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Introduction

The main goal of this thesis is to prove the Hodge and Lefschetz decompositions
of the cohomology groups of a compact Kähler manifold using harmonic theory.
Both of these are standard and beautiful theorems with many applications and
generalisations.

The thesis mainly follows the books of [7] Wells, R. O. - Differential Analysis on
Complex Manifolds and [3] Huybrechts, D. - Complex Geometry: An Introduction.
We assume that the reader is familiar with the basic theory of smooth manifolds
and Lie groups.

The thesis consists of two parts. The first is the foundational material, which
consists of definitions and results used in the second part. There are five sections in
the foundational material. In the first we introduce the notion of almost complex
structures and compatible metrics on a real vector space V . We will show how
these structures decompose the exterior algebra of V . We define the Hodge ∗-star
operator on the exterior algebra of V , which is uniquely determined by the almost
complex structure and compatible metric, and show that it is compatible with the
decomposition of the exterior algebra. We will finish by showing that the almost
complex structure and the compatible metric also define a Lie-algebra representaion
of sl(2,C) on the exterior algebra.

The second section starts with sketching the representation theory of sl(2,C),
where we show that every finite dimensional representation can be broken down to
irreducible representations and then characterise the finite dimensional irreducible
representations. With this tool at our disposal we return to the representation de-
fined in the previous section, and prove the Lefschetz decomposition theorem, which
further decomposes the exterior algebra of V . After that we connect the represen-
tation of sl(2,C) and the Hodge ∗-operator.

The third and fourth section is a collection of required definitions and results
about sheaf cohomology and complex manifolds. These sections can not serve as a
proper introduction to the subjects, but we hope that it is enough to get the feeling
of them and understand the main objects and results and how we use them later.

The last section of the first part is about harmonic theory on compact oriented
manifolds. This section is halfway between the first and second two sections. We
prove most of the theorems but leave out the most technical ones. Here we intro-
duce the notion of differential operators between vector bundles. Differential opera-
tors between vector bundles naturally occur when one studies smooth manifolds, as
the most standard example of a differential operator between vector bundles is the
exterior derivative. We will also see that complex manifolds naturally come with a
differential operator which is very closely related to holomorphic functions defined

i



on them. We will define the symbol of a differential operator which captures the
most important proterties of a differential operator. With the symbol we define el-
liptic differential operators, and prove the elliptic regularity theorem. After that we
define the elliptic complexes, which are the generalisation of the de Rham complex
and prove the Hodge decomposition theorem of elliptic complexes which will be one
of our main tool later.

The second part is about applications of the Hodge decomposition on complex
manifolds. It consists of two sections. In the first we will deal with general compact
complex manifolds and prove the Poincaré and Serre duality theorem. If a com-
plex manifold is equiped with a Riemannian metric compatible with the complex
structure, then we can naturally assign three different Laplace operators. We will
show that these three operators are not related to each other on a general compact
complex manifold.

The second section is about Kähler manifolds, which are complex manifolds with
a Riemannian structure that has a more subtle relation with the complex structure,
than simple compatibility. We will prove some basic properties of Kähler manifolds,
and show that not every complex manifold is Kähler. After that we show that on
compact Kähler manifolds, the three differential operators are very strongly related
(they are constant multiples of each other) and give a lot of corollaries such as the
Hodge and Lefschetz decompositions of the cohomology of a Kähler manifold.
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1 Foundational material

In the sections Complex and Hermitian structures, Representation theory of
sl(2,C) and Complex manifolds and vector bundles we follow the book of [3] Huy-
brechts, D. - Complex Geometry: An Introduction. In the section Sheaves and sheaf
cohomology we follow the book of [5] Ramanan, S. - Global Calculus. Lastly in the
section Harmonic theory on compact manifolds we mainly follow the books of [7]
Wells, R. O. - Differential Analysis on Complex Manifolds. and [1] Gilkey, P. B. -
Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem.

1.1 Complex and Hermitian structures

In this section we shall study additional structures on a real finite-dimensional
vector space, such as almost complex structures, scalar products and we will be
interested in the interactions between these structures.

In the following V shall denote a real finite-dimensional vector space.

Definition 1.1. A linear map I : V → V such that I2 = −id is called an almost
complex structure on V.

If V is a complex vector space, then it is a real vector space too, and the mul-
tiplication with i is an almost complex structure on V. The next lemma says that
the converse is also true.

Lemma 1.2. Let V be a finite-dimensional vector space with an almost complex
structure I, then I induces a complex vector space structure on V .

Proof. It is easy to check, that (a+ bi)v = a · v + b · I(v) will give a complex vector
space structure on V .

Corollary 1.3. If V is an m-dimensional vector space with an almost complex
structure I, then m = 2n and I induces an orientation on V .

Proof. By the previous lemma I induces a complex vector space structure on V , so
we can choose a complex basis e1, . . . , en. It is clear that e1, Ie1, . . . , en, Ien is a real
basis for V som = 2n, and this basis gives the required orientation. Indeed, if we take
another complex basis f1, . . . , fn then there exists A ∈ GLC((V, I)) such that A(ei) =

fi. Since the determinant of A as a real operator is equal to detC(A)detC(A) > 0,
we see that the orientation is well defined.

For a real vector space V let’s denote the complex vector space V ⊗R C by VC.
It is clear that V → VC, v 7→ v⊗ 1 is an injective linear map. If w = v⊗ c ∈ VC then
the conjugate of w is w = v ⊗ c = v⊗ c. It is easy to see, that the image of V in VC
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is precisely those elements that stay fixed under conjugation, i.e. w ∈ VC such that
w = w.

Suppose that V is endowed with an almost complex structure I. Then we will
also denote by I its complex linear extension to an endomorphism VC → VC. Clearly,
the only eigenvalues of I on VC are ±i.

Definition 1.4. Let I be an almost complex structure on the real vector space V ,
and let I : VC → VC be its complexification. Then define the following subspaces:

V 1,0 = {v ∈ VC | Iv = iv} V 0,1 = {v ∈ VC | Iv = −iv}.

So V 1,0 and V 0,1 are the eigenspaces of I.

Lemma 1.5. Let V be a vector space equipped with an almost complex structure I.
Then

VC = V 1,0 ⊕ V 0,1.

The conjugation on VC gives a complex antilinear isomorphism between V 1,0 and
V 0,1, i.e. V 1,0 = V 0,1.

Proof. Because V 1,0 and V 0,1 are different eigenspaces of I we have V 1,0 ∩ V 0,1 = 0,
so the natural map:

V 1,0 ⊕ V 0,1 → VC

(v1, v2) 7→ v1 + v2

is injective. We will prove the first part by giving an inverse map, which is is given
by:

VC → V 1,0 ⊕ V 0,1

v 7→
(
v − iI(v)

2
,
v + iI(v)

2

)
.

It is easy to see that these two maps are inverses to each other.
Let v ∈ VC, then v = x+ iy = x⊗ 1 + y ⊗ i, where x, y ∈ V , then

v − iI(v) = x− iy + iI(x) + I(y)

= x− iy + i(I(x− iy)) = v + iI(v)

thus conjugation gives a complex antilinear isomorphism between V 1,0 and V 0,1.

One should be aware of the existence of two almost complex structures on VC.
One is given by I and the other is given by multiplication with i. They coincide on

2



the subpsace V 1,0 but differ by a sign on V 0,1. Obviously, V 1,0 and V 0,1 are complex
subpsaces of VC with respect to both almost complex structure. From now on, we
will always regard VC as the complex vector space with respect to i.

If V 1,0 and V 0,1 are complex vector spaces with respect to i, then the following
compositions:

V → VC → V 1,0 V → VC → V 0,1

v 7→ v 7→ v − iI(v)

2
v 7→ v 7→ v + iI(v)

2

are complex linear respectively complex antilinear isomorphisms.
If V has an almost complex structure I, then I induces an almost complex

structure on V ∗ = HomR(V,R) by I(f)(v) = f(I(v)). This means, that V ∗ ⊗ C =

HomR(V,C) = HomC(VC,C) = V ∗C also has a decomposition:

(V ∗)1,0 = {f ∈ V ∗C | If = if} = (V 1,0)∗

(V ∗)0,1 = {f ∈ V ∗C | If = −if} = (V 0,1)∗

such that V ∗C = (V ∗)1,0 ⊕ (V ∗)0,1. Also note that (V 1,0)∗ = HomC((V, I),C).
If V is an m dimensional real vector space, then the natural decomposition of its

exterior algebra is of the form:

∧∗
V =

m⊕
i=0

∧i
V.

Analogously,
∧∗ VC denotes the exterior algebra of the complex vector space VC,

which also decomposes as: ∧∗
VC =

m⊕
i=0

VC.

Also note that
∧∗ VC =

∧∗ V ⊗C and
∧∗ V is the real subspace of

∧∗ VC that is left
invariant under conjugation.

If V is also endowed with an almost complex structure I, then dimR(V ) = 2n

and VC = V 1,0 ⊕ V 0,1 with dimC(V 1,0) = dimC(V 0,1) = n.

Definition 1.6. One defines∧p,q
V =

∧p
V 1,0 ⊗C

∧q
V 0,1,

where the exterior products of V 1,0 and V 0,1 are taken as exterior products of com-
plex vector spaces. An α ∈

∧p,q V is of bidegree (p, q).
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Proposition 1.7. Suppose that V is equipped with an almost complex structure I,
then one has:

a)
∧p,q V is naturally a subspace of

∧p+q VC.
b)
∧k VC =

⊕
p+q=k

∧p,q V .

c) Complex conjugation on
∧∗ VC defines a complex antilinear isomorphism be-

tween
∧p,q V and

∧q,p V i.e.
∧p,q V =

∧q,p V .

d) The exterior product is of bidegree (0, 0) i.e. if α ∈
∧p,q V and β ∈

∧p′,q′, then
α ∧ β ∈

∧p+p′,q+q′ V .

Proof. Let v1, . . . , vn and w1, . . . , wn be a basis of V 1,0 and V 0,1 respectively. If
I = (i1, . . . , ip) where ij ∈ {1, . . . , n}, then let’s denote vi1∧· · ·∧vip by vI. With these
notations we get that vI⊗wJ, where 1 ≤ i1 < · · · < ip ≤ n and 1 ≤ j1 < · · · < jq ≤ n,
forms a basis of

∧p,q V , and vI⊗wJ 7→ vI ∧wJ is an injective linear map. This proves
a), b) and d).

To prove c) we have to notice that the conjugation on
∧∗ VC is multiplicative,

i.e. v ∧ w = v ∧ w, and with that in mind, c) follows from b) and Lemma 1.5.

Suppose that zj = 1
2
(xj− iyj) ∈ V 1,0 is a complex basis of V 1,0, where xj, yj ∈ V .

Since zj ∈ V 1,0 we have Izj = izj, which implies that I(xj) = yj and I(yj) = −xj,
and xj, yj = I(xj) forms a real basis of V . Also note that zj = 1

2
(xj + iyj) is a

complex basis of V 0,1.
Conversely if v ∈ V , then 1

2
(v− iI(v)) ∈ V 1,0, therefore if xj, yj = I(xj) is a real

basis of V , then zj = 1
2
(xj − yj) is a complex basis of V 1,0.

With these notations we have the following.

Lemma 1.8. For any l ≤ dimC V
1,0 we have the following:

(−2i)l(z1 ∧ z1) ∧ · · · ∧ (zl ∧ zl) = (x1 ∧ yl) ∧ · · · ∧ (xl ∧ yl)

if l = dimC V
1,0, then this gives the positive orientation induced by the almost com-

plex structure.

Remark 1.9. If V is a vector space with dim(V ) = m, then choosing an orientation
is the same thing as choosing a nonzero element in

∧m V .

Proof. If zj = 1
2
(xj − iyj), then

zj ∧ zj =
1

4
(xj − iyj) ∧ (xj + iyj) =

1

4
(ixj ∧ yj − iyj ∧ xj) =

i

2
xj ∧ yj
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Now we just have to substitute this into the left side of the lemma and the assertation
follows.

We can do the same with V ∗. Suppose that xj, yj = I(xj) is a basis of V , then
lets denote the (real) dual basis by xj, yj. Notice, that we have Ixj = −yj and
Iyj = xj. It follows that zj = xj + iyj and zj = xj − iyj are the basis of V 1,0∗ and
V 0,1∗ (complex) dual to zj respectively zj. A similar computation as above yields
the formula (

i

2

)l
(z1 ∧ z1) ∧ · · · ∧ (zl ∧ zl) = (x1 ∧ y1) ∧ · · · ∧ (xl ∧ yl).

If we have an I almost complex structure on V , then we can extend this operator
to an endomorphish I :

∧∗ V → ∧∗ V as follows, if α = α1 ∧ · · · ∧ αk ∈
∧∗ V , then

I(α) = I(α1) ∧ · · · ∧ I(αk).

