and realizing the remaining graph is still globally rigid.
For cases n ≥ 5: Since the graph is symmetric, w.o.l.g. we can assume that we delete v1
and another vertex (between v2 and vn+1) and we shall prove that the remaining graph
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is globally rigid since it contains a spanning subgraph that is built from one K4 complete
graph by applying a sequence of Henneberg 1-extensions and degree 3 vertex operations,
hence the initial graph is 3-vertex-globally-rigid.
The subgraph is constructed as follows:
Case 1: v1 and v2 are removed.
Vertices vi (2n − 4 ≥ i ≥ n) are added in turn (v2n−4 first and vn last) by 1-extensions
from the complete graph v2nv2n−1v2n−2v2n−3 (delete vi+1v2n and add viv2n, vivi+1vi+2).
Then vertices vk (n − 1 ≥ k ≥ 3) are added in turn (vn−1 first and v3 last) by degree 3
vertex operations (add vkvk+1, vkvk+2, vkvn+k). Hence, the subgraph is globally rigid.
Case 2: v1 and vn+1 are removed.
Vertices vi (2n−4 ≥ i ≥ n+2) are added in turn (v2n−4 first and vn+2 last) by 1-extensions
from the complete graph v2nv2n−1v2n−2v2n−3 (delete vi+1v2n and add vivi+1, vivi+2, viv2n).
(In case n = 5, we only start with the complete graph v10v9v8v7 and do not add vi
as above). Then, vn is added from this by 1-extension operation (delete vn+2v2n and
add vnv2n, vnvn+2, vnv2n−1). Vertex vn−1 is added from this by 1-extension operation
(delete vnv2n−1 and add new edges vn−1v2n, vn−1vn, vn−1v2n−1). Vertices vk (n − 2 ≥ k ≥
2) are added in turn (vn−2 first and v2 last) by 1-extensions (delete vk+1v2n and add
vkvk+1, vkv2n, vkvk+2). Hence, the subgraph is globally rigid.
Case 3: v1 and vi (3 ≤ i ≤ n) are removed.
Vertices vk (2n−4 ≥ k ≥ i+1) are added in turn (v2n−4 first and vi+1 last) by 1-extensions
from complete graph v2nv2n−1v2n−2v2n−3 (delete vk+1v2n and add vkv2n, vkvk+1, vkvk+2).
Then vi−1 is added by 1-extension (delete vi+1v2n and add vi−1vi+1, vi−1v2n, vi−1vn+i−1).
Vertices vk (i−2 ≥ k ≥ 2) are added in turn (vi−2 first and v2 last) by 1-extensions (delete
vk+1v2n and add vkv2n, vkvk+1, vkvk+n). Hence, the subgraph is globally rigid. ♠

For the case of odd number of vertices, one example of 2-dimensional strongly minimal
3-vertex-global-rigid graphs on 2n+1 vertices (n ≥ 3) can be constructed as follows: Start
with the Harary graphH2n,5, remove three edges connecting three consecutive vertices and
their opposite vertices, add one more vertex v2n+1 to the graph and connect it with these
six vertices (see firgure 3.3). It is easy too see that it satisfy the strict bound |E| = 5|V |+1

2
.

Figure 3.3: Examples for strongly minimal 3-vertex-globally-rigid graphs in R2.

Theorem 3.2.2. The constructed graph is 3-vertex-globally-rigid in R2.

Proof. It suffices show that after removing 2 vertices, the remaining graph is still globally
rigid in R2. One can check that it holds for cases n = 3, n = 4, n = 5, n = 6. Now we
concentrate for cases n > 6. If we remove v2n+1, then the remaining graph contains a
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subgraph that is a cycle with 2-hop neighbors, which is 2-vertex-globally-rigid. Hence, if
one of two removed vertices is v2n+1 then we are done. Now, we only consider the cases
when 2 removed vertices are from the main cycle (Harary graph).
For easy understanding, in each case, number vertices in the main cycle in a way such
that the first removed vertex is marked with 1 and from that point, other vertices are
marked clockwise. So we have vertices in the original main cycle numbering from 1 to 2n,
starting from the first removed vertex and increasing with the clockwise. Assume that
according to that numbering, vk, vk+1, vk+2, vk+n, vk+n+1, vk+n+2 are vertices connecting to
v2n+1 and vb is the second removed vertex.

Figure 3.4: Numbering vertices according to the clockwise.

Because of the symmetry, it suffices to consider three cases.

1. v1, vb /∈ {vk, vk+1, vk+2, vk+n, vk+n+1, vk+n+2}.

2. v1 ≡ vk+n+2.

3. v1 ≡ vk+n+1.

Now, in each case, we will prove that after v1, vb are removed, the remaining graph contains
a globally rigid spanning subgraph which is built from one complete graph K4 by applying
a sequence of Henneberg 1-extensions and degree 3 vertex operations, thus it is globally
rigid. The construction of the subgraph is as follows:
Case 1: v1, vb /∈ {vk, vk+1, vk+2, vk+n, vk+n+1, vk+n+2}.
First, assume that vb belongs to left side of v1 in the original cycle, i.e, n+ 1 ≤ b ≤ 2n.
Case 1.1: b 6= 2n.

• Vertices vi (6 ≤ i ≤ b − 1) are added in turn by 1-extensions from the complete
graph v2v3v4v5 (delete vi−1v2 and add viv2, vivi−1, vivi−2);

• v2n+1 is added with 3 edges: v2n+1vk, v2n+1vk+1, v2n+1vk+2;

• vb+1 is added by 1-extension operation (delete vb−1v2 and add either vb+1vb−1, vb+1v2,
vb+1vb+1−n if vb+1 /∈ {vk+n, vk+n+1, vk+n+2} or vb+1vb−1, vb+1v2, vb+1v2n+1, otherwise);

• Vertices vj (b + 2 ≤ j ≤ 2n) are added in turn by 1-extensions (delete vj−1v2 and
add either vjv2, vjvj−1, vjvj−n if vj /∈ {vk+n, vk+n+1, vk+n+2} or vjv2, vjvj−1, vjv2n+1,
otherwise).
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Figure 3.5: Illustration for case 1.1.

Figure 3.6: Illustration for case 1.2.

Case 1.2: b = 2n.

• Vertices vi (6 ≤ i ≤ n + 2) are added in turn by 1-extensions from the complete
graph v2v3v4v5 (delete vi−1v2 and add viv2, vivi−1, vivi−2);

• v2n+1 is added with 3 edges v2n+1vk, v2n+1vk+1, v2n+1vk+2;

• Vertices vj (n + 3 ≤ j ≤ 2n − 1) are added in turn by degree 3 vertex operations
(add vjvj−1, vjvj−2, vjvj−n).

The case when vb belongs to right side of v1 (vb /∈ {vk, vk+1, vk+2}) is similar since in that
situation, we can consider v1 belongs to left side of vb and interchange their roles to return
previous cases.
Case 2: v1 ≡ vk+n+2.
Case 2.1: vb ≡ vn+k+1.
So b = 2n in this case.

• Vertices vi (6 ≤ i ≤ n + 2) are added in turn by 1 extensions from the complete
graph v2v3v4v5 (delete vi−1v2 and add viv2, vivi−1, vivi−2);

• v2n+1 is added with 3 edges v2n+1vn−1, v2n+1vn, v2n+1vn+1;

• Vertices vj (n + 3 ≤ j ≤ 2n − 2) are added in turn by degree 3 vertex operations
(add vjvj−1, vjvj−2, vjvj−n);

• Vertex v2n−1 is added with three edges v2n−1v2n−2, v2n−1v2n−3, v2n+1v2n−1.
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Figure 3.7: Illustration for case 2.1.

