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Abstract

A fundamental theorem in extremal set theory is the so-called shadow theorem, which de-
scribes the size of transformed families of sets. The shadow theorem, independently dis-
covered by Kruskal in 1963 and Katona in 1968, has thenceforth numerous variations and
applications in many fields of mathematics. This article serves as a survey for this topic.
We will first give the basic statement, some corollaries, and a few elegant and instructive
proofs. Then we collect various results related to it, which were developed over the past few
decades. Finally, some open problems are also discussed.

The structure of this article is as follows.
In Chapter 1, we give the basic statement and a few direct corollaries of the shadow theorem.
A simplified version by Lovász is also discussed.
In Chapter 2, we firstly present an important technique named shift operation. Then three
different proofs of shadow theorem, by Daykin, Frankl, and Keevash separately, are pre-
sented.
In Chapter 3, we show a few beautiful applications of shadow theorem. We will discuss the
extremal problems about the density of triangles, size of intersecting family, and number of
independent sets.
In Chapter 4, we collect some variations and generalizations of the shadow theorem. We
will consider the shadow of the intersecting family, the balanced version of shadow theorem,
some analogues of shadow of other mathematical objects. Finally, we list a few related open
problems.
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Shadow Theorem

In the first chapter, we will introduce the shadow theorem.

1.1 Statement

Let [n] be {1, 2 · · · , n}. For any non-negative integer k, denote by
(
[n]

k

)
the family of all

the k-subsets of [n].

Definition 1.1. (Shadow) Given a family of sets F ⊆
(
[n]

k

)
, for H ∈ F , define △H, the

shadow of H to be
△H =

{
M ∈

(
[n]

k − 1

) ∣∣∣∣ M ⊆ H

}
.

And define the shadow of △F to be

△F =
⋃
H∈F

△H.

Therefore the shadow △F is just the set family which consists of all the (k − 1) sub-
sets of the sets in F . For example, if F = {{1, 2, 3}, {1, 2, 4}, {2, 4, 5}}, then △F =

{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {2, 5}, {4, 5}}. It should be noted that △F is fully deter-
mined by F and independent of the underlying set [n]. So when talking about the shadow,
we sometimes will just omit the underlying set and assume [n] is large enough.

After introducing this definition, natural questions arise:

Question 1.2. Given |F|, how big or small |△F| can be.
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Question 1.3. Given |F|, choose F randomly from
(
[n]

k

)
, what is |△F| in average?

It turns out that the upper bound can be easily answered. Firstly for any F ⊆
(
[n]

k

)
,

|△F| 6 k |F| since for any H ∈ F , the number of (k − 1)-subsets of H is exactly k. If and
only if all these subsets of size (k − 1) each S ∈ F contains are different will this bound be
achieved. And it’s obvious that it can be achieved indeed, for example, when all H ∈ F
are disjoint. The second question is also easy to answer, simply by the linearity of the
expectation.

Therefore our main thinking is put on the lower bound. Based on the discussion in
the last paragraph, a very intuitive idea is that if we want to make the |△F| as small as
possible, we should require the sets in F to overlap with each other as much as possible and
in this case will the lower bound be achieved. It turns out that this is correct, which was
proven by Kruskal [26] and Katona [24] independently. To fully describe what we call the
Kruskal-Katona shadow theorem, we need another notation.

Definition 1.4. (k-binomial decomposition) Given two positive integers m and k, the
k-binomial representation of m is

m =

(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
at

k − t

)
,

where a0 > a1 > · · · > at > k − t > 1.

For example, the followings are some 5-binomial representations:

1=
(
5

5

)
2=

(
5

5

)
+

(
4

4

)
26=

(
7

5

)
+

(
5

4

)
35=

(
7

5

)
+

(
5

4

)
+

(
4

3

)
+

(
3

2

)
+

(
2

1

)
.

Lemma 1.5. For any positive integers m and k, the k-binomial representation of m exists
and is unique.
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Proof. Prove by induction on k. If k = 1, it’s trivial. Assume that it’s true for k − 1.

For the existence, choose a0 to be the largest integer such that m >
(
a0
k

)
. If equality

holds, we are done. Otherwise, by induction, there is a (k − 1)-binomial representation of

m−
(
a0
k

)
,

m−
(
a0
k

)
=

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
at

k − t

)
where a1 > a2 > · · · > at > k − t > 1. So we only need to confirm a0 > a1. If not, then

m >
(
a0
k

)
+

(
a1

k − 1

)
>

(
a0
k

)
+

(
a0

k − 1

)
=

(
a0 + 1

k

)
which contradicts our choice of a0.

Assume that there are two different k-binomial representation of m:

m =

(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+· · ·+

(
at

k − t

)
=

(
b0
k

)
+

(
b1

k − 1

)
+

(
b2

k − 2

)
+· · ·+

(
br

k − r

)
.

a0 can’t equal b0, otherwise m −
(
a0
k

)
= m −

(
b0
k

)
has two different (k − 1)-binomial

representations. Assume a0 < b0. Then

m =

(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
at

k − t

)
6

(
a0
k

)
+

(
a0 − 1

k − 1

)
+

(
a0 − 2

k − 2

)
+ · · ·+

(
a0 − t

k − t

)
6

(
a0
k

)
+

(
a0 − 1

k − 1

)
+

(
a0 − 2

k − 2

)
+ · · ·+

(
a0 − t

k − t

)
+ · · ·+

(
a0 − (k − 1)

1

)
=

(
a0 + 1

k

)
− 1

<

(
b0
k

)
6

(
b0
k

)
+

(
b1

k − 1

)
+

(
b2

k − 2

)
+ · · ·+

(
br

k − r

)
= m.

Note that the proof of uniqueness can also similarly confirm the following statement.
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Claim 1.6. For any two positive integer m and n, whose k-binomial representations are

m =

(
a0
k

)
+

(
a1

k − 1

)
+ · · ·+

(
at

k − t

)
n =

(
b0
k

)
+

(
b1

k − 1

)
+ · · ·+

(
br

k − r

)
.

Then m > n if and only if

• t > r and ai = bi for 0 6 i 6 r or

• t 6 r and ∃i (0 6 i 6 t) , ai > bi.

Now we are finally ready for the statement of the Kruskal-Katona shadow theorem, which
answers the question of the lower bound for the size of shadow.

Theorem 1.7. If F ⊆
(
[n]

k

)
and the k-binomial representation of |F| is

|F| =
(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
at

k − t

)
,

then
|△F| >

(
a0

k − 1

)
+

(
a1

k − 2

)
+

(
a2

k − 3

)
+ · · ·+

(
at

k − t− 1

)
.

We will discuss the equality condition and several proofs in the following sections.

