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Introduction

Matroids were introduced by Whitney [75] in 1935 and independently by Nakasawa [61] as
abstract generalizations of linear independence in vector spaces. In combinatorial optimization,
they are important tools for various graph characterization and optimization problems. In many
cases matroids not only help to understand the true background of known problems, but they
are often unavoidable in solving natural optimization problems in which matroids do not appear
explicitly at all.

One of the most powerful results in matroid theory is the min-max theorem and algorithm
of Edmonds for finding a common independent set of two matroids with maximum cardinality.
Edmonds and Fulkerson gave a min-max formula and algorithm for partitioning the ground
set of a matroid into a minimal number of independent sets, and also for finding the maximal
number of disjoint bases of a matroid. These results motivate the analogous questions for two
matroids on the same ground set: (A) find a partition of the ground set into a minimal number
of common independent sets, and (B) find a maximal number of disjoint common bases of two
matroids.

The importance of these problems is underpinned by a long list of well-studied conjectures
that can be formalized as a packing common bases of matroids. Rota’s basis conjecture [35]
states that if M is a matroid of rank n whose ground set can be partitioned into n disjoint bases
B1, . . . , Bn, then it is possible to rearrange the elements of these bases into an n × n matrix
in such a way that the rows are exactly the given bases, and the columns are also bases of M .
Woodall’s conjecture [77] on packing disjoint dijoins in a directed graph is also a special case
of packing common bases, as was shown by Frank and Tardos [23]. Given a directed graph
D, a dijoin is a subset of arcs whose contraction results in a strongly connected digraph. The
conjecture states that the maximum number of pairwise disjoint dijoins equals the minimum
size of a directed cut.

In our joint work [3] with Kristóf Bérczi we showed that problems (A) and (B) are difficult
for general matroids, i.e. it requires an exponential number of independence queries in the
independence oracle model. These problems remain intractable even for matroids given by
explicit linear representations. However, these complexity results motivate the study of tractable
special cases and approximation results.

This thesis deals in more details with partitioning the ground set into common indepen-
dent sets. We denote by χ(M) the minimum number of independent sets of M needed to
cover its ground set, and analogously, χ(M1,M2) is used for the minimum number of common
independent sets of M1 and M2 covering their common ground set. Davies and McDiarmid
[16] showed that χ(M1,M2) = max{χ(M1), χ(M2)} holds whenever M1 and M2 are so-called
strongly bases orderable matroids. Aharoni and Berger [1] proved using topological tools that
χ(M1,M2) ≤ 2 max{χ(M1), χ(M2)} holds for general matroids M1 and M2.

Recently, in [4] we proposed a conjecture with Kristóf Bérczi and Yutaro Yamaguchi, which
strengthens the theorem of Aharoni and Berger. The conjecture states that for every loopless
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matroid M = (S, I) there exists a partition matroid N = (S,J ) such that J ⊆ I and χ(N) ≤
2χ(M). We proved the conjecture for the special case when M is a transversal matroid, a paving
matroid, a truncation of a graphic matroid or a gammoid. These special cases also provided new
results about a list colouring problem of matroids proposed by Király [42]. Another interesting
aspect of this new method is that various elementary colouring problems appear naturally, such
as Gallai colourings of complete graphs or colouring the points of a projective plane with three
colours such that no line contains all three colours.

The thesis is organized as follows. Chapter 1 introduces basic definitions and notations.
Chapter 2 consists most of our complexity results [3]. Chapter 3 presents the result of Davies
and McDiarmid [16] about strongly base orderable matroids, the results of Kotlar and Ziv [47]
about matroids without (k + 1)-spanned elements and a list of famous conjectures fitting our
framework. Chapter 4 is about the theorem of Aharoni and Berger [1] with a detailed overview
of the required topological tools. Chapter 5 is a slightly extended version of our paper [4] about
reduction of matroids to partition matroids.
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Chapter 1

Preliminaries

In this chapter we list some basic elements of matroid theory that will be used later. The
reader is referred to books [22, 66, 73] for more details.

1.1 Definitions

A matroid M is a pair (S, I) where S is the ground set of the matroid and I ⊆ 2S is the
family of independent sets that satisfies the following, so-called independence axioms: (I1) ∅ ∈ I,
(I2) X ⊆ Y ∈ I ⇒ X ∈ I, (I3) X,Y ∈ I, |X| < |Y | ⇒ ∃e ∈ Y −X s.t. X + e ∈ I. The rank of
a set X ⊆ S is the maximum size of an independent subset of X and is denoted by rM (X).

The maximal independent sets of M are called bases. Alternatively, simple properties of
bases can be taken as axioms as well. In terms of bases, a matroid M is a pair (S,B) where
B ⊆ 2S satisfies the basis axioms: (B1) B 6= ∅, (B2) for any B1, B2 ∈ B and x1 ∈ B1 −B2 there
exists x2 ∈ B2 − B1 such that B1 − x1 + x2 ∈ B. Property (B2) is known to be equivalent to
the so-called symmetric basis exchange property: for any B1, B2 ∈ B and x1 ∈ B1 − B2 there
exists x2 ∈ B2 −B1 such that B1 − x1 + x2 ∈ B and B2 − x2 + x1 ∈ B. The following theorem
shows that this property can be strengthened even more.

Theorem 1.1 (Greene [30]). Let B1 and B2 be two bases of matroid M . For every X1 ⊆ B1
there is a subset X2 ⊆ B2 such that both B1 −X1 +X2 and B2 −X2 +X1 are bases of M .

A circuit of a matroid is an inclusionwise minimal dependent subset of S. A cut is an
inclusionwise minimal subset of S that intersects every basis. The closure or span of a subset
X ⊆ S is span(X) = {x ∈ S : r(X + x) = r(X)}. An element x ∈ S is spanned by X
if x ∈ span(X). A spanning set or a generator of the matroid is a set X ⊆ S such that
span(X) = S. A closed set or a flat is a set X ⊆ S such that span(X) = X. A hyperplane is
a closed set of rank r(S) − 1. A loop is an element that is non-independent on its own. Two
non-loop elements e, f ∈ S are parallel if {e, f} is non-independent.

Adding a parallel copy of an element s ∈ S results in a matroid M ′ = (S′, I ′) on ground set
S′ = S + s′ where I ′ = {X ⊆ S′ : either X ∈ I, or s /∈ X, s′ ∈ X and X − s′ + s ∈ I}. Given
a matroid M = (S, I), its restriction to a subset S′ ⊆ S is the matroid M |S′ = (S′, I ′) where
I ′ = {I ∈ I : I ⊆ S′}. By contracting a subset Z ( S of the ground set of a matroid M , we get
the matroid M/Z on S−Z defined by the rank function r′(X) = r(X ∪Z)− r(Z) (X ⊆ S−Z).
The dual of M is the matroid M∗ = (S, I∗) where I∗ = {X ⊆ S : S−X contains a basis of M}.
The k-truncation of a matroid M = (S, I) is a matroid (S, Ik) with Ik = {X ∈ I : |X| ≤ k}.
We denote the k-truncation of M by (M)k. The direct sum M1⊕M2 of matroids M1 = (S1, I1)
and M2 = (S2, I2) on disjoint ground sets is the matroid M = (S1 ∪ S2, I) whose independent
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sets are the disjoint unions of an independent set of M1 and an independent set of M2. The sum
M1 +M2 of M1 = (S, I1) and M2 = (S, I2) on the same ground set is the matroid M = (S, I)
whose independent sets are the disjoint unions of an independent set of M1 and an independent
set of M2. For a matroid M = (S, I) the sum

∑k
i=1M is denoted by kM .

For a loopless1 matroid M = (S, I), let χ(M) denote the colouring number of M , that is,
the minimum number of independent sets into which the ground set can be decomposed in
M . We call a matroid k-colourable if χ(M) ≤ k. Analogously, for two matroids M1 = (S, I1),
M2 = (S, I2) on the same ground set, let χ(M1,M2) denote the minimum number of common
independent sets needed to cover the ground set.

1.2 Matroid intersection and union

A central result of combinatorial optimization is Edmonds’ matroid intersection theorem.

Theorem 1.2 (Edmonds’ matroid intersection theorem [17]). Matroids M1 = (S, I1) and M2 =
(S, I2) have a common independent set of size k if and only if

r1(X) + r2(S −X) ≥ k for all X ⊆ S.

The following theorem can be derived from the matroid intersection theorem, and vice versa.

Theorem 1.3 (Edmonds’ and Fulkerson’s matroid union theorem [18]). Let M1 = (S, I1), . . . ,
Mk = (S, Ik) be matroids on the same ground set S. Then the rank function of M1 + · · ·+Mk

is given by

rM1+···+Mk
(Z) = min

X⊆Z
{|Z −X|+

k∑
i=1

ri(X)} (Z ⊆ S).

As a corollary, we get a characterization of the partitionability of the ground set into k
independent sets.

Corollary 1.4. Let M = (S, I) be a matroid with rank function r. Then S can be partitioned
into k independent sets if and only if |X| ≤ k · r(X) holds for every X ⊆ S.

In other words, the colouring number of a matroid M = (S, I) is
χ(M) = dmax{|X|/r(X) : ∅ 6= X ⊆ S}e.

Another corollary is a characterization of the existence of k disjoint bases of a matroid.

Corollary 1.5. Let M = (S, I) be a matroid with rank function r. Then M has k pairwise
disjoint bases if and only if |S −X| ≥ k · (r(S)− r(X)) holds for every X ⊆ S.

Edmonds and Fulkerson also provided polynomial algorithms for these results, i.e., to find
a common independent set of two matroids with maximum size, and to find independent sets
Ij ∈ Mj such that I1 ∪ · · · ∪ Ik ⊆ Z and |I1 ∪ · · · ∪ Ik| = rM1+···+Mk

(Z). In order to speak
about matroid algorithms and their complexity, it should be made clear how the matroids are
given. Throughout we assume that a matroid M = (S, I) is given by a so-called independence
oracle, which is an algorithm testing whether a subset of S is independent in M . A matroid
can be given by other oracles as well, for example the rank oracle tells the rank of any subset
of S. However, the independence and rank oracles are polynomially equivalent, as well as
circuit-finding, spanning, port, strong basis and certain closure oracles [63, 33, 13].

1The ground set of a matroid containing a loop cannot be decomposed into independent sets. Therefore,
every matroid considered in the thesis is assumed to be loopless without explicitly mentioning this. Nevertheless,
parallel elements might exist.
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1.3 Notations from graph theory

Some of the matroids considered in this thesis arise from graphs, hence we list the required
graph theoretical definitions and notations.

For a graph G = (V,E) and a subset X ⊆ V of vertices, the set of edges spanned by X
is denoted by E[X], while the graph spanned by X is denoted by G[X]. Given a connected
component K of G, a cut of K is a subset of edges in E[K] whose deletion disconnects K. The
component is k-edge-connected if the minimum size of a cut in K is at least k. The graphs
obtained by deleting a subset X ⊆ V of vertices or a subset F ⊆ E of edges are denoted by
G−X and G− F , respectively. The degree of a vertex v with respect to F ⊆ E is denoted by
dF (v). The symmetric difference of two sets P,Q is denoted by P4Q = (P −Q) ∪ (Q− P ).

Let G = (A,B;E) be a bipartite graph and F ⊆ E be a subset of edges. For a set X ⊆ A,
the set of neighbours of X with respect to F is denoted by NF (X), that is, NF (X) = {b ∈ B :
there exists an edge ab ∈ F with a ∈ X}. We will drop the subscript F when F is the whole
edge set. We denote the set of vertices in X incident to edges in F by X(F ). A forest (or tree)
F ⊆ E is a B2-forest (or B2-tree, respectively) if dF (b) = 2 for every b ∈ B. The existence of a
B2-forest was characterized by Lovász [52].

Theorem 1.6 (Lovász). Let G = (A,B;E) be a bipartite graph. Then there exists a B2-forest
in G if and only if the strong Hall condition holds for every nonempty subset of B, that is,

|N(X)| ≥ |X|+ 1 for all ∅ 6= X ⊆ B.

1.4 Constructions of matroids

We list several well-known examples of matroids that will be used later.
For a set S, the matroid in which every subset of S is independent is called a free matroid

and is denoted by M free
S .

A laminar matroid is a matroid M = (S, I) = {X ⊆ S : |X ∩ Si| ≤ gi for i = 1, . . . , q}
for a laminar family {S1, . . . , Sq} of subsets of S and nonnegative integers g1, . . . , gq. (A family
{S1, . . . , Sq} is called laminar, if it has now two properly intersecting members, that is, every two
members are comparable or disjoint.) An important special case arises when S = S1 ∪ · · · ∪ Sq
is a partition and g1 = · · · = gq = 1, such matroids are called partition matroids. (In the
literature partition matroids are usually defined for every g1, . . . , gq, we make the restriction
g1 = · · · = gq = 1 since all partition matroids considered in this thesis are of this special form.)

A matroid M = (S, I) is called linear (or representable) if there exists a matrix A over a
field F and a bijection between the columns of A and S, so that X ⊆ S is independent in M
if and only if the corresponding columns in A are linearly independent over the field F. It is
not difficult to verify that the class of linear matroids is closed under duality, taking direct sum
(when the field F for linear representations is common), taking minors and taking k-truncation.
Moreover, if we apply any of these operations for a matroid (or a pair of matroids) given by a
linear representation over a field F, then a linear representation of the resulting matroid can be
determined by using only polynomially many operations over F. (See e.g. [51] for k-truncation.).

For a graph G = (V,E), the graphic matroid M = (E, I) of G is defined on the edge set
by considering a subset F ⊆ E to be independent if it is a forest, that is, I = {F ⊆ E :
F does not contain a cycle}. It is not difficult to verify that graphic matroids are linear over
any field. Nash-Williams [60] gave a characterization for G being decomposable into k forests,
or in other words, for the graphic matroid of G being k-colourable.
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Theorem 1.7 (Nash-Williams). Given a graph G = (V,E), the edge set can be decomposed
into k forests if and only if |E[X]| ≤ k(|X| − 1) for every nonempty subset X of V .

Given a bipartite graph G = (S, T ;E), a set X ⊆ S is matchable if there is a matching of G
covering X. The transversal matroid of G is the matroid on S whose independent sets are the
matchable subsets of S. It is an easy exercise to show that the size of T can be chosen to be r
where r denotes the rank of the matroid. By the Frobenius-Kőnig-Hall theorem [46, 31, 24] the
rank of a subset X ⊆ S in the transversal matroid is r(X) = min{|X|− |Y |+ |N(Y )| : Y ⊆ X}.

A generalization of transversal matroids can be obtained with the help of directed graphs.
Given a directed graph D = (V,A) and two sets X,Y ⊆ V , we say that X is linked to Y
if |X| = |Y | and there exists |X| vertex-disjoint directed paths from X to Y . Let S ⊆ V
be a set of starting vertices and T ⊆ V be a set of destination vertices. Then the family
I = {Y ⊆ T : ∃X ⊆ S s.t. X is linked to Y } forms the independent sets of a matroid that is
called a gammoid. The gammoid is a strict gammoid if T = V . That is, a gammoid is obtained
by restricting a strict gammoid to a subset of its elements. Ingleton and Piff [37] showed that
strict gammoids are exactly the duals of transversal matroids, hence every gammoid is the
restriction of the dual of a transversal matroid.

A matroid M = (S, I) of rank r is called paving if every set of size at most r − 1 is
independent, or in other words, every circuit of the matroid has size at least r. We will use the
following technical statement about paving matroids.

Theorem 1.8. Let r ≥ 2 be an integer and S a set of size at least r. Let H = {H1, . . . ,Hq} be
a (possibly empty) family of proper subsets of S in which every set Hi has at least r elements
and the intersection of any two of them has at most r − 2 elements. Then the set system
BH = {X ⊆ S : |X| = r,X 6⊆ Hi for i = 1, . . . , q} forms the set of bases of a paving matroid.
Moreover, every paving matroid can be obtained in this form.

A paving matroid is called sparse paving if its dual is also paving. Note that BH forms
the set of the bases of a sparse paving matroid if in addition to the previous requirements, we
require that each member of H has size r. The importance of (sparse) paving matroids comes
from their large number. It is known that there are double-exponentially many sparse paving
matroids on a ground set S, and it is conjectured that the asymptotic fraction of matroids on
n elements that are sparse paving tends to 1 as n tends to infinity [57]. A similar statement on
the asymptotic ratio of the logarithms of the numbers of matroids and sparse paving matroids
has been proven in [62].
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Chapter 2

Complexity results

This chapter contains two sections of our joint work with Kristóf Bérczi [3].

2.1 Hardness in the independence oracle model

Given two matroids M1 = (S, I1) and M2 = (S, I2), there are three different problems that
can be asked: (A) Can S be partitioned into k common independent sets of M1 and M2? (B)
Does S contain k disjoint common bases of M1 and M2? (C) Does S contain k disjoint common
spanning sets of M1 and M2? These problems may seem to be closely related, and (A) and (B)
are indeed in a strong connection, but (C) is actually substantially different from the others.
We will concentrate on the following problem which is a special case of all three problems.

Definition 2.1. The PartitionIntoCommonBases problem is the following: Given matroids
M1 = (S, I1) and M2 = (S, I2), find a partition of S into common bases.

We show that PartitionIntoCommonBases is difficult under the rank oracle model. This
immediately implies the all (A), (B) and (C) are intractable as well. We prove the difficulty of
PartitionIntoCommonBases by a reduction from the so-called PartitionIntoModular-
Bases problem.

Definition 2.2. Let M = (S, I) be a matroid and let P be a partition of the ground set into
nonempty subsets. Members of P are called modules, and a set X ⊆ S is modular if it is the
union of modules. In the special case when every module is a pair, modular sets are called
parity sets.
The PartitionIntoModularBases problem is as follows: Given a matroid M = (S, I) over
a ground set S of size 2r(S) together with a partition P of S, find a partition of S into two
modular bases. In the special case when every module is a pair, we refer to the problem as
PartitionIntoParityBases.

The latter problem is the packing counterpart of the matroid parity problem which asks
for a parity independent set of maximum size. This problem was introduced by Lawler [49] as
a common generalization of graph matching and matroid intersection. Unfortunately, matroid
parity is intractable for general matroids as it includes NP-hard problems, and requires an
exponential number of queries if the matroid is given by an independence oracle [38, 53]. On
the positive side, for linear matroids, Lovász developed a polynomial time algorithm [53] that is
applicable if a linear representation is available. Although PartitionIntoParityBases seems
to be closely related to matroid parity, the relationship between the two problems is unclear.
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Figure 2.1: The edge-labeled graphs defining M ′` and M ′′` .

Theorem 2.3. The PartitionIntoParityBases problem requires an exponential number of
independence queries.

Proof. Let S be a finite set of 4t elements and let P be an arbitrary partition of S into 2t pairs,
forming the modules. Let H = {X ⊆ S : |X| = 2t,X is a parity set}. For a parity set X0 with
|X0| = 2t, define H0 = H−{X0, S−X0}. Both H and H0 satisfy the conditions of Theorem 1.8,
hence BH and BH0 define two matroids M and M0, respectively.