Case 2.2: vb ≡ vn+k.
In this case b = 2n− 1.

Figure 3.8: Illustration for case 2.2.

• Vertices vi (6 ≤ i ≤ n + 2) are added in turn by 1-extensions from the complete
graph v2v3v4v5 (delete vi−1v2 and add viv2, vivi−1, vivi−2);

• v2n+1 is added with 3 edges v2n+1vn−1, v2n+1vn, v2n+1vn+1;

• Vertices vj (n + 3 ≤ j ≤ 2n − 2) are added in turn by degree 3 vertex operations
vjvj−1, vjvj−2, vjvj−n;

• v2n is added with 3 edges v2nv2n−2, v2nv2n+1, v2nv2.

Case 2.3: vb ≡ vk or vb ≡ vk+1.
Here we have two cases: vb ≡ vk ≡ vn−1 or vb ≡ vk+1 ≡ vn.

• Vertices vi (2n−3 ≥ i ≥ n+1) are added in turn by 1-extensions from the complete
graph v2n+1v2nv2n−1v2n−2 (delete vi+1v2n+1 and add viv2n+1, vivi+1, vivi+2);

• v2 is added with 3 edges v2v2n, v2v2+n, v2v2n+1;

• Vertices vj (3 ≤ j ≤ n− 2) are added in turn by 1-extensions (delete vj−1v2n+1 and
add vjvj−1, vjv2n+1, vjvj+n);

• Finally, vertex vl (vl ∈ {vn, vn−1}) is added by 1-extension operation from this
(delete vn−2v2n+1 and add vlvn−2, vlv2n+1, vlvn+1).
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Figure 3.9: Illustration for case 2.3 when vb ≡ vk+1.

Case 2.4: vb ≡ vk+2.
In this case, b = n+ 1.

Figure 3.10: Illustration for case 2.4.

• Vertices vi (2n−3 ≥ i ≥ n+2) are added in turn by 1-extensions from the complete
graph v2n+1v2nv2n−1v2n−2 (delete vi+1v2n+1 and add vivi+1, vivi+2, viv2n+1);

• vn is added from by 1-extension operation (delete v2n+1vn+2 and add vnv2n+1, vnvn+2,
vnv2n−2);

• vn−1 is added by 1-extension operation (delete vnv2n−2 and add vn−1v2n−2, vn−1vn,
vn−1v2n+1);

• vn−2 is added by 1-extension operation (delete vn−1v2n−2 and add vn−2v2n−2, vn−2vn−1,
vn−2vn);

• Vertices vj (n − 3 ≥ j ≥ 2) are added in turn by degree 3 vertex operations (add
vjvj+1, vjvj+2, vjvj+n).

Case 2.5: vb belongs to left side of v1 in the main cycle, vb /∈ {vn+k, vn+k+1, vk+2}.
Case 2.5.1: b 6= 2n− 2.

• Vertices vi (b − 5 ≥ i ≥ b − 1 − n) are added in turn by 1-extensions from the
complete graph vb−1vb−2vb−3vb−4 (delete vi+1vb−1 and add vivb−1, vivi+1, vivi+2);

• v2n+1 is added with 3 edges v2n+1vn−1, v2n+1vn, v2n+1vn+1;

• Vertices vj (b−n−2 ≥ j ≥ 2) are added in turn by degree 3 vertex operations (add
vjvj+n, vjvj+1, vjvj+2);
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Figure 3.11: Illustration for case 2.5.1.

• v2n is added with 3 edges v2nv2n+1, v2nv2, v2nvb+1−n;

• v2n−1 is added by 1-extension operation (delete v2nvb+1−n and add v2n−1v2n, v2n−1v2n+1,
v2n−1vb+1−n);

• Vertices vj (2n−2 ≥ j ≥ b+1) are added in turn by 1-extensions (delete vj+1vb+1−n
and add either vjvb+1−n, vjvj+1, vjvj−2 in case vj = vb+1 or vjvb+1−n, vjvj+1, vjvj+2,
otherwise).

Case 2.5.2: b = 2n− 2.

Figure 3.12: Illustration for case 2.5.2.

• Vertices vi (2n−7 ≥ i ≥ n−3) are added in turn by 1-extensions from the complete
graph v2n−3v2n−4v2n−5v2n−6 (delete vi+1v2n−3 and add viv2n−3, vivi+1, vivi+2);

• v2n+1 is added with 3 edges v2n+1vn−1, v2n+1vn, v2n+1vn+1;

• Vertices vj (n− 4 ≥ j ≥ 2) are added in turn with degree 3 vertex operations (add
vjvj+1, vjvj+2, vjvj+n);

• v2n−1 is added with 3 edges v2n−1v2n+1, v2n−1v2n−3, v2n−1v2;

• v2n is added by 1-extension operation (delete v2n−1v2 and add v2nv2, v2nv2n+1, v2nv2n−1).

Case 2.6: vb belongs to right side of v1 (vb /∈ {vk, vk+1, vk+2}).
Case 2.6.1: b = 2
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Figure 3.13: Illustration for case 2.6.1.

• Vertices vi (2n−3 ≥ i ≥ n+1) are added in turn by 1-extensions from the complete
graph v2n+1v2nv2n−1v2n−2 (delete vi+1v2n+1 and add viv2n+1, vivi+1, vivi+2);

• Vertices vj (n ≥ j ≥ 3) are added in turn by degree 3 vertex operations (add either
vjvj+1, vjvj+2, vjv2n+1 if vj /∈ {vn, vn−1} or vjvj+1, vjvj+2, vjvj+n, otherwise).

Case 2.6.2: b 6= 2.

• Vertices vi (2n − 3 ≥ i ≥ n) are added in turn by 1-extensions from the complete
graph v2n+1v2nv2n−1v2n−1 (delete vi+1v2n+1 and add vivi+1, viv2n+1, vivi+2);

• v2 is added with 3 edges v2v2n, v2vn+2, v2v2n+1;

Case 2.6.2.1: b = 3

Figure 3.14: Illustration for case 2.6.2.1.

• v4 is added from above by 1-extension operation (delete v2v2n+1 and add v4v2n+1,
v4v2, v4vn+4);

• Vertices vj (5 ≤ j ≤ n − 2) are added in turn 1-extensions (delete vj−1v2n+1 and
add vjv2n+1, vjvj−1, vjvj+n);

• vn−1 is added by 1-extension operation (delete vn−2v2n+1 and add vn−1vn−2, vn−1v2n+1,
vn−1vn).

Case 2.6.2.2: b 6= 3.

• Vertices vi (3 ≤ i ≤ b − 1) are added in turn from above by 1-extensions (delete
vi−1v2n+1 and add viv2n+1, vivi−1, vivi+n);
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Figure 3.15: Illustration for case 2.6.2.2.

• vb+1 is added 1-extension operation (delete vb−1v2n+1 and add vb+1vb−1, vb+1v2n+1,
vb+1vb+1+n. Skip this step in case b = n− 3;

• Vertices vj (b+ 2 ≤ j ≤ n− 2) are added in turn by 1-extensions (delete vj−1v2n+1

and add vjv2n+1, vjvj−1, vjvj+n). Skip this step in case b = n− 3;

• vn−1 is added by 1-extension operation (delete vn−2v2n+1 and add vn−1v2n+1, vn−1vn,
vn−1vn−2).

Case 3: v1 ≡ vn+k+1.
Case 3.1: vb ≡ vn+k.
Similar to the case v1 ≡ vk+n+2, vb ≡ vk+n+1 because of the symmetry.
Case 3.2 vb ≡ vk or vb ≡ vk+1.
There are two cases: vb ≡ vk ≡ vn or vb ≡ vk+1 ≡ vn+1.