For any positive integer m whose k-binomial representation is
(
a0
k

)
+

(
a1

k − 1

)
+ · · · +(

at
k − t

)
, for convenience, we define KKk (m) =

(
a0

k − 1

)
+

(
a1

k − 2

)
+ · · · +

(
at

k − t− 1

)
,

the lower bound given in Theorem 1.7.
Firstly, a very natural question arises after reading this theorem is that is this lower bound

given in the theorem increasing with |F|? The answer is affirmative, simply according to
Claim 1.6. Namely, KKk (m) is non-decreasing with m.

Note that
(
a

0

)
= 1 and when s is negative or a < s,

(
a

s

)
= 0. We can actually extend

Theorem 1.7 to the following form, which says that it doesn’t matter that there are some
tail terms in the expression of |F|. This extended form can sometimes help us avoid many
minor troubles.

Theorem 1.8. If F ⊆
(
[n]

k

)
and

|F| =
(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
ak−1

1

)
+

(
ak
0

)
+

(
ak+1

−1

)
+ · · ·

(
ak+r

−r

)
4



where a0 > a1 > · · · ak−1 > 1, ak, ak+1, · · · , ak+r > 0, then

|△F| >
(

a0
k − 1

)
+

(
a1

k − 2

)
+

(
a2

k − 3

)
+ · · ·+

(
ak−1

0

)
+

(
ak
−1

)
+

(
ak+1

−2

)
+ · · ·

(
ak+r

−r − 1

)
.

Note that it is possible that this expression of |F| is not unique, due to the existence of(
ak
0

)
. But it can be easily seen that this won’t influence the lower bound given.

Now let’s look at a few direct corollaries of this theorem.

For any F ⊆
(
[n]

k

)
, define △rF =

{
X ∈

(
[n]

k − r

) ∣∣∣∣ ∃H ∈ F such that X ⊆ H
}

. So
△rF is just the set family obtained by taking shadow of F for r times. By repeatedly
applying the shadow theorem, we can get

Corollary 1.9. If F ⊆
(
[n]

k

)
, the k-binomial representation of |F| is

|F| =
(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
at

k − t

)
,

then
|△rF| >

(
a0

k − r

)
+

(
a1

k − 1− r

)
+

(
a2

k − 2− r

)
+ · · ·+

(
at

k − t− r

)
.

Now let’s turn our focus to another kind of transformation of a family of sets. For any
F ⊆

(
[n]

k

)
, define OF =

{
X ∈

(
[n]

k + 1

) ∣∣∣∣ ∃H ∈ F such that H ⊆ X
}

. So now, instead
of considering the subsets contained in some H ∈ F , we consider the bigger sets which
contain some H. Note that it’s different from △F that OF depends on the underlying set
[n]. Besides, F ⊆ △ (OF) = O (△F). One may also ask the following question.

Question 1.10. Given F , how big or small |OF| can be.

The upper bound is easy, by setting sets in F to be disjoint at all. For the lower bound,
it turns out, somewhat surprisingly, this can also be answered completedly by the shadow
theorem. We will discuss this in Section 1.2.

Sometimes for the applications, the Kruskal-Katona theorem is not easy to apply directly
due to the k-binomial representation. Lovász [27] (Problem 13.31) raised the following
version of the theorem.
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Theorem 1.11. If F ⊆
(
[n]

k

)
and |F| =

(
x

k

)
=

x (x− 1) (x− 2) · · · (x− k + 1)

k!
for some

real number x > k, then
|△F| >

(
x

k − 1

)
.

We will also prove this theorem later. This theorem is, in many situations, weaker than
Theorem 1.7. For example, if

|F| = 35 =

(
7

5

)
+

(
5

4

)
+

(
4

3

)
+

(
3

2

)
+

(
2

1

)
≈

(
7.49442

5

)
,

Theorem 1.7 guarantees that

|△F| >
(
7

4

)
+

(
5

3

)
+

(
4

2

)
+

(
3

1

)
+

(
2

0

)
= 55

while Theorem 1.11 says
|△F| >

(
7.49442

4

)
≈ 50.0798.

However, it can be more handy sometimes due to the use of
(
x

k

)
instead of k-binomial

representations.
The Corollary 1.9 can also be stated similarly.

Corollary 1.12. If F ⊆
(
[n]

k

)
and |F| =

(
x

k

)
for some real number x > k, then

|△rF| >
(

x

k − r

)
.

1.2 Equality Condition
Natural questions of Theorem 1.7 are whether it is tight and if so when this bound can
be achieved. To answer these questions, we first need to introduce the notion of co-
lexicographical order.
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Definition 1.13. (Co-lexicographical order1) For two sets M,H ∈
(
[n]

k

)
, define the

co-lexicographical order as

M <col H ⇐⇒ max ((M −H) ∪ (H −M)) ∈ H.

In all the following chapters, we will only use the co-lexicographical order so hereafter
we use < for <col, and whenever we say set M is smaller than set H or set M is the smallest
one in a family of sets, we always refer to the co-lexicographical order. Besides, denote by
F (m, k) the family 2 of m smallest sets in

(
[n]

k

)
.

Example 1.14. {2, 3} < {1, 4}.

Example 1.15. For
(
[5]

3

)
,

{1, 2, 3} < {1, 2, 4} < {1, 3, 4} < {2, 3, 4} < {1, 2, 5}

< {1, 3, 5} < {2, 3, 5} < {1, 4, 5} < {2, 4, 5} < {3, 4, 5}.

Example 1.16. F (4, 4) = {{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}}.

By the definition, we immediately get the following properties of the co-lexicographical
order and F (m, k).

Lemma 1.17. For M,H ∈
(
[n]

k

)
, M < H ⇐⇒ (M −H) < (H −M) ⇐⇒ [n] − H <

[n]−M .

Lemma 1.18. M,H ∈
(
[n]

k

)
, M < H and M ∩H = ∅. Then for any i ∈ M, j ∈ H where

j is not the biggest element in H, M − {i} < H − {j}.

Lemma 1.19. For m whose k-binomial representation is

m =

(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
at

k − t

)
,

1It is called co-lexicographical because the usual lexicographical order is defined as M <lex H ⇐⇒
min ((M −H) ∪ (H −M)) ∈ M . For example, {1, 2, 3} is smaller than {1, 3, 4}. M <lex H if and only if
{n+ 1− a | a ∈ H} <col {n+ 1− b | b ∈ M}.

2Strictly speaking, F (m, k) also depends on the underlying set [n], but n is always large enough in our
discussions so we don’t need to include n in this notation.
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we have

F (m, k) =

(
[a0]

k

)⋃{
H ∪ {a0 + 1} | H ∈ F

(
m−

(
a0
k

)
, k − 1

)}
where F (0, k) = ∅ naturally.

Recall our definition of KKk (m). Now we can answer our questions by the following
theorem.

Theorem 1.20. If F = F (m, k), then △F = F (KKk (m) , k − 1).

Proof. This can be shown by the structure of F (m, k) according to Lemma 1.19.

For the smallest
(
a0
k

)
sets, they are actually just

(
[a0]

k

)
, whose contribution to △F is(

[a0]

k − 1

)
.