Clearly, the ground set cannot be partitioned into parity bases of M , while X0 ∪ (S−X0) is
such a partition for M0. For any sequence of independence queries which does not include X0
or S−X0, the result of those oracle calls are the same for M and M0. That is, any sequence of
queries which does not include at least one of the parity subsets X0 or S−X0 cannot distinguish
between M and M0, concluding the proof of the theorem.

We will use the following technical lemma to prove the difficulty of PartitionIntoCom-
monBases.

Lemma 2.4. Let ` ∈ Z+ and let S be a ground set of size 9`. There exist two matroids M ′` and
M ′′` of rank 5` satisfying the following conditions:

(a) S can be partitioned into two common independent sets of M ′` and M ′′` having sizes 5` and
4`;

(b) for every partition S = S1 ∪ S2 into two common independent sets of M ′` and M ′′` , we
have {|S1|, |S2|} = {5`, 4`}, that is, one of the partition classes has size exactly 5` while
the other has size exactly 4`.

Proof. Let S =
⋃̀
j=1

Wj denote a ground set of size 9` where Wj = {aj , bj , cj , dj , ej , fj , gj , hj , ij}.

Let M ′` and M ′′` denote the graphic matroids defined by the edge-labeled graphs G′ and G′′ on
Figures 2.1a and 2.1b, respectively. We first prove (a).

Claim 2.5. S can be partitioned into two common independent sets of M ′` and M ′′` having sizes
5` and 4`.

Proof. It is not difficult to find a partition satisfying the conditions of the claim, for example,
S = S1 ∪ S2 where S1 =

⋃`
j=1{dj , ej , fj , gj , hj} and S2 =

⋃`
j=1{aj , bj , cj , ij}.

8



In order to verify (b), take an arbitrary partition S = S1 ∪ S2 into common independent
sets of M ′` and M ′′` . Let Ŵj = Wj − ij .

Claim 2.6. For each j = 1, . . . , `, S1 and S2 partition Ŵj into common independent sets having
sizes 5 and 3. Moreover, the elements ej , fj , gj and hj are contained in the same partition class.

Proof. S1 and S2 necessarily partition the K4 subgraphs spanned by Ŵj in G′ and G′′ into
two paths of length 3, so |Sk ∩ {aj , bj , cj , dj , ej , fj}| = 3 and |Sk ∩ {aj , bj , cj , dj , gj , hj}| = 3 for
k = 1, 2. This implies that either |Sk ∩ {ej , fj}| = |Sk ∩ {gj , hj}| = 1 for k = 1, 2, or ej , fj , gj
and hj are contained in the same partition class.

In the former case, we may assume that gj ∈ S1 and hj ∈ S2. In order to partition the K4
subgraph spanned by Ŵj in G′′ into two paths of length 3, either {aj , bj} ⊆ S1 and {cj , dj} ⊆ S2
or {cj , dj} ⊆ S1 and {aj , bj} ⊆ S2 hold. However, these sets cannot be extended to two paths
of length 3 in G′, a contradiction.

Thus ej , fj , gj and hj are contained in the same partition class. Since |Sk ∩ {aj , bj , cj , dj , ej ,
fj}| = 3 for k = 1, 2, the claim follows.

Now we analyze how the presence of edges ij affect the sizes of the partition classes. By
Claim 2.6, we may assume that {e1, f1, g1, h1} ⊆ S1, and so i` ∈ S2.

Claim 2.7. {ej , fj , gj , hj} ⊆ S1 and ij ∈ S2 for j = 1, . . . , `.

Proof. We prove by induction on j. By assumption, the claim holds for j = 1. Assume
that the statement is true for j. As ij is parallel to fj+1 in G′′, fj+1 ∈ S1. By Claim 2.6,
{ej+1, fj+1, gj+1, hj+1} ⊆ S1. As ij+1 is parallel to hj+1 in G′, necessarily ij+1 ∈ S2, proving
the inductive step.

Claims 2.6 and 2.7 imply that |S1| = 5` while |S2| = 4`, concluding the proof of the
lemma.

It should be emphasized that, for our purposes, any pair of matroids satisfying the conditions
of Lemma 2.4 would be suitable; we defined a specific pair, but there are several other choices
that one could work with.

We are now in the position to prove the main result of this chapter.

Theorem 2.8. The PartitionIntoCommonBases problem requires an exponential number
of independence queries.

Proof. We prove by reduction from PartitionIntoModularBases.1 Let M = (S, I) be a
matroid together with a partition P of its ground set into modules. Recall that |S| = 2r(S),
that is, the goal is to partition the ground set into two modular bases.

We define two matroids as follows. For every set P ∈ P, let M ′P = (SP , I ′P ) and M ′′P =
(SP , I ′′P ) be copies of the matroids M ′|P | and M ′′|P | provided by Lemma 2.4. We denote

S′ = S ∪
( ⋃
P∈P

SP

)
.

1By Theorem 2.3, we could assume that every module has size 2. However, our construction in Section 2.2
for proving that the linear case is already difficult uses modules of larger sizes, hence we show reduction from the
general version of PartitionIntoModularBases.
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Note that |S′| = 10|S|, that is, the size of the new ground set is linear in that of the original.
Let

M1 =
(
M ⊕

(⊕
P∈P

M ′P

))
|S′|

2

M2 =
⊕
P∈P

(M free
P ⊕M ′′P )5|P |.

M1 is defined as the |S′|/2-truncation of the direct sum of M and the matroids M ′P for P ∈ P.
For the other matroid, we first take the 5|P |-truncation of the direct sum of M ′′P and the free
matroid M free

P on P for each P ∈ P, and then define M2 as the direct sum of these matroids.
We first determine the ranks of M1 and M2.

Claim 2.9. Both M1 and M2 have rank |S′|/2.

Proof. The rank of M1 is clearly at most |S′|/2 as it is obtained by taking the |S′|/2-truncation
of a matroid. Hence, it suffices to show that M ⊕ (

⊕
P∈PM

′
P ) has an independent set of size at

least |S′|/2. For each P ∈ P, let BP be a basis of M ′P . Then
⋃
P∈P BP is an independent set of

M1 having size
∑
P∈P 5|P | = 5|S| = |S′|/2 as requested.

The rank of (M free
P ⊕M ′′P )5|P | is 5|P | for each P ∈ P. This implies that the rank of M2 is

at most
∑
P∈P 5|P | = 5|S| = |S′|/2. We get an independent set of that size by taking a basis

BP of M ′′P for each P ∈ P, and then taking their union
⋃
P∈P BP .

The main ingredient of the proof is the following.

Claim 2.10. If S′ = B′1 ∪ B′2 is a partition of S′ into two common bases of M1 and M2, then
each module P ∈ P is contained completely either in B′1 or in B′2.

Proof. For an arbitrary module P , let I1 = SP ∩ B′1 and I2 = SP ∩ B′2. Clearly, I1 and I2
are independent in both M ′P and M ′′P . By Lemma 2.4, we may assume that |I1| = 4|P | and
|I2| = 5|P |. As the rank of (M free

P ⊕M ′′P )5|P | is 5|P |, we get P ⊆ B′1 as requested.

The next claim concludes the proof of the theorem.

Claim 2.11. S has a partition into two modular bases if and only if S′ can be partitioned into
two common bases of M1 and M2.

Proof. For the forward direction, assume that there exists a partition S′ = B′1 ∪ B′2 of S′ into
two common bases of M1 and M2. By Claim 2.10, for every module P ∈ P, the elements of P
are all contained either in B1 or in B2. This implies that B1 = S ∩ B′1 and B2 = S ∩ B′2 are
modular sets. By the definition of M1, these sets are independent in M . As |S| = 2r(S), B1
and B2 are modular bases of M .

To see the backward direction, let S = B1 ∪ B2 be a partition of S into modular bases.
For each P ∈ P, let I1

P ∪ I2
P be a partition of SP into common independent sets of M ′P and

M ′′P having sizes 4|P | and 5|P |, respectively. Recall that such a partition exists by Lemma 2.4.
Then the sets

B′1 = B1 ∪ {I1
P : P ⊆ B1} ∪ {I2

P : P ⊆ B2} and
B′2 = B2 ∪ {I1

P : P ⊆ B2} ∪ {I2
P : P ⊆ B1}

form common independent sets of M1 and M2 and partitions the ground set S′. By Claim 2.9,
B′1 and B′2 are bases, concluding the proof of the claim.
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(a) Gadget H[3, 1].

s t

u1 u2

w1 w2 w3

u3

(b) Gadget H[3, 0].

Figure 2.2: Examples for variable gadgets.

The theorem follows by Claim 2.11.

2.2 Hardness in the linear case

The aim of this section is to show that the PartitionIntoModularBases problem might
be difficult to solve even when the matroid is given with a concise description, namely by an
explicit linear representation over a field in which the field operations can be done efficiently. In
order to do so, we consider the PartitionIntoModularBases problem for graphic matroids,
which can be rephrased as follows.

Definition 2.12. The PartitionIntoModularTrees problem is the following: Given a
graph G = (V,E) and a partition P of its edge set, find a partition of E into two spanning trees
consisting of partition classes.

Theorem 2.13. PartitionIntoModularTrees is NP-complete.

Proof. We prove by reduction from Not-All-Equal Satisfiability, abbreviated as NAE-SAT:
Given a CNF formula, decide if there exists a truth assignment not setting all literals equally
in any clause. It is known that NAE-SAT is NP-complete, see [64].2

Let Φ = (U, C) be an instance of NAE-SAT where U = {x1, . . . , xn} is the set of variables
and C = {C1, . . . , Cm} is the set of clauses. We construct an undirected graph G = (V,E) as
follows. We may assume that no clause contains a variable and its negation simultaneously, as
for such a clause every assignment has a true value and no assignment sets all literals equally.

First we construct the variable gadget. Let H[p, q] denote an undirected graph on node set
{s, t}∪{ui, wi : i = 1, . . . , p}∪{vj , zj : j = 1, . . . , q} consisting of the two paths su1, u1u2, . . . , upt
and sv1, v1v2, . . . , vqt, together with edges uiwi for i = 1, . . . , p and vjzj for j = 1, . . . , q. If any
of p or q is 0, then the corresponding path simplifies to a single edge st (see Figure 2.2).

We construct an undirected graph G = (V,E) as follows. With each variable xj , we associate
a copy of H[pj , qj ] where the literal xj occurs pj times and the literal x̄j occurs qj times in the
clauses. These components are connected together by identifying tj with sj+1 for j = 1, . . . , n−1.
We apply the notational convention that in the gadget corresponding to a variable xj , we add
j as an upper index for all of the nodes. For a variable xj , the ordering of the clauses naturally
induces an ordering of the occurrences of xj and x̄j . For every clause Ci, we do the following.

2In [65], Schmidt proved that NAE-SAT remains NP-complete when restricted to the class LCNF3
+, that

is, for monotone, linear and 3-regular formulas. Although the construction appearing in our reduction could be
slightly simplified based on this observation, we stick to the case of NAE-SAT as it appears to be a more natural
problem.
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Figure 2.3: The graph corresponding to Φ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄3) ∧ (x̄1 ∨ x2 ∨ x̄4). Thick
and normal edges form modular spanning trees T1 and T2, respectively. Both the assignment
x1 = x3 = 1, x2 = x4 = 0 corresponding to T1 and the assignment x1 = x3 = 0, x2 = x4 = 1
corresponding to T2 are solutions for NAE-SAT.

Assume that Ci involves variables xj1 , . . . , xj` . Recall that no clause contains a variable and its
negation simultaneously, hence ` is also the number of literals appearing in Ci. If Ci contains
the literal xjk and this is the rth occurrence of the literal xjk with respect to the ordering of
the clauses, let yijk := wjkr . If Ci contains the literal x̄jk and this is the rth occurrence of the
literal x̄jk with respect to the ordering of the clauses, let yijk := zjkr . Then we add the edges of
the cycle yij1 , . . . , y

i
j`

to the graph. Finally, we close the construction by adding edges tnwjk for
j = 1, . . . , n, k = 1, . . . , pj , and adding edges tnzjk for j = 1, . . . , n, k = 1, . . . , qj (see Figure 2.3).
An easy computation shows that the number of edges is |E| = 2|U | + 4

∑
C∈C |C|, while the

number of nodes is |V | = |U |+ 2
∑
C∈C |C|+ 1, that is, |E| = 2|V | − 2.

Now we partition the edge set of G into modules. For every variable xj , if pj > 0 then
the path Pj = {sjuj1, u

j
1u
j
2, . . . , u

j
pj
tj} form a module. Similarly, if qj > 0 then the path Nj =

{sjvj1, v
j
1v
j
2, . . . , v

j
qj
tj} form a module. Finally, the pairs M j

k = {ujkw
j
k, w

j
ktn} form modules of

size two for k = 1, . . . , pj , and similarly, the pairs N j
k = {vjkz

j
k, z

j
ktn} form modules of size two

for k = 1, . . . , qj . All the remaining edges of G form modules consisting of a single element.
We claim that Φ has a truth assignment not setting all literals equally in any clause if and

only if G can be partitioned into two modular spanning trees. For the forward direction, let
E = T1 ∪ T2 be a partition of E into two modular spanning trees. Then

ϕ(xj) =
{

1 if pj > 0 and Pj ⊆ T1, or pj = 0 and sjtj ∈ T1,
0 otherwise.

is a truth assignment not setting all literals equally in any clause. To verify this, observe that
for a variable xj , if xj = 1 then M j

k ⊆ T2 for k = 1, . . . , pj . This follows from the fact that T2 has
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to span the node ujk and {ujkw
j
k, w

j
ktn} form a module for k = 1, . . . , pj . Similarly, if xj = 0 then

N j
k ⊆ T2 for k = 1, . . . , qj . Let now Ci be a clause involving variables xj1 , . . . , xj` and recall the

definition of yij1 , . . . , y
i
j`

. If all the literals in Ci has true value then, by the above observation,
the cycle yij1 , . . . , y

i
j`

has to lie completely in T1, a contradiction. If all the literals in Ci has false
value then, again by the above observation, the cycle yij1 , . . . , y

i
j`

has to lie completely in T2, a
contradiction. A similar reasoning shows that T2 also defines a truth assignment not setting all
literals equally in any clause.

To see the backward direction, consider a truth assignment ϕ of Φ not setting all literals
equally in any clause. We define the edges of T1 as follows. For each variable xj with ϕ(xj) = 1,
we add Pj and N j

k for k = 1, . . . , qj to T1. For each variable xj with ϕ(xj) = 0, we add Nj and
M j
k for k = 1, . . . , pj to T1. Finally, for each clause Ci involving variables xj1 , . . . , xj` do the

following: for k = 1, . . . , `, if Ci contains the literal xjk and ϕ(xjk) = 1 or Ci contains the literal
x̄jk and ϕ(xjk) = 0, then add the edge yijky

i
jk−1

to T1 (indices are meant in a cyclic order). By
the assumption that ϕ does not set all literals equally in any clause, this last step will not form
cycles in T1. It is not difficult to see that both T1 and its complement T2 are modular spanning
trees, thus concluding the proof of the theorem.

As a consequence, we got the following.

Theorem 2.14. PartitionIntoCommonBases includes NP-complete problems.

Proof. The proof of Theorem 2.8 shows that PartitionIntoModularBases can be reduced
to PartitionIntoCommonBases. As PartitionIntoModularTrees is a special case of
the former problem, the theorem follows by Theorem 2.13.

As the matroids M ′`,M ′′` given in the proof of Lemma 2.4 are graphic, they are linear. If
we apply the reduction described in the proof of Theorem 2.8 for a graphic matroid M , then
the matroids M1 and M2 can be obtained from graphic matroids by using direct sums and
truncations, hence they are linear as well and an explicit linear representation can be given in
polynomial time [51]. This in turn implies that PartitionIntoCommonBases is difficult even
when both matroids are given by explicit linear representations.

Harvey, Király and Lau [32] showed that the computational problem of common base packing
reduces to the special case where one of the matroids is a partition matroid. Their construction
involves the direct sum of M1 and the matroid obtained from the dual of M2 by replacing each
element by k parallel elements. This means that if both M1 and M2 are linear, then the common
base packing problem reduces to the special case where one of the matroids is a partition matroid
and the other one is linear. Concluding these observations, we get the following.

Corollary 2.15. The PartitionIntoCommonBases problem includes NP-complete problems
even when r(S) = 2|S|, one of the matroids is a partition matroid and the other is a linear
matroid given by an explicit linear representation.

In [3] we also showed that PartitionIntoParityBases includes NP-complete problems
even when restricted to transversal matroids given by a bipartite graph representation. However,
one of the simplest cases when one of the matroids is a partition matroid while the other one is
graphic remains open.
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Chapter 3

Interesting special cases

Let M1 = (S, I1) and M2 = (S, I2) be partition matroids defined by partitions S1 ∪ · · · ∪
Sq and T1 ∪ · · · ∪ Ts. Consider the bipartite graph G = (A,B;E) where A = {a1, . . . , aq},
B = {b1, . . . , bs} and the number of edges between ai and bj is |Si ∩ Tj |. Then an edge of G
corresponds to an element of S, and a matching of G correspond to a common independent
sets of M1 and M2. The classical result of Kőnig [46] states that the edge colouring number
of a bipartite graph equals to its maximum degree. In matroidal terms this translates to
χ(M1,M2) = max{χ(M1), χ(M2)}. In this chapter we present other pairs of matroids with this
property.

3.1 Strongly base orderable matroids

The following definition requires a stronger basis exchange property than what Theorem 1.1
guarantees.

Definition 3.1. A matroid M = (S, I) is strongly base orderable if for every two bases B1, B2
there is a bijection f : B1 → B2 with the property that B1−X+f(X) is a basis for any X ⊆ B1.

If f satisfies this definition, then B2 − f(X) + X = B1 − (B1 − X) + f(B1 − X) is also
a basis for every X ⊆ B1. It also follows that f−1 : B2 → B1 is a bijection between B2 and
B1 with the required property. Notice that f is necessarily identical on B1 ∩ B2. Indeed, let
x ∈ B1 ∩ B2, then B2 − f(x) + x is a basis, in particular, |B2 − f(x) + x| = |B2|. Since x and
f(x) are elements of B2, we get that x = f(x).

One can easily check that the graphic matroid of K4 is not strongly base orderable. However,
we show that each gammoid is strongly base orderable.

Proposition 3.2. The family of strongly base orderable matroids is closed for restrictions,
contractions and duals.

Proof. Let M = (S, I) be a strongly base orderable matroid and X ⊆ S. First we prove that
the contraction M/X is strongly base orderable. Let B1, B2 be bases of M/X. Let Y ⊆ X be
an independent set of M of size r(X), then B1 ∪ Y and B2 ∪ Y are bases of M . Restricting
the bijection B1 ∪ Y → B2 ∪ Y which the strongly base orderability of M guarantees, we get a
bijection B1 → B2 proving the strongly base orderability of M .