Figure 3.16: Illustration for the case 3.2 when vb ≡ vk.

• Vertices vi (n + 6 ≤ i ≤ 2n) are added in turn by 1-extensions from the complete
graph vn+2vn+3vn+4vn+5 (delete vi−1vn+2 and add vivi−1, vivn+2, vivi−2);

• v2n+1 is added by 1-extension operation (delete v2nvn+2 and add v2n+1v2n, v2n+1vn+2,
v2n+1vn+3);

• v2 is added by 1-extension operation (delete v2n+1vn+3 and add v2v2n+1, v2vn+3, v2v2n);

• v3 is added by 1-extension operation (delete v2vn+3 and add v3vn+3, v3v2n+1, v3v2);

• Vertices vj (4 ≤ j ≤ n− 1) are added in turn by 1-extensions (delete vj−1v2n+1 and
add vjv2n+1, vjvj−1, vjvj+n);
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• Finally, vl (vl ∈ {vn, vn+1}) is added by 1-extension operation (delete vn−1v2n+1 and
add vlvn−1, vlv2n+1, vlvn+2).

Case 3.3: vb belongs to left side of v1 and vb /∈ {vn+k, vk+1, vk+2}.

Figure 3.17: Illustration for case 3.3.

• Vertices vi (6 ≤ i ≤ b − 1) are added in turn by 1-extensions from the complete
graph v2v3v4v5 (delete vi−1v2 and add viv2, vivi−1, vivi−2);

• v2n+1 is added with 3 edges v2n+1vn, v2n+1vn+1, v2n+1vn+2;

• vb+1 is added by 1-extension operation (delete vb−1v2 and add vb+1vb−1, vb+1v2,
vb+1vb+1−n). Skip this step in case b = 2n− 1;

• Vertices vj (b + 2 ≤ j ≤ 2n − 1) are added in turn by 1-extensions (delete vj−1v2
and add vjv2, vjvj−1, vjvj−n). Skip this step in cases b = 2n− 1; b = 2n− 2;

• Vertex v2n is added by 1-extension operation (delete v2n−1v2 and add v2nv2n−1, v2nv2,
v2nv2n+1 in the case b 6= 2n − 1 or delete v2n−2v2 and add v2nv2n−2, v2nv2n+1, v2nv2
in case b = 2n− 1).

Because the graph that we constructed is symmetric through vk+n+1vk+1, other cases can
be proved similarly as we did above.
Since all subgraphs that we constructed above are globally rigid in R2 and contain all
other 2n−1 vertices after the removal of two vertices v1, vb, the original graph is 3-vertex-
globally rigid in R2. ♠

Figure 3.18: Two weakly minimal 3-vertex-global-rigid graphs with 9 vertices in R2.
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Figure 3.18 shows examples of weakly minimal 3-vertex-global-rigidity in R2. In fact, one
family of weakly minimal 3-vertex-globally-rigid graphs with n vertices (n > 6) can be
built from Harary graph Hn−1,4 and then connect all vertices with one new vertex. The
number of edges in this case is 3n − 3. If n is odd, another family of weakly minimal
3-vertex-globally-rigid graphs can be constructed by Harary graph Hn−1,5 first and then
add one more vertex and connect it with five other existed vertices. This type of graph
has 5n+5

2
edges.

3.3 Open questions
1. Operations to build all strongly minimal 2-vertex-globally-rigid graphs in R2.

2. Full characterization of strongly/weakly minimal k-vertex-global-rigidity in R2, k ≥
3 and operations to build them.

3. Complete characterization of minimal k-vertex-global-rigidity in three-space or higher
dimensions.
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Chapter 4

Minimal k-edge-(global) rigidity

Due to the higher severity of vertex loss than edge loss, research attempts pay less at-
tention to redundancy of edges. Some results about minimal k-edge-rigidity and minimal
k-edge-global-rigidity are mentioned below.

4.1 Minimal k-edge-rigidity
Definition 4.1.1. A graph G = (V,E) is called k-edge-rigid if it is rigid after deleting
any k − 1 edges.

Definition 4.1.2. A graph G = (V,E) is called minimal k-edge-rigid if it is k-edge-
rigid and G− e is not k-edge-rigid for any e ∈ E.

It implies that in a minimal k-edge-rigid graph, for each edge, there is a set of k edges
containing it, which makes the graph nonrigid after removing the edge set.

Definition 4.1.3. A graph is called strongly minimally k-edge-rigid if it is minimal
k-edge-rigid and there exists no k-edge-rigid graph with the same number of vertices and
a smaller number of edges.

Definition 4.1.4. A graph is called weakly minimally k-edge-rigid if it is minimal
k-edge-rigid but not strongly minimal k-edge-rigid.

Firstly, we can easily see that for k = 1, there is no differences between strongly minimal
1-edge-rigidity and weakly minimal 1-edge-rigidity since they become minimal rigidity.
In a d-dimensional space, minimal rigid graphs G = (V,E) must be complete graphs if
|V | ≤ d or satisfy the condition |E| = d|V | −

(
d+1
2

)
, otherwise (theorem 1.3).

In R, k-edge-rigidity is equivalent to k-edge-connectivity. Hence, strongly minimal k-
edge-rigid graphs in R are k-edge-connected graphs with fewest possible edges. Since
every vertex of a k-edge-connected graph has degree at least k, the minimum number of
edges of a k-edge-connected graph with n vertices is n− 1 if k = 1 and d1

2
kne otherwise.

For k = 1, the graph is a tree. For k > 1, we can build strongly minimal k-edge-rigid
graphs in R as follows:
Let C be a graph on V := {1, . . . , n} with edges {i, i + 1} for i ∈ V (with addition mod
n). Let G be the graph obtained from C by replacing each edge by b1

2
kc parallel edges.

If k is even, then G is k-edge-connected as required. If k is odd, add d1
2
ne edges {i, j} to

G, where i and j have distance b1
2
nc in C and such that these edges cover all vertices in

V . So G has d1
2
kne edges and in fact, G is k-edge-connected. Suppose that dG(U) < k
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for some nonempty proper subset U of V . By symmetry, we can assume that |U | ≥ 1
2
n.

Now C[U ] is connected (as otherwise dG[U ] ≥ 4b1
2
kc ≥ k since k > 1). So we can assume

that U = [1, s], with s ≥ d1
2
ne. However, n ∈ V \ U is adjacent to d1

2
ne. As this vertex

belongs to U , we have dG(U) ≥ 2b1
2
kc+ 1 = k, a contradiction.

Specially, in the case n ≥ k+1, then Harary graphHn,k is an example for strongly minimal
k-edge-rigidity in R since as we know, it has d1

2
kne edges and its k-vertex-connectivity

implies its k-edge-connectivity. Note that the smallest vertex set that is incident to all
edges of the minimal cut succeeds in disconnecting the graph.
Now we consider minimal 2-edge-rigidity. Because the loss of one edge does not make it
nonrigid, a 2-edge-rigid graph on n vertices in Rd (n > d) must have dn−

(
d+1
2

)
+1 edges

at least. In fact, we have 2-edge-rigid graphs with this fewest possible edges. These can be
constructed by applying a sequence of d-dimensional Henneberg 1-extension operations
to the complete graph on d+2 vertices. The first reason for that is from the 2-edge-rigid
property of a complete graph on d+ 2 vertices. After deleting an arbitrary edge e from a
complete graph G on d + 2 vertices, the remaining graph contains a complete subgraph
on d+1 vertices, which connects with the last vertex by d edges; hence, G− e is rigid and
G is 2-edge-rigid. The second reason is from that fact that the d-dimensional Henneberg
1-extension operation preserves the 2-edge-rigidity in Rd (Easy to check that). Moreover,
the initial graph, a complete graph on d+2 vertices, has

(
d+2
2

)
vertices (which is equal to

dn−
(
d+1
2

)
+1 when n = d+2) and once a d-dimension 1-extension is applied, a new vertex

and d new edges are added. Therefore, in Rd, a strongly minimal 2-edge-rigid graph on n
vertices has dn−

(
d+1
2

)
+ 1 edges.