For the next
(

a1
k − 1

)
sets, they are

{
H ∪ {a0 + 1} | H ∈

(
[a1]

k − 1

)}
, whose new contribu-

tion to △F is
{
M ∪ {a0 + 1} | M ∈

(
[a1]

k − 2

)}
.

For the next
(

a2
k − 2

)
sets, they are

{
H ∪ {a0 + 1, a1 + 1 | H ∈

(
[a2]

k − 2

)}
, whose new con-

tribution to △F is
{
M ∪ {a0 + 1, a1 + 1 | M ∈

(
[a2]

k − 3

)}
.

Continue this process so on and so forth. Finally we can confirm △F = F (KKk (m) , k − 1).

Let’s call F extremal if |△F| achieves the bound in Theorem 1.7 (|△F| = KKk (|F|))
and r-extremal if |△rF| achieves the bound in the Corollary 1.9. This theorems tells us
that the bound in Theorem 1.7 is tight and F (m, k) is extremal. In other words, Theorem
1.7 can be rephrased as follows.

Theorem 1.21. If F ⊆
(
[n]

k

)
and |F| = m then

|△F| > |△F (m, k)| .

Note that by using this theorem repeatedly, we can also confirm that F (m, k) is also
r-extremal.
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We now can also give the answer to Question 1.10, if we admit Theorem 1.7. In general,
define OrF =

{
X ∈

(
[n]

k + r

) ∣∣∣∣ ∃H ∈ F such that H ⊆ X
}

. Let F b (m, k)1 to be the biggest

m sets in
(
[n]

k

)
, namely F b (m, k) =

(
[n]

k

)
−F

((
n

k

)
−m, k

)
.

Theorem 1.22. If F ⊆
(
[n]

k

)
and |F| = m then

|OrF| >
∣∣OrF b (m, k)

∣∣ .
Proof. This theorem follows from considering the complement of each set in F . Let M ={
M ∈

(
[n]

n− k

) ∣∣∣∣ M = [n]−H for some H ∈ F
}

. By Lemma 1.17, if F = F b (m, k), M is

actually F (m,n− k), and vice versa. Now recall the definition of △F and OF . We get

A ∈ OrF ⇐⇒ [n]− A ∈ △rM

Therefore |OrF| = |△rM| > |△rF (m,n− k)| =
∣∣OrF b (m, k)

∣∣.
Actually, we have also proved the following theorem.

Theorem 1.23. If F = F b (m, k), then OF = F b (KKn−k (m) , k + 1).

Now, let’s go back to △F and one may still ask the following question:

Question 1.24. Is F (m, k) the unique extremal family?

We may hope this to be true, however it turns out that the general answer is no.

Example 1.25. F = {{1, 2}, {2, 3}, {1, 4}, {2, 4}}. |F| = 4 =

(
3

2

)
+

(
1

1

)
. Then

△F = {{1}, {2}, {3}, {4}} .

So |△F| = 4 =

(
3

1

)
+

(
1

0

)
. However, let F0 = F (4, 2) = {{1, 2}, {1, 3}, {2, 3}, {1, 4}}; F

can actually be converted to F0 by the permutation (12) (34) on [4]. So strictly speaking, F
is not different from F (4, 2). Actually, by the definition of shadow, the image of F (m, k)

under any permutation of [n] is still extremal.
1We still leave out n for convenience whenever there is no ambiguity.
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Example 1.26. Let F be

{{1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}, {2, 4, 5}} .

|F| = 8 =

(
4

3

)
+

(
3

2

)
+

(
1

1

)
. Then

△F = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}} .

So △F = 10 =

(
4

2

)
+

(
3

1

)
+

(
1

0

)
. Let F0 = F (8, 3), which is

{{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 5}, {1, 3, 5}, {2, 3, 5}, {1, 4, 5}} .

At this time, F can NOT be converted to F0 by any permutation on [n], because 1 appears
in F0 6 times while any i ∈ [5] appears in F at most 5 times.

In fact, Füredi and Griggs [20] noticed that we can generate counter-examples for infinite
different |F| very easily.

Example 1.27. Note that for every positive integer a,
(
a

0

)
= 1. Therefore, for m1 whose

k-binomial representation is

m1 =

(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
ak−2

2

)
+

(
ak−1

1

)
and m2 whose k-binomial representation is

m2 =

(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
ak−2

2

)
+

(
bk−1

1

)
where ak−1 > bk−1, there is KKk (m1) = KKk (m2). This means that if F is an extremal
family of size m1, such as F (m1, k), we can delete arbitrary m1 −m2 sets from F and the
family we get is still extremal.

Theorem 1.28. ([20]) Let F = F (m1, k), then Example 1.27 gives more than one extremal
family of size m2 with respect to permutations of [n].

But let’s also cite without proof the following theorem in the same paper, which shows
that in many cases F (m, k) is indeed the unique family.
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Theorem 1.29. For positive integer m, whose k-binomial representation is

m =

(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
at

k − t

)
if t < k − 1, the extremal family of size m is unique.

Remark. For those m where ak−1 = ak−2−1, there can also exist some extremal family that
are not F (m, k), which of course can not be given by Example 1.27. One example given in
[20] is the following. Let n = s+ 3, H0 ⊆ [n], |H0| = s. Define

F =

{
H ∈

(
[n]

3

) ∣∣∣∣ |H ∩H0| > 2

}
.

Then |F| = m =

(
s

3

)
+ 3

(
s

2

)
=

(
s+ 2

3

)
+

(
s− 2

2

)
+

(
s− 3

1

)
and

△F =

{
M ∈

(
[n]

2

) ∣∣∣∣ |M ∩H0| > 1

}
.

Therefore |△F| =
(
s

2

)
+3

(
s

1

)
=

(
s+ 2

2

)
+

(
s− 2

1

)
+

(
s− 3

0

)
. Hence F is extremal. It’s

different from F (m, 3) because there are s elements in F which appear
(
s− 1

2

)
+3

(
s− 1

1

)
times but there are only s− 3 such elements in F (m, 3).

Besides, they also give the following result for △rF .

Theorem 1.30. For integer r
′
> r > 1,

F is r-extremal =⇒ F is r′-extremal.

Therefore the examples above actually gives different r-extremal families for any r > 1.
At last, we turn to Theorem 1.11, the simplified version of Lovász. It is clear that if x is

an integer, the equality holds. It turns out that this is the only case.

Theorem 1.31. The equality in Theorem 1.11 holds if and only if x is a positive integer
and F =

(
[x]

r

)
.

We will prove this theorem in Section 2.4.
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2

Proof of Shadow Theorem

In this chapter, we will present a few simple and elegant proofs for Theorem 1.7 as well as
Theorem 1.11.

2.1 Shift
Recall that our first feeling of the lower bound for the shadow is that if we want to make
the |△F| as small as possible, we should require the sets in F to overlap with each other as
much as possible. Shift is just such an operation that can be applied to a family of sets to
compress it. So before going into proofs, we first talk about the shift operation.