It is not hard to see that this is a well defined endomorphism of
∧∗ V . If we extend

I to
∧∗ V ⊗ C =

∧∗ VC and still denote the extension by I, then it is easy to see,
that I(α) = ip−qα, with α ∈

∧p,q V .

Definition 1.10. With respect to the direct sum decompositions, one defines the
natural projections:

πk :
∧∗

VC →
∧k

VC πp,q :
∧∗

VC →
∧p,q

V.

With these notations we see that I =
∑

p,q i
p−qπp,q.

Remark 1.11. We denote the corresponding operators on the dual space
∧∗ V ∗C also

by πk, πp,q and I. Notice, that I(α)(v1, . . . , vk) = α(I(v1), . . . , I(vk)) with α ∈
∧k V ∗C

and vj ∈ VC.

Suppose that V is also endowed with a scalar product 〈 , 〉, i.e. 〈 , 〉 is a positive
definite symmetric biliniear form.

Definition 1.12. An almost complex structure I on V is compatible with the scalar
product 〈 , 〉 if 〈I(v), I(w)〉 = 〈v, w〉 for all v, w ∈ V .

Definition 1.13. The fundamental form associated to (V, 〈 , 〉, I) is the form:

ω = 〈I( ), ( )〉 = −〈( ), I( )〉.

Lemma 1.14. The associated form ω is real of type (1, 1), i.e. ω ∈
∧2 V ∗ ∩

∧1,1 V ∗.
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Proof. Let v, w ∈ V arbitrary, then:

ω(v, w) = 〈I(v), w〉 = 〈v,−I(w)〉 = −〈I(w), v〉 = −ω(w, v)

This proves that ω is a real 2-form. To see that it is of type (1, 1) we compute as
follows:

Iω(v, w) = ω(I(v), I(w)) = 〈I2(v), I(w)〉 = 〈I(v), w〉 = ω(v, w)

Thus ω is of type (1, 1).

Lemma 1.15. Let (V, 〈 , 〉, I) as before. Then ( , ) = 〈 , 〉− iω is a positive definite
Hermitian form on the complex vector space (V, I).

Proof. It is clear that the form ( , ) is real linear, and for any v ∈ V , with v 6= 0,
we have (v, v) = 〈v, v〉 > 0. Moreover (v, w) = (w, v), and

(Iv, w) = 〈I(v), w〉 − iω(I(v), w)

= 〈I(v), w〉+ i〈v, w〉

= i(−i〈I(v), w〉+ 〈v, w〉)

= i(v, w)

We can extend 〈 , 〉 to a positive definite Hermitian form on VC the following
way, let v ⊗ µ,w ⊗ λ ∈ VC, then:

〈v ⊗ µ,w ⊗ λ〉C = µλ〈v, w〉.

Lemma 1.16. Let (V, 〈 , 〉, I) as before, then VC = V 1,0 ⊕ V 0,1 is an orthogonal
decomposition with respect to 〈 , 〉C.

Proof. let v, w ∈ V , then v − iI(v) ∈ V 1,0 and w + iI(v) ∈ V 0,1, and

〈v − iI(v), w + iI(w)〉C = 〈v, w〉 − 〈I(v), I(w)〉 − i〈I(v), w〉 − i〈v, I(w)〉 = 0

Lemma 1.17. Let (V, 〈 , 〉, I) as before, then we have the canonical complex iso-
morphism (V, I)→ (V 1,0, i). Under this isomorphism one has 〈 , 〉C = 1

2
( , ).
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Proof. The canonical isomorphism was v 7→ v−iI(v)
2

, and the computation goes as
follows:〈v − iI(v)

2
,
w − iI(w)

2

〉
C

=
1

4
(〈v, w〉+ 〈I(v), I(w)〉+ i〈v, I(w)〉 − i〈I(v), w〉

=
1

4
(2〈v, w〉 − 2i〈I(v), w〉 =

1

2
(v, w).

It is useful to compute in coordinates, so lets see how the above looks once a
basis have been chosen.

Let z1, . . . , zn be a C basis of V 1,0, then zj = 1
2
(xj − iI(xj)), with xj ∈ V . Then

x1, y1 = I(x1), . . . , xn, yn = I(xn) is a real basis of V and x1, . . . , xn is a complex
basis of (V, I). Then we compute as follows:

〈 n∑
r1

arzr,
n∑
s=1

bszs

〉
C

=
1

2

∑
r,s

arb
s
hr,s.

Using the previous lemma we get that (xr, xs) = hr,s. Since ( , ) is Hermitian on
(V, I) we have that (xr, ys) = −hr,s and (yr, ys) = hr,s. By definition of ( , ). one
has that −Im( , ) = ω and Re( , ) = 〈 〉. Hence ω(xr, xs) = ω(yr, ys) = −Im(hr,s),
ω(xr, ys) = Re(hr,s), 〈xr, xs〉 = 〈yr, ys〉 = Re(hr,s) and 〈xr, ys〉 = Im(hr,s). Thus

ω = −
∑
r<s

Im(hr,s)(x
r ∧ xs + yr ∧ ys) +

∑
r,s

Re(hr,s)(xr ∧ ys).

Using that zr ∧ zs = (xr + iyr)∧ (xs + iys) = xr ∧ xs − i(xr ∧ ys + xs ∧ yr) + yr ∧ ys

yields the following:

ω =
i

2

∑
r,s

hr,sz
r ∧ zs.

If x1, y1, . . . , xn, yn is an orthonormal basis of V with respect to 〈 , 〉, then:

ω =
i

2

∑
r

zr ∧ zr =
∑
r

xr ∧ yr.

Note that there always exists an orthonormal basis like above because we can pick
x1 arbitrarily, then 〈x1, Ix1〉 = 〈Ix1, x1〉 = −〈x1, Ix1〉, thus 〈x1, y1〉 = 0 and we can
continue on the orthogonal complement of Span(x1, y1).

Corollary 1.18. If x1, y1, . . . , xn, yn is an orthonormal basis as above, then:

ωn = n!(x1 ∧ y1 ∧ · · · ∧ xn ∧ yn)
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Notice that by definition x1, y1, . . . , xn, yn is a positively oriented orthonormal
basis of (V, I), thus x1 ∧ y1 ∧ · · · ∧ xn ∧ yn is the unique 2n-form which takes value
1 on any positively oriented orthonormal basis.

Proposition 1.19. Let z1, . . . , zn be a basis of V 1,0, and let ω be a (1, 1)-form. Then
by definition ω = i

2

∑
r,s hr,szr ∧ zs. We claim, that ω is a real form if and only if

the matrix (hr,s) is Hermitian, moreover if this matrix is also positive definite, then
ω is the fundamental form of a scalar product compatible with the almost complec
structure.

Proof. The form ω is real if and only if ω = ω. With that in mind we compute as
follows:

i

2
hr,s = ω(zr, zs) = ω(zr, zs) = − i

2
hs,r =

i

2
hs,r

Hence ω = ω if and only if the matrix (hr,s) is Hermitian.
Suppose that (hr,s) is positive definite Hermitian form. Clearly if such a scalar

product exists, then it has to be equal to ω(−, I−). It is then an easy excercise
to show that ω(−, I−) satifsies the properties of the proposition, which we will
omit.

If V is a finite-dimensional vector space with a scalar product 〈 , 〉, then
〈 , 〉 induces a scalar product on

∧k V for every k the following way: if
v1, . . . , vk, w1, . . . , wk ∈ V , then

(v1, . . . , vk, w1, . . . , wk) 7→ det(〈vi, wj〉)

defines multilinear map g : V k⊕V k → R. It is easy to see that this map is antilinear
in the first and second k variables, thus by the universal property of exterior product,
we get a map:

〈 , 〉k :
∧k

V
⊕∧k

V → R

It is easy to see that this map is symmetric. Note that det(〈vi, vj〉) equals 0 if
and only if v1, . . . , vk are linearly dependant. If v1, . . . , vk are linearly independent,
the previous determinant is just the square of the k-dimensional volume of the
parallelepiped formed by v1, . . . , vk. Thus 〈 , 〉k is positive definite.

Corollary 1.20. If e1, . . . , em is an orthonormal basis of V , then

{ei1 ∧ ei2 ∧ · · · ∧ eik | 1 ≤ i1 < i2 < · · · < ik ≤ m}

is an orthonormal basis of
∧k V with respect to 〈 , 〉k.

We define a scalar product on
∧∗ V by stating that

∧i V is orthogonal to
∧j V

if i 6= j, and on
∧k V it is 〈 , 〉k. We also denote this scalar product by 〈 , 〉.
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Suppose that (V, 〈 , 〉) also has an orientation. If e1, . . . , en is a positively oriented
orthonormal basis, then lets denote e1 ∧ · · · ∧ en by Vol. Then the Hodge ∗-operator
is defined by:

α ∧ ∗β = 〈α, β〉Vol

for α, β ∈
∧∗ V . This determines ∗, for the exterior product defines a nondegenerate

pairing
∧k V ⊕∧m−k V → ∧m V = RVol. It is easy to see that ∗ :

∧k V → ∧m−k V .

Proposition 1.21. Let (V, 〈 , 〉) be an oriented euclidian vector space. Let e1, . . . , em

be a positively oriented orthonormal basis, and let e1 ∧ · · · ∧ em = Vol. The Hodge
∗-operator associated to (V, 〈 , 〉,Vol) satisfies the following conditions:

a) If {i1, i2, . . . , ik, j1, . . . , jm−k} = {1, . . . ,m}, then

∗ei1 ∧ · · · ∧ eik = εej1 ∧ · · · ∧ ejm−k

where ε = sgn(i1, . . . , ik, j1, . . . , jm−k). In particular ∗1 = V ol.

b) The ∗-operator is selfadjoint up to sign i.e. if α ∈
∧k V , β ∈

∧m−k V , then

〈α, ∗β〉 = (−1)k(m−k)〈∗α, β〉.

c) If W =
∑

r(−1)mr+rπr :
∧∗ V → ∧∗ V , then

∗∗ = W.

In particular ∗ :
∧k → ∧m−k is an isomorphism.

d) The ∗-operator is an isometry with respect to 〈 , 〉.

Proof. For a) we first note, that for 〈eI , eI〉 = 1 for any I = (i1, . . . , ik), thus

eI ∧ ∗eI = 〈eI , eI〉Vol = e1 ∧ e2 ∧ · · · ∧ em

This means that ∗eI = sgn(I, J)eJ , where J = (j1, . . . , jm−k) and I∪J = {1, . . . ,m}.
This also proves proves d) because we see that the ∗-operator sends orthonormal
basis to orthonormal basis. Let α ∈

∧k V , β ∈
∧m−k V , then we have

〈α, ∗β〉Vol = 〈∗β, α〉Vol = ∗β ∧ ∗α

= (−1)k(m−k) ∗ α ∧ ∗β = (−1)k(m−k)〈∗α, β〉Vol
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This proves b). Lastly let I = (i1, . . . , ik), by a) it is trivial, that ∗ ∗ eI = αeI , and
we compute α as follows

α = 〈eI , ∗ ∗ eI〉 = (−1)k(m−k)〈∗eI , ∗eI〉 = (−1)k(m−k)

Now we want to move to
∧∗ VC, we first note that there are two ways to give a

Hermitian metric on
∧∗ VC. First we can extend 〈 , 〉 to positive definite Hermitian

form on
∧∗ VC =

∧∗ V ⊗C, or, we can 〈 , 〉C extend from VC to
∧∗ VC the same way

we extended 〈 , 〉 from V to
∧∗ V . It is not hard to see that we get the same metric

on
∧∗ VC either way. We denote this new Hermitian form by 〈 , 〉C.
The Hodge ∗-operator associated to (V, 〈 , 〉,Vol) is extended complex linearly

to ∗ :
∧k VC → ∧2n−k VC. On

∧∗ VC these two operators are related by:

α ∧ ∗β = 〈α, β〉CVol.

Lemma 1.22. Let 〈 , 〉C and ∗ be as above. Then

a)
∧k VC =

⊕
p+q=k

∧p,q V is an orthogonal decomposition with respect to 〈 , 〉C.

b) ∗ :
∧p,q V → ∧n−q,n−p V , where = dimC((V, I)) = n

c) ∗ ∗ |∧p,q V = (−1)p+qid.