Applying for d = 2, a strongly minimal 2-edge-rigid graph on n vertices (n > 2) has 2n−2
edges (e.g. a wheel graph). For weakly minimal 2-edge-rigidity in R2, we have the one
result presented in paper [19]. Two-edge-rigidity in this paper is mentioned as redundant
rigidity. We have the equivalent definition for minimal 2-edge-rigid graphs.

Definition 4.1.5. G = (V,E) is minimally redundantly rigid if G is redundantly
rigid but G− e is not redundantly rigid for all e ∈ E.

Theorem 4.1.1. [19] Let G = (V,E) be a minimally redundantly rigid graph in R2.
Then |E| ≤ 3|V | − 6.

In other words, all 2-dimensional weakly minimal 2-edge-rigid graphs G = (V,E) satisfy
the condition |E| ≤ 3|V | − 6. Moreover, in case |V | ≥ 7, Jordan showed us a tighter
condition |E| ≤ 3|V | − 9. The complete bipartite graphs K3,m (m ≥ 5) are examples of
weakly minimal 2-edge-rigid graphs in R2.
As far as I know, the characterization of minimal k-edge-rigidity, k ≥ 3 in the plane or
higher dimensional spaces is still an open question.

4.2 Minimal k-edge-global-rigidity
Definition 4.2.1. A graph G = (V,E) is called k-edge-globally-rigid if it is still
globally rigid after removal of any k − 1 edges.

Definition 4.2.2. A graph G = (V,E) is called minimal k-edge-globally-rigid if it is
k-edge-globally-rigid and G− e is not k-edge-global-rigid for any e ∈ E.

Definition 4.2.3. A graph is called strongly minimally k-edge-globally-rigid if it
is minimal k-edge-globally-rigid and there exists no k-edge-globally-rigid graph with the
same number of vertices and fewer edges.
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Definition 4.2.4. A graph is called weakly minimally k-edge-globally-rigid if it is
minimal k-edge-globally-rigid but not strongly minimally k-edge-globally-rigid.

Start with k = 1, strongly minimal 1-edge-global-rigidity is actually strongly minimal
global rigidity. In fact, a graph G on at most d+ 1 vertices is globally rigid in Rd if and
only if G is complete. So we concentrate for the case when G has more than d+1 vertices.
In this case, all strongly minimal globally rigid graphs on n vertices (n ≥ d + 2) have
dn−

(
d+1
2

)
+1 edges. Again, a family of graphs that is constructed from a complete graph

on d+2 vertices by applying a sequence of d-dimension Henneberg 1-extension operations
is an example for that. Such graphs are globally rigid in Rd due to that fact that the
d-dimension 1-extension operation preserves global rigidity (proved by Connelly in [6]).
Weakly minimal 1-edge-global-rigidity is weakly minimal global rigidity. In R and R2, we
already have complete characterization of global rigidity. A graph is globally rigid in R
if and only if it is the complete graph K2 or it is 2-connected. A graph is globally rigid
in R2 if and only if it is K2 or K3 or it is 3-connected and redundantly rigid. From that,
we can find examples about weakly minimal globally rigid graphs. For example, complete
bipartite graphs K2,n−2 (n ≥ 5), K3,n−3 (n ≥ 8) can be illustrations for weakly minimal
global rigidity in R and R2, respectively.
For three-space and higher dimensions, the existence of weakly minimal globally rigid
graphs is still mysterious somehow. There is a conjecture related to that.

Conjecture 4.2.1. [21] Let G = (V,E) be minimally globally rigid in Rd. Then

• |E| ≤ (d+ 1)|V | −
(
d+2
2

)
,

• the minimum degree of G is at most 2d+ 1.

4.3 Open questions
1. Minimal k-edge-rigidity in R2 with k ≥ 3.

2. Weakly minimal k-edge-global-rigidity in R2 with k ≥ 2.

3. Combinatorial characterization of minimal k-edge-(global) rigidity in three-space or
higher dimensions.
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Chapter 5

Applications of rigidity theory

Rigidity, global rigidity, redundant rigidity, and redundant global rigidity are not only
terminologies in mathematics but also have origins from nature. They are found in a
variety of practical applications. Although the definitions of rigidity and global rigidity in
different fields have some slight changes with the pure definitions in mathematics, after all
we see applications of rigidity theory in real life. In this chapter, among its applications
such as architecture, engineering, materials science, medicine and biochemistry, statics,
computer-aided design (CAD), network sensoring, motion planning, NMR reconstruction,
and percolation theory, I shall focus on the ones I feel most interested.

5.1 Applications to sensor network localization and for-
mation control

Some animals like birds, fishes, or ants often forage for food or move together. One reason
for such group behaviors is that they can do sophisticated tasks that cannot be achieved by
individual members. In this collective behavior, the relative positions between members
are preserved, and the group moves as a cohesive whole.
Nowadays, artificial systems of robots, underwater vehicles, and autonomous or piloted
airborne vehicles are being deployed to tackle specific missions without human involvement
in both the civilian and military spheres, such as bush-fire control, surveillance, and
underwater exploration. They also work in a cohesive whole to complete complicated
works and are known as autonomous vehicle formations.
Autonomous vehicle formations and sensor networks have lately received considerable
attention due to recent technological advances. A sensor network, a wider concept than an
autonomous vehicle formation, is a collection of agents, each with sensing, communication,
and computation capabilities that cooperate to accomplish a task.
Rigidity, global rigidity, and redundant rigidity are important properties of information
architectures for these networks because of the crucial role they play in formation shape
control, self-localization, and robustness of the whole system.

5.1.1 Formation shape control

A sensor network is modeled with a graphG(V,E), where V is a set of vertices representing
agents and E is a set of edges representing inter-agent distances to be actively held
constant as moving. As we know from rigidity theory, if a suitably large and well-chosen
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set of inter-agent distances is held constant, then all remaining inter-agent distances will
be constant as a consequence; thus, maintaining formation shape. Although an easy way
to maintain a desired formation shape is to control every possible inter-agent distance,
this is not an effective solution in real life. It is much better to control a number of
necessary distances in a prescribed sensing and communication range. Rigidity theory
(especially minimal rigidity) is the key to address that issue; it tells us the minimum
sufficient sensing radius for each agent to guarantee the formation shape control in sensor
networks.

5.1.2 Wireless sensor networks self-localization

A wireless sensor network consists of a small number of anchors and a large number of
small, cheap ordinary nodes. Anchors can be aware of their own positions and ordinary
nodes have no prior knowledge of their locations. If ordinary nodes were capable making
measurements to multiple anchors, they could determine their positions. However, in
some cases, several ordinary nodes cannot directly communicate with anchors because of
power limitations or signal blockage. Hence, ordinary nodes not only make connections
with anchors, but also they make measurements with other ordinary nodes.
Global rigidity addresses the self-localization of the network. When we know the exact
position of three non-collinear anchors in the space, we can determine the position of
whole system because of its unique realization.

5.1.3 Robustness of sensor networks

Another important property of sensor networks is their potential robustness to loss of
some agent(s) or several link(s). These losses can occur due to enemy attack or jamming,
due to random mechanical or electrical failure, or due to intentionally deploying an agent
for a separate task. Therefore, we need to investigate the structure of graphs with the
property that rigidity or global rigidity is preserved after removal of some vertices or some
edges. This is the main reason why the previous chapters are about k-vertex-rigidity, k-
vertex-global-rigidity, k-edge-rigidity and k-edge-global-rigidity.