Definition 2.1. (Shift) Given F ⊆
(
[n]

k

)
, H ∈ F , two subsets A,B ∈

(
[n]

k

)
where

A ∩B = ∅, define SAB
1, the shift operation from B to A for H as

SAB (H) =


(H −B) ∪ A if B ⊆ H,A ∩H = ∅, (H −B) ∪ A /∈ F

H otherwise

.

Define the shift operation from B to A for F as

SAB (F) = {SAB (H) | H ∈ F} .
1Strictly speaking, SAB (H) depends on F , but we omit this when it is clear which F we are referring

to.

12



So shift is actually the operation that we try to replace some elements in sets of a family
with the other ones whenever it’s possible. Note that |SAB (F)| = |F|. We call SAB an
r-shift if |A| = |B| = r. For convenience, we use Sij to stand for the 1-shift S{i}{j} and use
Sj to stand for S1j for 1 < j 6 n.

We call H ∈ F stable under SAB if SAB (H) = H, call F stable under SAB if all the
sets in F are stable under SAB and call F r-stable1 if it is stable under all SAB where A

and B are disjoint subsets of size r and A < B. Note that r-stable doesn’t imply r′-stable,
no matter r′ > r or r′ < r.

Table 2.1 and Table 2.2 are a few examples of shift.

Table 2.1: Examples of shift

F S2 (F)

{
{1, 2}

} {
{1, 2}

}
{
{2, 3}, {2, 4}

} {
{1, 3}, {1, 4}

}
{
{1, 2}, {1, 3}, {2, 3}, {2, 4}

} {
{1, 2}, {1, 3}, {2, 3}, {1, 4}

}

Table 2.2: Examples of shift

F S{1,2,3}{4,5,6} (F)

{
{2, 3, 4, 5}, {3, 4, 5, 6}

} {
{2, 3, 4, 5}, {3, 4, 5, 6}

}
{
{4, 5, 6, 7}, {1, 2, 3, 8}, {4, 5, 6, 8}

} {
{1, 2, 3, 7}, {1, 2, 3, 8}, {4, 5, 6, 8}

}
The most important property of shift we will use is the following lemma.

Lemma 2.2. If F is (r − 1)-stable, then for any A,B where A < B and A ∩ B = ∅ and
r-shift SAB

△ (SAB (F)) ⊆ SAB (△F) .

1Every F is 0-stable.

13



Proof. For any M ∈ △ (SAB (F)), there exists H ∈ SAB (F) such that H = M ∪ {l}. There
are two possibilities:

• H ∈ F . So M ∈ △F . M must be also in SAB (△F) too. Otherwise, B ⊆ M ⊆
H,A ∩M = ∅, (M −B) ∪ A /∈ △F .

– If l ∈ A, let j be an element in B which is not the biggest one in B. By
Lemma 1.18, A − {l} < B − {j}. By the assumption that F is (r − 1) stable,
(H − (B − {j}))∪(A− {l}) ∈ F . Dropping j from this set, we get (M −B)∪A ∈
△F .

– If l /∈ A, (H −B) ∪A must be in F since H is in F and in SAB (F). Dropping l

from (H −B) ∪ A, we get (M −B) ∪ A ∈ △F .

• H /∈ F . Then there exists K ∈ F (A ∩K = ∅, B ⊆ K) such that H = (K −B) ∪ A.

– If l ∈ A, let j be an element in B which is not the biggest one in B. Then
(K − (B − {j})) ∪ (A− {l}) ∈ F . Dropping j from this set, we get M ∈ △F .
M must also be in SAB (△F) since B ∩M = ∅.

– If l /∈ A, then K − {l} is in △F . Then M = ((K − {l})−B) ∪ A must be in
SAB (△F).

Note that the assumption F is (r − 1)-stable is necessary. An easy but good example is
F = {{1, 2}, {1, 5}} and consider S{3,4}{1,5}.

The previous lemma immediately implies the following two lemmas.

Lemma 2.3. If F is (r − 1)-stable, then for any A,B where A < B and A ∩ B = ∅ and
r-shift SAB

|△ (SAB (F))| 6 |△F| .

Lemma 2.4. For any 1-shift Sij (not necessarily i < j),

△ (Sij (F)) ⊆ Sij (△F) , therefore |△ (Sij (F))| 6 |△F| .

2.2 Proof of Daykin
The first proof we will present is by Daykin [11] (see also [6] for a very similar proof). In this
proof, we can see how the shift method works to derive the lower bound for the shadow.
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Proof. Note that we have shown that △F (m, k) = F (KKk (m) , k − 1) in Section 1.2. Now

for any F ⊆
(
[n]

k

)
where |F| = m, we just need to show that |△F| > |△F (m, k)|.

If F is not F (m, k), let r > 1 be the minimum value of |K−H| over K ∈
((

[n]

k

)
−F

)
,

H ∈ F and K < H. Note that F is (r − 1)-stable and there exist K0, H0 for K,H such that
r = |K0 − H0|. Let A = K0 − H0 and B = H0 − K0, so A ∩ B = ∅, r = |A| = |B| and
A < B. Note that every set in F can not become bigger and at least H0 becomes strictly
smaller, under SAB. Do SAB to F .

Repeat the process above until F finally becomes F (m, k). By Lemma 2.3, this process
won’t increase the shadow of F , therefore we confirm |△F| > |△F (m, k)|.

2.3 Proof of Frankl
The second proof we will present here is by Frankl [15], which is also elegant and uses only
1-shift and induction.

We first give the proof of Theorem 1.11, the simplified version of Lovász.

Proof. Prove this by induction on k and |F|. For k = 1 and arbitrary |F|, it’s trivial.

For any F ⊆
(
[n]

k

)
where |F| =

(
x

k

)
, repeatedly do Sj (1 < j 6 n) to F until it is

1-stable. This process is finite because, whenever F is not stable under Sj, the number of 1
in sets of Sj (F) will be strictly bigger than the number of 1 in sets of F . Recall Lemma 2.4
which guarantees that this process won’t increase the size of the shadow. So let’s still call
the final family of sets after this process F .

Now let
F1 = {H ∈ F

∣∣ 1 ∈ H}, F2 = {H ∈ F
∣∣ 1 /∈ H}.

The key observation is
△F = △F1

because for any M ∈ △F2, there exists some j such that M ∪ {j} ∈ F2 (1 < j 6 n), then
M ∪ {1} = ((M ∪ {j})− {j}) ∪ {1} ∈ F1, since F is stable under Sj. Thus M is also in
△F1.

Another important claim is |F1| >
(
x− 1

k − 1

)
. Otherwise, if |F1| <

(
x− 1

k − 1

)
, then |F2| >
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(
x− 1

k

)
. By induction

|△F2| =
∣∣{H − {j}

∣∣ H ∈ F2, 2 6 j 6 n}
∣∣ > (

x− 1

k − 1

)
.