Proof. To prove part a) let α = v1 ∧ · · · ∧ vp ∧ w1 ∧ · · · ∧ wq ∈
∧p,q V and let

β = v′1 ∧ · · · ∧ v′p′ ∧ w′1 ∧ · · · ∧ w′q′ ∈
∧p′,q′ , with p + q = p′ + q′ = k and p′ < p. We

want to show that these two elements are orthogonal with respect to 〈 , 〉C, which
means, that we have to show that the following matrix has zero determinant:

M =

(
〈vi, v′j〉C 〈vi, w′j〉C
〈wi, v′j〉C 〈wi, w′j〉C

)
=

(
〈vi, v′j〉C 0

0 〈wi, w′j〉C

)

Here we used lemma 1.16 to see that 〈vi, w′j〉C = 〈wi, v′j〉C = 0 for all i, j. The upper
left block of M is a p×p′ matrix and the lower left block is a q× q′ matrix. We know
that the determinant is nonzero if and only if the columns are linearly independent.
Now look at the last q′ columns, all of them are elements of a q dimensional subspace,
but q′ > q so they must be linearly dependant, thus 〈α, β〉C = det(M) = 0.

Now we want prove part b). First notice, that if α1 ∈
∧p1,q1 V and α2 ∈

∧p2,q2

with p1 + q1 + p2 + q2 = 2n and α1 ∧α2 6= 0, then (p1 + p2, q1 + q2) = (n, n). Now let
β ∈

∧p,q V , then one has that α ∧ ∗β = 〈α, β〉CVol, and we know that 〈α, β〉C 6= 0

implies that α ∈
∧p,q V ∗. This implies that ∗β ∈

∧p′,q′ V ∗ for some (p′, q′). We also
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know that β∧∗β 6= 0, thus by the previous remark we get that (p+p′, q+q′) = (n, n),
thus ∗β ∈

∧n−p,n−q V ∗, hence ∗β = ∗β ∈
∧n−q,n−p V ∗.

Lastly c) is an easy consequence of Proposition 1.21.

Definition 1.23. If we have (V, 〈 , 〉, I) as above, then the Lefschetz operator
L :

∧∗ V ∗C → ∧∗ V ∗C is given by α 7→ ω ∧ α, where ω is the associated fundamental
form.

It is easy to see, that L is the complexification of the real map α 7→ ω ∧ α, and
that L is of bidegree (1, 1).

Note, that an inner product 〈 , 〉 on V induces an inner product on V ∗ by the
following: let e1, . . . , em an orthonormal basis in V and e1, . . . , em the dual basis
in V ∗, then we define the induced inner product 〈 , 〉∗ by stating that e1, . . . , em

is an orthonormal basis. One can show that this is actually independent of the
choices we made as follows; the map v 7→ 〈 , v〉 gives a V → V ∗ isomorphism.
With this isomorphism we can pullback the metric on V , and it is easy to see that
the pullback coincides with the metric defined above. It is also easy to see that if
(V, 〈 , 〉) is a euclidean space and I is a compatible almost complex structure, then
I∗ on (V ∗, 〈 , 〉∗) is a compatible almost complex structure. This means that we
have an innerproduct on

∧∗ V ∗C and thus we have an adjoint of L denoted by Λ. We
claim that Λ = ∗−1L∗, to see that, let α ∈

∧k V ∗C and β ∈
∧k+2 V ∗C , then

(Lα, β)V ol =Lα ∧ ∗β = ω ∧ α ∧ ∗β = α ∧ ω ∧ ∗β = α ∧ L ∗ β

=α ∧ ∗(∗−1L ∗ β) = α ∧ ∗(∗−1L ∗ β) = (α, ∗−1L ∗ β)V ol.

This implies that Λ is of bidegree (1, 1), and it is easy to see, that Λ is the complex-
ification of the real map ∗−1L|∧∗ V ∗∗.
Definition 1.24. Let H :

∧∗ V ∗ → ∧∗ V ∗ be the counting operator, i.e.

H =
2n∑
k=0

(n− k)πk,

where 2n = dim(V )

We can extend H complex linearly to
∧∗ V ∗C , it is also denoted by H.

Theorem 1.25. We have the following commutation relation between the real oper-
ators L,Λ and H:

a) [H,L] = −2L, b) [H,Λ] = 2Λ, and c) [Λ, L] = H.

Proof. See [3] Proposition 1.2.26.
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Definition 1.26. Let k be a field, then sl(n, k) denotes the Lie-algebra of n × n

matrices with k entries and trace 0.

Corollary 1.27. The operators L,Λ, H gives a representation of sl(2,R) on
∧∗ V ∗

and sl(2,C) on
∧∗ V ∗C .

Proof. The Lie-algebras sl(2,R) and sl(2,C) = sl(2,R)⊗C have the following basis:

X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)
, B =

(
1 0

0 −1

)

It is an easy computation, that

[B, Y ] = −2Y, [B,X] = 2X, and [X, Y ] = B,

thus the map
Y 7→ L, X 7→ Λ, and B 7→ H

is a representation of sl(2,R) on
∧∗ V ∗, and if we tensor everything with C then we

get a representation of sl(2,C) on
∧∗ V ∗C .
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1.2 Representation theory of sl(2,C)

In this section we will sketch the representation theory of sl(2,C), and then study
the representation we got on

∧∗ V ∗C . We assume that the reader is familiar with the
basic theory of Lie-algebras and Lie groups.

Proposition 1.28. sl(2,C) is a simple Lie-algebra.

Proof. Let I E sl(2,C) be a non-zero ideal. First notice that if B ∈ I, then I =

sl(2,C). To see that let B ∈ I, then since I is an ideal we get that

[X,B] = −2X ∈ I, and [Y,B] = 2Y ∈ I.

ThusX, Y,B ∈ I andX, Y,B generate sl(2,C). Now let aX+bY +cB ∈ I a non-zero
element. Applying [B,−] we get that:

[B, aX + bY + cB] = 2aX − 2bY ∈ I.

This means that 2aX + cB, 2bY + cB ∈ I, applying [B,−] again, we see that
4aX, 4bY ∈ I. If a 6= 0 or b 6= 0, then B ∈ I. If a = b = 0, then cB ∈ I, i.e. if
aX + bY + cB 6= 0, then B ∈ I thus I = sl(2,C).

Corollary 1.29. Every finite dimensional representation of sl(2,C) is completely
reducible, i.e. direct sum of irreducible representations.

Proof. ByWeyl’s theorem if g is a semisimple Lie-algebra over a field of characteristic
0, then every finite dimensional representation of g is completely reducible. We just
showed that sl(2,C) is simple, hence it is semisimple.

Definition 1.30. Let ρ : sl(2,C)→ EndC(V ) be a finite dimensional representation.
Let V λ = {v ∈ V | ρ(B)v = λv}. We say that v ∈ V λ is of weight λ. We say that
an element v ∈ V is primitive if v 6= 0 and ρ(X)v = 0.

Lemma 1.31. Let’s fix a representation ρ. Then:

a)
∑

λ∈C V
λ is a direct sum decomposition.

b) If v ∈ V λ, then ρ(X)v ∈ V λ+2 and ρ(Y )v ∈ V λ−2.

Proof. a) We only have to show that if λ 6= λ′ then V λ ∩ V λ′ = 0, but this is trivial
since V λ is just the eigenspace of ρ(B).

b) Let v ∈ V λ, then:

ρ(B)ρ(X)v =(ρ(B)ρ(X)− ρ(X)ρ(B))v + ρ(X)ρ(B)v

=ρ([B,X])v + λρ(X)v = 2ρ(X)v + λρ(X)v = (λ+ 2)ρ(X)v.
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ρ(Y ) follows the same way.

Proposition 1.32. Every finite dimensional representation ρ admits a primitive
element.

Proof. Let v0 ∈ V be a non-zero eigenvector of ρ(B). Look at the following sequence
of vectors:

v0, ρ(X)v0, ρ(X)2v0, . . . , ρ(X)nv0, . . .

The non-zero vectors are all linearly independent, since they correspond to different
eigenvalues. Thus there exists a k ≥ 0 such that ρ(X)kv 6= 0 but ρ(X)k+1(X)v = 0.
Hence, ρ(X)kv is a primitive vector, and we also got that v is of weight λ for some
λ ∈ C.

Theorem 1.33. Let ρ be a finite dimensional irreducible representation of sl(2,C).
Let v0 be a primitive vector of weight λ. Let v−1 = 0 and vn = ( 1

n!
)ρ(Y )nv0. Then

for all n ≥ 0 one has that:

a) ρ(B)vn = (λ− 2n)vn.

b) ρ(Y )vn = (n+ 1)vn+1.

c) ρ(X)vn = (λ− n+ 1)vn−1.

Also, λ = m, where m+ 1 = dimC(V ), and ρ(Y )nv0 = 0 for all n > m.

Proof. a) we use induction on n. We have already seen for n = 1, suppose that we
know for all m < n. Then

ρ(B)ρ(Y )nv0 =(ρ(B)ρ(Y )− ρ(Y )ρ(B))ρ(Y )n−1v0 + ρ(Y )ρ(B)ρ(Y )n−1v0

=− 2ρ(Y )nv0 + (λ+ 2(n− 1))ρ(Y )nv0 = (λ− 2n)ρ(Y )nv0.

b)

ρ(Y )vn =
1

n!
ρ(Y )n+1v0 = (n+ 1)

1

(n+ 1)!
ρ(Y )n+1v0 = (n+ 1)vn+1

c) We use induction on n. Let n = 0, then v0 is primitive, thus ρ(X)v0 = 0 = v−1.
Suppose that we know for all m < n. Then

nρ(X)vn =ρ(X)ρ(Y )vn−1

=ρ([X, Y ])vn−1 + ρ(Y )ρ(X)vn−1

=ρ(B)vn−1 + ρ(Y )(λ− n+ 2)vn−2

=(λ− 2n+ 2)vn−1 + (n− 1)(λ− n+ 2)vn−1

=n(λ− n+ 1)vn−1.
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To finish the proof we start with showing that λ ∈ N. Since V is finite dimensional
there exists m ≥ 0 such that

v0, . . . , vm are all non-zero

vm+1, . . . are all zero.

Now use c) on vm+1:

0 = ρ(X)vm+1 = (λ− (m+ 1) + 1)vm = (λ−m)vm.

We know that vm is non-zero, thus λ = m ∈ N. Now we show that m+1 = dimC(V ).
Let Vm = Span{v0, . . . , vm}. We claim that Vm is an invariant subspace of V . Indeed,
let v =

∑m
i=0 α

ivi ∈ Vm, then:

ρ(B)v =
m∑
i=0

αi(m− 2n)vn ∈ Vm

ρ(X)v =
m∑
i=0

αi(m− n+ 1)vn−1 ∈ Vm

ρ(Y )v =
m∑
i=0

αi(n+ 1)vn+1vn+1 ∈ Vm

Here we used that v1 = vm+1 = 0. This means that Vm is an invariant non-zero
subspace of V , but we assumed that ρ is irreducible, hence Vm = V and dimC(V ) =

dimC(Vm) = m+ 1.

The theorem states that every irreducible representation of sl(2,C) looks like the
following drawing:

0 vm vm−1 . . . v1 v0 0

B B B B

Y

X

Y Y

X

Y

X XX

Y

Theorem 1.34. Up to isomorphism there is only one (m+1)-dimensional irreducible
representation of sl(2,C), and it is of the following form: let v0, . . . , vm be a basis of
a vector space V . Then

a) ρ(B)vn = (λ− 2n)vn.

b) ρ(Y )vn = (n+ 1)vn+1.

c) ρ(X)vn = (λ− n+ 1)vn−1.

Where n = 0, . . . ,m, and v−1 = vm+1 = 0.
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Proof. It is easy to check that this really is a representation of sl(2,C). Now to
show that this is an irreducible representation, suppose that V0 ⊆ V is a non-zero
invariant subspace. Then ρ(B) : V0 → V0 has an eigenvector in V0. Since every
eigenvector (up to non-zero scalar) of ρ(B) is of the form vj for some 0 ≤ j ≤ m,
we get that vk ∈ V0 for some k. Again since V0 is an invariant subspace we get that
ρ(X)kvk = cv0 ∈ V0 with c 6= 0. Now we use that vr = 1

r!
ρ(Y )rv0 ∈ V0, thus V ⊂ V0,

so V = V0.
The previous theorem stated, that if ρ is an irreducible representation, then it is

isomorphic to this representation.

Corollary 1.35. Let ρ be an irreducible representation. If ϕ ∈ V λ, then there exists
an r ∈ N such that ϕ0 is a primitive element of weight λ+ 2r such that

ϕ = ρ(Y )rϕ0 and ϕ0 =
(m− r)!
m!r!

ρ(X)rϕ0,

where m+ 1 = dimC(V ).

Proof. Let v0, . . . , vm be a basis of V like in theorem 1.33. Let’s fix r, where 0 ≤ r ≤
m. Then

ρ(X)vr = (m− r + 1)vr−1

ρ(X)2vr = (m− r + 1)(m− r + 2)vr−2

...