Now we prove that the dual M∗ is strongly base orderable. Let B1, B2 be bases of M . Then
S−B1 and S−B2 are bases of M , hence there exists a bijection f : S−B1 → S−B2 such that
S−B1−X+f(X) is a basis of M for X ⊆ S−B1. Thus, B1 +X−f(X) = B2−X+f(X) is a
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basis of M∗ for X ⊆ B2−B1, hence restricting f to B2−B1 we get a bijection B2−B1 → B1−B2
which proves that M∗ is strongly base orderable.

Finally, the strongly base orderability of the restriction M |X follows from M |X = (M∗/X)∗
and the two previous results.

One can show that the family of strongly base orderable matroids is also closed for the other
matroid operations we defined in Section 1.1: adding parallel copies of an element, k-truncations,
direct sums and sums.

The next theorem provides a large family of strongly base orderable matroids.

Theorem 3.3. [9] Every gammoid is strongly base orderable.

Proof. As gammoids are the restrictions of strict gammoids, and strict gammoids are the duals
of transversal matroids, it is enough to show that each transversal matroid is strongly base
orderable. Let M = (S, I) be a transversal matroid and G = (S, T ;E) be a bipartite graph
such that |T | = r(S). Let B1, B2 ⊆ S be two bases of M , then there exists matchings F1, F2 ⊆ E
covering B1 and B2, respectively. Since |T | = r(S), both matchings cover T . Then F1 ∪ F2
consists of alternating cycles and alternating paths, and each alternating path is between a
vertex in B1−B2 and a vertex in B2−B1. These alternating paths define a bijection f between
B1 − B2 and B2 − B1, and (letting f be identity on B1 ∩ B2) it is not difficult to check that
B1 −X + f(X) is a basis of M for every X ⊆ B1.

It is worth mentioning that the class of gammoids is also closed for matroid operations such
as taking restrictions, contractions, duals, direct sums and k-truncations. Nevertheless, it is not
difficult to show that the converse of Theorem 3.3 does not hold, e.g. there exists a matroid on
seven elements which is strongly base orderable but not a gammoid [36].

As partition matroids are strongly base orderable, the next result generalizes Kőnig’s edge
colouring theorem to a much larger class of matroids.

Theorem 3.4 (Davies and McDiarmid [16]). Let M1 = (S, I1) and M2 = (S, I2) be k-colourable
strongly base orderable matroids. Then S can be partitioned into k common independent sets.

Proof [66]. Suppose for contradiction that S cannot be decomposed into k common independent
sets. Let S = X1∪· · ·∪Xk and S = Y1∪· · ·∪Yk be partitions of the ground set into independent
sets of M1 and M2, respectively, such that |X1 ∩ Y1| + · · · + |Xk ∩ Yk| is maximal. By our
assumption, the two partitions are different, hence there are indices i 6= j such that Xi ∩ Yj
is nonempty. Let Xi ⊆ Ci, Xj ⊆ Cj be bases of M1 and Yi ⊆ Di, Yj ⊆ Dj bases of M2. Let
f : Ci → Cj and g : Di → Dj be exchange bijections guaranteed by the strongly base orderability
of M1 and M2. Consider the graph G = (Ci ∪ Cj ∪Di ∪Dj , E) with edge set

E = {{x, f(x)} : x ∈ Ci \ Cj} ∪ {{y, g(y)} : y ∈ Di \Dj}.

E is the union of two matchings, hence G is bipartite. Let A and B denote the two colour
classes of G, and consider the sets

X ′i = (Xi ∪Xj) ∩A, X ′j = (Xi ∪Xj) ∩B,
Y ′i = (Yi ∪ Yj) ∩A, Y ′j = (Yi ∪ Yj) ∩B.

We prove that X ′i, X ′j ∈ I1 and Y ′i , Y
′
j ∈ I2. We have

X ′i ⊆ (Ci ∪ Cj) ∩A = Ci − (Ci \ Cj) ∩B + (Cj \ Ci) ∩A.
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For x ∈ (Ci \ Cj) ∩ B, {x, f(x)} is an edge of G, hence f(x) ∈ (Cj \ Ci) ∩ A. Similarly,
f−1(y) ∈ (Ci \ Cj) ∩ A for y ∈ (Cj \ Ci) ∩ A, hence f((Ci \ Cj) ∩ B) = (Cj \ Ci) ∩ A. Then
(Ci ∪Cj) ∩A = Ci − (Ci \Cj) ∩B + f((Ci \Cj) ∩B) is a basis of M1, hence X ′i ∈ I1. X ′j ∈ I1
and Y ′i , Y

′
j ∈ I2 follow by symmetry.

Since X ′i ∪ X ′j = Xi ∪ Xj and X ′i ∩ X ′j = ∅, we get a partition of S into independent
sets of M1 by replacing Xi with X ′i, and Xj with X ′j . Similarly, we get a new partition of
S into independent sets of M2 by replacing Yi with Y ′i , and Yj with Y ′j . The maximality of
|X1 ∩ Y1|+ · · ·+ |Xk ∩ Yk| implies that

|Xi ∩ Yi|+ |Xj ∩ Yj | ≥ |X ′i ∩ Y ′i |+ |X ′j ∩ Y ′j | = |(X ′i ∪X ′j) ∩ (Y ′i ∪ Y ′j )|
= |(Xi ∪ Yi) ∩ (Xj ∪ Yj)| = |Xi ∩ Yi|+ |Xj ∩ Yj |+ |Xi ∩ Yj |+ |Xj ∩ Yi|,

using that X ′i ∩ Y ′j = ∅ and X ′j ∩ Y ′i = ∅. This contradicts that Xi ∩ Yj is nonempty.

The proof also shows a polynomial algorithm to find a required partition given a polynomial
algorithm to find exchange bijections.

3.2 Matroids without (k + 1)-spanned elements

We present the results of Kotlar and Ziv [47] about matroids without (k + 1)-spanned
elements.

Definition 3.5. An element x ∈ S is (k + 1)-spanned in a matroid M = (S, I) if x has k + 1
disjoint spanning sets.

As one of the sets can be {x}, we get that the following are equivalent: (i) x is (k + 1)-
spanned; (ii) there exists k disjoint subsets of S − x that span x; (iii) there exists k circuits of
M whose pairwise intersection is {x}.

Proposition 3.6. If no element of a matroid M = (S, I) is (k + 1)-spanned, then M is k-
colourable.

Proof. We prove by induction on |S|. If |S| ≥ 2, then choose an arbitrary element x ∈ S. M |S−x
is k-colourable by the induction hypothesis, that is, there exist independent sets X1, . . . , Xk such
that X1 ∪ · · · ∪Xk = S − x. As x is not (k+ 1)-spanned in M , x is not spanned by Xi for some
i. We get a k-colouring of M by adding x to Xi.

The converse of this statement is not true: every element of the graphic matroid of K2k is
(2k−1)-spanned and the matroid is k-colourable. However, it is easy to check that the converse
holds for partition matroids, that is, a k-colourable partition matroid does not contain any
(k+ 1)-spanned element. Therefore, the following conjecture generalizes Kőnig’s edge colouring
theorem.

Conjecture 3.7. Let M1 = (S, I1) and M2 = (S, I2) be two matroids on S. If no element of S
is (k + 1)-spanned in either M1 or M2, then S can be partitioned into k common independent
sets.

In the following regular case the conjecture is a consequence of the theorems of Section 1.2.

Theorem 3.8. Let M1 = (S, I1) and M2 = (S, I2) be matroids of common rank r1(S) =
r2(S) = r such that |S| = kr. If no element of S is (k + 1)-spanned in either M1 or M2, the S
can be partitioned into k common independent sets.

16



Proof. We prove by induction on k, the statement is trivial for k = 1. M1 and M2 are k-
colourable by Proposition 3.6, hence assumption |S| = kr implies that S is the union of k
disjoint bases in either M1 or M2. Applying Corollary 1.5 to M1 and Corollary 1.4 to M2 we
get that

r ≤ r1(S) + |S −X|
k

≤ r1(S) + r2(S −X) (X ⊆ S),

hence M1 and M2 have a common basis B by Theorem 1.2. B spans every element of S − B,
hence the restriction of matroids M1 and M2 to S−B does not contain any k-spanned element.
By the induction hypothesis S −B can be partitioned into k− 1 common bases of M1 and M2,
thus adding B to the partition we get a partition of S into k common bases.

Kotlar and Ziv also proved their conjecture for the special case k = 2.

Theorem 3.9. Let M1 = (S, I1) and M2 = (S, I2) be two matroids on S. If no element of S
is 3-spanned in either M1 or M2, then S can be partitioned into 2 common independent sets.

Proof. We will rely on the following lemma.

Lemma 3.10. Let A,B ⊆ S be disjoint common independent sets of M1 and M2 such that
|A ∪B| is maximal. Then for every x 6∈ A ∪B

A+ x ∈ I1 \ I2, B + x ∈ I2 \ I1 or A+ x ∈ I2 \ I1, B + x ∈ I1 \ I2.

Proof. As |A ∪ B| is maximal, A + x,B + x 6∈ I1 ∩ I2 as otherwise A + x and B, or A and
B + x would be common independent sets. Suppose that A + x 6∈ Ij . Then A spans x in Mj ,
and since x is not 3-spanned, we get that B does not span x in Mj , that is, B + x ∈ Ij . As
B + x 6∈ I1 ∩ I2, we get that A+ x ∈ I1 ∪ I2. Thus, we may assume that A+ x ∈ I1 \ I2, then
B + x ∈ I2 by the previous argument. Since B 6∈ I1 ∩ I2, we get that B + x ∈ I2 \ I1.

Let A and B as in the lemma, and suppose for contradiction that A ∪ B 6= S. Let x ∈
S \ (A ∪B), then we may assume by the lemma that A+ x ∈ I1 \ I2 and B + x ∈ I2 \ I1. Let
a1 ∈ A be an element such that A+x−a1 ∈ I2. Applying the lemma to A+x−a1, B ∈ I1∩I2
and the element a1, we get that B + a1 ∈ I2 \ I1 (using that A + x ∈ I1 \ I2). We will keep
constructing different elements a1, . . . , an ∈ A and b1, . . . , bn−1 ∈ B such that the followings
hold. This will contradict the finiteness of A and B.

A+ x− {a1, . . . , an−1, an}+ {b1, . . . , bn−1} ∈ I1 ∩ I2

A+ x− {a1, . . . , an−1} + {b1, . . . , bn−1} ∈ I1 \ I2

B + {a1, . . . , an−1} − {b1, . . . , bn−1} ∈ I1 ∩ I2

B + {a1, . . . , an−1, an} − {b1, . . . , bn−1} ∈ I2 \ I1

For n = 1, the a1 above satisfies these conditions (we define {a1, . . . , a0} and {b1, . . . , b0}
to be empty). Suppose that we have a1, . . . , an and b1, . . . , bn−1 with the required properties,
we prove the existence of bn and an+1. Let A′ = A− {a1, . . . , an−1}+ {b1, . . . , bn−1} and B′ =
B+{a1, . . . , an−1}−{b1, . . . , bn−1}. As B′ ∈ I1 and B′+an 6∈ I1, the latter set contains exactly
one circuit C1 of M1. Since {a1, . . . , an} ⊆ A is independent in M1, circuit C1 intersects B. Let
bn ∈ C1∩B, then B′+an−bn ∈ I1∩I2. Applying the lemma to A′+x−an, B′+an−bn ∈ I1∩I2
and the element bn, we get that A′ + x − an + bn ∈ I1 \ I2 (using that B′ + an ∈ I2 \ I1). As
A′+x− an ∈ I2 and A′+x− an + bn 6∈ I2, the latter set contains exactly one circuit C2 of M2.
Since {b1, . . . , bn}+x ⊆ B+x is independent in M2, circuit C2 intersects A. Let an+1 ∈ C2∩A,
then A′+x−an+bn−an+1 ∈ I1∩I2. Applying the lemma to A′+x−an+bn−an+1, B

′+an−bn

17



and the element an+1, we get that B′+an−bn+bn+1 ∈ I2\I1 (using that A′+x−an+bn ∈ I1\I2).
This proves that a1, . . . , an+1 and b1, . . . , bn satisfies the required conditions, concluding the
proof of the theorem.

Note that the proofs of these two theorems also provide polynomial algorithms for parti-
tioning the ground set into k common independent sets.

Recently, Takazawa and Yokoi [71] proposed a generalized-polymatroid approach, which
yields unified proofs for Theorems 3.8, 3.9 and also Theorem 3.4 in case of laminar matroids.
They also showed that if M1 = (S, I1) satisfies the conditions of either Theorem 3.8 or Theo-
rem 3.9, and M2 = (S, I2) is a k-colourable laminar matroid, then S can be partitioned into k
common independent sets of M1 and M2. Later, Fujishige, Takazawa and Yokoi [25] strength-
ened these results and proved that under the same assumptions there exists a nearly uniform
partition of the ground set into k common independent sets, that is, a partition such that
difference of the cardinalities of any two partition classes is at most 1.

3.3 Open problems

We end this chapter with a list of some well-studied conjectures that can be formulated as
χ(M1,M2) = max{χ(M1), χ(M2)} for specific pairs of matroids M1,M2.

3.3.1 Rota’s basis conjecture

Rota made the following conjecture in 1989, and published it with Huang in 1994 [35].

Conjecture 3.11. If M is a matroid of rank n whose ground set can be partitioned into n
disjoint bases B1, . . . , Bn, then it is possible to rearrange the elements of these bases into an
n× n matrix in such a way that the rows are exactly the given bases, and the columns are also
bases of M .

If N denotes the partition matroid defined by the partition B1 ∪ · · · ∪ Bn, then M and N
are n-colourable matroids and the conjecture states that the ground set can be partitioned into
n common bases. As partition matroids are strongly base orderable, Theorem 3.4 implies that
the conjecture holds if M is strongly base orderable as well. Geelen and Humphries [28] proved
the conjecture for paving matroids. For other partial results see e.g. [29, 11, 32, 10].

3.3.2 Woodall’s conjecture on packing dijoins

A directed cut of a directed graph D = (V,A) is the set of arcs entering a set X ⊆ V with
out-degree 0. A dijoin is a set of arcs whose contraction results in a strongly connected digraph,
or equivalently, a set of arcs intersecting each directed cut. Woodall [77] made the following
conjecture.

Conjecture 3.12. In a directed graph the maximum number of pairwise disjoint dijoins equals
the minimum size of a directed cut.

The conjecture was known to be true for k = 2, for source-sink connected digraphs by
Schrijver [67] and independently by Feofiloff and Younger [21], for series-parallel digraphs by
Lee and Wakabayashi [50]. Recently Mészáros [58] proved that if k is a prime power, then
the conjecture holds if the underlying undirected graph is (k − 1, 1)-partition-connected. Note

18



that the dual problem is the theorem of Lucchesi and Younger [56]: the maximum number of
pairwise disjoint directed cuts equals the minimum size of a dijoin.

Frank and Tardos [23] observed that Woodall’s conjecture can be formulated as packing
common bases of two matroids. Let D = (V,A) be a directed graph and k ≥ 2 an integer. For
every arc e ∈ A let H(e) and T (e) be disjoint sets of size 1 and k − 1, respectively, and for a
node v ∈ V let S(v) =

⋃
{H(e) : e = uv ∈ A} ∪

⋃
{T (e) : e = vw ∈ A}. For a subset X ⊆ V

we use the notation S(X) =
⋃
v∈X S(v), and we set S = S(V ). Let M1 = (S, I1) denote the

partition matroid with partition classes H(e) ∪ T (e) for e ∈ A. The matroid M2 = (S, I2) is
defined by the following set of bases:

{B ⊆ S : |B| = |A|, |B ∩ S(X)| ≥ i(X) + 1 for every X ⊆ V with out-degree 0},

where i(X) denotes the number of edges induced by X in D. Frank and Tardos showed that
this family forms the set of bases of a matroid indeed.

For a basis B of the partition matroid M1 let us consider the subset of arcs F = {e ∈ A :
H(e) ⊆ B}. Notice that B is a basis of M2 if and only if F is a dijoin. Indeed, if B is a common
basis of M1 and M2, then |B ∩ S(X)| ≥ i(X) + 1 for every set X ⊆ V with out-degree 0. Then
H(e) ⊆ B for at least one arc e entering X, thus e ∈ F . This proves that F intersects every
directed cut of D, that is, F is a dijoin. The reverse direction is similar. (See Figure 3.1 for an
illustration.)

It is not difficult to see that the previous observation implies that D has k pairwise disjoint
dijoins if and only if M1 and M2 have k pairwise disjoint common bases. (Note that |S| =
k|A| = krM1(S) = krM2(S), hence this is equivalent to saying that S can be partitioned into k
common independent sets of M1 and M2.) Thus, Conjecture 3.12 states that M1 and M2 have
k pairwise disjoint common bases where k denotes the minimum size of a directed cut of D.
It is clear that S can be partitioned into k bases of M1, and it can be shown using the base
polyhedron of M2 given by Frank and Tardos [23] that S can be partitioned into k bases of
M2 if and only if k is not less than the minimum size of a directed cut [32]. This means that
Woodall’s conjecture can be formulated as χ(M1,M2) = χ(M1) = χ(M2).

3.3.3 Equitability of matroids

The following conjecture would follow from several well-studied conjectures. [19] calls ma-
troids with the following property equitable.

Conjecture 3.13. Suppose that the ground set of a matroid M = (S, I) can be partitioned into
two bases. Then for any set X ⊆ S the ground set can be partitioned into bases B1 and B2 such
that

b|X|/2c ≤ |Bi ∩X| ≤ d|X|/2e (i = 1, 2).

Let N denote the partition matroid
(
M free
X

)
d|X|/2e

⊕M free
X−S . (Here the original definition of

partition matroids is used where upper bounds different from 1 are allowed on partition classes.)
N is clearly a 2-colourable matroid, and Conjecture 3.13 states that χ(M,N) = 2 whenever
χ(M) = 2 and |S| = 2rM (S). Fekete and Szabó [20] showed that the conjecture holds for
graphic matroids.

A much general conjecture is due to White [74]. Let B1, . . . , Bm be bases of a matroid
M = (S, I). If 1 ≤ i < j ≤ m, x ∈ Bi−Bj and y ∈ Bj−Bi, then we say that the basis sequence

(B1, . . . , Bi−1, Bi − x+ y,Bi+1, . . . , Bj−1, Bj − y + x,Bj+1, . . . , Bm)
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Figure 3.1: An example of a directed graph where the minimum size of a directed cut is k = 3.
The ground set of the associated matroids is represented by circles next to the arcs.

is obtained from (B1, . . . , Bm) by a symmetric exchange. The conjecture states that for any two
basis sequences (B1, . . . , Bm) and (B′1, . . . , B′m) such that |{i : s ∈ Bi}| = |{i : s ∈ B′i}| holds for
every element s ∈ S, (B′1, . . . , B′m) can be obtained from (B1, . . . , Bm) by a series of symmetric
exchanges. Bonin [8] proved that the conjecture holds for sparse paving matroids, and observed
that it follows from the results of Blasiak [7] and Kashiwabara [41] that the conjecture holds for
graphic matroids, matroids of rank at most three, and also the duals of these. Conjecture 3.13
would follow from the m = 2 case of White’s conjecture. Indeed, let S = B′1 ∪ B′2 denote any
partition of S into two bases and suppose that (B′2, B′1) can be obtained from (B′1, B′2) by a series
of symmetric exchanges. Consider |B1 ∩X| for members (B1, B2) of the series. This sequence
starts with |B′1∩X|, ends with |B′2∩X| = |X|−|B′1∩X| and the difference of adjacent members
is at most one, hence there is a basis pair (B1, B2) such that b|X|/2c ≤ |B1 ∩X| ≤ d|X|/2e.