But then

|F1| >
∣∣{(H − {j}) ∪ {1}

∣∣ H ∈ F2, 2 6 j 6 n}
∣∣ = ∣∣{H − {j}

∣∣ H ∈ F2, 2 6 j 6 n}
∣∣ .

We get
(
x− 1

k − 1

)
> |F1| >

(
x− 1

k − 1

)
.

Now, divide △F1 into two parts:

P = {H − {1}
∣∣ H ∈ F1},

Q = {H − {j}
∣∣ H ∈ F1, 2 6 j 6 n}.

|P| = |F1| >
(
x− 1

k − 1

)
and |Q| =

∣∣△{
M − {1}

∣∣ M ∈ F1

}∣∣ > (
x− 1

k − 2

)
by induction.

Therefore
|△F1| = |P|+ |Q| >

(
x− 1

k − 1

)
+

(
x− 1

k − 2

)
=

(
x

k − 1

)
.

The proof for Theorem 1.7 is almost the same.

Proof. Prove this still by induction on k and |F|. Still, it’s trivial whenever k = 1.

Let F ⊆
(
[n]

k

)
whose k-binomial representation of |F| is

|F| =
(
a0
k

)
+

(
a1

k − 1

)
+

(
a2

k − 2

)
+ · · ·+

(
at

k − t

)
.

Again, we can assume F is stable under Sj for 2 6 j 6 n.
By the same proof and argument, we get

|F1| >
(
a0 − 1

k − 1

)
+

(
a1 − 1

k − 2

)
+

(
a2 − 1

k − 3

)
+ · · ·+

(
at − 1

k − t− 1

)
and then

|P| >
(
a0 − 1

k − 1

)
+

(
a1 − 1

k − 2

)
+

(
a2 − 1

k − 3

)
+ · · ·+

(
at − 1

k − t− 1

)
16



|Q| >
(
a0 − 1

k − 2

)
+

(
a1 − 1

k − 3

)
+

(
a2 − 1

k − 4

)
+ · · ·+

(
at − 1

k − t− 2

)
.

Therefore

|△F| = |△F1| = |P|+ |Q| >
(

a0
k − 1

)
+

(
a1

k − 2

)
+

(
a2

k − 3

)
+ · · ·+

(
at

k − t− 1

)
.

2.4 Proof of Keevash
The last proof we will present is by Keevash [25]. It only works for the Theorem 1.11, but
different from the previous two proofs, it does not use shift operation. Instead, it interprets
this problem as a counting problem in hypergraphs and solves it by pure induction.

A k-hypergraph G = (V,E) is a hypergraph, each edge of which has exactly k elements.
Denote by Kk

n the complete k-hypergraph on n vertices. Let d (v) = |{S ∈ E (G) | v ∈ S}|
and denote by L (v) the (k − 1)-hypergraph (V,A), where A = {S ⊆ V (G) | |S| = k−1, S∪
{v} ∈ E (G)}. Note that |A| = d (v). Finally, let △G be the (k − 1)-hypergraph (V,△E).

Here comes the key observation: there exists a one-to-one correspondence between copies
of Kk−1

k in △G and E. This can be easily checked by the definition of the shadow. Denote
by Kk

r (G) the number of copies of Kk
r in G. By this observation, if given △G, we can have

an upper bound for Kk−1
k (△G) in terms of |△E|, then we actually get an upper bound for

|E| in terms of |△E|. By taking it around, we get a lower bound for |△E| in terms of |E|.

Lemma 2.5. Suppose r > 1 and G = (V,E) is an r-hypergraph with
(
x

r

)
edges for some

real number x > r. Then
Kr

r+1 (G) 6
(

x

r + 1

)
,

with equality if and only if x is an integer and G = Kr
x.

Proof. Prove by induction on r. The case r = 1 is trivial.
Firstly, we may assume that d (v) > 0 for every vertex v. Note that any S ⊆ V whose size
is r, S ∪ {v} spans a Kr

r+1 in G if and only if S is an edge of G and spans a Kr−1
r in L (v).

Let Kr
r+1 (v) be the number of copies of Kr

r+1 in G which cover v. By these two conditions,
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we get

Kr
r+1 (v) 6 |E| − d (v) =

(
x

r

)
− d (v) ,

Kr
r+1 (v) 6 Kr−1

r (L (v)) .

Then we claim
Kr

r+1 (v) 6
(x
r
− 1

)
d (v)

and equality holds when d (v) =

(
x− 1

r − 1

)
. To see this, consider d (v). If d (v) >

(
x− 1

r − 1

)
,

Kr
r+1 (v) 6

(
x

r

)
−

(
x− 1

r − 1

)
=

(
x− 1

r

)
=

(x
r
− 1

)(
x− 1

r − 1

)
6

(x
r
− 1

)
d (v) .

If d (v) 6
(
x− 1

r − 1

)
, let xv (r 6 xv 6 x) be the real number such that d (v) =

(
xv − 1

r − 1

)
.

Then by induction,

Kr
r+1 (v) 6 Kr−1

r (L (v)) 6
(
xv − 1

r

)
=

(xv

r
− 1

)
d (v) 6

(x
r
− 1

)
d (v) .

From the proof, the equality condition is also clear. Now

(r + 1)Kr
r+1 (G) =

∑
v∈V

Kr
r+1 (v) 6

(x
r
− 1

)∑
v∈V

d (v) =
(x
r
− 1

)
r

(
x

r

)
= (r + 1)

(
x

r + 1

)
.

Thus Kr
r+1 (G) 6

(
x

r + 1

)
. Equality holds if and only if d (v) =

(
x− 1

r − 1

)
for every vertex

v ∈ V . Then
|V |

(
x− 1

r − 1

)
=

∑
v∈V

d (v) = r|E| = r

(
x

r

)
,

so |V | = x and G = Kr
x.

Now we just need to take this lemma around and then can get Theorem 1.11.

Proof. (Theorem 1.11) If |△F| <
(

x

k − 1

)
, let x′ (k − 1 6 x′ < x) be the real number such

that
(

x′

k − 1

)
= |△F|. Then consider the (k − 1)-hypergraph H = ([n],△F) and apply the
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previous lemma, we get

|F| = Kk−1
k (H) 6

(
x′

k

)
<

(
x

k

)
= |F| .

Remark 2.6. This proof definitely can be stated in only the language of set. However, as we
can see, these terminologies of hypergraphs make the proof much more intuitive and easier
to understand.

At the end of this chapter, we want to mention that a stable version of the previous
lemma is also proved in [25].

Theorem 2.7. For any ε > 0 and k > 1, there exists δ > 0 such that if G is a k-graph with(
x

k

)
edges and Kk

k+1 (G) > (1− δ)

(
x

k + 1

)
, then there is a set F of ⌈x⌉ vertices so that all

but at most ε
(
x

k

)
edges of G are contained in S.
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3

Applications of Shadow Theorem

In this chapter, we will present a few applications of shadow theorem. It should be noted that
these results are selected by personal preference and should never be regarded as a complete
list. Indeed, the shadow theorem, as a fundamental theorem in extremal set theory, has
numerous elegant applications in many fields of mathematics. Many results can not be
included here, just either because they are based on many other theorems too, or due to the
length of their statement.