ρ(X)rvr =
m!

(m− r)!
v0

ρ(Y )ρ(X)rvr =
m!

(m− r)!
v1

ρ(Y )2ρ(X)rvr =
m!2

(m− r)!
v2

...

ρ(Y )rρ(X)rvr =
m!r!

(m− r)!
vr.

If ϕ is an eigenvector of ρ(B), then ϕ = αvr for some r ∈ N and α is a non-zero
scalar. Hence

ϕ =
(m− r)!
m!r!

ρ(Y )rρ(X)rϕ,

with ϕ0 = (m−r)!
m!r!

ρ(X)rϕ is a primitive element of weight λ+2r and ϕ = ρ(Y )rϕ0.

One can get all the irreducible representation of sl(2,C) in one neat representa-
tion. Let C[x, y] be the polynomial ring in two variables over the complex numbers.
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Then one can easily compute that the following map

X 7→ x∂y

Y 7→ y∂x

B 7→ x∂x − y∂y,

is a Lie-algebra homomorphism. Let’s denote this map by π. Since π(X), π(Y ), π(B)

are all degree zero map one can restrict these maps to C[x, y]m the vector space of
polynomials of degree m to get an m+ 1-dimensional irreducible representation.

Now let (V, 〈 , 〉) be an euclidean space of dimension 2n with a compatible almost
complex structure I. By Corollary 1.27 we have a representation of sl(2,C) on

∧∗ V ∗C
given by

X 7→ Λ = L∗, Y 7→ L, B 7→ H =
2n∑
p=0

(n− p)πp.

Let’s denote this representation by α. We say that ϕ ∈
∧∗ V ∗C is a primitive if ϕ 6= 0

and Λϕ = α(X)ϕ = 0.

Proposition 1.36. Let ϕ ∈
∧p V ∗C be a primitive p-form, then Lq(ϕ) = 0 for all

q ≥ max(0, n− p+ 1).

Proof. Let Vϕ = Span{Liϕ | i ∈ N} be the invariant subspace generated by ϕ.
Restricting α to this subspace gives an irreducible representation of sl(2,C). By
Theorem 1.33 we know that α(B)ϕ = mϕ, wherem+1 = dim(Vϕ), but we also know
that α(B)ϕ = Hϕ = (n− p)ϕ, thus m = n− p. This means that α(Y )qϕ = Lqϕ = 0

for all q ≥ max(0, n− p+ 1).

Corollary 1.37. There are no primitive p-forms for p > n.

Proof. Suppose that ϕ is a primitive p-form where p > n. Then, by the previous
proposition, dim(Vϕ) = (n− p+ 1) ≤ 0, thus ϕ = 0, which is a contradiction.

Theorem 1.38 (Lefschetz decomposition). Let (V, 〈 , 〉, I) be as before, and let
ϕ ∈

∧p V ∗C . Then
a) ϕ can be written uniquely in the form

ϕ =
∑

r≥max(0,p−n)

Lrϕr,

where ϕr is a primitive (p − 2r)-form or zero. We call this the primitive de-
composition of ϕ.

b) If Lmϕ = 0, then the primitive (p − 2r)-forms ϕr in the decomposition of ϕ
vanish for all r ≥ max(0, p− n+m).
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c) If p ≤ n, then Ln−pϕ = 0 if and only if ϕ = 0.

Proof. a) Every finite dimensional representation of sl(2,C) are completely re-
ducible, thus ∧∗

V ∗C = V1

⊕
. . . Vl,

where Vi are all invariant subspaces, and the restriction of α to Vi gives an irreducible
representation. This means that

ϕ = ψ1 + · · ·+ ψl,

where ψi ∈ Vi. Since every ψi is a p-form they are all eigenvectors of α(B) = H with
eigenvalue (n− p). Thus by Corollary 1.35 for all j, we get that

ψj = Lrjξj,

where ξj is a primitive (p − 2rj)-form. Now if we collect the primitive forms of the
same degree we get the decomposition

ϕ =
∑

r≥max(0,p−n

Lrϕr.

To get that the decomposition is unique, we only have to show that 0 = ϕ0 +Lϕ1 +

· · ·+Lmϕm implies ϕm = 0 for all m. Suppose that there is a non-trivial element in
this decomposition, and let m be the largest such that ϕm 6= 0. Again by Corollary
1.35 we know that ΛkLkϕk = ckϕk, for some 0 6= ck ∈ Q. Then

0 = Λmϕ0︸ ︷︷ ︸
0

+ Λm−1(

primitive︷ ︸︸ ︷
ΛLϕ1 )︸ ︷︷ ︸
0

+ · · ·+ Λ(

primitive︷ ︸︸ ︷
Λm−1Lm−1ϕm−1)︸ ︷︷ ︸

0

+ΛmLmϕm.

Thus 0 = ΛmLmϕm = cmϕm, with cm 6= 0, but this is a contradiction since we
assumed that ϕm 6= 0.

b) Let ϕ ∈
∧p V ∗C and suppose that Lmϕ = 0. By part a) we know that ϕ =∑

Lrϕr, thus
0 = Lmϕ =

∑
r≥max(0,p−n)

Lr+mϕr.

Since ϕr is a primitive (p− 2r)-form we can use Proposition 1.36 see that Lqϕr = 0

for all q ≥ max(0, n − (p − 2r) + 1). This means that Lr+mϕr = 0 for all r <

max(0, p− n+m), hence

0 =
∑

r≥max(0,n−p+m)

Lr+mϕr
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is a primitive decomposition of 0. By part a) we get, that ϕr = 0 for all r ≥
max(0, p− n+m).

c) Let p ≤ n, and suppose that Ln−pϕ = 0. By part b) we get that ϕr = 0 for all
r ≥ max(0, p− n+ n− p) = 0, thus ϕ = 0.

Corollary 1.39. Let ϕ ∈
∧∗ V ∗C . Then ϕ is primitive if and only if p ≤ n and

Ln−p+1ϕ = 0.

Proof. If ϕ is primitive, then we have already seen that p ≤ n. We also know that
Hϕ = (n − p)ϕ and dim(Vϕ) = n − p + 1, where Vϕ = Span{Liϕ | i ≥ 0}. Hence
Ln−p+1ϕ = 0.

Now suppose that p ≤ n and that Ln−p+1ϕ = 0. By Theorem 1.38 part a)

we know that ϕ =
∑

r≥0 L
rϕr and by part b) we know that ϕr = 0 for all r ≥

p− n+ n− p+ 1 = 1, thus ϕ = ϕ0.

Corollary 1.40. Let P k = {α ∈
∧k V ∗C | Ln−k+1α = 0} for all k ≤ n and let P k = 0

for all k > n. Then

a)
∧k V ∗C =

⊕
i≥0 L

i(P k−2i) is an orthogonal decomposition with respect to 〈 , 〉C.

b) Ln−k :
∧k V ∗C → ∧2n−k V ∗C is an isomorphism.

Proof. a) The fact that this is a direct sum decomposition follows from Corollary
1.39 and Theorem 1.38 part a). To see that this is an orthogonal decomposition, let
Liαi, L

jαj ∈
∧k V ∗C , with i < j and αi, αj primitive. Then

〈Liαi, Ljαj〉C = 〈
0︷ ︸︸ ︷

Λ(ΛiLiαi),Λ
j−(i+1)αj〉C = 0.

b) By Theorem 1.38 part c) we know that Ln−k restricted to
∧k V ∗C is injective,

also dim(
∧k V ∗C ) = dim(

∧2n−k V ∗C ), so we get that this is an isomorphism.

Remark 1.41. Since L,Λ and H are the complexifications of real operators, they
map

∧∗ V ∗ to ∧∗ V ∗. Thus let P k
R = P k ∩

∧∗ V ∗. Then
a)
∧k V ∗ =

⊕
i L

i(P k−2i
R ) is an orthogonal decomposition with respect to 〈 , 〉.

b) Ln−k :
∧k V ∗ → ∧2n−k V ∗ is an isomorphis.

We also know that L,Λ and H respects the (p, q) decomposition, thus if we
denote P k ∩

∧
(p, q) by P p,q we get the following:

a) P k =
⊕

p+q=k P
p,q is an orthogonal decomposition with respect to 〈 , 〉C.

b) If p+ q = k, then Ln−k :
∧p,q V ∗ → ∧n−q,n−p V ∗ is an isomorphism.
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In the following we will connect the representation of sl(2,C) with the Hodge
*-operator. The results will be important in the proof of the Kähler identities. The
following statements and proofs require some knowledge of Lie groups which we will
use only.

Let e1, Ie1, . . . , en, Ien be an orthonormal basis in V . Then xi = 〈−, ei〉 and
yi = 〈−, Iei〉 and ω =

∑n
i=1 x

i ∧ yi. Let ϕ, η ∈
∧∗ V ∗C , then e(η)ϕ = η ∧ϕ. We claim,

that if η is a real 1-form, then e∗(η) = e(η)∗ = ∗e(η)∗. Indeed, let α ∈
∧k−1 V ∗C and

β ∈
∧k V ∗C , then
〈e(η)α, β〉 =η ∧ α ∧ ∗β = (−1)k−1α ∧ η ∧ ∗β = (−1)k−1α ∧ (−1)k−1 ∗ ∗η ∧ ∗β

=α ∧ ∗(∗η ∧ ∗β) = 〈α, ∗η ∧ ∗β〉 = 〈α, ∗e(η) ∗ β〉.

Now let f 1, . . . , fn be an oriented orthonormal basis in V ∗. Then one can compute
easily that

e∗(f i)(f i1 ∧ · · · ∧ f ik)

is zero if and only if i /∈ {ii, . . . , ik}, and if i = ia for some a, then it is equal to
(−1)a+1f i1∧· · ·∧f ia−1∧f ia+1∧· · ·∧f ik . Also notice, that L = e(ω) =

∑n
i=1 e(x

i)e(yi)

and Λ = e∗(ω) =
∑n

i=1 e
∗(yi)e∗(xi). Since ω is a 2-form, we get that for all η ∈

∧∗ V ∗C
[L, e(η)] = 0.

Proposition 1.42. Let e1, Ie1, . . . , en, Ien be an orthonormal basis, xj = 〈−, ej〉
and yj = 〈−, Iej〉. Then

a) [Λ, e(xi)] = e∗(yj)

b) [Λ, e(yj)] = −e∗(xj)

Proof. a) We compute as follows:

[Λ, e(xj)] =
n∑
i=1

e∗(yi)e∗(xi)e(xj)− e(xj)e∗(yi)e∗(xi)

=e∗(yj)e∗(xj)e(xj)− e(xj)e∗(yj)e∗(xj).

Now let ψ be a monom which does not contain xj and yj. Then

e∗(yj)ψ =0

e∗(yj)xj ∧ ψ =0

e∗(yj)yj ∧ ψ =ψ

e∗(yj)xj ∧ yj ∧ ψ =− xj ∧ ψ,
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and

e∗(yj)e∗(xj)e(xj)− e(xj)e∗(yj)e∗(xj)ψ =0

e∗(yj)e∗(xj)e(xj)− e(xj)e∗(yj)e∗(xj)xj ∧ ψ =0

e∗(yj)e∗(xj)e(xj)− e(xj)e∗(yj)e∗(xj)yj ∧ ψ =ψ

e∗(yj)e∗(xj)e(xj)− e(xj)e∗(yj)e∗(xj)xj ∧ yj ∧ ψ =− xj ∧ ψ.

The proof of b) is very similar to the previous computation.

Corollary 1.43. Let η ∈
∧1,0 V ∗, then

a) [Λ, e(η)] = −ie∗(η).

b) [Λ, e(η)] = ie∗(η).

Proof. One can assume, that η = x1 + iy1. Then

[Λ, e(η)] =[Λ, e(x1) + ie(y1)] = e∗(y1)− ie∗(x1) = −i(e∗(x1) + ie∗(y1))

=− i(e∗(x1) + e∗(−iy1)) = −ie∗(x1 − iy1) = −ie∗(η)

b) is similar.

Corollary 1.44. Let η be a real 1-form, then

[Λ, e(η)] = −Ie∗(η)I−1,

Where I =
∑

p,q i
p−qπp,q.

Proof. Since η is a real 1-form there exists a ϕ (1, 0)-form, such that η = ϕ + ϕ.
Then

[Λ, e(η)] = [Λ, e(ϕ)] + [λ, e(ϕ)] = −ie∗(ϕ) + ie∗(ϕ) = e∗(iϕ) + e∗(−iϕ).