Another much general conjecture than Conjecture 3.13 is about cyclically orderable ma-
troids. A matroid M = (S, I) is called cyclically orderable if S has a cyclic permutation
such that all sets of r(S) cyclically consecutive elements are bases of M . Kajitani, Ueno and
Miyano [40] conjectured that M is cyclically orderable if and only if |X|/r(X) ≤ |S|/r(S)
holds for X ⊆ S. Van den Heuvel and Thomassé [34] proved the conjecture for the case when
(|S|, r(S)) = 1. Bonin [8] proved the conjecture for sparse paving matroids. The inequalities
|X|/r(X) ≤ |S|/r(S) clearly hold if |S| = kr(S), that is, a special case of the conjecture states
that every matroid is cyclically orderable whose ground set can be partitioned into k bases.
Notice that Conjecture 3.13 would easily follow from the k = 2 case. Indeed, let M = (S, I)
be a matroid of rank r such that its ground set can be partitioned into 2 bases. Suppose
that M is cyclically orderable and let B1, . . . , B2r denote the sets of r cyclically consecutive
elements (each of which is a basis of M). Since 1

2r
∑2r
i=1 |X ∩ Bi| = |X|r/2r = |X|/2 and
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||X ∩ Bi| − |X ∩ Bi+1|| ≤ 1 for i = 1, . . . , 2r, it follows that b|X|/2c ≤ |Bi ∩X| ≤ d|X|/2e for
some i. Thus, Bi and S −Bi = Bi+r satisfy the requirements of Conjecture 3.13.

A strengthening of the previous k = 2, |S| = 2r(S) case of the conjecture about cyclically
orderable matroids is the following: for any two disjoint bases B1, B2 of a matroid there is a
cyclic permutation (b1, . . . , b2r) of the elements of B1 ∪B2 such that each cyclically consecutive
r elements form a base of M , B1 = {b1, . . . , br} and B2 = {br+1, . . . , b2r} [26, 12]. Cordovil
and Morerira [12] proved the conjecture for graphic matroids and Bonin [8] showed it for sparse
paving matroids. The conjecture holds for strongly base orderable matroids as well: if f : B1 →
B2 is a bijection such that B1−X+f(X) is a base for X ⊆ B1, then (b1, . . . , br, f(b1), . . . , f(br))
is a good cyclic ordering for any ordering (b1, . . . , br) of the elements of B1.
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Chapter 4

Upper bound on common
independent set cover

In this chapter we present the results of Aharoni and Berger [1]. We prove Theorem 4.20,
a generalization of the nontrivial direction of Edmond’s Theorem 1.2. As a consequence, we
obtain the upper bound χ(M1,M2) ≤ 2 max{χ(M1), χ(M2)} for any pair of matroids M1,M2 on
the same ground set. The methods used are mostly topological, thus we begin with a detailed
overview of the required topological concepts.

4.1 Topological tools

4.1.1 Simplicial complexes

We will use more general set systems than the independent sets of a matroid: the following
definition only requires property (I2).

Definition 4.1. A simplicial complex (or plainly complex) C is a hereditary family of finite
sets, that is, Y ⊆ X ∈ C implies Y ∈ C. The vertex set of C (denoted by V (C)) is the union of
all members of C.

In what follows we will associate a topological space to any complex.

Definition 4.2. An (n-dimensional) simplex is the convex hull of n + 1 affinely independent
points (called vertices) in some space Rd (d ≥ n). A face of the simplex is the convex hull of a
(possibly empty) subset of its vertices.

A geometric simplicial complex G is a family of simplices (in some Rd) such that (1) the face
of any simplex of G is in G, and (2) the intersection of two simplices of G is a common face of
them. We write

||G|| =
⋃

∆∈G
∆ ⊆ Rd.

It is clear that the vertex sets of simplices of a geometric simplicial complex form a complex.
Conversely, for any complex C we construct a geometric simplicial complex G.

Definition 4.3. The geometric representation of a complex C is an injective mapping p : V (C)→
Rd such that for every X,Y ∈ C

conv(p(X)) ∩ conv(p(Y )) = conv(p(X ∩ Y )), (4.1)

where conv(S) denotes the convex hull of S ⊆ Rd. We often write pv = p(v) for v ∈ V (C).
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It is clear, that every complex C has a geometric representation: let d = |V (C)| − 1 and
choose pv (v ∈ V (C)) to be affinely independent.

It is not difficult to show that the injectivity of p and (4.1) implies that for X ∈ C the
points of p(X) are affinely independent, thus conv(p(X)) is an (|X| − 1)-dimensional simplex.
We write

||X|| = conv(p(X)) (X ∈ C),

then (4.1) implies that {||X|| : X ∈ C} is a geometric simplicial complex. We define

||C|| =
⋃
X∈C

conv(p(X)) ⊆ Rd.

Clearly, ||C|| depends on the chosen geometric representation of C. However, we show that ||C||
as a topological space (with the subspace topology from Rd) is unique up to homeomorphism.

Definition 4.4. Let A and B be complexes and f : V (A) → V (B) a mapping. f is simplicial
if f(A) ∈ B for every A ∈ A. A bijective simplicial mapping whose inverse is also a simplicial
is called an isomorphism.

Proposition 4.5. Let A and B be complexes with geometric representations p and q, respec-
tively. If f : V (A)→ V (B) is simplicial, then

||f || : ||A|| → ||B||,
k∑
i=1

αipvi 7→
k∑
i=1

αiqf(vi)

is a well-defined continuous map where {v1, . . . , vk} ∈ A, 0 ≤ α1, . . . , αk and
∑k
i=1 αi = 1.

Moreover, if f is an isomorphism, then ||f || is a homeomorphism.

Proof. As f is simplicial, {f(v1), . . . , f(vk)} ∈ B for {v1, . . . , vk} ∈ A, hence ||f ||
(∑k

i=1 αipvi

)
∈

||B||. Thus ||f || is well-defined, and it is also clear that ||f || is continuous, as it is continuous
on each simplex. If f is an isomorphism, then it is not difficult to check that ||B|| → ||A||,∑k
i=1 αiqvi 7→

∑k
i=1 αipf−1(vi) is the inverse of ||f || and it is continuous, hence ||f || is a homeo-

morphism.

Corollary 4.6. For a complex C, ||C|| is unique up to homeomorphism.

Proof. || idV (C) || is a homeomorphism between any two spaces obtained from geometric repre-
sentations of C.

It will be easier to formulate some results using the following definition.

Definition 4.7. Let C be a complex with geometric representation p. The support of x ∈ ||C||
is the smallest set suppC(x) = {v1, . . . , vk} ∈ C such that x ∈ conv{pv1 , . . . , pvk

}.

4.1.2 Barycentric subdivisions

Definition 4.8. The barycentric subdivision of a complex C is the complex

β(C) = {{S1, . . . , Sk} : S1, . . . , Sk ∈ C, ∅ 6= S1 ( S2 ( · · · ( Sk, k ≥ 0}.

Clearly, β(C) is a complex and V (β(C)) = C \ {∅}. The following statement shows the
geometric meaning of this construction.
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Proposition 4.9. Let p : V (C)→ Rd be a geometric representation of a complex C. Then

q : V (β(C))→ Rd, S 7→ 1
|S|

∑
v∈S

pv

is a geometric representation of β(C) such that ||C|| = ||β(C)||. Moreover, for x ∈ ||C||

suppβ(C)(x) = {S1, . . . , Sk} for some S1, . . . , Sk ⊆ suppC(x).

Proof [76]. We prove by induction on |C|. If C consists of only singletons (and the empty set),
then the statements are trivial. Otherwise, let S ∈ C be a set of the complex such that |S|
is maximal (then |S| ≥ 2 by our assumption). Let ∆ denote the simplex conv(p(S)), ∂∆ its
boundary and int ∆ its interior. We will rely on the following basic geometric fact:

∀x ∈ int ∆, x 6= qS ∃!t ∈ (0, 1), y ∈ ∂∆ : x = t · qS + (1− t) · y. (4.2)

As |S| is maximal, C′ = C \ {S} is a complex as well, hence q|C′ and β(C′) satisfy the
statements above by the induction hypothesis. We have qS ∈ int ∆ and qS′ ∈ ||β(C′)|| = ||C′||
for S′ ∈ C′, hence the injectivity of q follows from ||C′|| ∩ int ∆ = ∅ and the injectivity of
q|C′ . To prove that q is a geometric representation of β(C), we need to show that conv(q(X))∩
conv(q(Y )) = conv(q(X∩Y )) for every X,Y ∈ β(C). As q is a geometric representation of C′, we
may assume that X ∈ β(C) \β(C′), that is, S ∈ X. Then X is a chain with maximal element S,
hence conv(q(X)) ⊆ ∆. Suppose first that S 6∈ Y . Then conv(q(Y )) ⊆ ||β(C′)|| = ||C′||, hence
conv(q(Y )) ∩ int ∆ = ∅. Thus, conv(q(X)) ∩ conv(q(Y )) = (conv(q(X)) ∩ ∂∆) ∩ conv(q(Y )) =
conv(q(X − S)) ∩ conv(q(Y )), which equals to conv(q((X − S) ∩ Y )) = conv(q(X ∩ Y )) as
the restriction of q is a geometric representation of β(C′). Assume now that S ∈ Y . Let
F = conv(q(X−S)) and G = conv(q(Y −S)), then (4.2) implies that conv(q(X))∩conv(q(Y )) =
conv(F, qS)∩conv(G, qS) = conv(F ∩G, qS). As the restriction of q is a geometric representation
of β(C′), F ∩G = conv(q(X ∩Y −S)), thus conv(q(X))∩ conv(q(Y )) = conv(q(X ∩Y )) follows.
This proves that q is a geometric representation of β(C).

We show that ||β(C)|| = ||C||. If S ∈ X ∈ β(C), then we noticed above that ||X|| ⊆ ∆ ⊆ ||C||,
hence ||β(C)|| ⊆ ||C|| follows from ||β(C′)|| = ||C′||. To prove the other direction we only need
to show that int ∆ ⊆ ||β(C′)|| (using that ||β(C′)|| = ||C′||). It is clear that qS ∈ ||β(C′)||, and
for x ∈ int ∆, x 6= qS there exists y and t as in (4.2). As y ∈ ∂∆ ⊆ ||C′|| = ||β(C′)||, there exists
an X ′ ∈ β(C′) such that y ∈ ||X ′||. Then X = X ′ ∪ {S} ∈ β(C) and x ∈ ||X||, concluding the
proof of our claim.

Now we prove the last statement about suppβ(C)(x). As the claim holds for C′, we may
assume that x ∈ ||β(C)|| \ ||β(C′)|| = int ∆. If x = qS , then suppβ(C)(x) = {S} and the claim
is true. If x 6= qS , then there exists y and t as in (4.2), and suppβ(C)(x) = suppβ(C′)(y) ∪ {S}.
As suppβ(C′)(y) = {S1, . . . , Sk} for some S1, . . . , Sk ∈ suppC′(y) ⊆ suppC(x), it follows that
suppβ(C)(x) = {S1, . . . , Sk, S} where S1, . . . , Sk, S ∈ suppβ(C)(x). This concludes the proof of
the proposition.

4.1.3 k-connectivity

The most important concept we will use in this chapter is the connectivity of a complex.
We denote the d-dimensional closed unit ball by Bd and its boundary (the (d− 1)-dimensional
sphere) by Sd−1.

Definition 4.10. A topological space X is k-connected (k ≥ 0), if for every 0 ≤ r ≤ k, every
continuous map f : Sr → X extends to a continuous map f̄ : Br+1 → X.
X is (−1)-connected if it is nonempty.
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In particular, 0-connectivity means path-connectivity.
We say that a complex C is k-connected if ||C|| is k-connected. (Note that k-connectivity is

homeomorphism invariant.) To handle k-connectivity, we need some more definitions.

Definition 4.11. Let X and Y be topological spaces and f, g : X → Y continuous mappings.
f and g are homotopic (f ∼ g), if there exists a continuous mapping H : X × [0, 1] → Y such
that H(x, 0) = f(x) and H(x, 1) = g(x) for every x ∈ X. f is 0-homotopic (f ∼ 0 in Y ), if it is
homotopic to a mapping of X onto a single point of Y .

Definition 4.12. Let X ⊆ Y be topological spaces. A continuous mapping f : Y → X is called
a retraction, if f |X = idX . X is a retract of Y if there exists a retraction Y → X.

It is straightforward to check that a retract of a k-connected space is k-connected.
The next definition corresponds to the truncation of matroids but the notation is slightly

different.

Definition 4.13. The k-dimensional skeleton of a complex C is Ck = {X ∈ C : |X| ≤ k + 1}.

Using these definitions one can directly prove the following characterization of k-connectivity
(see e.g. [6] for a proof).

Proposition 4.14. For any complex C and k ≥ 0, the followings are equivalent:

(1) C is k-connected,

(2) Ck+1 is k-connected,

(3) ||Ck+1|| is a retract of ||(2V (C))k+1||,

(4) id||Ck|| ∼ 0 in ||C||.

The following theorem (in a more general setting) follows from algebraic topological results,
but we give here an elementary proof using only Proposition 4.14.

Theorem 4.15. If A and B are k-connected complexes and A ∩ B is (k − 1)-connected, then
A ∪ B is k-connected.

Proof [6]. The proof is based on the following lemma.

Lemma 4.16. Let C be a complex and U any finite set.

(a) If C is k-connected and C ∩ 2U is (k − 1)-connected, then C ∪ 2U is k-connected.

(b) If C ∩ 2U and C ∪ 2U are k-connected, then C is k-connected.

Proof. (a) C ∩ 2U is (k − 1)-connected, hence there exists a retraction f : ||(2U )k|| → ||(C ∩
2U )k|| = ||Ck|| ∩ ||(2U )k||. (By Proposition 4.14, ||(C ∩ 2U )k+1|| is a retract of ||(2U ′)k+1|| where
U ′ = V (C ∩ 2U ) ⊆ U . Since ||(2U ′)k+1|| is a retract of ||(2U )k+1||, ||(C ∩ 2U )k+1|| is a retract of
||(2U )k+1|| as well.) f can be extended to a retraction f̄ : ||Ck|| ∪ ||(2U )k|| → ||Ck|| by letting it
be identity on ||Ck||. Clearly, ||Ck|| ∪ ||(2U )k|| = ||(C ∪ 2U )k|| and

f̄ ∼ id||(C∪2U )k|| in ||C ∪ 2U ||

(since for x ∈ ||(2U )k||, points x and f̄(x) are both contained in the convex set ||2U ||). Since C
is k-connected, idCk

∼ 0 in ||C||, hence f̄ = idCk
◦f̄ ∼ 0 in ||C|| and so f̄ ∼ 0 in ||C ∪ 2U || as well.

Then id||(C∪2U )k|| ∼ 0 in ||C ∪ 2U ||, thus C ∪ 2U is k-connected.
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(b) C∩2U is k-connected, which implies (as we have seen in part (a)) that ||Ck+1|| is a retract
of ||(C ∪ 2U )k+1||. Since ||(C ∪ 2U )k+1|| is k-connected, its retract ||Ck+1|| is k-connected as well,
thus C is k-connected.

Consider the barycentric subdivisions β(A) and β(B). It is not difficult to check that
β(A ∩ B) = β(A) ∩ β(B) and β(A ∪ B) = β(A) ∪ β(B) (the latter follows from the hereditary
property of A and B). Hence, by Proposition 4.9 A′ := β(A) and B′ := β(B) are k-connected,
A′ ∩ B′ is (k − 1)-connected, and it is sufficient to show that A′ ∪ B′ is k-connected.

Let U = V (B′) = B. As A′ is k-connected and A′ ∩ 2U = A′ ∩ B′ is (k − 1)-connected, part
(a) of Lemma 4.16 yields that A′ ∪ 2U is k-connected. Let C = A′ ∪ B′, then C ∪ 2U = A′ ∪ 2U
and C ∩ 2U = (A′ ∩ 2U ) ∪ (B′ ∩ 2U ) = (A′ ∩ B′) ∪ B′ = B′ are k-connected, thus by part (b) of
Lemma 4.16, C = A ∪ B is k-connected as well.

We introduce the following notation for a complex C:

η(C) = 2 + sup{k : C is k-connected},

where we define every topological space to be (−2)-connected (that is, η(C) = 0 if ||C|| = ∅).
In particular, if C is k-connected for every k, then η(C) =∞. The addition of 2 corresponds to
the number of vertices of the simplex homeomorphic to Sk in the definition of k-connectivity.

Using this notation the previous theorem can be formulated as

η(A ∪ B) ≥ min{η(A), η(B), η(A ∩ B) + 1}. (4.3)

We shall only use this result in a special case. For a vertex x of a complex C consider the
analogue of restriction to V (C)− x and contraction of x:

C − x = {X ∈ C : x 6∈ X},
C/x = {X ∈ C : x 6∈ X,X + x ∈ C}.

For complexes C/x is usually called the link of x.

Corollary 4.17. For every vertex x of a complex C

η(C) ≥ min{η(C − x), η(C/x) + 1}.

Proof. We may assume that {x} ∈ C as otherwise C = C−x and η(C) = η(C−x). Let A = C−x
and B = {X : X + x ∈ C}, then A ∪ B = C and A ∩ B = C/x. Notice that ||B|| is a nonempty
star-convex set (the line segment between the point corresponding to x and any point of ||B||
lies completely in ||B||), hence η(B) =∞. Using inequality (4.3) the desired result follows.

As complexes are generalizations of matroids, it is natural to ask the relationship between
the rank function r and the connectivity parameter η of a matroid M = (S, I). It can be shown
that they are more or less the same:

η(I) =
{
∞, if M contains a co-loop,
r(S), otherwise.

The inequality η(I) ≥ r(S) can be derived from Corollary 4.17; later we will prove the more
general Proposition 4.21.
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4.1.4 The Knaster-Kuratowski-Mazurkiewicz lemma

The last geometrical tool we will need is a result equivalent to Sperner’s following classical
lemma.

Theorem 4.18 (Sperner’s lemma [70]). Let ∆ be an n-dimensional simplex with vertices
p1, . . . , pn+1 and G a geometric simplicial complex such that ||G|| = ∆. Consider a colouring
c : V (G)→ {1, . . . , n+ 1} such that for every v ∈ V (G)

v ∈ conv{pi1 , . . . , pik} ⇒ c(v) ∈ {i1, . . . , ik}.