5.2 Applications to biomolecules
Biomolecules are heterogeneously composed of rigid and flexible (nonrigid) regions. Here,
flexibility and rigidity denote the possibility, or impossibility, of internal motions in an
object under force without giving information about directions and magnitudes of move-
ments. Understanding biomolecular flexibility and rigidity is instrumental in understand-
ing of biomolecular function.
In fact, it is still challenging for us to find a full combinatorial characterization of rigid
graphs in the three-dimensional space. We have Laman’s theorem for complete charac-
terization of rigidity in R2 (the 2n− 3 edge count condition). However, we cannot apply
the 3n− 6 edge count condition in R3 (see the "double banana" graph).
The question is whether we can determine the rigid components of biological molecules
while all of them exist in the three-dimensional space. Luckily, the answer is yes. This is
because we can model biomolecules by special frameworks such as body-bar frameworks,
body-hinge frameworks, or body-bar-hinge frameworks where nodes are rigid bodies, in-
stead of working with bar-joint frameworks where nodes are points as usual. In a body-bar
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Figure 5.1: Double banana graph. It satisfies the 3n− 6 edge count condition (the graph
is on 8 nodes with 18 edges and every subgraph with n0 nodes (2 ≤ n0 ≤ 7) has at most
3n0 − 6 edges). However, internal motion within this graph is possible along the dashed
line between the two ‘banana’ subgraphs.

framework, rigid bodies are connected by bars and are free to move continuously such that
the distance between any two points joined by a bar is fixed. In a body-hinge framework,
rigid bodies are connected by hinges and rotate about the hinges. In a body-bar-hinge
framework, rigid bodies are connected by both bars and hinges and they are free to move
continuously subject to the constraints that the distance between any two points joined
by a bar is fixed and that the relative motion of any two bodies joined by a hinge is a
rotation about the hinge. A framework is called rigid here if every such continuous mo-
tion preserves the distances between all pairs of points belonging to different rigid bodies.
A framework is called generic if the coordinates of all vertices of all the bodies are alge-
braically linear independent. From a point to a rigid body, there must be huge differences.
One of these is changes in the degree of freedoms. Originally from physics, the degrees
of freedom of a system is the number of independent parameters that define its config-
uration. Hence, while a node (a point) in a three-dimensional bar-joint framework has
three degrees of freedom (three coordinates), a node (a rigid body) in a three-dimensional
body-bar framework has six degrees of freedom (three translations and three rotations).
First consider the case when a biomolecule is modeled as a three-dimensional body-bar
framework. Given a molecule as a set of atoms and covalent bonds (as graph M in figure
5.2a). Since the angles between the covalent bonds of an atom are also fixed, we need to
add additional bond bending edges between the nearest neighbors in the graph M , to fix
these angles. This forms the square of the graph M2 (obtained from M by adding
a new edge for each pair of vertices of distance two in M) (figure 5.2b). Now, an atom
with its locked bonds creates a rigid body (figure 5.2c). So, in a 3-dimensional body-bar
framework:

• each atom, with its locked bonds, is considered as a rigid body having six degrees
of freedom;

• every bar in the framework takes one degree of freedom off the system;

• a covalent bond is a rotatable hinge leaving one degree of freedom between the two
rigid bodies between the two rigid bodies, so it is replaced by five bars between
these bodies;

• a double bond, or a peptide bond, is non-rotatable locking all six degrees of freedom
of the two atoms into a single body;

• additional types of constraints can be modeled by any number of bars between 1
and 6.
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Figure 5.2: [38] (a) A biomolecule M , (b) with bond bending edges M2, (c) each atom
and its bonds become a full rigid body, (d) the bond becomes a hinge between bodies, (e)
the hinge is represented by five constraints (bars) between the bodies. (f) A non-rotatable
bond locks both atoms into a single body.

In the underlying graph of a body-bar framework, vertices correspond to rigid bodies
and edges correspond to bars. Therefore, it is a multigraph where up to six edges are
allowed between any pair of vertices. This is totally different with the bar-joint frameworks
when we assume there is no multiple edges. However, similar to the rigidity matrix for
a bar-joint framework, we can extract a new type of matrices. The rigidity matrix of
multigraph G = (V,E) here has |E| rows and 6|V | columns. Working in this special
matrix, Tay proved one surprising result, which is considered as Laman’s theorem for
rigidity of body-bar frameworks in the three-dimensional space.

Theorem 5.2.1. [34] Given a generic body–bar framework (G, b) on the multigraph G
in R3, a subset of edges E is independent in the rigidity matrix R(G, b) if and only if for
all non-empty subsets E ′ ⊆ E, |E ′| ≤ 6|V ′| − 6.

More clearly, a body-bar framework (G, b) is rigid in R3 if and only if its underlying graph
G has a minimal subgraph G′(V,E ′) in which |E ′| = 6|V | − 6 and for every nonempty
subgraphs induced by vertices V0 ⊆ V , iG′(V0) ≤ 6|V0| − 6. This result is the base for the
3D body-bar pebble game running in some computer programs such as FIRST, KINARI
that analyze the rigid/flexible components of biomolecules (see figure 5.3).
The next theorem gives a combinatorial property of "minimally rigid multigraphs".

Theorem 5.2.2. [36] (Tutte) A multigraph G = (V,E) with 6|V | − 6 edges, satisfies the
count |E0| ≤ 6|V0|−6 on all subgraphs if and only if graph G is a union of six edge-disjoint
spanning trees.

We also consider body-bar frameworks in an arbitrary d-dimensional space. Generally, a
d-dimensional body-bar framework (G, b) can transfer to a d-dimensional bar-joint frame-
work. The underlying graph of the resulting bar-joint framework is called a body-bar
graph, denoted by GB and it is defined as follows:

• GB consists of (d + 1)|V (G)| + 2|E(G)| vertices; for each v ∈ V (G) we have d + 1
vertices xv,1, . . . , xv,d+1 and for each e = uv ∈ E(G) we have two vertices xe,u and
xe,v;
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Figure 5.3: [25] Rigidity analysis results for 2LAO. Cluster colors, assigned at random,
indicate groups of atoms which tend to move together.

• the core C(v) of v ∈ V (G) is the complete graph on {xv,1, . . . , xv,d+1};

• the body B(v) of v ∈ V (G) is the complete graph on V (C(v)) ∪ xe,v : e ∈ δG(v),
where δG(v) denotes the set of edges in G incident to v;

• E(GB) :=
⋃
v∈V (G)E(B(v)) ∪ {{xe,u, xe,v} : e = uv ∈ E(G)}.

Figure 5.4: [24] A body-bar framework and the body-bar graph induced by the underlying
graph in R3.

Hence, everything with a d-dimensional body-bar framework can transfer to a d-dimensional
bar-joint framework. In all dimensions, the rigidity of generic body-bar frameworks de-
pends only the underlying graph. The general result on combinatorial characterization of
underlying graphs of rigid body-bar frameworks is presented in the next theorem.

Theorem 5.2.3. [34] (Tay) A generic body-bar framework (G, b) is rigid in Rd if and
only if its underlying graph G contains

(
d+1
2

)
edge-disjoint spanning trees.

The global rigidity of body-bar frameworks is also a generic property in all dimensions.
The condition for the global rigidity of body-bar frameworks is as follows.