Now suppose that a) e(iϕ) = −Ie(ϕ)I−1 and b) e(−iϕ) = Ie(ϕ)I−1. Since I−1 = I∗

we get that
e∗(iϕ) = e(iϕ)∗ = (−Ie(ϕ)I−1)∗ = −Ie∗(ϕ)I−1,

and similarly e∗(−ϕ) = −Ie∗(ϕ)I−1. This finishes our proof, since we got that

[Λ, e(η)] =e∗(iϕ) + e∗(−iϕ) = −Ie∗(ϕ)I−1 − Ie∗(ϕ)I−1

=− Ie∗(ϕ+ ϕ)I−1 = −Ie∗(η)I−1.
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Now to see a) let α ∈
∧p,q V ∗. Then

−Ie(ϕ)I−1α = (−1)iq−pIe(ϕ)α = (−1)iq−pIϕ ∧ α︸ ︷︷ ︸
(p,q+1)

= (−1)i−1ϕ ∧ α = e(iϕ)α.

b) follows in a similar way.

It is known that sl(2,C) is the Lie-algebra of the Lie group SL(2,C). Let G be
an arbitrary Lie group with Lie-algebra g. Since SL(2,C) is simply connected there
is a one-one correspondence between the Lie-algebra homomorphisms sl(2,C) → g

and Lie group homomoprhisms SL(2,C) → G. Moreover if ρ : sl(2,C) → g is a
Lie-algebra homomorphism and πρ : SL(2,C) → G is the corresponding Lie group
homomorphism, then the following diagram is commutative:

sl(2,C) g

SL(2,C) G

ρ

expexp

πα

Definition 1.45. Let # = exp(1/2iπ(Λ + L)) = exp(1/2iπ(α(X) + α(L)).

Proposition 1.46. Let η be a real 1-form. Then

#e(η)#−1 = −iIe∗(η)I−1.

Proof. Let t ∈ R and define the following:

et(η) = exp(it(Λ + L))e(η)exp(−it(Λ + L)).

It is clear that eπ/2(η) = #e(η)#−1. The idea is to show that et(η) satfisfies a
differential equation with initial condition e0(η) = e(η). We will solve the differential
equation, eveluate it in π/2 and hopefully get what we wanted. First notice that we
have the following commutative diagram:

sl(2,C) End(
∧∗ V ∗C )

SL(2,C) GL(
∧∗ V ∗C )

α

expexp

πα
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Where πα corresponds to the Lie-algebra homomorphism α. Let wt = exp(it(X+Y )),
then et(η) = πα(wt)e(η)πα(wt)

−1. We also have the following commutative diagram:

End(
∧∗ V ∗C ) End(End(

∧∗ V ∗C ))

GL(
∧∗ V ∗C ) GL(End(

∧∗ V ∗C ))

ad

expexp

Ad

It is also known that if g ∈ GL(
∧∗ V ∗C ), then Adg(e(ϕ)) = ge(ϕ)g−1. In our case,

we get that

et(η) =πα(wt)e(η)πα(wt)
−1 = Adπα(wt)e(η) = Adexp(it(Λ+L)(e(η))

=exp(ad(it(Λ + L))(e(η)) =
∑
k≥0

1

k!
[ad(it(Λ + L))]ke(η).

Since ad is complex linear, we get the following: d
dt
et(η) = i(ad(Λ + L))(et(η))

e0(η) = e(η)

One can easily check that cos(t)e(η) + i sin(t)ad(Λ)e(η) solves the differential equa-
tion above. Now eveluating in π/2 we get that

#e(η)#−1 = eπ/2(η) = ad(Λ)(e(η)) = [Λ, e(η)] = −Ie∗(η)I.

The third equality holds because ad(A) = [A,−] for all A ∈ End(
∧∗ V ∗C ) and for the

last equality we used Corollary 1.44.

We had the representation πm:sl(2,C)→ End(C[x, y]m). One can easily compute
that the corresponding Lie group homomorphism π̃m : SL(2,C)→ GL(C[x, y]m) is
defined as follows: let A ∈ SL(2,C) and f ∈ C[x, y], then π̃(A)f = f ◦ AT . Notice
that if f, g ∈ C[x, y], then π̃(A)(fg) = π̃(A)fπ̃(A)g. It is easy to see that if f is
polynomial of degree m then π̃(A)f is of degree m, thus we can restrict π̃(A) to a
π̃m(A) : C[x, y]m → C[x, y]m map. Let w = exp(1/2iπ(X + Y )), then π̃1(w)(x) = iy

and π̃1(w)(y) = ix, thus

π̃m(w)xm−kyk = (π̃1(w)x)m−k(π̃1(w)y)k = imxkym−k.

Let ϕk = πm(Y )kxm = (y∂x)
kxm = m!

(m−k)!
xm−kyk, for all 0 ≤ k ≤ m. Then

π̃m(w)ϕk =
m!

(m− k)!
imym−kxk =

k!

(m− k)!
imϕm−k,
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thus
π̃m(w)πm(Y )kϕ0 = im

k!

(m− k)!
πm(Y )m−kϕ0.

Our computation used concrete representations, but one sees that this last form holds
for all (m+ 1)-dimensional irreducible representation of sl(2,C) and corresponding
Lie group representation.

Corollary 1.47. Let ϕ0 ∈
∧∗ V ∗C be a primitive form of weight m. Then

#Lkϕ0 = im
k!

(m− k)!
Lm−kϕ0,

for all 0 ≤ k ≤ m.

Lemma 1.48. Let ϕ ∈
∧p V ∗C , then ∗ϕ = ip

2−nI−1#ϕ.

Proof. The Hodge *-star operator satisfies the following: a) ∗1 = V ol, and b) if η is a
real 1-form, then ∗e(η)|∧p V ∗C = (−1)pe∗(η)∗. Notice that a) and b) determine ∗ since
if η is a real 1-form, then ∗η = ∗e(η)(1) = e∗(ϕ)(V ol), and we can use induction to
define it on p-forms for all p.

Let ∗̂|∧p V ∗C = ip
2−nI−1#. We want to show that ∗̂ = ∗. We will do that by proving

∗̂ also satisfies a) and b). To prove a) we first note that 1 is a primitve form of weight
n. Thus #1 = in

n!
Ln(1), and

∗̂(1) = i−nI−1 i
n

n!
Ln(1) = I−1V ol = in−nV ol = V ol.

To prove b) let η be a real 1-form and ϕ ∈
∧p V ∗C . Then

∗̂e(η)ϕ =i(p+1)2−nI−1#e(η)ϕ = i(p+1)2−nI−1#e(η)#−1#ϕ

=i(p+1)2−n(−i)e∗(η)I−1#ϕ = (−1)pe∗(η)ip
2−nI−1#ϕ

=(−1)pe∗(η)∗̂ϕ.

We just showed that ∗̂ also satisfies b), hence ∗ = ∗̂.

Theorem 1.49. Let ϕ be a primitive p-form. Then

∗Lrϕ = (−1)p(p+1)/2 r!

(n− p− r)!
Ln−p−rIϕ,

for all 0 ≤ r ≤ n− p.

Proof. Since ϕ is a p-form it is of weight n− p. Thus by Corollary 1.47

#Lrϕ = in−p
r!

(n− p− r)!
Ln−p−rϕ.
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Now we use Lemma 1.48 to compute the following:

∗Lrϕ =i(p+2r)2−nI−1#Lrϕ

=ip
2−nI−1in−p

r!

(n− p− r)!
Ln−p−rϕ

=ip
2−p(I−1)2 r!

(n− p− r)!
Ln−p−rIϕ

=ip
2−p(−1)p

r!

(n− p− r)!
Ln−p−rIϕ

=(−1)p(p+1)/2 r!

(n− p− r)!
Ln−p−rIϕ.

Here we also used that LmI = ILm for all m.
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1.3 Sheaves and sheaf cohomology

This section is devoted to collect some standard results and definitions that we
will use later in the thesis. For a more detailed treatment we recommend the book
[5] Ramanan, S. - Global Calculus.

Definition 1.50. Let X be a topological space, then F is a presheaf of sets over X
if

a) For each open set U ⊆ X corresponds a set F(U).

b) For all U, V ⊆ X open, with V ⊆ U a map resUV : F(U) → F(V ) is given
satisfying the following properties: resUU = idF(U), and if W ⊆ V ⊆ U are
open sets in X, then

resVW resUV = resUW .

Elements of the set F(U) are called sections of F over U , and the maps resUV are
called restriction maps. If F maps open sets to sets with extra structures like vector
spaces, abelian groups, rings, etc. and the restriction maps are linear maps, group
homomorphisms, ring homomorphisms, etc. then we call F a presheaf of vector
spaces, abelian groups, rings, etc.

Remark 1.51. One can look at the topological space X as a category by declaring
that the objects are the open sets of X and the morphisms are the inclusions. Then a
presheaf F over X is just a contravariant functor from this category to the category
of sets Set.

Definition 1.52. A presheaf F is called a sheaf if it satisfies the following properties:
let U =

⋃
i∈I Ui be an open cover of the open set U . Then

S1) If s, t ∈ F(U), with resUUi(s) = resUUi(t) for all i ∈ I, then s = t.

S2) If si ∈ F(Ui) with resUiUi∩Uj(si) = resUjUi∩Uj(sj) for all i, j ∈ I, then there
exists s ∈ F(U), such that resUUi(s) = si for all i ∈ I.

S1 says that if two elements in a sheaf are locally the same, then they are globally
the same, and S2 says that in a sheaf you can glue together elements if they agree
on overleaps.

It follows from the definitions, but we assume that in a sheaf F(∅) consist of a
single point.

Example 1.53. Since the definition is very abstract lets look at some examples.
1) Let X be a topological space, then the assigment U 7→ C(U) with the obvious

restriction maps clearly defines a sheaf over X. It is called the sheaf of continuous
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functions on X. Notice that C(U) is an R-algebra for all U and the restriction maps
are R-algebra homomorphisms.

2) Let X, Y be topological spaces, then C(−, Y ) the continuous maps to Y with
obvious restriction maps is clearly a sheaf over X. Unlike above it is just a sheaf of
sets since we cannot add or multiply maps to Y .

3) By a bundle we mean a triple ξ = (E, π,B), where E,B are topological spaces
and π : E → B is a continuous map. Define the sections of ξ over U as follows:

Γ(U, ξ) = {s ∈ C(U,E) | π ◦ s = idU}

Clearly the assigment U 7→ Γ(U, ξ) with the obvious restriction maps is a sheaf over
X. This sheaf is called the sheaf of sections of the bundle ξ.

4) Let X be a smooth manifold, and U ⊂ X open. Denote by Ck(U) the set of
k-times continuously differentiable functions on U . The assigment U 7→ Ck(U) for
all open set U , with the obvious restriction maps clearly defines a sheaf over X for
all k ∈ N ∪∞.

5) Let X = R and let F(U) be the bounded continuous functions on U . Then F
with the obvious restriction maps is clearly a presheaf over X but F is not a sheaf.
It is clear that F satisfies S1) since F consists of functions. The problem is with
S2). Indeed, let Ui = (i − 1, i + 1), then clearly

⋃
i∈Z Ui = R, and it is also clear

that x|Ui is a bounded function on Ui, but x is not a bounded function on R. The
problem with this sheaf is that being bounded is not a local condition. Notice that
if we define F(U) as the locally bounded functions on U , then F is a sheaf.

6) Let X be a topological space, and A a set of order at least two. Let F(U)

be the constant A-valued functions on U if U 6= ∅ and let F(∅) be a one point set.
Then F with the obvious restriction maps is clearly a presheaf on F satisfying S1)

but not S2). The problem comes again from the fact, that being constant is not a
local property. Again if we localise the defining property, i.e. we set F(U) to be the
locally constant A-valued functions on U , then clearly it will become a sheaf over
X.

7) For a harder example let R be a commutative ring with unity. Denote by
Spec(R) the set of prime ideals in R. First we define a topology on Spec(R). Let
S ⊂ R, then V (S) = {P ∈ Spec(R) | S ⊂ P}. We say that V ⊂ Spec(R) is closed,
if there exists a set S ⊂ R such that V = V (S). To see that this will define a
topology, let Sα ⊂ R for some index set A. Then clearly ∩α∈AV (Sα) = V (∪α∈ASα),
and V (Sα) ∪ V (Sβ) = V (SαSβ), where SαSβ = {uαvβ ∈ R | uα ∈ Sα, vβ ∈ Sβ}. Let
D(f) = Spec(R)\V (f), where f ∈ R. One can check that {D(f) | f ∈ R} is a basis
of the topology on Spec(R). We will define the structure sheaf of R only on a basis
of the topology, but one can check that this indeed defines a sheaf over Spec(R).
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Let f ∈ R, then OR(D(f)) = Rf , where Rf = S−1R and S = 1, f, f 2, . . .. For more
details see the book Algebraic geometry by R. Hartshorne.