3.1 Number of Simplices and Density of Triangles
Given six sticks, all of the same size, how can you put them together to make four triangles
of the same size? The answer, of course, is a tetrahedron. This question can be generalized
further as follows.

Question 3.1. Given a complex which has exactly m k-dimensional simplices, what is the
maximum number of r-dimensional simplices (r > k) this complex can have?

This question is actually the one considered by Kruskal in his paper of shadow theorem
[26]. Recall that a simplex can be labelled by its vertices. We can use a set of size k to
stand for a (k − 1)-dimensional simplex and then the containment of simplices is just the
containment of sets. Hence the answer can be given by theorems in Chapter 1. This result
also has some applications in reliability theory. See [9].

Similarly, we can also ask this question in the terminology of graph theory. Recall that
in Section 2.4 we prove an upper bound for Kr

r+1 (G), the number of copies of the complete
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r-hypergraph on r + 1 vertices in G, in terms of E (G), the number of edges. In particular,
setting r = 2, we get the following corollary of the number of triangles in G.

Corollary 3.2. If G = (V,E) has
(
x

2

)
edges for some real number x > 2, then

# triangles in G 6
(
x

3

)
,

and equality holds if and only if x is an integer and G = Kx.

This means that the number of triangles in G is of O
(
E (G)3/2

)
.

We also want to mention that the lower bound of the number of triangles is also of
interest and turns out to be harder. See [21, 5] for some early works, [28] for the complete
conjecture, and finally [30] for the proof of the conjecture.

3.2 Size of Intersecting Family
We call a family of sets F to be intersecting if any two sets in this family are not disjoint.
A natural question is how large an intersecting family can be.

The answer depends on whether we require these sets to have the same size. If not, the
maximum of |F| is obviously 2n−1, by considering every set and its complement. This bound
is tight, for example, let F = {{n} ∪ H | H ⊆ [n − 1]}. On the other hand, if we require

F ⊆
(
[n]

k

)
, the following answer was given by Erdös, Ko, and Rado [12].

Theorem 3.3. Suppose F ⊆
(
[n]

k

)
and n > 2k. If F is intersecting, then

|F| 6
(
n− 1

k − 1

)

This is also tight by F = {[n] ∪H |H ∈
(
[n− 1]

k − 1

)
.

It was Daykin [10] who first noticed that this classical theorem is actually almost a direct
corollary of Theorem 1.7.

Proof. (using shadow theorem) If |F| >
(
n− 1

k − 1

)
=

(
n− 1

n− k

)
, define M = {[n] −H | H ∈

F} ⊆
(

[n]

n− k

)
. Note that |M| = |F| >

(
n− 1

n− k

)
. By Corollary 1.12,

∣∣△(n−k)−k (M)
∣∣ >
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(
n− 1

k

)
. Then

|F|+
∣∣△(n−k)−k (M)

∣∣ > (
n− 1

k − 1

)
+

(
n− 1

k

)
=

(
n

k

)
.

Therefore there exists A ∈ F∩△(n−k)−k (M). However, this means that there exist A,B ∈ F
such that A ⊆ [n]−B, which contradicts the assumption that F is intersecting.

Here we also want to present the original proof in paper [12], because it made use of the
shift operation we defined in Section 2.1. We first need a lemma.

Lemma 3.4. For F ⊆
(
[n]

k

)
, i ̸= j ∈ [n], if F is intersecting, then Sij (F) is also

intersecting.

Proof. For M,H ∈ F (therefore M ∩H ≠ ∅), we prove that Sij (M)∩ Sij (H) ̸= ∅. If both
M and H are stable or none of them are stable, it’s obviously true. So assume M is not stable
while H is stable. If ((M − {j}) ∪ {i}) ∩H = ∅, this means that M ∩H = {j} and i /∈ H.
Then (H − {j}) ∪ {i} must be in F since H is stable. But M ∩ ((H − {j}) ∪ {i}) = ∅.

Note that this lemma isn’t true for r-shift when r > 2. A simple example is F =

{{1, 2}, {1, 5}} and S{3,4}{1,5}.

Proof. (using shift operation) Prove by induction on k and n. Whenever k = 1, it’s trivial.

If n = 2k, |F| 6 1

2

(
2k

k

)
=

(
2k − 1

k − 1

)
because for any set H ∈ F , its complement can not

be in F .
If n > 2k + 1, by the previous lemma, we can assume that F is 1-stable. Let

Fn = {H ∈ F | n ∈ H}.

Note that F − Fn can be viewed as an intersecting family in
(
[n− 1]

k

)
. By induction,

|F − Fn| 6
(
n− 2

k − 1

)
. Let

P = {H − {n} | H ∈ Fn}.

We claim P is also intersecting. Otherwise, there exist two sets A,B ∈ P such that A∩B =

∅. Since |A| = |B| = k − 1 and n > 2k + 1, there exist i ∈ [n − 1] where i /∈ A ∪ B. By
the assumption that F is 1-stable, B ∪ {i} = ((B ∪ {n})− {n}) ∪ {i} is in F . But then
(A ∪ {n}) ∩ (B ∪ {i}) = ∅, which contradicts the assumption that F is intersecting.
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Now by induction, |Fn| = |P| 6
(
n− 2

k − 2

)
. Therefore

|F| = |F − Fn|+ |Fn| 6
(
n− 2

k − 1

)
+

(
n− 2

k − 2

)
=

(
n− 1

k − 1

)
.

Remark. In fact, the proof based on the shadow theorem can be viewed as a generalization
of considering a set and its complement. The shadow theorem offers us a bound for the
transformation between families of sets of different sizes.

At last, we want to mention that Frankl [16] proves the following similar theorem with
the condition on maximal degree, using Theorem 1.7 and shift operation.

For F ⊆
(
[n]

k

)
, define d (F), the maximal degree of F to be max

i∈[n]
|{H ∈ F | i ∈ H}|. Let

[i, j] = {i, i+ 1, · · · , j} for 1 6 i 6 j 6 n. Define Fi (i ∈ [3, k + 1]) to be

Fi =

{
H ∈

(
[n]

k

)∣∣∣∣ 1 ∈ H,H ∩ [2, i] ̸= ∅
}
∪
{
H ∈

(
[n]

k

)∣∣∣∣ 1 /∈ H, [2, i] ⊆ H

}
.

It’s obvious that Fi are all intersecting.

Theorem 3.5. Suppose F ⊆
(
[n]

k

)
and n > 2k. If F is intersecting and d (F) 6 d (Fi) for

some i ∈ [3, k + 1], then
|F| 6 |Fi| .

Moreover, equality holds if and only if either F is isomorphic to Fi or i = 4 and F is
isomorphic to F3.

See also [22] and [18] for similar results.