Then there exists an odd number of n-dimensional simplices of G, whose vertices are coloured
with all n+ 1 colours.

The next theorem formulates two closely related results. The first one, with A1, . . . , An+1
closed is the classical theorem of Knaster, Kuratowski and Mazurkiewicz [45] from 1929, which
we prove as a consequence of Sperner’s lemma. The second one, with A1, . . . , An+1 open is a
consequence of the closed version, for this we follow the proof of [69].

Theorem 4.19 (KKM lemma). Let ∆ be an n-dimensional simplex with vertices p1, . . . , pn+1.
Suppose that A1, . . . , An+1 are closed (resp. open) subsets of ∆ such that

conv{pi1 , . . . , pik} ⊆ Ai1 ∪ · · · ∪Aik (4.4)

for every subset {i1, . . . , ik} ⊆ {1, . . . , n+ 1}. Then A1 ∩ · · · ∩An+1 is nonempty.

Proof. Suppose first that A1, . . . , An+1 are closed. Let ε > 0, and construct a geometric sim-
plicial complex G such that ||G|| = ∆ and the diameter of every simplex of G is at most ε. (As
∆ is a standard n-dimensional simplex, it is not difficult to give an elementary construction
– a more general way to do this would be to consider repeated barycentric subdivisions.) For
v ∈ V (G) let conv{pi1 , . . . , pik} be the smallest face of ∆ containing v, then by (4.19) there
exists a colour c(v) ∈ {i1, . . . , ik} such that v ∈ Ac(v). The colouring c satisfies the conditions
of Sperner’s lemma, hence there exists an n-dimensional simplex in G with vertices qε1, . . . , qεn+1
such that c(qεi ) = i, that is, qεi ∈ Ai. Consider a sequence εm converging to 0, then it has a
subsequence ε′m such that qε

′
m

1 converges to a point q. As the diameter of {qε
′
m

1 , . . . , q
ε′m
n+1} is at

most ε′m, we get that qε
′
m
i → q for i = 1, . . . , n+ 1. As qε

′
m
i ∈ Ai and Ai is closed, q ∈ Ai as well,

thus q ∈ A1 ∩ · · · ∩An+1.
Assume now that A1, . . . , An+1 are open. We show that there exists closed sets A′1, . . . , A′n+1

satisfying (4.19) such that A′i ⊆ Ai, then the result will follow by ∅ 6= A′1 ∩ · · · ∩ A′n+1 ⊆
A1∩· · ·∩An+1. For x ∈ ∆ there exists an open set Ux such that x ∈ Ux ⊆ Ux ⊆

⋂
x∈Ai

Ai, since⋂
x∈Ai

Ai is open (here Ux denotes the closure of Ux). For every i1, . . . , ik the union
⋃
{Ux : x ∈

Ai1∪· · ·∪Aik} = Ai1∪· · ·∪Aik is an open cover of the compact set conv{pi1 , . . . , pik}, hence there
exists a finite subsetXi1,...,ik ⊆ Ai1∪· · ·∪Aik such that conv{pi1 , . . . , pik} ⊆

⋃
{Ux : x ∈ Xi1,...,ik}.

Let X =
⋃
i1,...,ik

Xi1,...,ik , then X is a finite set such that

conv{pi1 , . . . , pik} ⊆
⋃
{Ux : x ∈ X,Ux ⊆ Ai1 ∪ · · · ∪Aik}. (4.5)

Now let
A′i =

⋃
{Ux : x ∈ X,Ux ⊆ Ai},

then A′i is closed as it is a finite union of closed sets. By Ux ⊆
⋂
x∈Ai

Ai, Ux ⊆ Ai implies
Ux ⊆ Ai, hence A′i ⊆ Ai. Moreover, if Ux ⊆ Ai1 ∪ . . . Aik , then Ux ⊆ Aij for some j, hence (4.5)
implies that A1, . . . , An+1 satisfies (4.19). This concludes the proof of the theorem.
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4.2 The intersection of a matroid and a simplicial complex

We are ready to prove the main result of [1]. For a set X and complex C, we write C|X =
{C ∈ C : C ⊆ X}.

Theorem 4.20. Let k ≥ 0, C be a complex and M = (S, I) a matroid with rank function r
such that V (C) ⊆ S. If

η(C|X) + r(S −X) ≥ k (X ⊆ S), (4.6)

then there exists an independent set I ∈ C ∩ I of size k.

Proof. We may assume that k = r(S) by considering the k-truncation of M . We may also
assume that V (C) = S.

Let H denote the complex whose vertices are the hyperplanes1 of the matroid M and which
consists of all subsets of hyperplanes of M . Clearly, ||H|| is a simplex. In what follows, we
construct a continuous map f : ||H|| → ||C|| with some special properties.

By Proposition 4.9, we have ||H|| = ||β(H)||. We define the flat complex of M by

F(M) = {{F1, . . . , Fk} : F1 ( F2 ( · · · ( Fk ( S are closed in M, k ≥ 0},

then the vertices of F(M) are the closed sets of M excluding S. The vertices of β(H) are of
the form {H1, . . . ,Hk} for some hyperplanes H1, . . . ,Hk of M . We define

g : V (β(H))→ V (F(M)), g({H1, . . . ,Hk}) =
k⋂
i=1

Hi.

Notice that g is simplicial: the image of a chain of vertices of β(H) is a chain of vertices of
F(M) (the inclusion is reversed). Thus, by Proposition 4.5 we have a continuous mapping
||g|| : ||β(H)|| → ||F(M)||.

Now we construct a continuous map h : ||F(M)|| → ||C||. We define h for points of the
interior of each simplex ||{F1, . . . , Fk}|| at a time (here {F1, . . . , Fk} ∈ F(M), F1 ( · · · ( Fk).
If k = 1, then we define h on the point ||{F1}|| to be the point corresponding to a vertex in
S \ F1 (note that we did not allow F1 = S in the definition of F(M)). Assume that we defined
h on the interiors for 1, 2, . . . , k − 1, then it is defined on the boundary of ||{F1, . . . , Fk}||,
now we define it on its interior. As F1 ( · · · ( Fk ( S is a chain of closed sets, we have
r(F1) ≤ r(F2)− 1 ≤ r(F3)− 2 ≤ · · · ≤ r(S)− k. Then by (4.6) we have

η(C|S−F1) ≥ r(S)− r(F1) ≥ k,

thus C|S−F1 is (k−2)-connected. The boundary of the (k−1)-dimensional simplex ||{F1, . . . , Fk}||
is homeomorphic to the sphere Sk−2, hence by the definition of (k − 2)-connectivity h extends
continuously to the interior of ||{F1, . . . , Fk}|| . This concludes the definition of h : ||F(M)|| →
||C||. By the construction, we have the following property:

∀y ∈ ||F(M)|| ∃F ∈ suppF(M)(y) : F ∩ suppC(h(y)) = ∅. (4.7)

Indeed, if suppF(M)(y) = {F1}, then suppC(h(y)) is a vertex in S − F1, hence F = F1 satisfies
(4.7). Otherwise, suppF(M)(y) = {F1, . . . , Fk} for some k ≥ 2, then h(y) ∈ ||C|S−F1 ||, hence
F = F1 satisfies (4.7).

1[1] considered cuts (the complement of hyperplanes) as vertices of the complex. This minor modification is
due to [59] and it will not make any difference.
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Let f = h ◦ ||g||, then it is a continuous map ||H|| → ||C||:

f : ||H|| = ||β(H)|| ||g||−−→ ||F(M)|| h−−→ ||C||.

For a hyperplane H ∈ V (H) let

AH = {x ∈ ||H|| : suppC(f(x)) 6⊆ H}.

AH is an open subset of ||H||, as

AH =
⋃

s∈S\H
{x ∈ ||H|| : s ∈ suppC(f(x))} =

⋃
s∈S\H

f−1 ({y ∈ ||C|| : s ∈ suppC(y)})

is the union of open sets since f is continuous and {y ∈ ||C|| : s ∈ suppC(y)} is open for every s.
We claim that the sets AH (H ∈ V (H)) satisfy (4.4), which can be rephrased as follows:

∀x ∈ ||H|| ∃H ∈ suppH(x) : x ∈ AH .

Let x ∈ ||H||, then by (4.7) there exists an F ∈ suppF(M)(||g||(x)) such that F∩suppC(f(x)) = ∅.
By the definition of ||g||, F ∈ suppF(M)(||g||(x)) implies that β(H) has a vertex v ∈ suppβ(H)(x)
such that g(v) = F . By Proposition 4.9, v is of the form v = {H1, . . . ,Hk} for some hyperplanes
of H such that {H1, . . . ,Hk} ⊆ suppH(x). As F = g(v) =

⋂k
i=1Hi is disjoint from suppC(f(x)),

we get that suppC(f(x)) 6⊆ Hi for some i ∈ {1, . . . , k}. Thus x ∈ AHi and Hi ∈ suppH(x), which
concludes the proof of our claim.

Therefore, we can apply Theorem 4.19, which yields that there exists an x ∈
⋂
H∈V (H)AH .

This means that suppC(f(x)) 6⊆ H for every hyperplane H, thus suppC(f(x)) is a generator
of M (that is, it has rank r(S)). Then suppC(f(x)) contains a basis of M which is in C by
suppC(f(x)) ∈ C. This concludes the proof of the theorem.

4.3 2-approximation

To apply Theorem 4.20, we need a lower bound on the connectivity parameter η.

Proposition 4.21. For matroids M1 = (S, I1), . . . ,Mk = (S, Ik) on common ground set S

η(I1 ∩ · · · ∩ Ik) ≥ max{|I| : I ∈ I1 ∩ · · · ∩ Ik}/k.

Proof. For a complex C we will us use the notation ν(C) = max{|I| : I ∈ C}.
We prove by induction on |S|. Let C = I1 ∩ · · · ∩ Ik and I ∈ C a set of size ν(C). Let

x ∈ S − I be an element which is not a loop in any of the matroids (if there is no such x then
η(C) = η(2I) = ∞ and the inequality is trivial). Notice that ν(I1/x ∩ · · · ∩ Ik/x) ≥ ν(C) − k.
Indeed, for j = 1, . . . , k we can pick an element xj ∈ I such that I − xj + x ∈ Ij (assuming
I 6= ∅), and then I − {x1, . . . , xk} ∈ I1/x ∩ · · · ∩ Ik/x is a set of size at least |I| − k. Applying
induction to C − x and C/x we get

η(C − x) = η((I1 − x) ∩ · · · ∩ (Ik − x)) ≥ ν((I1 − x) ∩ · · · ∩ (Ik − x))/k = ν(C)/k,
η(C/x) = η(I1/x ∩ · · · ∩ Ik/x) ≥ ν(I1/x ∩ · · · ∩ Ik/x)/k ≥ (ν(C)− k)/k = ν(C)/k − 1,

and η(C) ≥ min{η(C − x)/k, η(C/x)/k + 1} ≥ ν(C)/k by Corollary 4.17.
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Corollary 4.22. Let M1, M2, M3 be matroids on the same ground set S such that

1
2r1(X1) + 1

2r2(X2) + r3(X3) ≥ k (4.8)

whenever S = X1 ∪X2 ∪X3. Then they have a common independent set of size k.

Proof. Let C = I1 ∩ I2, then by Theorem 4.20 it suffices to show that η(C|X) + r3(S −X) ≥ k
holds for every X ⊆ S. Applying Proposition 4.21, Theorem 1.2 and assumption (4.8) we get
the desired result:

η(C|X) ≥ 1
2 max{|I| : I ∈ I1 ∩ I2, I ⊆ X} = 1

2 min{r1(X1) + r2(X2) : X = X1 ∪X2}

≥ k − r3(S −X).

Corollary 4.22 implies the following result just as Theorem 1.2 implies Theorem 1.3.

Theorem 4.23. For matroids M1 = (S, I1) and M2 = (S, I2)

χ(M1,M2) ≤ 2 max{χ(M1), χ(M2)}.

Proof. Let k = 2 max{χ(M1), χ(M2)}, S1, . . . , Sk be disjoint copies of S and S′ =
⋃k
i=1 Si.

For s ∈ S we write si for the copy of s in Si. Consider the matroids M ′1 =
⊕k
i=1M1, M ′2 =⊕k

i=1M2 and M ′3 on ground set S where M ′3 is the partition matroid defined by the partition
{{s1, . . . , sk} : s ∈ S}. We claim that S can be partitioned into k common independent sets
of M1 and M2 if and only if M ′1, M ′2 and M ′3 have a common independent set of size |S|.
Indeed, if I ′ is such a set than {{s ∈ S : si ∈ I ′} : i = 1, . . . , k} is a partition of S into k
common independent sets of M1 and M2, and conversely, if S = I1 ∪ · · · ∪ Ik is such a partition
then

⋃k
i=1{si : s ∈ Ii} is a common independent set of M ′1,M ′2,M ′3 of size |S|. Hence, by

Corollary 4.22 it suffices to show that

1
2r
′
1(X ′1) + 1

2r
′
2(X ′2) + r′3(X ′3) ≥ |S|

holds for any partition S′ = X ′1 ∪X ′2 ∪X ′3 where r′j denotes the rank function of M ′j . We may
assume that X3 is closed in M ′3, that is, it is of the form X ′3 = {s1, . . . , sk : s ∈ X3} for a set
X3 ⊆ S. Then

1
2r
′
1(X ′1) + 1

2r
′
2(X ′2) + r′3(X ′3) = 1

2

k∑
i=1

(
r′1(X ′1 ∩ Si) + r′2(X ′2 ∩ Si)

)
+ |X3|

≥ k

2 min{r1(X1) + r2(X2) : X1 ∪X2 = S −X3}+ |X3|

≥ min{|X1|+ |X2| : X1 ∪X2 = S −X3}+ |X3| = |S|,

using that k
2r1(X1) ≤ |X1| and k

2r2(X2) ≤ |X2| for every X1, X2 ⊆ S since M1 and M2 are
k
2 -colourable. This concludes the proof of the theorem.

4.4 A slightly stronger result

We prove a generalization of Proposition 4.21 for the case of two matroids. This will also
imply a generalization of Corollary 4.22.
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Proposition 4.24. Let ` ≥ 1 and M = (S, I) and N = (S,J ) be matroids on common ground
set S. Let J ` denote the system of independent sets of matroid `N . Then

η(I ∩ J ) ≥ max{|I| : I ∈ I ∩ J `}/(`+ 1).

Proof. We prove by induction on |S|. As in the proof of Proposition 4.21, let C = I ∩ J and
I ∈ C a set of size ν(C). We may assume that there is an element x ∈ S − I which is not a
loop in M or N . We claim that ν(I/x ∩ (J /x)`) ≥ ν(C) − ` − 1. If I 6= ∅, then there exists
an element x0 ∈ I such that I − x0 + x ∈ I. As I ∈ J `, it is the union some independent sets
I1, . . . , I` of N , and there exists elements x1, . . . , x` such that I1 − x1 + x, . . . , I` − x` + x ∈ J .
Then I−{x1, . . . , x`} = (I1−x1)∪· · ·∪ (I`−x`) ∈ (J /x)`, thus I−{x0, . . . , x`} ∈ I/x∩ (J /x)`
is a set of size ν(C)− `− 1 proving our claim. Applying induction to C − x and C/x we get

η(C − x) = η((I − x) ∩ (J − x)) ≥ ν((I − x) ∩ (J − x)`)/(`+ 1) = ν(C)/(`+ 1),

η(C/x) = η(I/x ∩ J /x) ≥ ν(I/x ∩ (J /x)`)
`+ 1 ≥ ν(C)− `− 1

`+ 1 = ν(C)
`+ 1 − 1,

and η(C) ≥ ν(C)/(`+ 1) follows by Corollary 4.17.

Corollary 4.25. Let ` ≥ 1 and M1,M2,M3 be matroids on the same ground set S such that

1
`+ 1 · r1(X1) + `

`+ 1 · r2(X2) + r3(X3) ≥ k (4.9)

whenever S = X1 ∪X2 ∪X3. Then they have a common independent set of size k.

Proof. Let C = I1 ∩ I2, then by Theorem 4.20 it suffices to show that η(C|X) + r3(S −X) ≥ k
holds for every X ⊆ S. Let r`2 denote the rank function of the matroid `M2 = (S, I`2), then
Proposition 4.24 and Theorem 1.2 yield

η(C|X) ≥ 1
`+ 1 max{|I| : I ∈ I1 ∩ I`2, I ⊆ X} = 1

`+ 1 min{r1(Y1) + r`2(Y2) : X = Y1 ∪ Y2}.

Let X = Y1 ∪ Y2, then by Theorem 1.3 there exists a set X2 ⊆ Y2 such that r`2(Y2) = `r2(X2) +
|Y2 −X2|. Then

r1(Y1) + r`2(Y2) = r1(Y1) + `r2(X2) + |Y2 −X2| ≥ r1(X1) + `r2(X2),

where X1 = Y1 ∪ (Y2 −X2). Combining the previous inequalities and assumption (4.9) we get
the desired result:

η(C|X) ≥ 1
`+ 1 min{r1(X1) + `r2(X2) : X = X1 ∪X2} ≥ k − r3(S −X).

From this we get the following result by a minor modification of the proof of Theorem 4.23.

Theorem 4.26. Let M1 = (S, I1) and M2 = (S, I2) matroids such that χ(M1) ≤ p and
χ(M2) ≤ pq. Then

χ(M1,M2) ≤ p+ pq.

In particular, we proved the following conjecture for the case where one of χ(M1) and χ(M2)
is a multiple of the other.

Conjecture 4.27. For matroids M1 = (S, I1) and M2 = (S, I2)

χ(M1,M2) ≤ χ(M1) + χ(M2).
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4.5 The best possible upper bound

Aharoni and Berger [2] proposed the following strengthening of Conjecture 4.27.

Conjecture 4.28. For matroids M1 = (S, I1) and M2 = (S, I2)

χ(M1,M2) ≤ max{χ(M1), χ(M2)}+ 1.

Moreover, if χ(M1) 6= χ(M2), then χ(M1,M2) = max{χ(M1), χ(M2)}.

The next example shows that this bound is the best possible (except for the trivial χ(M1) =
χ(M2) = 1 case).

Proposition 4.29. For every k ≥ 2 there exists matroids M1 = (S, I1) and M2 = (S, I2) such
that χ(M1) = χ(M2) = k and χ(M1,M2) = k + 1.

Proof [2]. Consider the complete graph on vertices v1, v2, v3, v4 and replace each of the edges
v1v2, v1v3 and v1v4 with k − 1 parallel edges. Let S denote the set of edges, M1 the graphic
matroid of this graph and M2 the partition matroid on S where a set of edges is independent
if it contains neither two parallel edges nor two disjoint edges. Clearly, r1(S) = 3 and |S| = 3k
implies that χ(M1) ≥ k, hence χ(M1) = k as S can be partitioned into k − 2 stars with centre
v1 and two paths of length 3. M2 is defined by a partition where each of the three classes has
size k, hence χ(M2) = k.