Definition 1.54. Let F1,F2 be presheaves over the topological space X. A mor-
phism of presheaves f : F1 → F2 assigns to every open set U a morphism
f(U) : F1(U)→ F2(U), making the following diagram commutative:

F1(U) F2(V )

F1(V ) F2(V )

resUV

f(U)

resUV

f(V )

for all V ⊂ U open sets.

Remark 1.55. If we think of sheaves as contravariant functors from the category of
open sets of X, then a morphism of sheaves is just a natural morphism between the
two functor.

Definition 1.56. Let X be a topological space and F a presheaf over X. Let x ∈ X,
then the stalk of F at the point x denoted by Fx is the equivelence class of pairs
(U, s), where U is an open neighborhood of x and s ∈ F(U). Two pairs (U, s) and
(V, t) are equivalent if there exists a open neighborhood W of x, with W ⊆ U ∩ V ,
such that resUW (s) = resVW (t). We denote the equivalence class of (U, s) by [(U, s)].

If F is a presheaf then we can define the set E = E(F) =
⊔
x∈X Fx. There is a

natural map π : E → X that maps an element of Fx to x. Notice that if we have an
element s ∈ F(U), then the equivalence class of the pair (U, s) defines an element
in Fx denoted by sx, for all x ∈ U . Hence an element s ∈ F(U) gives a section of
the bundle π : E → X defined by s̃(x) = sx. We want to define a topology on E

that makes π continuous, and which makes the sections s̃ continuous. Look at the
sets {s̃(U) | U open, and s ∈ F(U)}. One can check easily that this is a basis of a
topology, and this topology satisfies what we wanted. We call E(F) the Étale space
of F . We saw in example 3) that the sections of a bundle define a sheaf, hence given
a presheaf F one can associate to it naturaly a sheaf F̃ , the sections of the Étale
space, associated to F . Also notice that one has a natural morphism F → F̃ , which
maps s ∈ F(U), to s̃ ∈ F̃(U) = Γ(U,E(F)).

If F ,G are presheaves over X and f : F → G is a morphism of presheaves, then
f induces a map fx : Fx → Gx by the following: let’s represent an element of Fx by
(U, s), then the image of this element is the class of (U, f(s)). It is easy to check, that
this is a well defined map between the stalks. We claim that the map F → F̃ induces
an isomorphism Fx → F̃x for all x ∈ X. Indeed, let x ∈ X and [(U, s)], [(V, t)] ∈ Fx.
Suppose that [(U, s̃)] = [(V, t̃)] ∈ F̃x, by definition this means that there exists an
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open set W ⊆ U ∩ V containing x, with s̃|W = resUW (s̃) = resVW (t̃) = t̃|W , hence
[(U, s)] = sx = s̃(x) = t̃(x) = tx = [(V, t)], so the map is injective. To see that it is
surjective let [(U, γ)] ∈ F̃x, then γ(x) ∈ Fx, since γ is a section. Hence by definition
there exists an open set V containing x and t ∈ F(U) such that γ(x) = [(V, t)].
Since γ is a continuous map and by definition t̃(V ) is open, we get that the open set
γ−1(t̃(V )) is not the empty set since it contains x. Thus there exists an open set W ,
with x ∈ W such that γ(y) = t̃(y) for all y ∈ W , hence the set V ∩U ∩W = A is not
empty and resUA(γ) = resV A(t̃) which by definition means that [(U, γ)] = [(V, t̃)].

Proposition 1.57. Let F be a presheaf, then F is a sheaf if and only if the natural
morphism F(U)→ F̃(U) is an isomorphism for all U open.

Definition 1.58. Let F ,G be sheaves over X. A morphism of sheaves is just a
morphism of presheaves. We say that F is a subsheaf of G if there exists a morphism
ι : F → G, with ιx : Fx → Gx being injective for all x ∈ X.

One can check that this is equivalent to saying that ι(U) : F(U) → G(U) is
injective for all U open.

Definition 1.59. Let X be a topological space, let R be a sheaf of rings and M
be a sheaf of abelian groups. We say thatM is a sheaf of R-modules, if for all open
set U , the groupM(U) is an R(U)-module, and the restriction maps ofM respects
the module structure, i.e. for all V ⊆ U open sets we have the following:

resUV (fs) = resUV (f)resUV (s),

where f ∈ R(U) and s ∈M(U).

Definition 1.60. Let F ′,F ,F ′ be sheaves of abelian groups over X. Suppose we
have morphisms F ′ → F and F → F ′. We say that that the sequence

F ′ F F ′′

is exact, if the sequence
F ′x Fx F ′′x

is exact, for all x ∈ X.

Remark 1.61. Let F ,G be sheaves, then the exactness of the sequence

F G 0

means that Fx → Gx is surjective for all x ∈ X, which basically means that if
U is an open neighborhood of x and s ∈ G(U), then there exists a V ⊂ U open
neighborhood of x, and t ∈ F(V ), such that the image of t in G(V ) is resUV (s).
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Proposition 1.62. Suppose that that we have a short exact sequence of sheaves

0 F ′ F F ′′ 0

then
0 F ′(X) F(X) F ′′(X)

is an exact sequence.

Usually the map F(X)→ F ′′(X) is not surjective. For example let D be an open
domain in C, then we have the exponential sequence

0 Z OD O∗D 02πi exp

where Z is the locally constant Z-valued sheaf, OD is the sheaf of holomorphic
functions on D and O∗D is the sheaf of nowhere zero holomorphic functions on D.
Since locally we have complex logarithm this is an exact sequence of sheaves, however
let D = C\0, then z ∈ O∗C\0(C\0) is not the exponential of a holomorphic function.
Indeed, if it were, then we would have a complex logarithm l(z) on C \ 0. If we
differentiate both side of exp(l(z)) = z we get that l′(z) = 1/z, hence we have a
primitive function of 1/z which would imply that the integral of 1/z around the
origin is zero, which is a contradiction.

The point of sheaf cohomology is to understand what happens at F(X) →
F ′′(X). In some sense sheaf cohomology measures the nonexactness of this sequence.

Definition 1.63. Let F ,G,G ′ be sheaf of R-modules over X. Suppose that G ′ is a
subsheaf of G. We say that F is injective if arbitrary morphism from G ′ to F can
be extended to a morphism from G to F , i.e. we have the following commutative
diagram:

0 G ′ G

F
∃

Definition 1.64. Let F be a sheaf of abelian groups. We say that F is flabby/soft
if an arbitrary section of F over an open/closed set can be extended to the whole
F .

Notice that if F is a sheaf, then we can identify F with F̃ the sheaf of sections
of the Étele space, and then it makes sense to look at sections over a closed set K.
We can look at this in a little bit more abstract way. Let f : Y → X be a continuous
map, and F a sheaf over X, then we have π : E(F)→ X. We can define the pullback
of this bundle as having total space f ∗(E(F)) = {(y, e) ∈ Y ×E(F) | f(y) = π(e)}
and the map π : f ∗(E(F)) → Y is just the restriction of the projection pr1 to Y .
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Define the inverse image sheaf f−1(F) as the sections of the bundle (f ∗(E(F)), π, Y ).
If K is a closed subset of X then this will give back what we just defined before.
Let ι be the inclusion map of K to X, then we denote ι−1F by F|K .

Proposition 1.65. If X is paracompact, and K is a closed subspace of X, then
every element of F|K(K) is the restriction of some s ∈ F(U), where K ⊂ U open.

Proposition 1.66. Suppose that X is paracompact, and R is a soft sheaf of rings.
Then every sheaf of R-modules is soft.

Let M be a smooth manifold, then it is known that M is paracompact. Let
E → X be a smooth vector bundle over X, and denote it’s smooth sections over U
by Γ(U,E). This is clearly a sheaf, moreover if we denote the sheaf of smooth real
valued functions by C∞, then Γ(−, E) is clearly a C∞-module. Suppose we have a
section of E(C∞) over a closed set K, then by Proposition 1.65 it is a restriction of
a section over U where K ⊂ U , which is just a smooth function f on U . It is known
from general topology that there exists a smooth function ϕ which is constant one
on some neighborhood of K and Suppϕ ⊂ U . Hence we can define ϕf on whole X
by defining it zero outside of U , and it is clear that the restriction of this map to
K is the same as f restricted to K. Hence we just showed that C∞ is a soft sheaf,
which by the previous claim implies that Γ(−, E) is soft.

Theorem 1.67. If F is a sheaf of R-modules, then there exists an injective sheaf I
and an injective morphism F → I, i.e. every R-module is a subsheaf of an injective
R-module.

If we have a morphism of presheaves f : F → G, then one can define the
presheaves ker(f), im(f) and coker(f) in a natural way, by assigning to U the set
ker(f(U)), im(f(U)) and G(U)/im(f(U)). If F ,G are sheaves, then ker f is a subsheaf
of F , but im(f) and coker(f) are just presheaves. Still one can associate the sheaves˜im(f) and ˜coker(f) to them. One can prove that in this case one has two exact
sequnces of sheaves:

0 ˜im(f) G ˜Coker(f) 0

and
0 ker(f) F ˜im(f) 0

From now on we will not write out the ˜ sign, and by im(f) and Coker(f) we will
always mean the associated sheaves.

By Theorem 1.67 one can always embed F into an injective sheaf I0. Then one
can look at the factor sheaf K1 = I0/F . Since K1 is also a sheaf of R-modules, one
can embed it to an injective sheaf I1, and then one has the following exact sequence:
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0 F I0 I1 K2 0

where K2 = I1/im(I0). By induction, we see that there is a long exact sequence of
sheaves:

0 F I0 I1 I2 . . . In . . .

where F is a subsheaf of I0, and In is injective for all n ∈ N.

Definition 1.68. A sequence of sheaves of abelian groups

. . . Fn−1 Fn Fn+1 . . .

is called a complex, if any two consecutive map is zero. We denote the complex by
F•. The maps are called differentials, usually denoted by d or δ.

Definition 1.69. An exact sequence of sheaves

0 F I0 I1 I2 . . .

is called the resolution of F , and the complex

I• = I0 I1 I2 . . .

is called the resolving complex of F . If in addition every sheaf in I• is an injective
sheaf, then we call I• an injective resolution of F .

By the reasoning above, we see that every sheaf F has an injective resolution.

Definition 1.70. A morphism of complexes ϕ• : I• → J • is a sequence of mor-
phisms ϕi : F i → Gi, which is commuting with the differentials, i.e. we have the
commutative diagram:

. . . In−1 In In+1 . . .

. . . J n−1 J n J n+1 . . .

ϕn−1 ϕn ϕn+1

Proposition 1.71. Let 0 → F → I• and 0 → G → J • be injective resolutions.
Then every R-module homomorphism f : F → G extends to a morphism of com-
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plexes ϕ• : I• → J •, making the following diagram commutative:

F I•

G J •
ϕ•f

Definition 1.72. Let f •, g• : I• → J • be two morphisms of complexes. We say that
f • and g• are homotopic, if there exists a sequence of morphisms hi : I i → J i−1,
such that d ◦ ki − ki−1 ◦ d = f i − gi, i.e. we have the following diagram:

. . . I i−1 I i I i+1 . . .

. . . J i−1 I i I i+1 . . .

gi−1f i−1 ki
ki−1 ki+1 ki+2gi+1f i+1f i gi

Proposition 1.73. Let 0→ F → I• be an injective resolution of F and 0→ G →
J • a resolution of G. Let f : F → G be a morphism of R-modules and suppose
ϕ•, ψ• : I• → J • are morphisms of complexes, making the diagram commutative

F I•

G J •
f ϕ• ψ•

Then ϕ• and ψ• are homotopic.

Since we have morphism of complexes, we can define isomorphism of complexes.
One hopes that the injective resolution of a sheaf is unique. This is not true, but
some other kind of uniquenes holds.

Corollary 1.74. Suppose that 0 → F → I• and 0 → F → J • are two injective
resolutions of the sheaf F . Then there exist morphisms ϕ• : I• → J • and ψ• : J • →
I• which are inducing the identity map on F , moreover the compositions ϕ• ◦ ψ•,
and ψ•◦ϕ• are homotopic to the identity map of the complex J • and I• respectively.

Definition 1.75. Let F be a sheaf, and let 0→ F → I• be an injective resolution
of F . Then we define the cohomology groups of the sheaf F , as the cohomologies of
the complex

I0(X) I1(X) I2(X) . . .

We denote the i-th cohomology group of F by H i(X,F).

This is well defined, since one can prove, that the homotopy between two injective
resolution induces isomorphism between the cohomologies. One should also notice,
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that H0(X,F) = F(X). Indeed, by Proposition 1.62 we know that the sequence

0 F(X) I0(X) I1(X)

is exact, hence H0(X,F) = F(X).