3.3 Maximum Number of Independent Sets
For the last application, let’s consider the following question.

Question 3.6. Given n and m, what is the maximum number of independent sets among
all the simple graphs on n vertices with m edges?

At first sight, this question seems not to be easy to answer and one may expect the
answer is rather long and involved. However the answer to this problem can be given, a
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little bit surprisingly, by shadow theorem quite easily [8]. Actually, we can get an even more
general result.

For any graph G, let I (G) be the collection of all the independent sets in G. Given any
weight function w : N ∪ {0} → [0,∞), define

iw (G) =
∑

I∈I(G)

w (|I|) .

Theorem 3.7. For any graph G = ([n], E) where |E| = m and weight function w : N∪{0} →
[0,∞),

iw (G) 6 iw
((
[n], F b (m, 2)

))
.

The proof is surprisingly simple, based on Theorem 1.22.

Proof. For any k ∈ N ∪ {0}, let

wk (i) =


1 , i = k

0 , otherwise

.

We only need to prove the theorem for every wk.
Recall the definition of independent set. A set I ⊆ V of size k is an independent set if

and only if there is no edge between any pair of vertices in I. In our word, this means that

I /∈ Ok−2 (E) .

Therefore

ik (G) =

(
n

k

)
−
∣∣Ok−2 (E)

∣∣ 6 (
n

k

)
−

∣∣Ok−2F b (m, 2)
∣∣ = ik

((
[n], F b (m, 2)

))
.
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4

Variations and Generalizations of
Shadow Theorem

In this chapter, we will first briefly give several variations and generalizations of the shadow
theorem. And then, to end this article, we talk about a few open problems.

4.1 Shadow of Intersecting Family
Recall that in Theorem 1.7, we don’t pose any requirement on the structure of F . Then a
natural question is what the lower bound of the shadow will be if we do.

One of such theorems is by Katona [23], who talked about the shadow of intersecting
families. In Section 3.2, we have defined F to be intersecting if any two sets in F are not
disjoint. In general, we call F t-intersecting if for M,H ∈ F , |M ∩H| > t.

Theorem 4.1. For integers 1 6 r 6 t 6 k 6 n, if F ⊆
(
[n]

k

)
and F is t-intersecting, then

|△rF| > |F|
(
2k−t
k−r

)(
2k−t
k

) .
The equality holds if and only if F =

(
[2k − t]

k

)
(up to permutation of [n]) [1]. For some

extensions of this theorem, see [17].
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4.2 Balanced Shadow Theorem
A far more difficult question is the balanced version of the shadow theorem. Recall that in
Chapter 1, our first feeling of the shadow is that it will be small if F is strongly compressed.
It is also confirmed that only F (m, k) can achieve the lower bound in shadow theorem in
many situations (Theorem 1.29). Then we may ask, what can we say about the shadow if
the sets in F don’t actually overlap with each other too much? There are a few results for
this question. We may call them sparse or balanced version of the shadow theorem.

Frankl, Füredi, and Kalai [19] gave the lower bound for the shadow of the r-colored
family of sets. This result looks quite similar to Theorem 1.7 we have in Chapter 1. First,
we need a few more notations. For F ⊆

(
[n]

k

)
, it is r-colored if there is a partition of

[n] = V1 ∪ V2 ∪ · · · ∪ Vr such that for any H ∈ F and i (1 6 i 6 r), |H ∩ Vi| 6 1.
For integers n > r > k > 0, always let a = ⌊n/r⌋, r1 = n − ra. Let M1,M2, · · · ,Mr be

a partition of [n] where |Mi| = a + 1 for 1 6 i 6 r1 and |Mi| = a for r1 < i 6 r. Define
C (n, k, r) by

C (n, k, r) = {H ⊆ [n] | |H| = k, |H ∩Mi| 6 1, for i = 1, · · · , r} .

Define
(
n

k

)
r

= |C (n, k, r)|. Note that if r = n,
(
n

k

)
r

is just
(
n

k

)
. In general,

(
n

k

)
r

=
k∑

j=0

(
r1
j

)(
r − r1
k − j

)
(a+ 1)j ak−j.

We will see that
(
n

k

)
r

acts as a similar role with
(
n

k

)
in the shadow theorem.

Lemma 4.2. For any r > k > 0, every positive integer m can be written uniquely in the
form

m =

(
a0
k

)
r

+

(
a1

k − 1

)
r−1

+

(
a2

k − 2

)
r−2

+ · · ·+
(

at
k − t

)
r−t

,

where a0 > a1 > · · · > at > k − t > 1.

Theorem 4.3. If r-colored F ⊆
(
[n]

k

)
and |F| = m,

m =

(
a0
k

)
r

+

(
a1

k − 1

)
r−1

+

(
a2

k − 2

)
r−2

+ · · ·+
(

at
k − t

)
r−t

,
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where a0 > a1 > · · · > at > k − t > 1, then

|△F| >
(

a0
k − 1

)
r

+

(
a1

k − 2

)
r−1

+

(
a2

k − 3

)
r−2

+ · · ·+
(

at
k − t− 1

)
r−t

.

This result is indeed a generalization of Theorem 1.7, by setting r = n.
The next result is by Alon, Moshkovitz, and Solomon [2]. They proved the following

theorem in their discussion of the trace of hypergraphs.
For any I ⊆ [n], let F [I] = {H ∈ F | H ⊆ I}. In the language of hypergraphs, F [I] are

the edges induced by I. Then let

span (F , i) = max
I⊆[n]
|I|=i

|F [I]|.

This parameter can be viewed as a measure of the sparseness of F . If it is not too big, this
means that F doesn’t have a large proportion of sets in a small subset of [n].

Theorem 4.4. Let t > 1, α ∈ (0, 1] . Let F ⊆
(
[n]

k

)
and |F| = nt. If

span (F , αn) 6 min

{(
x

k − ⌈t⌉

)
n,

1

2
|F|

}
for some real number x > 2k, then for every r (0 6 r < k − t),

|△rF| > 1

C
·
(

x
k−r

)(
x
k

) |F| ,

where C = (8k/α)⌈5t⌉ log n.

It’s sharp in the following sense.

Theorem 4.5. Let n, k, x be positive integers, t > 1 and 0 < α 6 1 with 3t 6 k 6 x 6 n
1
6 and

n 6 αknt 6
(
x

k

)
n. There exists F ⊆

(
[n]

k

)
where |F| = nt and span (F , αn) 6 O

((
x

k

)
n

)
such that for every 0 6 r 6 k, we have

|△rF| 6
(

x
k−r

)(
x
k

) |F| .

We also recommend [14] for some results of the trace of sets, which are based on shadow
theorem and the shift operation.
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O’Donnell and Wimmer [29] have the following theorem, which is about OF . For F ⊆(
[n]

k

)
, let µk (F) =

|F|(
n
k

) . We use H ∼
(
[n]

k

)
to stand for H is drawn uniformly from

(
[n]

k

)
.