The common independent sets of M1 and M2 are exactly the stars of the graph. It is clear
that S can be partitioned into k+ 1 stars: consider {v2v3, v2v4}, {v3v4} and k− 1 stars centred
at v1. Suppose that S can be partitioned into k stars, then |S| = 3k implies that each star has
3 edges. Looking at triangle v2v3v4, we get that at most one of the stars is centred at v2, v3 or
v4. Then one of the edges of this triangle remains uncovered, a contradiction. Thus, we proved
that χ(M1,M2) = k + 1.

The following observation of Aharoni, Berger and Ziv [2] shows that in Conjecture 4.28 we
may assume that the ground set can be partitioned into bases in both matroids.

Observation 4.30. Let M1 and M2 be two matroids on common ground set S. Then there exists
matroids M ′1 and M ′2 on common ground set S′ such that χ(M ′1) = χ(M1), χ(M ′2) = χ(M2),
χ(M ′1,M ′2) = χ(M1,M2) and in each of the matroids M ′1 and M ′2, S′ can be partitioned into
bases.

Proof. Let n = |S|, k = χ(M1), ` = χ(M2), and S′ a superset of S such that |S′| = nk`. Let
I ′1 = {X ⊆ S′ : |X| ≤ n`,X ∩ S ∈ I1} and I ′2 = {X ⊆ S′ : |X| ≤ nk,X ∩ S ∈ I2}, then
M ′1 = (S, I ′1) and M ′2 = (S, I ′2) are matroids whose restriction to S is M1 and M2, respectively.
Consider a covering of S by k independent sets of M1, then if we extend each of these sets
arbitrarily into subsets of S′ of size `|S|, then we get a covering of S by k independent sets
of M ′1. This shows that χ(M ′1) = χ(M1), and a similar reasoning yields χ(M ′2) = χ(M2) and
χ(M ′1,M ′2) = χ(M1,M2). Moreover, |S′| = k`n = kr′1(S′) implies that S′ can be partitioned
into k bases of M ′1, and similarly S′ can be partitioned into ` bases of M ′2.

Aharoni, Berger and Ziv proved Conjecture 4.28 for χ(M1) = χ(M2) = 2.

Theorem 4.31. If M1 = (S, I1) and M2 = (S, I2) are two matroids such that χ(M1) =
χ(M2) = 2, then χ(M1,M2) ≤ 3.
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Proof [2]. By Observation 4.30 we may assume that S can be partitioned into two bases of M1
and also into two bases of M2. Let B1, B2 be bases of M1 and B′1, B

′
2 bases of M2 such that

S = B1 ∪ B2 = B′1 ∪ B′2 and |B1 ∩ B′1| + |B2 ∩ B′2| is maximal. Let X1 = B1 ∩ B′2, then by
Theorem 1.1 there exists a subset X2 ⊆ B2 such that both B1−X1 ∪X2 and B2−X2 ∪X1 are
bases of M1. As |B1 ∩ B′1| + |B2 ∩ B′2| is maximal and (B1 −X1 ∪X2) ∪ (B2 −X2 ∪X1) is a
partition of S into bases of M1, we have

|B1 ∩B′1|+ |B2 ∩B′2| ≥ |(B1 −X1 ∪X2) ∩B′1|+ |(B2 −X2 ∪X1) ∩B′2|
= |B1 ∩B′1|+ |B′1 ∩X2|+ |B2 ∩B′2| − |B2 ∩B′2 ∩X2|+ |X1|
≥ |B1 ∩B′1|+ |B2 ∩B′2| − |X2|+ |X1| = |B1 ∩B′1|+ |B2 ∩B′2|,

thus |B′1 ∩ X2| = 0, that is, X2 ⊆ B′2. Then (B1 ∩ B′2) ∪ (B′1 ∩ B2) ⊆ B2 − X2 ∪ X1, hence
(B1 ∩B′2)∪ (B′1 ∩B2) is independent in M1. Similarly, this set is also independent in M2, thus
S = (B1 ∩ B′1) ∪ (B2 ∩ B′2) ∪ ((B1 ∩ B′2) ∪ (B′1 ∩ B2)) is a partition of S into three common
independent sets of M1 and M2.

Note that this proof can be converted into a polynomial algorithm, as Theorem 1.1 can be
proven algorithmically.

In case of χ(M1) = 2 and χ(M2) = 3, Aharoni, Berger and Ziv showed with a slight
generalization of this proof that χ(M1,M2) ≤ 4. However, Conjecture 4.28 remains open even
in this special case.
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Chapter 5

Reduction to partition matroids

In this chapter we present the novel approach of reducing a matroid to a partition matroid
without increasing its colouring number too much. This method might serve as a useful tool
for problems related to packing common independent sets of two matroids. In particular, we
propose a conjecture which strengthens Theorem 4.23 and prove its first special cases. These
special cases provide new results for a question of Király [43] about list colouring of two matroids.
Sections 5.1-5.5 are mainly from our joint work [4] with Kristóf Bérczi and Yutaro Yamaguchi.

5.1 Reductions of matroids

Definition 5.1. Let M = (S, I) and N = (S,J ) be two matroids on ground set S. We say
that N is a reduction of M and use the notation N � M , if J ⊆ I. The reduction is rank
preserving if rM (S) = rN (S) holds, and is denoted by N �r M .

The idea of reducing a matroid to a simpler one goes back to the late 60’s. In [14], Crapo and
Rota introduced the notion of weak maps. Given two matroids M and N on the same ground
set, N is a weak map of M if every independent set of N is also independent in M . Using our
terminology, N is a weak map of M if and only if N is a reduction of M . Weak maps were
further investigated by Lucas [54, 55] who characterized rank preserving weak maps for linear
matroids. However, these results did not consider the possible increase in the colouring number
of the matroid that plays a crucial role in our investigations. We find the name ‘map’ slightly
misleading as it suggests that there is a function in the background, although the ‘mapping’ in
question is simply the identity map between the ground sets of the matroids. Hence, we stick
to the term ‘reduction’ throughout the chapter.

We present results about reductions to partition matroids and prove special cases of the
following conjecture.

Conjecture 5.2. Every k-colourable matroid can be reduced to a 2k-colourable partition ma-
troid.

In particular, we show that matroid a M is reducible to a partition matroid N such (A)
χ(N) = χ(M) if M is a transversal matroid, (B) χ(N) ≤ 2χ(M)− 1 if M is a graphic matroid,
(C) χ(N) ≤ dkr/(r − 1)e if M is a paving matroid of rank r, and (D) χ(N) ≤ 2χ(M)− 2 if M
is a gammoid. It should be emphasized that in cases (A), (B) and (D) the reduction is rank
preserving. Our main result is the proof for gammoids.

Notice that Theorem 4.23 would easily follow from Conjecture 5.2 using Theorem 3.4 for
partition matroid (that is, the classical result of Kőnig about the edge colouring number of
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t1 t2 t3 t1 t2 t3

S1 S2 S3

Figure 5.1: An illustration of the proof of Theorem 5.3. Thick, dashed and dotted edges are
corresponding to three matchings covering S.

bipartite graphs). Indeed, if matroids M1 and M2 are reducible to matroids N1 and N2 such that
χ(N1) ≤ 2χ(M1) and χ(N2) ≤ χ(M2), then χ(M1,M2) ≤ χ(N1, N2) = max{χ(N1), χ(N2)} ≤
2 max{χ(M1), χ(M2)}.

It is worth mentioning that every matroid M = (S, I) has a reduction to a partition matroid
N = (S,J ) of the same rank. The sketch of the proof is as follows. Fix an arbitrary basis
B = {s1, . . . , sr} of M , and add si to the ith partition class. Then for an arbitrary element
s ∈ S − B, consider the fundamental circuit C(s,B) of s with respect to B, and add s to the
partition class containing the element of C(s,B)∩B with the smallest index. If we pick exactly
one element from every class of the partition thus obtained, we get a basis of the matroid.
This can be verified using the circuit axioms, not discussed in this thesis. Nevertheless, this
algorithm has no control over the sizes of the partition classes. It can happen that some of the
classes have a large size compared to the colouring number of the original matroid, and such a
reduction is not suitable for our purposes.

5.2 Transversal, graphic and paving matroids

As a warm-up, we first consider three basic cases: transversal, graphic, and paving matroids.
Although the proofs are simple, they might help the reader to get familiar with the notion of
reduction. Also, we show the connection to some earlier results such as Gallai colourings of
complete graphs.

5.2.1 Transversal matroids

Theorem 5.3. Let M = (S, I) be a k-colourable transversal matroid. Then there exists a
k-colourable partition matroid N with N �r M .

Proof. Let G = (S, T ;E) a bipartite graph where T = {t1, . . . , tr}, r being the rank of the
transversal matroid on S. By assumption, the transversal matroid is k-colourable, so there
exist k matchings F1, . . . , Fk covering every vertex in S exactly once. We may assume that
none of these matchings is empty. Let Si =

⋃k
j=1NFj (ti) for i = 1, . . . , r (see Figure 5.1).

Then S1 ∪ · · · ∪ Sr is a partition of S with classes of size at most k. Pick an arbitrary element
sj ∈ Sj for j = 1, . . . , r. The edge set {tjsj : j = 1, . . . , r} shows that the picked elements form
a matchable set, hence the partition matroid defined by the partition is a k-colourable rank
preserving reduction of the transversal matroid.
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5.2.2 Graphic matroids

Now we turn to graphic matroid. Notice that the colouring number of the graphic matroid
of graph G, is the smallest number of forests covering the edge set (hence the notation χ might
be slightly confusing). Observe that reducing the graphic matroid of G to a partition matroid is
equivalent to colouring the edges of the graph in such a way that there is no cycle whose edges
are coloured with completely different colours.

Theorem 5.4. Let M = (S, I) be a k-colourable graphic matroid. Then there exists a (2k−1)-
colourable partition matroid N with N �r M , and the bound for the colouring number of N is
tight.

Proof. Let G = (V,E) be a graph whose graphic matroid M = (E, I) is k-colourable and let
K ⊆ V be a connected component of G of size at least 2. We claim that there exists a cut
in K of size at most 2k − 1. Indeed, if every cut of K contains at least 2k edges then K is a
2k-edge-connected component and so |E[K]| ≥ k|K| by counting the edges around each vertex
in K. By Theorem 1.7, this contradicts the k-colourability of M .

Set S0 := ∅ and i := 0. As long as there exists a connected component K in G −
⋃i
j=0 Sj

of size at least 2, let Si+1 ⊆ E be a minimum cut of K (see Figure 5.2), and update i := i+ 1.
By the above, |Si+1| ≤ 2k − 1. Let E = S1 ∪ · · · ∪ Sq denote the partition thus obtained. We
claim that the partition matroid corresponding to this partition is a reduction of M . In order
to see this, we have to show that every cycle of G intersects at least one of the partition classes
in at least two elements. Given a cycle C, let i be the smallest index with |Si ∩ C| > 0. Then
C ⊆

⋃q
j≥i Sj and Si is a cut in

⋃q
j≥i Sj , hence |Si ∩ C| ≥ 2. As the deletion of Si increases the

number of components of G−
⋃i−1
j=0 Sj by exactly one for i = 1, . . . , q, the rank of the partition

matroid thus obtained is the same as the rank of the graphic matroid of G, concluding the first
half of the theorem.

To show that the given bound is tight, let G = (V,E) be a complete graph on 2k vertices.
By Nash-Williams’ theorem, the colouring number of the graphic matroid of G is k. An edge
colouring of a complete graph is called a Gallai colouring if no triangle is coloured with three
distinct colours, which is a weaker restriction than the above. Bialostocki, Dierker and Voxman
[5] showed that every Gallai colouring contains a monochromatic spanning tree. This means
that for any reduction of the graphic matroid of G to a partition matroid, there is a partition
class of size at least 2k − 1.

Figure 5.2: An illustration of the proof of Theorem 5.4. The graph G = (V,E) can be de-
composed into three forests. Let S1, S2, S3 and S4 denote the sets of thick, dashed, dotted and
zigzag edges, respectively. Then Si+1 is a minimum cut in one of the components of G−

⋃i
j=1 Sj

for i = 0, . . . , 3. Observe that there is no rainbow coloured cycle in G (in which any two edges
receive different colours).
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Remark 5.5. Theorem 5.4 can be proved in a similar way by observing that any graph that
can be decomposed into k forests contains a vertex of degree at most 2k − 1. The advantage
of the proof based on cuts is twofold: it provides a rank preserving reduction, and it can be
straightforwardly extended to arbitrary matroids in the following sense.

Theorem 5.6. If M = (S, I) is a matroid so that M |S′ has a cut of size at most k for any
S′ ⊆ S, then M can be reduced to a k-colourable partition matroid.

The proof of Theorem 5.6 is based on the fact that the intersection of a circuit and a cut in
a matroid cannot have size 1.

5.2.3 Paving matroids

The next results are about paving matroids.

Theorem 5.7. Let M = (S, I) be a k-colourable paving matroid of rank r ≥ 2. Then there
exists a d rkr−1e-colourable partition matroid N with N �M .

Proof. Consider any partition S = S1 ∪ · · · ∪Sr−1 into r− 1 parts of almost equal sizes, that is,
|Si| = b|S|/(r − 1)c or |Si| = d|S|/(r − 1)e for i = 1, . . . , r − 1. As M is k-colourable, we have
|S| ≤ kr and so |Si| ≤ dkr/(r−1)e. As M is paving, any set of size at most r−1 is independent,
hence the partition matroid N defined by the partition S1∪· · ·∪Sr−1 is a dkr/(r−1)e-colourable
reduction of M , as required.

The bound on the colouring number can be improved when r = 2, and the reduction can be
chosen to be rank preserving. It is not difficult to see that every loopless matroid of rank 2 is
paving, hence the next theorem gives a tight bound on the colouring number of the reduction
of such matroids.

Theorem 5.8. Let M = (S, I) be a k-colourable paving matroid of rank 2. Then there exists a
b4k

3 c-colourable partition matroid N with N �r M , and the bound for the colouring number of
N is tight.

Proof. Let S = T1 ∪ · · · ∪ Tq denote the partition of the ground set into classes of parallel
elements, that is, for every x ∈ Ti and y ∈ Tj the set {x, y} is independent if and only if i 6= j.
We may assume that |T1| ≥ · · · ≥ |Tq|. Note that |T1| ≤ k as the matroid is k-colourable. Let
i denote the smallest index such that |T1 ∪ · · · ∪ Ti| ≥ |S|/3 holds, and consider the partition
S = S1 ∪ S2 where S1 = T1 ∪ · · · ∪ Ti and S2 = Ti+1 ∪ · · · ∪ Tq. If i = 1, then |S1| = |T1| ≤ k,
otherwise

|S1| = (|T1|+ · · ·+ |Ti−1|) + |Ti| <
|S|
3 + |Ti| ≤

|S|
3 + |T1| <

2|S|
3 ≤ 4k

3 ,

where we used that |S| ≤ 2k holds as M is k-colourable and r = 2. By the definition of i,
we have |S2| ≤ 2|S|/3 ≤ 4k/3 as well. Thus max{|S1|, |S2|} ≤ 4k/3 always holds, hence the
partition matroid N defined by the partition S1 ∪ S2 is a b4k/3c-colourable reduction of M .

The bound b4k/3c on the colouring number of N is tight. Let S be a set of size 2k and
take a partition S = S1 ∪ S2 ∪ S3 where d|S|/3e = |S1| ≥ |S2| ≥ |S3| = b|S|/3c. Consider
the laminar matroid M = (S, I) defined by the laminar family {S, S1, S2, S3} where X ⊆ S is
independent if and only if |X| ≤ 2 and |X ∩ Si| ≤ 1 for i = 1, 2, 3. It is not difficult to see that
the colouring number of M is k. Suppose that M is reducible to a partition matroid N . The
rank of N is either 1 or 2, as M has rank 2. In the former case χ(N) = 2k, while in the latter
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case N is defined by a partition S = P1 ∪ P2. Then every Si is a subset of either P1 or P2, as
otherwise there exists two elements x, y ∈ Si such that x ∈ P1 and y ∈ P2, implying that {x, y}
is independent in N but dependent in M , a contradiction. Thus, P1 or P2 contains at least two
of the Si’s, and so has size at least |S2| + |S3| = |S| − |S1| = 2k − d2k/3e = b4k/3c, proving
χ(N) ≥ b4k/3c.

For r = 3, we can provide rank preserving reductions at the price of increasing the colouring
number of N . For this purpose we need the following simple characterization of the colouring
number of paving matroids.

Lemma 5.9. Let H = {H1, . . . ,Hq} be a (possibly empty) family satisfying the conditions of
Theorem 1.8, and let M = (S, I) be the paving matroid defined by H. Then

χ(M) = max
{⌈ |S|

r

⌉
,

⌈ |H1|
r − 1

⌉
, . . . ,

⌈ |Hq|
r − 1

⌉}
.

Proof. Corollary 1.4 implies that χ(M) = max{d|X|/r(X)e : ∅ 6= X ⊆ S}. Since r(S) = r
and r(Hi) = r − 1 (as every set of size at most r − 1 is independent), we get that χ(M) ≥
max{d|S|/re, d|H1|/(r − 1)e, . . . , d|Hq|/(r − 1)e}.

To see the reverse inequality, take an arbitrary subset X ⊆ S. If |X| ≤ r−1, then r(X) = |X|
holds as the matroid is paving, therefore |X|/r(X) = 1. If |X| ≥ r and X ⊆ Hi for some i, then
r(X) = r− 1 and so |X|/r(X) ≤ |Hi|/(r− 1). Finally, if |X| ≥ r and none of the Hi’s contains
X, then r(X) = r and so |X|/r(X) ≤ |S|/r, proving our claim.

Theorem 5.10. Let M = (S, I) be a k-colourable paving matroid of rank 3. Then there exists
a (2k − 1)-colourable partition matroid N with N �r M .

Proof. Let H = {H1, . . . ,Hq} be a (possibly empty) family satisfying the conditions of Theo-
rem 1.8 that defines M . Without loss of generality, we may assume that |H1| ≥ · · · ≥ |Hq|. We
distinguish two cases.

Case 1. |S|/r ≤ |H1|/(r − 1).
Consider any partition H1 = S1 ∪ · · · ∪ Sr−1 into r − 1 parts of almost equal sizes, that

is, |Si| = b|H1|/(r − 1)c or |Si| = d|H1|/(r − 1)e for i = 1, . . . , r − 1, and let Sr = S − H1.
Note that none of S1, . . . , Sr is empty since H1 is a proper subset of S of size at least r − 1.
Taking any elements s1 ∈ S1, . . . , sr ∈ Sr the set X = {s1, . . . , sr} is independent in M as
X 6⊆ Hi (i = 1, . . . , q) by |X ∩ H1| = r − 1 and |H1 ∩ Hi| ≤ r − 2 (i = 2, . . . , q). Thus, the
partition matroid N = (S,J ) defined by the partition S1∪· · ·∪Sr is a rank preserving reduction
of M . N is clearly χ(M)-colourable as |Si| ≤ d|H1|/(r − 1)e = χ(M) for i = 1, . . . , r − 1 and
|Sr| = |S| − |H1| ≤ r|H1|/(r − 1)− |H1| = |H1|/(r − 1) ≤ χ(M).