Proposition 1.76. Suppose that we have an exact sequence of sheaves

0 F1 F2 F3 0

then there exisits injective resolutions 0→ Fi → I•i , making the diagram commuta-
tive.

0 0 0

0 F1 F2 F3 0

0 I•1 I•2 I•3 0

Corollary 1.77. A short exact sequence of sheaves

0 F1 F2 F2 0

induce a long exact sequence of cohomologies

0 H0(X,F1) H0(X,F2) H0(X,F3)

H1(X,F1) H1(X,F2) H1(X,F3)

Hn(X,F1) Hn(X,F2) Hn(X,F3) . . .

As a corollary we get that, the sequence

0 F1(X) F2(X) F3(X) 0

is exact, if the first cohomology group of F1 is zero.

Injective resolutions are a really strong tools for proving these kind of statements,
but it is very hard to do computations with them, so we want to look at other types
of resolutions that will give back the cohomology groups of F but are easier to work
with.
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Lemma 1.78. Let 0 → F → I• be an arbitrary resolution of F . Suppose that
H i(X, Ij) = 0 for all i > 0 and j ≥ 0. Then the cohomologies of the complex I(X)•

are naturally isomorphic with the cohomologies of F .

Now we need to find conditions that asserts that the cohologies of a sheaf F are
all zero.

Proposition 1.79. If F is a flabby sheaf, then H i(X,F) = 0 for all i > 0. The
same result holds for soft sheaves over paracompact spaces.

Proposition 1.80. Let 0 → F → I• and 0 → G → J • be resolutions such that
H i(X, Ij) = H i(X,J j) = 0 for all i > 0 and j ≥ 0. Suppose we have morphisms
f : F → G and ϕ• : I• → J • making the diagram commutative

F1 I•

G J •
f ϕ•

Then we have the following commutative diagram:

H i(I(X)•) H i(J (X)•)

H i(X,F) H i(X,G)
Hi(f)

Hi(ϕ•(X))

where the vertical maps are the isomorphisms from Lemma 1.78, H i(ϕ•(X)) is the
map induced by the maps ϕi(X) : I i(X) → J i(X), and H i(f) is the induced map
on the sheaf cohomologies.
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1.4 Complex manifolds and vector bundles

In this section we collect some standard definitions and results (mainly with-
out proofs) that we need later on in the thesis. For a more detailed treatment we
recommend the book [3] Huybrechts, D. Complex Geometry: An Introduction.

Definition 1.81. Let Ω ⊂ Cn open and F : Ω → Ck. We say that F is complex
differentiable in a ∈ Ω, if there exists an La : Cn → Ck linear, such that

F (z) = F (a) + La(z − a) + ra(z),

with ra(z)
||z−a|| → 0 if z → a. We denote La by F ′(a).

Definition 1.82. We say that F : Ω → Ck is holomorphic, if F is complex differ-
entiable for all a ∈ Ω.

Proposition 1.83 (Chain rule). Let Ω ⊂ Cp open, G : Ω → Cq, with G complex
differentiable in a ∈ Ω, let Ω̃ ⊂ Cq open G(a) ∈ Ω̃, F : Ω̃ → Cs, with F complex
differentiable in G(a). Then F ◦G is complex differentiable in a and

(F ◦G)′(a) = F ′(G(a))G′(a).

Proposition 1.84. Let ∂zj = 1
2
(∂xj−i∂yj) and ∂zj = 1

2
(∂xj+i∂yj). Let F : U → Cm

be a smooth map, where U ⊂ Cn. Then F is holomorphic if and only if ∂zjFk = 0

for all j, k, and in this case F ′(a) = (∂zjFk(a))j,k.

Definition 1.85. A holomorphic atlas on a smooth manifold M2n is an atlas
{(Uα, ϕα)} of the form ϕα : Uα ' ϕα(Uα) ⊂ Cn such that whenever Uα ∩ Uβ 6= ∅
the transition functions ϕαβ = ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα ∩ Uβ) are holomor-
phic. The pair (Uα, ϕα) is called a holomorphic chart. Two holomorphic atlases are
compatible, if their union is a holomorphic atlas.

Definition 1.86. A complex manifold X of dimension n is a differentiable manifold
M of (real) dimension 2n endowed with a maximal holomorphic chart.

A complex manifold is called compact, connected, simply connected, etc., if the
underlying differentiable manifold has this property. By abuse of notation we will
denote the underlying manifold M by X. It is clear that any open subset of X is a
complex manifold.

Definition 1.87. A holomorphic function on a complex manifold X is a function
f : X → C such that f ◦ ϕ−1

α : ϕα(Uα) → C is holomorphic for any (Uα, ϕα) chart
in the maximal holomorphic atlas.
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Definition 1.88. Let X be a complex manifold, and let U be an open subset of X.
Then

OX(U) = Γ(U,OX) = {f : U → C | f is holomorphic},

with the obvious restrictions, defines a sheaf of rings over X. We call this the sheaf
of holomorphic functions on X.

The following proposition shows the first difference between complex and differ-
entiable manifolds.

Proposition 1.89. Let X be a complex manifold. If X is compact and connected,
then OX(X) = C, i.e. the only global holomorphic functions are the constant func-
tions.

Proof. Let f ∈ OX(X). Since X is compact ‖f‖ : X → R attains it’s maximum at
some point x ∈ X. Let U = f−1(c), with c = f(x). It is clear that ∅ 6= U is closed,
and if y ∈ U , then by the maximum principle f is constant in a small neighborhood
of y, thus U is open, hence X = U .

Definition 1.90. Let π : E → X be a holomorphic map between complex manifolds.
We say that the triple (E, π,X) is a holomorphic vector bundle if it satisfy the
following:

a) For all x ∈ X the fiber Ex = π−1(x) is a d-dimensional complex vector space.

b) There exists {(Uα, φα)}α, where {Uα} is an open cover of X, and for all α
φα : π−1(Uα) → Uα × Cd is a biholomorphism, such that pr1(φα(v)) = π(v)

for all v ∈ Ex, and for all x ∈ X the composition pr2 ◦ φα|Ex → Cd is a linear
isomorphism.

π−1(Uα) Uα × Cd

Uα

φα

π pr1

The pairs (Uα, φα) are called holomorphic charts and the set {(Uα, φα)} is called
a holomorphic atlas of the bundle E.

Suppose that Uα ∩ Uβ 6= ∅. Since φα and φβ has to respect the fibers, one sees
that that composition of φαφ−1

β : Uα ∩ Uβ × Cd → Uα ∩ Uβ × Cd is of the form

ψαψ
−1
β (x, v) = (x, gαβ(x)(v))

where gαβ : Uα ∩ Uβ → GL(d,C) is a holomorphic map. It is not hard to see that
the maps {gαβ} satisfies the relations

37



a) gαα(x) = id, for all x ∈ Uα.

b) gαβ(x)gβα(x) = id, for all x ∈ Uα ∩ Uβ.

c) gαγ(x) = gαβ(x)gβγ(x), for all x ∈ Uα ∩ Uβ ∩ Uγ.

We call the maps {gαβ} the transition functions of E associated to the atlas
{(Uα, φα)}.

One can show that if we have an open covering {Uα} ofX, and holomorphic maps
gαβ : Uα ∩ Uβ → GL(d,C) satisfying a), b) and c), then there exists a holomorphic
vector bundle π : E → X, with holomorphic charts φα : π−1(Uα) → Uα × Cd and
transition functions gαβ associated to the holomorphic atlas {(Uα, φα)}.

Theorem 1.91. Let E,F → X be holomorphic vector bundles over X. Suppose that
over the same covering E has gαβ and F has hαβ transition functions. Then

1. E ⊕ F → X given by transition functions gαβ ⊕ hαβ is a holomorphic vector
bundle with fibers Ex ⊕ Fx over x ∈ X.

2. E ⊗ F → X given by transition functions gαβ ⊗ hαβ is a holomorphic vector
bundle with fibers Ex ⊗ Fx over x ∈ X. If E and F are line bundles, then the
transition functions of the tensor product is just gαβhαβ.

3. E∗ → X given by transition functions (g−1
αβ )T is a holomorphic vector bundle

with fibers E∗x over x ∈ X.

4.
∧k E, SkE → X given by transition functiong

∧k(gαβ), Sk(gαβ) is a holomor-
phic vector bundle with fibers

∧k Ex and SjEx over x ∈ X. If the dimension
of the fibers, called the rang of E, is r, then

∧r E denoted by det(E) is a line
bundle, with transition functions det(gαβ). It is called the determinant bundle
of E.

5. If Y ⊂ X a complex submanifold, then π|π−1(Y ) : π−1(Y )→ Y is a holomorphic
vector bundle over Y .

Definition 1.92. Let E,F → X be vector bundles. We say that ϕ : E → F is a
holomorphic vector bundle morphism, if:

a) ϕ is holomorphic.

b) ϕ is a bundle morphism, i.e. ϕ(Ex) ⊂ Fx.

c) ϕ|Ex : Ex → Fx is complex linear.

d) rank(ϕ|Ex) is constant.
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Definition 1.93. Let E → X be holomorphic vector bundle. We say that F is a
holomorphic subbundle of E, denoted by F < E, if F is a complex submanifold of
E, and Fx is a complex subspace of Ex for all x ∈ X with dim(Fx) being constant
on X.

Proposition 1.94. Let E be a vector bundle then F ⊂ E is a holomorphic subbundle
of E if and only if there exists an holomorphic atlas {(Uα, ϕα)}α of E making the
diagram commutative

π−1(Uα) ∩ F Uα × Cl

π−1(Uα) Uα × Cdφα

φα

where the first vertical map is the inclusion map and the second maps (x, (c1, . . . , cl))

to (x, (c1, . . . , cl, 0, . . . , 0)).

Definition 1.95. Let E,F → X be holomorphic vector bundles, and f : E → F a
holomorphic vector bundle morphism. Then ker(f) = {v ∈ E | f(v) = 0 ∈ Fπ(v)},
Im(f) = f(E). Let v, w ∈ F , we say that v is equivalent with w if π(v) = π(w) and
v − w ∈ Im(f). If two elements are equivalent, then they have to be in the same
fibrum, hence we have a map π : F/ ∼→ X, and this bundle is denoted by Coker(f).

Proposition 1.96. ker(f) is a holomorphic subbundle of E, Im(f) is a holomorphic
subbundle of F and Coker(f) is a holomorphic vector bundle. Moreover, if we have a
holomorphic atlas of F like in Proposition 1.94, then the transition functions {gαβ}
associated to this atlas is of the form

gαβ =

(
hαβ ∗
0 kαβ

)
,

where {hαβ} and {kαβ} are transition functions of Im(f) and Coker(f) respectively.

Definition 1.97. Let E → X be a holomorphic vector bundle. Then

OE(U) = {s : U → π−1(U) | s is holomorphic, and π ◦ s = idU}

defines a sheaf over X. It is called the sheaf of holomorphic sections of E.

Notice that if f ∈ OX(U) and s ∈ OE(U), then fs makes sense, and it is an
element of OE(U). Hence OE is a sheaf of OX-modules.

Let X be a complex manifold of dimension n, then TX, T ∗X, det(T ∗X) are com-
plex vector bundles over X but not holomorphic vector bundles in a natural way.
However let {(Uα, ϕα)} be a holomorphic atlas of the complex manifold X. Suppose
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that Uα ∩ Uβ 6= ∅, then by definition ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ)→ ϕα(Uα) is holomor-

phic, hence the complex derivative of ϕα ◦ϕ−1
β is an element of GL(n,C). The maps

(ϕα ◦ϕ−1
β )′ ◦ϕβ : Uβ → GL(n,C) are clearly holomorphic, moreover they satisfy the

relations a), b) and c) defined on page 36. Hence there exists a holomorphic vector
bundle τX with the above defined transition functions. This bundle is called the
holomorphic tangent bundle of X. It is clear that TX and τX are isomorphic as
smooth complex vector bundles over X, but unlike TX, τX is a complex manifold.
Define the holomorphic cotangent bundle as the dual of τX, denoted by τ ∗X and
denote the exterior powers by

∧r τ ∗X. If r = n, then the line bundle
textdet(τ ∗X) is called the canonical bundle of X denoted by KX . We will see later
how important this line bundle is, which justifies its fancy name.

Definition 1.98. Let M be a smooth manifold and E → M be a smooth vector
bundle. A smooth bundle homomorphism J : E → E is called an almost complex
structure if J2 = −id. An almost complex structure on a manifold M is just an
almost complex structure on TM .

Notice that not every bundle has an almost complex structure, for example bun-
dles of odd rank can not admit an almost complex structure.

Proposition 1.99. If X is a complex manifold, then X admits an almost complex
structure induced by the complex structure of X.