Theorem 5.2.4. [7] Let (G, b) be a generic body-bar framework with its underlying graph
G = (V,E), |V | ≥ 2 and |E| ≥ 2. Then the following are equivalent:
(a) (G, b) is globally rigid in Rd,
(b) (G, b) is redundantly rigid in Rd,
(c) G− e contains

(
d+1
2

)
edge-disjoint spanning trees on the vertices V for all e ∈ E.
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Biomolecules can also be presented by body-hinge frameworks. A d-dimensional body-
hinge framework (G, h) models a structure consisting of rigid bodies connected by hinges.
Each hinge is a (d − 2)-dimensional simplex that connects a pair of bodies. In the un-
derlying graph G = (V,E) of the body-hinge framework, vertices V correspond to bodies
and edges E correspond to hinges. We can obtain an equivalent d-dimensional bar-and-
joint framework by replacing each body by a bar-and-joint realization of a large enough
complete graph in such a way that two bodies joined by a hinge share d− 1 joints. The
graph of such a bar-and-joint framework is called a body-hinge graph, denoted by GH . It
is defined as follows:

• GH consists of (d+1)|V (G)|+(d−1)|E(G)| vertices; for each v ∈ V (G) we have d+1
vertices xv,1, . . . , xv,d+1 and for each e ∈ E(G) we have d−1 vertices xe,1, . . . , xe,d−1;

• the hinge H(e) of e is the complete graph on {xe,1, . . . , xe,d−1} for each e ∈ E;

• the core C(v) of v is the complete graph on {xv,1, . . . , xv,d+1} for each v ∈ V ;

• the body B(v) of v is the complete graph on V (C(v)) ∪
⋃
e∈δG(v) V (H(e));

• E(GH) :=
⋃
v∈V E(B(v)).

Figure 5.5: [24] (a) A body-hinge framework in R3, (b) the underlying graph H, and (c)
the body-hinge graph GH .

Each rigid body in Rd has
(
d+1
2

)
degrees of freedom because of d translations and

(
d
d+2

)
rotations. Since each hinge leaves one degree of freedom between two rigid bodies, each
hinge can be presented by

(
d+1
2

)
− 1 bars. Hence, a d-dimensional body-hinge framework

becomes a d-dimensional body-bar framework if every hinge is replaced by
(
d+1
2

)
− 1 bar.

Combined with theorem 5.2.3, we obtain the following.

Theorem 5.2.5. [34] [40] (Tay and Whiteley) A generic body-hinge framework (G, b) is
rigid with its underlying graph G(V,E) in Rd (d ≥ 2) if and only if every edge e ∈ E
is replaced by D − 1 parallel edges, the resulting multigraph contains D edge-disjoint
spanning trees on the vertices V where D =

(
d+1
2

)
.
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From hence on, for a graph G and a positive integer k, we denote kG be the graph obtained
from G by replacing each edge of G by k parallel edges.
The combinatoiral characterization of globally rigid body-hinge frameworks in all dimen-
sional is also studied.

Theorem 5.2.6. [20] A generic body-hinge framework (G, h) is globally rigid in Rd (d ≥
3) if and only if (D − 1)G− f contains D edge-disjoint spanning trees for any edge f of
(D − 1)G where D =

(
d+1
2

)
.

For two-dimensional case, the authors of the paper gave one specific result.

Theorem 5.2.7. [20] A generic body-hinge framework (G, h) is globally rigid in R2 if
and only if its underlying graph G is 3-edge-connected.

We can see from the above theorem that the 2-dimensional global rigidity of a generic
body-hinge framework is equivalent to the 3-edge-connectivity of the underlying graph.
Compared to bar-joint frameworks, it is far simpler since we do not need the "redundant
rigidity" condition anymore.
Not only that, the body-hinge frameworks have splendid properties when redundant rigid-
ity and redundant global rigidity of the generic frameworks can be characterized through
the connectivity of underlying graph in all dimensions. This nice research is presented in
paper [26]. For easy understanding, main notations of the paper is explained below.

• A graph G is called (k, h)-connected if removing any k − 1 vertices from G results
in a graph which is h-edge-connected.

• A body-hinge framework (G, h) is called (k, h)-rigid in Rd if removing any k − 1
rigid bodies that are equivalent to k − 1 vertices in the underlying graph and then
any h− 1 hinges from (G, h) results in a framework which is rigid in Rd.

• A body-hinge framework G is called (k, h)-globally rigid in Rd if removing any k−1
rigid bodies that are equivalent to k − 1 vertices in the underlying graph and then
any h− 1 hinges from (G, h) results in a framework which is globally rigid in Rd.

Theorem 5.2.8. [26] Let k and h be integers such that k ≥ 1 and h ≥ 2, respectively.
(a) A generic body-hinge framework (G, h) is (k, h)-rigid in R2 if and only if its underlying
graph is (k, h + 1)-connected and (G, b) is (k, h)-globally rigid in R2 if and only if G is
(k, h+ 2)-connected.
(b) For any d ≥ 3, a generic body-hinge framework (G, h) is (k, h)-rigid in Rd if and only if
it is (k, h)-globally rigid in Rd if and only if its underlying graph G is (k, h+1)-connected.

Explained from the beginning of this chapter, the rigidity of molecules related closely with
the square of a graph. Hence, there are some research about squares of graphs.

Theorem 5.2.9. [18] Let G be a graph and suppose that G2 is 7-connected. Then G2 is
rigid in the three-dimensional space.

Also, the authors of the paper showed that it is the best bound by giving one example,
which is 6-connected but non-rigid.

Theorem 5.2.10. [23] Let G be a graph with minimum degree at least two. Then G2 is
rigid in R3 if and only if 5G contains six edge-disjoint spanning trees.

Conjecture 5.2.11. [7] [17] Suppose that G has no cycles of length at most four. Then
G2 is globally rigid in R3 if and only ifG2 is 4-connected and 5G−e contains 6 edge-disjoint
spanning trees for every e ∈ 5G.
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5.3 Application to statics

Figure 5.6: Quasicrystal framework COAST by Tony Robbin, installed at the Danish
Technical University, 1994.

First, let’s us consider an m × n square-grid framework in the plane. It consists of
horizontal and vertical rods. Each rod has the same length and is rigid. Incident rods
are attached together by joints which allows the rods to pivot. A square-grid framework
can be deformed by rotating certain parts along certain joints. To prevent such things
happen, you are allowed to add diagonal rods (which would force a rhombus to be square).
A framework with extra rods is rigid if fixing the position of one rod in the plane, the
positions of all other rods are uniquely determined. The question is where should you place
the additional rods, and what is the fewest number of diagonal rods needed to stabilize the
structure (i.e. the grid framework is rigid)?

Figure 5.7: Both adding 9 extra rods but the left framework keep the same shape under
continuous motions while the right one distorts. The left framework is even rigid after
removing the left most bottom rod.

To answer that question, we define a bipartite graph where the vertices of the graph
correspond to the rows and columns of the grid framework, respectively, and there is an
edge between two vertices if and only if there is a diagonal rod in the intersection of the
corresponding row and column.

Theorem 5.3.1. [1] (Bolker, Crapo 1979) A planar square-grid framework will be rigid
if and only if the corresponding bipartite graph is connected.
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We see that the bipartite graph on the left below corresponds to the left square-grid
framework above. The left bipartite graph is connected, and in fact, we can remove the
blue edge (which is equivalent with the left most bottom rod in the left grid framework) to
obtain a tree. So the left square-grid framework is even rigid after the removal of the left
most bottom rod. In contrast, the bipartite graph on the right below is not connected (the
blue part disconnects with the red part), hence the right square-grid framework above is
non-rigid.