Case 2. |S|/r > |H1|/(r − 1).
Pick an arbitrary s ∈ S, let Hi1 , . . . ,Hil denote the sets of the family H containing s and

let H ′j = Hij − s for j = 1, . . . , l. The sets H ′1, . . . ,H ′l are disjoint as |Hi ∩Hj | ≤ r − 2 = 1 for
i 6= j. We may assume that |H ′1| ≥ · · · ≥ |H ′l |. Note that for any set T ⊆ S − s which does not
intersect any H ′j properly, the partition S = {s} ∪ T ∪ (S − T − s) defines a partition matroid
N = (S,J ) which is a reduction of M .

If |H ′1|+· · ·+|H ′l | < |S|/3, let T ⊆ S−s be a set of size b|S|/2c containing H ′1∪· · ·∪H ′l . Then
χ(N) = max{|T |, |S| − |T | − 1} ≤ |S|/2 < 2|S|/3 ≤ 2χ(M). If |H ′1| + · · · + |H ′l | ≥ |S|/3, then
let j denote the smallest index such that |H ′1| + · · · + |H ′j | ≥ |S|/3 and let T = H ′1 ∪ · · · ∪H ′j .
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If j = 1, then |T | = |H ′1| < 2|S|/3 by our assumption |S|/r > |H1|/(r − 1) and r = 3.
Otherwise, |H1| < |S|/3 and so |T | ≤ |S|/3 + |H ′j | ≤ |S|/3 + |H ′1| < 2|S|/3. Thus χ(N) =
max{|T |, |S| − |T | − 1} < 2|S|/3 ≤ 2d|S|/3e = 2χ(M).

Remark 5.11. Note that Case 1 of the proof does not rely on the fact that r = 3. That is, any
paving matroid satisfying the assumption of Case 1 has a rank preserving reduction N �r M
with χ(N) = χ(M).

While Theorem 5.10 provides a rank preserving reduction, Theorem 5.7 gives a better bound
on the colouring number of the reduction for r = 3. The bound d3k/2e is not necessarily tight.
A computer-assisted case checking shows that the tight bound for k = 3 is 4, an extremal
example being the Fano matroid. However, we show that d3k/2e is tight for infinitely many
values of k.

A finite projective plane is a pair (S,L), where S is a finite set of points and L ⊆ 2S is the
family of lines that satisfies the following axioms: (P1) any two distinct points are on exactly
one line, (P2) any two distinct lines have exactly one point in common, (P3) there exists four
points, no three of which are collinear. For every projective plane there exists a number q called
the order, such that (1) each line in the plane contains q+ 1 points, (2) q+ 1 lines pass through
each point of the plane, (3) the plane contains q2 + q + 1 points and q2 + q + 1 lines [73].

The family of lines satisfies the conditions of Theorem 1.8, thus every projective plane defines
a paving matroid M = (S, I) of rank 3. A partition matroid N = (S,J ) is a reduction of M
if and only if the colouring of S defined by the partition classes of N satisfies the conditions of
the following theorem.

Theorem 5.12. Consider any 3-colouring of the points of a projective plane of order q such
that each line contains at most 2 colours. Then at least one of the following cases holds:

(i) there exists an empty colour class,

(ii) there exists a colour class of size 1,

(iii) one of the colour classes is the complement of a line.

Proof. Let 1, 2 and 3 denote the three colours and S1, S2, S3 the corresponding colour classes.
The proof is based on the following claim.

Claim 5.13. There exists a colour class which is a subset of a line.

Proof. Suppose indirectly that each of the three colour classes contains three non-collinear
points. Pick arbitrary points p1, p2, p3 from colour classes S1, S2, S3, respectively. Let Li denote
the line through pi+1 and pi+2, and set mi,i+1 = |Li ∩ Si+1| and mi,i+2 = |Li ∩ Si+2| (all
indices are meant in a cyclic order). As every line of the plane has q + 1 points, we have
mi,i+1 + mi,i+2 = q + 1. Each line through a fixed point of Si has exactly one common point
with the line Li, hence mi,i+1 of them contain colours i and i + 1 and mi,i+2 of them contain
colours i and i+ 2. Since p1, p2, p3 were arbitrary, we get that each line containing colours i+ 1
and i+ 2 has mi,i+1 points of colour i+ 1 and mi,i+2 points of colour i+ 2.

As Si+1 contains three non-collinear points, there exists a point p′i+1 ∈ Si+1 − Li. By
changing i to i + 1 in the previous paragraph, we get that exactly mi+1,i+2 lines through p′i+1
contain colours i + 1 and i + 2. As the mi,i+2 lines through p′i+1 and one of the points of
Li ∩ Si+2 contain colours i + 1 and i + 2, and the number of lines through p′i+1 with these
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colours is mi+1,i+2, we get that mi,i+2 ≤ mi+1,i+2. By symmetry, we obtain mi+1,i+2 = mi,i+2.
Therefore,

m1,2 = m3,2 = q + 1−m3,1 = q + 1−m2,1 = m2,3 = m1,3 = q + 1−m1,2,

hence mi,i+1 = mi,i+2 = (q+ 1)/2 for all i. We get that all lines through pi+1 contain (q+ 1)/2
points of colour i, hence |Si| = (q+1)2/2. Therefore, |S1|+ |S2|+ |S3| = 3(q+1)2/2 > q2 +q+1,
a contradiction.

By Claim 5.13, we may assume that S1 ⊆ L for a line L. Suppose indirectly that none of
the cases (i), (ii) and (iii) hold. As |S1| ≥ 2, we can pick two distinct points p1, p

′
1 ∈ S1. As

none of S2 and S3 is the complement of L, there exists p2 ∈ S2−L and p3 ∈ S3−L. The points
of the line through p1 and p2 have colour 1 or 2 and the points of the line through p′1 and p3
have colour 1 or 3, hence the intersection of these lines have colour 1. This intersection point
cannot lie on L, hence S1 6⊆ L, a contradiction.

Corollary 5.14. Let M = (S, I) be a paving matroid of rank 3 defined by the lines of a projective
plane of order q. Suppose that N = (S,J ) is a partition matroid such that N �M . Then

χ(N) ≥
{

(|S| − 1)/2, if q is odd,
(|S|+ 1)/2, if q is even.

In particular, if q ≡ 4 (mod 6) then χ(N) ≥
⌈

3χ(M)
2

⌉
, and if equality holds then N is not a rank

preserving reduction of M .

Proof. As N � M , the colouring defined by the partition classes of N satisfies the conditions
of Theorem 5.12. If there exists an empty colour class, then one of the colour classes has size at
least d|S|/2e = (|S|+1)/2. If there exists a colour class containing only one point p, then each of
the q+1 lines through p are monochromatic except for p, hence one of the colour classes has size
at least qd(q+1)/2e, that is, q(q+1)/2 = (|S|−1)/2 if q is odd, and q(q+2)/2 = (|S|+q−1)/2 if
q is even. If one of the colour classes is the complement of a line, then it has size q2 > (|S|+1)/2.
In all three cases, we get a colour class of size at least (|S| − 1)/2 if q is odd, and (|S|+ 1)/2 if
q is even, proving our bound on the colouring number of N .

Assume now that q ≡ 4 (mod 6). Lemma 5.9 implies that χ(M) = max{d(q2+q+1)/3e, d(q+
1)/2e} = (q2 + q+ 1)/3, and so d3χ(M)/2e = d(q2 + q+ 1)/2e = (|S|+ 1)/2 ≤ χ(N). If equality
holds then N has rank 2, that is, one of the colour classes is empty, since we have strict
inequalities above in the other two cases.

Corollary 5.14 implies that the bound d3k/2e for paving matroids of rank 3 is tight for
infinitely many values of k. Indeed, consider projective planes of order q = 4` for ` ∈ Z>0 and
set k = q2+q+1

3 .
The next example shows another family of paving matroids of rank three which prove that

the bound d3k/2e for some other values of k as well.

Example 5.15. Let G = (V,E) denote the complete graph on vertices V = {v0, . . . , vn−1}.
Choose n to be even and consider a proper edge colouring c : E → {c1, c2, . . . , cn−1} of G with
n− 1 colours (that is, adjacent edges receive different colours). Let

H = {{vi, vj , c(vivj)} : vivj ∈ E} ∪ {{c1, . . . , cn−1}}.

Then we have |H1 ∩ H2| ≤ 1 for every H1, H2 ∈ H, H1 6= H2 as two edges with a com-
mon vertex have different colours. As every set of the system H has at least 3 elements,
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Theorem 1.8 implies that H defines a paving matroid M = (S, I) of rank 3 on ground set
S = {v0, . . . , vn−1, c1, . . . , cn−1}. We have |S| = 2n− 1 and χ(M) = d|S|/3e = d(2n− 1)/3e by
Lemma 5.9. Note that for n = 4 this matroid coincides with the Fano matroid (which is the
matroid defined by the projective plane of order 2). It is not difficult to prove that for n = 6 the
4-colourable matroid M is not reducible to any 5-colourable partition matroid, thus the bound
d3k/2e is tight for k = 4.

In general, it remains open for what (even) values of n there exists a proper edge colouring c
such that M is not reducible to any (n− 1)-colourable partition matroid. A computer-assisted
case checking shows that the edge colouring c(vivn−1) = c(v(i+j) mod (n−1)v(i−j) mod (n−1)) = i
(for i = 0, . . . , n− 2, j = 1, . . . , n2 − 1) has this property for n = 4, 6, 10, 12, 14, 16 but does not
have this property for n = 8. Nevertheless, it is not difficult to check that if a good colouring
exists for an even value of n such that n 6≡ 1 (mod 3), then the bound d3k/2e is tight for
k = d(2n− 1)/3e.

5.3 Gammoids

The aim of this section is to prove our main result, Theorem 5.16.

Theorem 5.16. Let M = (S, I) be a k-colourable gammoid (k ≥ 2). Then there exists a
(2k − 2)-colourable partition matroid N with N �r M , and the bound for the colouring number
of N is tight.

Proof. Let M = (S, I) be a k-colourable gammoid where k ≥ 2. By the result of Ingleton and
Piff, M can be obtained as the restriction of the dual of a transversal matroid. Let R be such
a transversal matroid, and choose R in such a way that its rank is as small as possible. Let
G = (A,B;E) be a bipartite graph defining R with S ⊆ A and |B| being the rank of R.

The high-level idea of the proof is the following. First we show that there exists a B2-forest
F in G. Then, by using an alternating structure on the components of F , we prove that F can
be chosen in such a way that every component contains at most 2k − 2 vertices from S. Let C
denote the set of the connected components of F , and let N = (S,J ) be the partition matroid
corresponding to partition classes S(C) for C ∈ C. Every component C is a B2-tree, hence it
contains a perfect matching between B(C) and A(C)− a for any a ∈ A(C). That is, if we leave
out exactly one vertex from A(C) for each C ∈ C, the remaining vertices of A form a basis of
R, and so the set of deleted vertices form a basis in the strict gammoid that is the dual of R.
This implies that N �M with χ(N) ≤ 2k − 2, thus proving the theorem.

We start with an easy observation.

Claim 5.17. G contains k matchings of size |B| such that every vertex in S is covered by at
most k − 1 of them.

Proof. Observe that a set X ⊆ S is independent in M if and only if A − X contains a basis
of R, that is, G − X has a matching covering B. The assumption that M is k-colourable is
equivalent to the condition that S can be partitioned into k independent sets of M , and the
claim follows.

The following claim proves an inequality that we will rely on.

Claim 5.18. k · (|A| − |B|)− |S −X| ≥ k ·max{|Y | − |N(Y )| : Y ⊆ X} for every X ⊆ A.
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Proof. Let R be the matroid that is obtained from R by adding k − 1 parallel copies of every
element in A− S, and adding k− 2 parallel copies of every element in S. The ground set A′ of
R has size (k − 1)|S|+ k|A− S|. Then Claim 5.17 states that R has k pairwise disjoint bases.

Let X ⊆ A be an arbitrary set and let X ′ be the set consisting of all the parallel copies
of the elements of X. Then |X ′| = (k − 1) · |X ∩ S| + k · |X − S| and rR(X ′) = rR(X) =
min{|X|− |Y |+ |N(Y )| : Y ⊆ X}. Recall that |A′| = (k−1) · |S|+k · |A−S| and rR(A′) = |B|,
hence

|A′| − |X ′| = (k − 1) · |S|+ k · |A− S| − (k − 1) · |X ∩ S| − k · |X − S|
= (k − 1) · |A|+ |A− S| − (k − 1) · |X| − |X − S|
= (k − 1) · |A−X|+ |A− S −X|,

and

rR(A′)− rR(X ′) = |B| −min{|X| − |Y |+ |N(Y )| : Y ⊆ X}
= |B| − |X|+ max{|Y | − |N(Y )| : Y ⊆ X}.

By Corollary 1.5 and Claim 5.17, |A′| − |X ′| ≥ k · (rR(A′)− rR(X ′)), thus we get

(k − 1) · |A−X|+ |A− S −X| ≥ k · (|B| − |X|+ max{|Y | − |N(Y )| : Y ⊆ X}).

After rearranging, we obtain

k · (|A| − |B|)− |S −X| ≥ k ·max{|Y | − |N(Y )| : Y ⊆ X}

as stated.

Our next goal is to show that there exists a B2-forest in G.

Claim 5.19. G = (A,B;E) contains a B2-forest.

Proof. As G has a matching of size |B|, the Hall condition holds for every subset of B, thus
|N(U)| ≥ |U | for every U ⊆ B. Let us call a set U ⊆ B tight if |N(U)| = |U |. Assume that G
does not have a B2-forest. Then, by Theorem 1.6, there exists a nonempty tight set in B. For
arbitrary tight sets U,W ⊆ B, we get

|U |+ |W | = |N(U)|+ |N(W )| = |N(U) ∩N(W )|+ |N(U) ∪N(W )|
≥ |N(U ∩W )|+ |N(U ∪W )| ≥ |U ∩W |+ |U ∪W |
= |U |+ |W |,

hence equality holds throughout, and so U ∩W and U ∪W are also tight. This implies that
there is a unique maximal tight set ∅ 6= Z ⊆ B.

Let X = A − N(Z). As Z is a tight set, max{|Y | − |N(Y )| : Y ⊆ X} ≥ |X| − |N(X)| ≥
|A−N(Z)|−|B−Z| = |A|−|B|, thus S−X = N(Z)∩S = ∅ by Claim 5.18. Furthermore, every
matching of size |B| provides a perfect matching between Z and N(Z). That is, R is the direct
sum of the transversal matroids R′ and R′′ defined by G[Z∪N(Z)] and G[(B−Z)∪(A−N(Z))],
respectively. Therefore M is the restriction of the dual of R′′ to S, contradicting the minimal
choice of R.

Take an arbitrary B2-forest F in G. We will need the following technical claim.

Claim 5.20. Every leaf of F is in S.
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Proof. Suppose to the contrary that F has a leaf vertex a ∈ A − S. Let b ∈ B be the unique
neighbour of a in F , and let G′ = G − {a, b} denote the graph obtained by deleting vertices a
and b form G. Let M ′ = (S, I ′) denote the restriction of the dual of the transversal matroid
defined by G′ to S. As the strong Hall condition holds for G, the maximum size of a matching
of G′ is |B| − 1. We claim that M = M ′, contradicting the minimality of G.

Take an arbitrary set X ∈ I ′. By definition, G′−X has a matching P ′ covering B−b. Then
P ′ + ab is a matching of G−X covering B, showing that I ′ ⊆ I.

To see the opposite direction, consider any set X ∈ I. By definition, G−X has a matching P
covering B. Take an arbitrary matching P ′ of G′ covering B− b. Now |P | = |B| = |B− b|+ 1 =
|P ′|+ 1, hence the symmetric difference P4P ′ contains an alternating path Q whose first and
last edges are in P , and one of the end vertices of Q is b. Then P4Q is a matching of G′ −X
covering B − b, implying X ⊆ I ′.

We denote the difference |A| − |B| by q. As M is the restriction of R to S, rM (S) ≤ q is
clearly satisfied. Moreover, equality holds since, by Claim 5.20, every leaf of F is in S, and
taking an arbitrary leaf in every component of F results a basis of M .

Let C denote the set of connected components of F . Note that the forest might have
components consisting of a single vertex of A. We have |C| = |A|−|B| = q as |A(C)| = |B(C)|+1
for each C ∈ C. We call a component C ∈ C large if |S(C)| ≥ 2k−1, normal if k ≤ |S(C)| ≤ 2k−
2, and small if |S(C)| ≤ k− 1. We say that a component C ′ ∈ C is reachable from a component
C ′′ ∈ C if there exists an alternating sequence C1, b1a2, C2, b2a3, . . . , bp−2ap−1, Cp−1, bp−1ap, Cp
of components and edges such that C1 = C ′′, Cp = C ′, and bi ∈ B(Ci), ai+1 ∈ A(Ci+1) hold
for i = 1, . . . , p− 1. Such an alternating sequence is called a path, the length of the path being
p− 1. The distance of C ′ from C ′′ is the minimum length of a path from C ′′ to C ′.

We define a potential function on the set of B2-forests as follows. Let ν � µ1 � λ1 � µ2 �
λ2 � · · · � µq−1 � λq−1 be a decreasing sequence of 2q − 1 positive numbers such that the
ratio between any two consecutive ones is at least |A|+2. Recall that |C| = q. For a component
C ∈ C, the minimum distance of C from a large component is denoted by dist(C). We define
dist(C) to be +∞ if C is not reachable from any of the large components. The potential of the
B2-forest F is defined as

ϕ(F ) = ν ·
∑
C∈C

max{|S(C)| − (2k − 2), 0} (total violation)

−
q−1∑
i=1

µi · |{C ∈ C : dist(C) = i}| (number of components at distance i)

+
q−1∑
i=1

λi ·
∑
C∈C

dist(C)=i

|S(C)|. (number of S-vertices in components at distance i)

Let F be a B2-forest for which ϕ(F ) is as small as possible. The following claim concludes
the proof of the theorem.

Claim 5.21. F has no large components.

Proof. Suppose indirectly that there exists a large component. By applying Claim 5.18 with
X = ∅, |S| ≤ k · (|A| − |B|) = k · |C|, hence, by the pigeonhole principle, there exists a small
component as well.

First we show that there exists a small component that is reachable from a large component.
Suppose indirectly that this is not true, and let C′ ⊆ C denote the set of components that are
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(a) A graph G = (A,B;E) with three matchings
of size |B| such that every vertex in A is covered
by at most two of them.

(b) A B2-forest F of G. For simplicity, every
component of F is chosen to be a path.

C0Cy
1Cx

1

x

b

y a

(c) Alternating structure on the connected
components of F .