Theorem 4.6. For any ε > 0, there exists δ > 0 such that the following holds. If F ⊆
(
[n]

k

)
,

ε 6 k

n
, µk (F) 6 1− ε, then

µk+1 (OF) > µk (F) + δ · log n
n

,

unless there exists i ∈ [n] such that

P
H∼([n]

k
) (H ∈ F | i ∈ H)− P

H∼([n]
k
) (H ∈ F | i /∈ H) > 1/nε.

This means that if F is not strongly correlated with a single coordinate, |OF| will be
large.

4.3 Shadow of Other Mathematical Objects
The idea of shadow has also been generalized to other mathematical objects and analogues
to Theorem 1.7 have been raised. Here we briefly present two of them.

Chowdhury and Patkós generalized shadow to the vector space [7]. Let V denote an

n-dimensional vector space over a finite field of order q. For any positive integer k, let
[
V

k

]
q

be the family of all k-dimensional subspaces of V . Besides, for a ∈ R and positive integer k,
define the Gaussian binomial coefficient by

[
a

k

]
q

=
k−1∏
i=0

qa−i − 1

qk−i − 1
.

Then we know
∣∣∣∣∣
[
V

k

]
q

∣∣∣∣∣ =

[
n

k

]
q

. We can naturally generalize the definition of shadow to

vector spaces. For any family F ⊆
[
n

k

]
q

, define △F to be

△F =

{
X ∈

[
V

k − 1

]
q

∣∣∣∣∣ ∃H ∈ F such that X ⊆ H

}
.
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Then a similar theorem to Theorem 1.11 can be proved.

Theorem 4.7. If F ⊆
[
V

k

]
q

and |F| =
[
x

k

]
q

for a real number x > k, then

|△F| >
[

x

k − 1

]
q

.

The equality holds if and only if x is an integer and F =

[
X

k

]
q

, where X is an x-dimensional

subspace of V .

Actually, the proof for this theorem in [7] is a generalization to the one of Keevash in
Section 2.4.

In [3], Bollobás, Brightwell, and Morris raised the notion of shadow for ordered graphs.
An ordered graph G = (V,E) is a graph together with a linear order on V . We regard
two ordered graphs G1 = (V1, E1) with order a1 < a2 < · · · < an and G2 = (V2, E2)

with order b1 < b2 < · · · < bn as the same ordered graph if for every i, j (1 6 i < j 6 n),
{ai, aj} ∈ E1 ⇐⇒ {bi, bj} ∈ E2. Therefore, we can always assume the vertex set of an
ordered graph G with n vertices to be [n], with the usual order. Given an ordered graph
G = (V,E) and U ⊆ V , let G[U ] denote the ordered graph induced by U , with the inherited
order. Besides, write G− v for G[V − {v}].

The shadow of an ordered graph G = (V,E) is defined1 as

△G = {H | H = G− v for some v ∈ V }

and if G is a collection of ordered graphs then the shadow of G is

△G =
⋃
G∈G

△G.

For example, if G = { ([3], {{1, 2}, {2, 3}}) , ([3], {{1, 2}, {1, 3}, {2, 3}}) }, then

△G = { ([2], {1, 2}) , ([2],∅) } .

Now a theorem for the lower bound of the shadow is proved, when |G| is not too big.
1In section 2.4, we used the notation △G once. But that one is still the shadow of sets in essence while

now we are really making a new definition of shadow for graphs.
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Theorem 4.8. For n > 135 and G a collection of ordered graphs on [n], if |G| < n, then
|△G| > |G|. Moreover, this bound is sharp.

The authors explain that the condition n > 135 in the theorem is an artifact of the proof
and is almost certainly unnecessary. Besides, note that although this result seems simple,
it can actually be difficult to derive. In this paper, the authors even encourage the readers
to prove this theorem by themselves in the case where each ordered graph has at most two
edges, or in the case n = 4, in order to gain an appreciation of the complexity of this problem.

4.4 Open Problems
In [4], Bollobás and Eccles ask several questions about some variations of shadow.

For F ⊆
(
[n]

k

)
, M ⊆

(
[n]

k − 1

)
, we call M an r-deficient shadow of F if for every

H ∈ F , we have
|△H −M| 6 r.

So an r-deficient shadow doesn’t have to contain the shadow of all the sets in F , but only
most of them. Note that if r = 0, it is just the shadow.

Question 4.9. For given m, k, r, what is f (m, k, r), the minimal possible size of an r-
deficient shadow of a family of m k-element sets?

A partial answer was given by Fitch [13], but it is still far from a complete answer. And
as far as we know, all other cases remain open.

Another slightly different question we can ask is what will happen if instead of demanding
that each set in F has at most r sets in its shadow missing in M, we ask for many pairs
(M,H) where M ∈ M, H ∈ F , and M ∈ △H.

Question 4.10. Given integers k,m1 and m2, what is g (k,m1,m2), the maximum number
of pairs (M,H) where M ∈ M, H ∈ F , M ∈ △H and M is a family of m1 (k − 1)-elements
sets, F is a family of m2 k-elements sets?

This question is perhaps even more interesting if we do not specify the size of the sets in
M and F while just still requiring |M| = m1 and |F| = m2.

We also have the following generalization of shadow. For F ⊆
(
[n]

k

)
, let’s define the

△H, semi-shadow of H ∈ F to be

△H =

{
M ∈

(
[n]

k − 1

) ∣∣∣∣ |M −H| 6 1

}
.
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And define semi-shadow of F to be

△F =
⋃
H∈F

△H.

Note that △F ⊆ △F . Again we can ask a similar question.

Question 4.11. Given n, k,m, what is the minimum of
∣∣△F

∣∣ where F ⊆
(
[n]

k

)
and

|F| = m?

Our first guess is F (m, k) will still achieve the optimum. This is true for k = 3, simply
due to the following observation.

Lemma 4.12.
△F = O (△ (△F))

However, for k > 4, this is not true. We show this by simple counting. Let m =

(
n− 1

k

)
.

If F (m, k) indeed achieves the lower bound, then for any F ⊆
(
[n]

k

)
whose size is m, the

semi-shadow should be
(

[n]

k − 1

)
. Consider set {1, 2, · · · , k−1}. If it is not in △F , then there

are (n− k + 1) + (k − 1)

(
n− k + 1

2

)
sets that can’t be in F , and if F doesn’t contain any

of these sets, {1, 2, · · · , k − 1} indeed won’t be in its shadow. So the maximum cardinality
of F is

M =

(
n

k

)
− (k − 1)

(
n− k + 1

2

)
− (n− k + 1)

We compare it with
(
n− 1

k

)
.

M −
(
n− 1

k

)
=

(
n− 1

k − 1

)
− (k − 1)

(
n− k + 1

2

)
− (n− k + 1)

Note that k− 1 > 2, so when n is large enough, it’s positive. This means that we indeed can
find such an F with cardinality

(
n− 1

k

)
but its semi-shadow doesn’t contain {1, 2, · · · , k−

1}.
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