What happens if we replace squares in a square-grid framework by rhombi?
A rhombic carpet is a planar arrangement of rhombi, which is connected and simply
connected. This means every rhombus may be reached from any other by a contiguous
succession of rhombi. Two rhombi are contiguous if they share a common side. Two
diamonds touching at a vertex will not be considered as connected. By simply connected
we mean that the carpet has no holes. And we do not allow two rhombi to overlap.
Similar to the square-grid framework, now we can add diagonal rods to fix some rhombi.
Here we call this process as bracing the rhombic carpet. The questions is When is the
braced rhombic carpet rigid ?
To answer this, we try to do similar as before. We cannot consider columns and rows here,
but we can consider ribbons. In a rhombic carpet, a maximal succession of contiguous
rhombi, whose common edges are parallel, is called a ribbon.

Figure 5.8: [9] Illustration for a ribbon.

We associate a rhombic carpet with a Wester graph, where the vertices of the graph are
all of the ribbons in the carpet and the edges are defined by the rule that ab is an edge if
and only if the ribbons a and b intersect.

Theorem 5.3.2. [9] (Wester) Let K be a rhombic carpet with associated Wester graph τ
and let φ be a subgraph which is both spanning and connected. Then, bracing the rhombi
corresponding to the edges of φ makes K rigid.

43



Figure 5.9: [9] Left: A rhombi carpet with 13 rhombi, 7 ribbons and 6 bracing plates.
Right: the corresponding Wester graph and a maximal bracing tree.

The set of colored rhombi in figure 5.9 is the minimal rhombi set that need to be braced
for making the whole rhombi carpet rigid since it is equivalent with the spanning and
connected subgraph in the right hand side.
However, everything is not simple in three-dimensional space. We generalize the notion
of a ribbon to the three-dimensional space as a maximal successions of contiguous rhom-
bohedra which share a family of mutually parallel faces. To distinguish this from the
two-dimensions case, they shall be called worms instead of ribbons. And rhombi carpets
in the two-dimensional space become quasicrystal structures in the space. In figure 5.10,
we consider a cubic framework, one of the simplest type of quasicrystal structures. It is
easy too see that even if we brace all but one of the cubes, labeled (157), (267), (368),
(469) for their crossing worms, the last red cube (058) distorts as its free edge slides for-
ward into the negative Z-direction(blue). Therefore, the rigidity of quasicrystal structures
in the space still needs further investigation.

Figure 5.10: [9] A cubic framework with two horizontal worms (5,6), three vertical worms
(7,8,9) and five worms into the Z-direction (0,1,2,3,4).

Now, come back again with square-grid frameworks but with another problem. Given a
square-grid framework with some initial diagonal rods. We want to add more extra rods
so that it becomes k-edge rigid, i.e. the square-grid framework remains rigid even after
any k′ < k extra rods fail. Theorem 5.3.1 implies that finding a smallest set of new extra
rods in this case corresponds exactly to the bipartite k-edge-connectivity augmentation
problem. In the bipartite edge-connectivity augmentation problem, we are given a bipar-
tite graph G = (A,B,E) and a positive integer k; the goal here is to find a smallest set
F of edges so that G′ = (A,B,E ∪ F ) is a new bipartite graph and k-edge-connected.
Note that E and F maybe contain parallel edges. In fact, the bipartite edge-connectivity
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augmentation problem is a special case of the general constrained edge-connectivity aug-
mentation problems, which is explained clearly in paper [2].
Let G = (V,E) be a graph and let P = {P1, P2, . . . , Pr}, r ≥ 2, be a partition of V . In
the partition-constrained k-edge-connectivity augmentation problem, the goal is to find a
smallest set F of new edges, such that every edge in F joins two distinct members of P and
G′ = (V,E ∪F ) is k-edge-connected. Recall that a graph G = (V,E) is k-edge-connected
if d(X) ≥ k for all 0 6= X ⊂ V where d(X) denotes the number of edges connecting X
with G−X.
Let OPT k(G) and OPT kP(G) denote the size of a solution to the edge-connectivity aug-
mentation problem with no constrains and partition constraints respectively. Obviously,
OPT kP(G) ≥ OPT k(G). Let φ be the largest of the following quantities in G:

α = max
{⌈1

2

∑
X∈F

(k − d(X))
⌉
: F a subpartition of V

}
;

βi = max
{∑
Y ∈F

(k − d(Y )) : F a subpartition of Pi
}
.

.
It is proved that OPT k(G) = α. Since no new edge can be added between vertices in
the same member Pi of P , it follows that OTP k

P(G) ≥ βi for all 1 ≤ i ≤ r. Hence,
OTP k

P(G) ≥ φ.

Theorem 5.3.3. [2] If k is even then OPT kP(G) = φ.

In the case k is odd, we also have OPT kP(G) ≤ φ + 1. But the final result depends on
whether the graph contains a C4- or C6- configuration or not.

Definition 5.3.1. Let X1, X2, Y1, Y2 be a partition of V with the following properties in
G:

• d(A) < k for A = X1, X2, Y1, Y2;

• d(A,B) = 0 for (A,B) = (X1, X2), (Y1, Y2);

• There exist subpartitions F1,F2,F ′1,F ′2 of X1, X2, Y1, Y2 respectively, such that for
A ranging over X1, X2, Y1, Y2 and F the corresponding subpartition of A, then we
have k − d(A) =

∑
U∈F(k − d(U)). Furthermore for some i ≤ r, Pi contains every

set of either F1 ∪ F2 or F ′1 ∪ F ′2;

• (k − d(X1)) + (k − d(X2)) = (k − d(Y1)) + (k − d(Y2)) = φ.

Such a partition is called a C4-configuration of G.

We skip the definition of a C6-configuration since it does not happen for the bipartite
augmentation problem. (It only exists in graphs with r ≥ 3 and φ = 3.) Now, we come
to the final result of paper [2].

Theorem 5.3.4. [2] Let k ≥ 2 and let G = (V,E) be a graph with a partition P =
{P1, . . . , Pr} of V into r ≥ 2 nonempty classes. Then OPT kP(G) = φ unless G contains a
C4- or C6-configuration, in which case OPT kP(G) = φ+ 1.

Applying this result for the specific bipartite edge-connectivity augmentation problem
(r = 2), we can solve the highly rigid square-rigid problem.

45



Theorem 5.3.5. [2] Let k ≥ 2, letG = (A,B,E) be a bipartite graph and let P = {A,B}.
Let φ be the largest of the following three quantities in G:

α = max
{⌈1

2

∑
X∈F

(k − d(X))
⌉
: F a subpartition of A ∪B

}
;

β1 =
∑
v∈A

max {k − d(v), 0};

β2 =
∑
v∈B

max {k − d(v), 0}.

Then OPT kP(G) = φ unless k is odd and G contains a C4-configuration, in which case
OPT kP(G) = φ+ 1.

5.4 Application in truss structures

Figure 5.11: An example of through-truss steel bridges.

Truss topology design (TTD) deals with constructions like bridges, cantilevers and roof
trusses supporting different loading scenarios. For example, a bridge should withstand
forces corresponding to morning or evening rush hour traffic and even to an earthquake.
Ground structure method is known as the most popular method of TTD. This method
deals with minimizing the total volume of material while satisfying nodal equilibrium con-
straint and predefined stress limits. In this method, a ground structure with a sufficiently
large number of members is given as the initial configuration and the optimal topology
is obtained by solving the optimization problem in which design variables are the cross
section areas of the members, and the members with no cross section area are removed.
However, the results of this approach often contain very slender members and unstable
nodes, therefore making the structure sensitive to instabilities.

Figure 5.12: [27] The left side is a ground structure and the right hand side is an optimal
solution obtained from the ground structure method.