C0Cy
1Cx

1

x

b

y a

(d) The B2-forest we obtain by substituting C0
and C1 by C0 + ab+ by + Cy

1 and Cx
1 .

Figure 5.3: An illustration of the proof of Theorem 5.16. In the example, k = 3 and S = A.
The only large component of F is C1, all the other components are small.

not reachable from a large component. Note that C′ consists of normal and small components.
Define X =

⋃
{A(C) : C ∈ C′}. By the definition of reachability, N(X) =

⋃
{B(C) : C ∈ C′}

and so |X| − |N(X)| = |C′|. As every component in C − C′ is either normal or large and there
is at least one large component, |S −X| ≥ k · |C − C′|+ 1. Then

k ·max{|Y | − |N(Y )| : Y ⊆ X} ≥ k · (|X| − |N(X)|) = k · |C′| = k · (|C| − |C − C′|)
= k · (|A| − |B|)− k · |C − C′| ≥ k · (|A| − |B|)− |S −X|+ 1,

contradicting Claim 5.18.
Let C0 be a small component with dist(C0) being minimal. By the above, dist(C0) <

+∞. Consider a shortest path from the set of large components to C0, and let C1 be the last
component on the path before C0. By the definition of a path, there exists an edge ab with
a ∈ A(C0) and b ∈ B(C1). Let x, y ∈ A(C1) denote the neighbours of b in C1. The deletion of
b from C1 results in two connected components Cx1 and Cy1 such that x ∈ Cx1 and y ∈ Cy1 (see
Figure 5.3).

Assume first that C1 is a large component. As |S(C1)| ≥ 2k− 1 and |S(C0)| ≤ k− 1, either
|S(C0 + ab + bx + Cx1 )| < |S(C1)| or |S(C0 + ab + by + Cy1 )| < |S(C1)| by Claim 5.20. Hence
substituting C0 and C1 either by C0 + ab + bx + Cx1 and Cy1 or by C0 + ab + by + Cy1 and Cx1
decreases the total violation in ϕ(F ), a contradiction.

Therefore, C1 is a normal component, and there is another non-small component C2 before
C1 on the shortest path from the set of large components to C0, together with an edge b′a′ with
a′ ∈ A(C1) and b′ ∈ A(C2). We may assume that a′ ∈ Cx1 . We distinguish two cases.

Case 1. |S(Cx1 )| ≥ |S(C1)| − |S(C0)|
Modify F by substituting components C0 and C1 by C0 +ab+ by+Cy1 and Cx1 , respectively.

By the assumption, |S(C0 + ab+ by+Cy1 )| = |S(C0)|+ |S(C1)| − |S(Cx1 )| ≤ 2 · |S(C0)| ≤ 2k− 2,
thus no new large component appears. Furthermore, the set of components with distance less
than dist(C1) does not change. The distance of Cx1 remains dist(C1) because of the edge b′a′.
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If the distance of C0 + ab + by + Cy1 is dist(C1), then the number of components at distance
dist(C1) increases. Otherwise, the distance of C0 + ab+ by + Cy1 is at least dist(C1) + 1, hence
the number of S-vertices in components at distance dist(C1) decreases by Claim 5.20. In both
cases, ϕ(F ) decreases, a contradiction.

Case 2. |S(Cx1 )| < |S(C1)| − |S(C0)|
Modify F by substituting components C0 and C1 by C0 +ab+ bx+Cx1 and Cy1 , respectively.

By the assumption, |S(C0 + ab + bx + Cx1 )| ≤ |S(C0)| + |S(C1)| − |S(C0)| = |S(C1)|. As C1 is
normal, no new large component appears. Furthermore, the set of components with distance
less than dist(C1) does not change. The distance of C0 +ab+ bx+Cx1 remains dist(C1) because
of the edge b′a′. The distance of Cy1 is either dist(C1) or dist(C0). In the former case, the
number of components at distance dist(C1) increases, while in the latter case, the number of
S-vertices in components at distance dist(C1) decreases as |S(Cx1 )|+ |S(C0)| < |S(C1)|. In both
cases, ϕ(F ) decreases, a contradiction.

By Claim 5.21, F has no large component. As we have seen before, the partition matroid
N = (S,J ) corresponding to partition classes S(C) for C ∈ C is a reduction of the original
gammoid M with colouring number at most 2k−2. By Claim 5.20, S(C) is nonempty for every
C ∈ C and rM (S) = |C| = q, hence the reduction is rank preserving.

The bound on the colouring number of N is tight. Consider the laminar matroid M = (S, I)
defined by the laminar family {S, S1, . . . , Sk} where S1 ∪ · · · ∪Sk is a partition of S into subsets
of size k − 1. That is, the size of the ground set S is k2 − k. We define a set X ⊆ S to be
independent in M if |X ∩Si| ≤ 1 for i = 1, . . . , k, and |X| ≤ k− 1. It is not difficult to see that
M is a strict gammoid with colouring number k.

We claim that if N �M is a partition matroid, then χ(N) ≥ 2k−2. Let P1∪· · ·∪Pq denote
the partition defining N . Then every Si is a subset of some Pj , as otherwise there exists two
elements x, y ∈ Si such that x ∈ Pa and y ∈ Pb for a 6= b, implying that {x, y} is independent
in N but dependent in M , a contradiction. As the rank of M is k − 1, we have q ≤ k − 1. By
the above, there exists a class Pj that contains at least two of the Si’s, and so has size at least
2k − 2, proving χ(N) ≥ 2k − 2.

For the first sight, the proof seems to provide a polynomial-time algorithm for determining
the partition matroid, assuming that a digraph D = (V,A) representing the gammoid is given.
A bipartite graph G = (A,B;E) representing R can be constructed from D (see e.g. [22]). The
reductions appearing in the proofs of Claims 5.19 and 5.20 can be performed in polynomial
time, hence we may assume that G contains a B2-forest F . Such a forest can be found by [52].
By using the alternating structure described in the proof of Claim 5.21, we can modify F to
get a B2-forest in which every component contains at most 2k− 2 vertices from S. However, it
is not clear how to bound the number of augmentation steps as the coefficients in the potential
function can be exponential. An interesting question is whether this procedure terminates after
a polynomial number of steps.

5.4 Truncation and reducibility

The following theorem provides new examples of matroids for which Conjecture 5.2 holds.
In fact, it provides new results only for truncations of graphic matroids, as the truncation of a
paving matroid is either a free matroid or itself, and the truncation of a gammoid is a gammoid
again.
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Theorem 5.22. The family of matroids M that can be reduced to a 2χ(M)-colourable partition
matroid is closed for truncation.

Proof. Let M = (S, I) denote a matroid of rank r that is reducible to a 2χ(M)-colourable
partition matroid N . As every k-truncation of M can be obtained by a series of r−1, r−2, . . . , k-
truncations, it suffices to prove that the (r − 1)-truncation M ′ of M is reducible to a 2χ(M ′)-
colourable partition matroid.

Let S = S1 ∪ · · · ∪Sq denote the partition that defines N . We may assume that |S1| ≥ · · · ≥
|Sq|. If q ≤ r − 1, then N is already a 2χ(M)-colourable reduction of M ′ and the claim follows
by χ(M ′) ≥ χ(M). Hence, assume that q = r. Consider the partition matroid N ′ defined by the
partition classes S1, S2, . . . , Sr−2, Sr−1 ∪ Sr. Then N ′ is a reduction of M ′, hence it is sufficient
to prove that N ′ is 2χ(M ′)-colourable.

If |Sr−1| + |Sr| ≤ |S1|, then χ(N ′) = |S1| = χ(N) ≤ 2χ(M) ≤ 2χ(M ′). Otherwise |Sr−1| +
|Sr| > |S1|, and so χ(N ′) = |Sr−1|+ |Sr|. Using |S| = |S1|+ · · ·+ |Sr| and |Si| ≥ (|Sr−1|+ |Sr|)/2
for i = 1, 2, . . . , r − 2, we get

|S| ≥ (r − 1) · |Sr−1|+ |Sr|
2 + |Sr−1|+ |Sr| =

r + 1
2 · (|Sr−1|+ |Sr|) = r + 1

2 · χ(N ′).

That is,
χ(N ′) ≤ 2|S|

r + 1 < 2 · |S|
r − 1 ≤ 2χ(M ′),

concluding the proof of the theorem.

Remark 5.23. Note that an analogous statement holds if we replace 2χ(M) by 2χ(M) − 1,
as we proved χ(N ′) < 2χ(M ′) in the second case. As laminar matroids can be obtained from
free matroids by taking direct sums and truncations, Theorem 5.22 provides a simple proof that
every k-colourable laminar matroid is reducible to a (2k − 1)-colourable partition matroid. As
laminar matroids form a subclass of gammoids, Theorem 5.16 implies that the bound can be
improved to 2k − 2. However, it is not clear whether the analogue of Theorem 5.22 holds if we
replace 2χ(M) by 2χ(M)− 2.

5.5 An application: list colouring of two matroids

In this section we show how our techniques can be applied to the list colouring problem of
two matroids.

Assume that a list Le of colours is given for each edge e ∈ E of a graph G = (V,E). A proper
list edge colouring of G is a proper edge colouring such that every edge e receives a colour from
its list Le. The list edge colouring number is the smallest integer k for which G has a proper
list edge colouring whenever |Le| ≥ k for every e ∈ E. The List Colouring Conjecture [39, 72]
states that for any graph, the list edge colouring number equals the edge colouring number.
The conjecture is widely open, and only partial results are known. The probably most famous
one is the celebrated result of Galvin [27] who showed that the conjecture holds for bipartite
multigraphs.

Theorem 5.24 (Galvin). The list edge colouring number of a bipartite graph is equal to its
edge colouring number, that is, to its maximum degree.

Matchings in bipartite graphs are forming the common independent sets of two matroids,
hence one might consider matroidal generalizations of list colouring. If a list Ls of colours is
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given for each element s ∈ S, then a proper list edge colouring of M is a colouring such that every
element s receives a colour from its list Ls. The list colouring number is the smallest integer
k for which M has a proper list colouring whenever |Ls| ≥ k for every s ∈ S. Analogously,
we define the proper list edge colouring of the intersection of M1 and M2, and define the list
colouring number χ`(M1,M2) to be the smallest integer k for which the intersection of M1 and
M2 has a proper list colouring whenever |Ls| ≥ k for every s ∈ S. Hence, Theorem 5.24 states
that if both M1 and M2 are partition matroids then χ`(M1,M2) = max{χ(M1), χ(M2)}.

Seymour observed [68] that the list colouring theorem holds for a single matroid.

Theorem 5.25 (Seymour). The list colouring number of a matroid is equal to its colouring
number.

Lasoń [48] gave a generalisation of the theorem when the sizes of the lists are not necessarily
equal. As a common generalisation of Theorems 5.24 and 5.25, it is tempting to conjecture
that χ(M1,M2) = χ`(M1,M2) holds for every pair of matroids [43]. No pair M1,M2 is known
for which the conjecture fails. Nevertheless, there are only a few matroid classes for which the
problem was settled. Király and Pap [44] verified the conjecture for transversal matroids, for
matroids of rank two, and if the common bases are the arborescences of a digraph which is the
disjoint union of two spanning arborescences rooted at the same vertex.

In [42], Király proposed a weakening of the problem where the aim is to find a constant c such
that if the colouring number is k, then the list colouring number is at most c · k. For spanning
arborescences, it was observed by Kobayashi [42] that the constructive characterization of k-
arborescences implies that lists of size 3

2k+1 are sufficient. As χ`(N1, N2) = max{χ(N1), χ(N2)}
holds for partition matroids N1 and N2, lists of size 2k are sufficient whenever Conjecture 5.2
holds for matroids M1 and M2. In particular, Theorem 5.16 implies that list of size 2k − 2 are
sufficient if M1 and M2 are gammoids.

5.6 Some negative results

In this section we give counterexamples to some possible conjectures about reductions of
matroids. Many of them were only checked by computer and it remains open to prove them.
For computer searches involving matroids, database [15] was a useful tool in many cases.

5.6.1 Reduction to strongly base orderable matroids

To use Galvin’s theorem in the previous list colouring problem, it was crucial that we
considered reductions only to partition matroids. In other applications, by Theorem 3.4 of
Davies and McDiarmid it would be sufficient to find a reduction to a strongly base orderable
matroid without increasing its colouring number too much.

In particular, if every k-colourable matroid were reducible to a (k + 1)-colourable strongly
base orderable matroid, then the first claim of Conjecture 4.28 would follow by Theorem 3.4.
Notice that for k = 2 this is equivalent to the conjecture that every 2-colourable matroid is
reducible to a 3-colourable partition matroid. This equivalence follows from the fact that every
2-colourable strongly base orderable matroid M = (S, I) is reducible to a 2-colourable partition
matroid. Indeed, if S = B1∪B2 for bases B1, B2 of M and f : B1 → B2 is a bijection guaranteed
by the definition of strongly base orderability, then {{x, f(x)} : x ∈ B1} forms the classes of a
2-colourable partition matroid N such that N �M .

For k = 3, a complicated computer-assisted case checking shows that the graphic matroid of
K6 is not reducible to any 4-colourable strongly base orderable matroid. We outline the proof
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of the weaker statement that it is not reducible to any 3-colourable strongly base orderable
matroid, or more generally, the graphic matroid M = (S, I) of K2k is not reducible to any k-
colourable strongly base orderable matroid. If N � M for a k-colourable matroid N = (S,J ),
then |S| = krM (S) implies that there exists disjoint bases B1, . . . , Bk of M which are bases of
N . It can be proved that if a graph is the union of two disjoint spanning trees then its graphic
matroid is not reducible to any 2-colourable partition matroid. This implies that there is no
bijection f : B1 → B2 such that B1 −X + f(X) is a spanning tree for every X ⊆ B1, that is,
for every bijection f : B1 → B2 there exists X ⊆ B1 such that B1 − X + f(X) 6∈ I, and so
B1−X+f(X) 6∈ J . Thus the restriction N |B1∪B2 is not strongly base orderable, and so neither
is N .

However, the following question remains open.

Question 5.26. Is is true that the graphic matroid of K2k is not reducible to any (2k − 2)-
colourable strongly base orderable matroid?

5.6.2 Reduction of matroids without (k + 1)-spanned elements

It is natural to ask whether Conjecture 3.7 of Kotlar and Ziv can be proved by reduction
to partition matroids. In particular, if every matroid without (k + 1)-spanned elements were
reducible to a k-colourable partition matroid, then the conjecture would follow. The following
example shows that this is not the case.

Recall that finite projective planes define paving matroids of rank three. The Fano matroid
is the matroid defined by the Fano plane, the projective plane with seven points.

Proposition 5.27. The dual of the Fano matroid is a matroid without 3-spanned elements
which is not reducible to any 2-colourable partition matroid.

Proof. Let M = (S, I) denote the dual of the Fano matroid. M is a paving matroid of rank 4,
where the dependent sets of size 4 are the complements of the lines of the Fano plane. Suppose
that s ∈ S is a 3-spanned element in M , that is, s is spanned by disjoint sets X,Y ⊆ S − s. As
every set of size 3 is independent in M , we have 4 ≤ |X+s| and 4 ≤ |Y +s|, thus |X| = |Y | = 3
and S = X ∪Y ∪{s}. As X+ s and Y + s are dependent sets of size 4, the complement of these
sets are lines of the Fano plane, thus Y and X are disjoint lines. This is a contradiction since
X and Y are disjoint.

Suppose that N �M for a 2-colourable partition matroid N . As |S| = 7 and M has rank 4,
N is defined by a partition S = {s}∪S1∪S2∪S3 with |S1| = |S2| = |S3| = 2. Among the seven
lines of the Fano plane three contain s, and for each i = 1, 2, 3 exactly one contains both points
of Si, thus there is at least one line containing exactly one point from each Si. The complement
of this line is independent in M and dependent in N , a contradiction.

As suggested in the previous subsection, using Theorem 3.4 of Davies and McDiarmid it
would be sufficient to find a reduction of a matroid without (k + 1)-spanned elements to a
k-colourable strongly base orderable matroid. Unfortunately, a computer-assisted case checking
shows that every 2-colourable reduction of the dual M of the Fano matroid is either equals to
M or isomorphic to the direct sum of the one element matroid and the graphic matroid of K4.
As neither of these two matroids is strongly base orderable, it follows that M is not reducible
to any 2-colourable strongly base orderable matroid.
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5.6.3 Reduction to matroids without (k + 2)-spanned elements

Concerning the relationship of the conjecture of Kotlar and Ziv and the conjecture of Aha-
roni and Berger, the following question arises. Is every k-colourable matroid reducible to a
matroid without (k + 2)-spanned elements? If this were the case, then the first statement of
Conjecture 4.28 would follow from Conjecture 3.7. Unfortunately, a computer-assisted case
checking shows that the graphic matroid of K6 is a counterexample to this possible conjecture.

Let G = (V,E) denote the complete graph Kn and M its graphic matroid. Clearly, every
element of M is (n−1)-spanned, as each edge of Kn is contained in n−2 triangles. Let N �M
be any reduction of M . Colour the edges of G such that two edges have the same colour if and
only if they are parallel elements in N , and let c denote the colouring obtained. Suppose that
there exists an edge e = uv ∈ E such that

|{f ∈ E : c(e) = c(f)}|+ |{w ∈ V : c(uv) 6= c(vw) 6= c(wu) 6= c(uv)} ≥ n− 1. (?)

It is clear that e is spanned by {f} whenever c(e) = c(f), that is, e and f are parallel. Notice
that e is also spanned by {f, g} whenever c(f) 6= c(g) and e, f , g are the edges of a triangle of
G, as we have 2 ≤ rN ({f, g}) ≤ rN ({e, f, g}) ≤ rM ({e, f, g}) = 2 in this case. Thus (?) implies
that n − 1 disjoint sets span e. A computer-assisted case checking shows that for n ≤ 6 and
every (not necessarily proper) edge colouring c, Kn has an edge e satisfying (?). This implies
that for n ≤ 6 every reduction of M contains an (n − 1)-spanned element, in particular, the
3-colourable graphic matroid of K6 is not reducible to any matroid without 4-spanned elements.

5.7 Conclusions

In this chapter we proved Conjecture 5.2 for the case of transversal matroids, paving ma-
troids, truncations of graphic matroids and gammoids. However, there is more work to do even
in these special cases. For paving matroids of rank r ≥ 4 our reduction is not rank preserving,
and we do not know whether the bound d rkr−1e is tight for infinitely many values of k. For
gammoids it is not clear whether our algorithm is polynomial or not. Another class of matroids
whose reductions might be of special interest is the family of matroids appearing in Woodall’s
Conjecture 3.12.

We find it possible that our algorithm for gammoids can be extended to the general case. If
this is not the case and Conjecture 5.2 turns out to be false, a weaker conjecture might still be
true where we allow the reduction N to be any 2k-colourable strongly base orderable matroid.
As the proof of Theorem 4.23 does not provide any algorithm for partitioning the ground set
into 2 max{χ(M1), χ(M2)} common independent sets, a polynomial algorithm for finding such
a strongly base orderable reduction would have many applications.
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