46



It is very important to take redundant rigidity into consideration in structural design
since the structures can be against the force beyond our estimation. A truss structure
is called a redundantly rigid truss if after the loss or the damage of one member, the
structure remains rigid; therefore, it still keeps the shape and continues to work normally.
A method of finding redundantly rigid TTD is presented below, based on two papers
[27] [29]. We consider the ground structure as figure 5.12 with n nodes. There are

(
n
2

)
members. The objective function to minimize is compliance, i.e., the work of the external
force. We consider four constraints: the equilibrium of force, upper bound of the total
volume, lower bound of the cross section area of each member and redundantly rigid
constraint. Mathematically, we consider the following problem :

Minimize P TU ,

subject to
∑

i∈I AiKiU = P ,∑
i∈I AiLi ≤ V U ,

Ai ≥ ALi (i ∈ I),

I − e ∈ L, ∀ e ∈ I,

where P and U denote the vectors of external force and displacement of nodes, Ai, Ki,
Li and ALi are respectively the cross section area, the stiffness matrix, the length and the
lower bound of the cross section area of the member i, V U denotes the upper bound of
the total volume, I is a set of members in a topology and L is the set of two-dimensional
minimally rigid graphs. I can be referred to as the topology. Design variables are both
the topology I and the set of cross section areas in the topology {Ai ≥ ALi (i ∈ L)}.
It is difficult to find an exact optimal solution for these above large-scale problems and it
is not necessary in practical. So, we will find a redundantly rigid approximately optimal
truss structure based on two-dimensional redundantly rigid augmentations.
The approximation method for redundantly rigid TTD problem consists of three steps:
Step 1: Solve the above problem as a relaxation problem: we will not consider the
redundant rigidity constraint and replace lower bound constraints of the cross section
areas of the members by non-negative constraints. More clearly, we find the solution for
the following problem:

Minimize P TU ,

subject to
∑

i∈Ig AiKiU = P ,∑
i∈Ig AiLi ≤ V U ,

Ai ≥ 0 (i ∈ Ig),

where Ig denotes a set of members in a ground structure. Note that the number of
elements of Ig can be extremely large depending on the size of the problem. This problem
is a convex programming problem, hence the optimal solution can be found in polynomial
time by using an appropriate way. It gives the lower bound of the optimal solution of the
original problem.
Step 2: The optimal truss structure in step 1 is not redundantly rigid. Then in this
step, we make a redundantly rigid truss topology by adding minimum number of edges
to the topology of the optimal truss of step 1. The first approach to redundantly rigid
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augmentation in the plane is proposed by Garcia and Tejel [10]. Another method is
found recently by Andras Mihalyko [29]. Two papers addresses the question of finding a
minimum covering to a minimally rigid graph to make it redundantly rigid, which can
be done in polynomial time. We shall consider the newest approach here.
Consider a Laman graph L = (V,E) (i.e. L is minimally rigid in R2). For every i, j ∈ V ,
the set of generated edges by uv is defined by L(uv) = {ij|G+ uv − ij is rigid}.

Lemma 5.4.1. If L is Lamman, L(uv) = ∩{L|u, v ∈ L,L Laman subgraph}.

Let L = (V,E) be a Laman graph. C ⊂ V is called co-rigid if V − C is rigid.
Equivalently, |C| < |V | − 1 and e(C) = 2|C|.
If L+H is redundantly rigid, H must touch every co-rigid sets.

Lemma 5.4.2. Let L be a Laman graph, andH an edge set such that L+H is redundantly
rigid. Then |H| ≥

{⌈
|C|
2

⌉
| C is the family of disjoint minimal co-rigid sets of L

}
.

Lemma 5.4.3. [19] Let L be a Laman graph and C be the family of minimal co-rigid sets
of L. Then the sets of C are pairwise disjoint or there exists {u, v} such that C ∩{u, v} 6=
∀ C ∈ C. Moreover, this u and v are not neighboring.

If there exists such a {u, v} edge, we can augment the graph to redundantly rigid with
one edge between u and v.
Now, suppose C consists of pairwise disjoint sets. Take i1, . . . , i|C| be representative vertices
of the minimal co-rigid sets. Let N(X) denote the neighbors of vertices in set X in graph
L.

Lemma 5.4.4. C1 ∪N(C1) ∪ C2 ∪N(C2) ⊂ L(i1i2).

Lemma 5.4.5. Let L be a Laman graph with minimal co-rigid sets C. For any connected
graph H on the representative vertices, L+H is redundantly rigid.

Lemma 5.4.6. Let L′ = L(i1i2) ∪ L(i1i3) ∪ L(i1i4). Then L′ = L(i1i2) ∪ L(i3i4) or
L′ = L(i1i4) ∪ L(i2i3).

This whole procedure, described above, when we have just 2 edges to generate the same
subgraph that was generated by 3 edges sharing one common vertex, is called reduction
step. Assume that we start from a covering centered around i1. This means we connect
all ij (j > 1) to i1 to make a connected graph H. Then using the reduction step, we
replace three of these Laman graphs, L(i1ih) ∪ L(i1ih+1) ∪ L(i1ih+2) with just 2, say,
L(i1ih)∪L(ih+1ih+2) using the reduction step. And we can repeat this until fewer than 3
Laman graphs left containing i1. (It is clear from the construction that none of the other
representative vertices participates in more than one generated Laman.) So this lead to
a
⌈C
2

⌉
size optimal covering at the end.

Theorem 5.4.7. Let L be a Laman graph (i.e. minimally rigid graph). Then

min {|H| |H is an edge set, L+H is redundantly rigid}

= max
{⌈ |C|

2

⌉
| C is a set of pairwise disjoint co-rigid sets

}
.

There exists a polynomial algorithm that can find such an edge set.
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Algorithm for the redundantly rigid augmentations:

• Check if L can be made redundant rigid using only one edge. This can be made by
checking every pair of vertices whether adding that edge to L makes it redundantly
rigid (polynomial time);

• Find a representative set. For any given set S ⊆ V , let us denote the minimal
Laman graph with CS for which S ⊆ CS holds. We start with S = V . Delete
vertices greedily from S while CS = L. The final S is a representative for the family
of minimal co-rigid sets.

• Choose i1 as the center, connect others ij (1 < j) with i1 to make a connected graph
H. Use the reduction step to decrease the number of edges in H. Each reduction
step can be made in polynomial time, so we can reach the optimal size edge set H
with a polynomial algorithm.

Coming back to the problem of finding a minimal covering for the relaxation problem of
TTD problem that is mentioned in step 1, we need to apply the algorithm with a slight
modification. Since the above algorithm does not consider the lengths of added edges,
there is a possibility that long edges are added in the above algorithm. However, this
is undesirable with the TTD problem since it will increase the total volume. So here,
when applying the above algorithm, we choose representative vertices in a way such that
the shorter edges ijik are prioritized. Recall that no matter how representative vertices
are chosen, L + H is redundantly rigid as long as H is connected on the representative
vertices. Moreover, we can choose i1 arbitrarily among representative vertices.
Step 3: Determine the optimal cross section areas of the members of the truss structure
under the truss topology of step 2. The problem is formulated as follows:

Minimize P TU ,

subject to
∑

i∈I2 AiKiU = P ,∑
i∈I2 AiLi ≤ V U ,

Ai ≥ ALi (i ∈ I2),

where I2 denotes the set of members in the truss topology of step 2. The optimal value
of this problem is the upper bound of the original problem.
Hence, by this method, we can achieve upper and lower bound solutions for global optimal
solution of the TTD problem. Numerical examples in paper [27] of the ground structure
with 200 vertices and 19900 members showed that the upper bound is about one percent
greater than the lower bound. The solution in step 3 is redundantly rigid, in which the
truss structure is more stable and it is done by polynomial time. Therefore, the algorithm
for the redundantly rigid augmentation problem mentioned in step 2 is very useful for
large-scale TTD problems with certain redundancy when the exact solutions are hardly
obtained.
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