Suppose that M is a smooth manifold with almost complex structure J , then
one hopes that J defines a complex structure onM which induces J , however this is
not true. There are examples of manifolds that admit an almost complex structure
but do not have a single complex structure.

Corollary 1.100. Let X be a complex manifold, and denote with I the almost
complex structure induced by the complex structure of X. Let TX ⊗ C denote the
tensor product of TX with the trivial C-bundle X×C, then TX⊗C = T 1,0X⊕T 0,1X,
where

T 1,0X = {v ∈ TCX | Iv = iv}

T 0,1X = {v ∈ TCX | Iv = −iv}.

Sometimes we will denote TX ⊗C with TCX. TX ⊗C is called the complexified
tangent bundle of X. Suppose that (Uα, ϕα) is a holomorphic chart on X. Then this
chart induces holomorphic coordinates on Uα denoted by z1, . . . , zn, more precisely
we have the natural projections πr : Cn → C, which sends (c1, . . . , cn) to cr. Then
zr = πr ◦ ϕα. It is clear that zr = xr + iyr, and the functions x1, y1, . . . , xn, yn are
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smooth coordinate functions on Uα. If I is the almost complex structure induced by
the complex structure on X, then

I∂xr = ∂yr I∂yr = −∂xr

Hence ∂x1 , ∂y1 . . . , ∂xn , ∂yn gives a complex basis of TCXp over any p ∈ Uα. But as we
saw in page 3, there is a better choice of basis for TCX, which is more compatible
with the almost complex structure, namely

∂zr =
1

2
(∂xr − ∂yr) =

1

2
(∂xr − I∂xr)

∂zr =
1

2
(∂xr + ∂yr) =

1

2
(∂xr + I∂xr).

By Lemma 1.5 we know that ∂z1 , . . . , ∂zn is a basis of T 1,0Xp, and ∂z1 , . . . , ∂zn is a
basis of T 0,1Xp for all p ∈ Uα. Notice that the elements of TCX act naturally on
complex valued functions, defined by as follows: if f = u + iv where u and v are
smooth functions on X, and w = r + is ∈ TCX, then w(h) = r(u)− s(v) + i(r(v) +

s(u)). Let X and Y be complex manifolds, and suppose that we have a smooth map
f : X → Y , then this induces a morphism of vector bundles Tf : TCX → TCY ,
which is just the complexification of the map Tf . Suppose that locally we have
holomorphic coordinates zj = xj+iyj and wj = rj+isj, then locally f = (f1, . . . , fm)

and fj = uj + ivj, where uj, vj are smooth functions. Then the Jacobian of f with
respect to the basis ∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn and ∂r1 , . . . , ∂rm , ∂s1 , . . . , ∂sm is just

JR(f) =


(
∂ui
∂xj

)
i,j

(
∂ui
∂yj

)
i,j(

∂vi
∂xj

)
i,j

(
∂vi
∂yj

)
i,j


.

Since ∂z1 , ∂zn , . . . , ∂z1 , . . . ∂zn and ∂w1 , . . . , ∂wm , ∂w1 , . . . , ∂wm are also bases of TCX
and TCY we can compute the Jacobian of f with respect to these bases, which is

JC(f) =


(
∂fi
∂zj

)
i,j

(
∂fi
∂zj

)
i,j(

∂f i
∂zj

)
i,j

(
∂f i
∂zj

)
i,j


.
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This implies that the chain rule for ∂zi and ∂zj is the following. Let g : U → V and
f : V → C be smooth maps, where U ⊂ Cn and V ⊂ Cm then

∂

∂zi
(f ◦ g) =

m∑
j

(
∂f

∂zj
◦ g
)
∂gj
∂zi

+
m∑
j

(
∂f

∂zj
◦ g
)
∂gj
∂zi

∂

∂zi
(f ◦ g) =

m∑
j

(
∂f

∂zj
◦ g
)
∂gj
∂zi

+
m∑
j

(
∂f

∂zj
◦ g
)
∂gj
∂zi

Notice that if f is holomorphic, then

JC(f) =


(
∂fi
∂zj

)
i,j

0

0
(
∂fi
∂zj

)
i,j


.

This means that if f is holomorphic, then f respects the (1, 0) and (0, 1) de-
compositions. Also notice that if f : U → Cm is holomorphic, where U ⊂ Cn is
open, then the complex derivative of f ′ is precisely (∂zifj)i,j. Hence if {(Uα, ϕα)} is
a holomorphic atlas of X, then the transition functions of TCX are

gαβ =

(ϕα ◦ ϕ−1
β )′ ◦ ϕβ 0

0 (ϕα ◦ ϕ−1
β )′ ◦ ϕβ


.

Hence we see that the transition functions of T 1,0X are the same as the transition
functions of τX. This means that T 1,0X is a holomorphic vector bundle over X and
τX and T 1,0X are isomorphic as holomorphic vector bundles.

Let’s look at the cotangent bundle of X. Clearly it also has an almost complex
structure, which acts on a 1-form by composing it with I. Let’s denote this almost
complex structure on T ∗X also with I. Hence T ∗X ⊗C = T ∗CX also splits to T ∗1,0X
and T ∗0,1X, where

T ∗
1,0

X = {α ∈ T ∗CX | Iα = α ◦ I = iα} = T 1,0∗X

T ∗
0,1

X = {α ∈ T ∗CX | Iα = α ◦ I = −iα} = T 0,1∗X.

Let
∧p,q T ∗X =

∧p T 1,0∗X ⊗
∧q T 0,1∗X. Then by Proposition 1.7 we know that∧k
T ∗CX =

⊕
p+q=k

∧p,q
T ∗X.

Definition 1.101. Let AkX be the sheaf of smooth sections of
∧k T ∗CX, and Ap,qX be

the sheaf of smooth sections of
∧p,q T ∗X.
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Clearly we have AkX = ⊕p+q=kAp,qX . Notice that
∧p,0 T ∗X is a holomorphic bundle,

hence it makes sense to look at holomorphic sections of
∧p,0 T ∗X. Let πk :

∧∗ T ∗CX →∧k T ∗CX and πp,q :
∧∗ T ∗X → ∧p,q T ∗X be the canonical projections coming from

the direct sum decompositions. Then πk and πp,q induce morphisms on the sheaves
AkX , denote them also by πk and πp,q.

Definition 1.102. Let d : AkX → Ak+1
X be the complexification of the exterior

derivative d. Then we define the morphisms:

∂ = πp+1,q ◦ d : Ap,qX → Ap+1,q
X

∂ = πp,q+1 ◦ d : Ap,qX → Ap,q+1
X .

We claim, that d = ∂+∂. Indeed, if z1, . . . , zn are holomorphic coordinates, then

dzj = dxj + idyj

dzj = dxj − idyj

is the dual basis of ∂zj , ∂zk , hence dz1, . . . , dzn and dz1, . . . , dzn are bases of T 1,0∗X

and T 0,1∗X respectively.
Let f = u+ iv be a smooth complex valued function on X. Then

df =
∑
j

∂xjfdxj + ∂yjfdyj =
∑
j

(∂xju+ i∂xjv)dxj + (∂yju+ i∂yjv)dyj

=
∑

∂zjfdzj︸ ︷︷ ︸
(1,0)−form

+ ∂conjzjfdzj︸ ︷︷ ︸
(0,1)−form

= ∂f + ∂f.

Hence on 0-forms d = ∂+∂. Now let ϕ be a (p, q)-form, then ϕ =
∑

I,J ϕI,JdzI∧dzj,
where ϕI,J is a smooth complex valued map. Then we compute as follows:

dϕ =
∑
I,J

dϕI,J ∧ dzI ∧ dzJ =
∑
I,J

(∂ + ∂)ϕI,J ∧ dzI ∧ dzJ

=
∑
I,J

∂ϕI,J ∧ dzI ∧ dzJ︸ ︷︷ ︸
(p+1,q)−form

+ ∂ϕI,J ∧ dzI ∧ dzJ︸ ︷︷ ︸
(p,q+1)−form

= ∂ϕ+ ∂ϕ.

As a corollary we get that ∂2
= ∂2 = ∂∂ + ∂∂ = 0, since

0 = d2 = (∂ + ∂)(∂ + ∂) = ∂2 + ∂∂ + ∂∂ + ∂
2
,

and looking at the bidegrees of these maps the corollary follows.

Proposition 1.103. Let f : X → Y be a holomorphic map. Then f ∗ : Ap,qY → Ap,qX ,
and f ∗∂ = ∂f ∗, f ∗∂ = ∂f ∗.
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Proposition 1.104. Let’s denote the sheaf of holomorphic p-forms by Ωp, then Ωp

is a subsheaf of Ap,0, in fact Ωp = ker(∂).

This means that we have the following sequence of sheaves

Ωp Ap,0 Ap,1 Ap,2 . . .∂ ∂ ∂

This is clearly half-exact since ∂2
= 0. The next theorem will show that this sequence

is actually exact.

Theorem 1.105 (∂-Poincaré lemma). Let U be an open neighborhood of the closure
of a bounded polydisc Bε ⊂ Bε ⊂ U ⊆ Cn. If α ∈ Ap,qCn(U) is ∂-closed, then there
exists a form β ∈ Ap,q−1

Cn (Bε), with ∂β = α on Bε.

Hence the sequence of sheaves above, called the Doulbeault complex, is an exact
sequence. Also notice that Ap,qX are soft sheaves for all (p, q), since they are all C∞-
modules which is soft as we saw in the previous section. Define the following groups:

Hp,q(X) =
ker(∂ : Ap,qX (X)→ Ap,q+1

X (X))

Im(∂ : Ap,q−1
X (X) :→ Ap,qX (X))

.

Clearly this is just the comohologies of the complex (Ap,∗(X), ∂ ).

Theorem 1.106 (Dolbeault’s thoerem). There exists a canonical isomorphism

Hp,q(X) ' Hq(X,Ωp),

for all (p, q).

By Proposition 1.103 a holomorphic map f : X → Y induces a morphism of
sheaves f ∗ : Ap,qY → Ap,qX . Since f ∗ commutes with ∂, we see that f ∗ induces a
morphism of complexes f ∗ : Ap,∗Y → Ap,∗X , i.e. we have the following commutative
diagram:

Ωp
Y Ap,0Y Ap,1Y . . .

Ωp
X Ap,0X Ap,1X . . .

∂ ∂

f∗ f∗ f∗

∂ ∂

By Proposition 1.80 there is a commutative diagram

Hp,q(Y ) Hp,q(X)

Hq(Y,Ωp
Y ) Hq(X,Ωp

X)

Hq(f∗(X))

Hq(f∗)
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where the vertical maps are the isomorphisms from the Doulbeault’s theorem,
Hq(f ∗(X)) is the morphism induced by f ∗ : Ap,qY (Y ) → Ap,qX (X) and Hq(f ∗) is
map induced by the sheaf morphism f ∗ : Ωp

Y → Ωp
X .

Let E → X be a complex vector bundle, then denote by AkE and Ap,qE the sheaf
of sections of the bundle

∧k T ∗CX ⊗ E and
∧p,q T ∗X ⊗ E. Elements of AkE and Ap,qE

are called E-valued k-forms and (p, q)-forms respectively.

Lemma 1.107. If E is a holomorphic vector bundle, then there exists a natural
complex linear operator ∂E : Ap,qE → Ap,q+1

E , such that ∂
2

E = 0 and satisfies the
Leibniz product rule, i.e. ∂E(fα) = ∂f ∧ α + f ∧ ∂Eα.

If s1, . . . , sr are holomorphic sections of E over U , which are a basis of Ex for all
x ∈ U , then an E-valued (p, q)-form over U can be written as

∑
j αj ⊗ sj, where αj

is a (p, q)-form for all j. One then defines ∂E as

∂Eα =
∑
j

∂αj ∧ sj.

Since ∂ annihilate holomorphic functions, this is well defined. One can check that
this will satisfy properties in the lemma.

Proposition 1.108. Let’s denote by Ωp
E the sheaf of holomorphic E-valued p-forms.

Then Ωp
E = ker(∂E : Ap,0E → Ap,1E ), and Ω0 is naturally isomorphic the sheaf of

holomorphic senctions of E.

Since ∂E locally is just r copies of ∂ we see that the sequence

0 Ωp
E Ap,0E Ap,1E . . .

∂E ∂E

is exact, hence the complex (Ap,∗, ∂E) is a soft resolving complex of Ωp
E. Lets denote

the q-th cohomology group of the complex (Ap,∗(X), ∂E) by Hp,q(X,E).

Theorem 1.109 (Dolbeault’s theorem). There exists a canonical isomorphism

Hp,q(X,E)→ Hq(X,Ωp
E),

for all (p, q).

Notice that H0(X,Ω0
E) ' OE(X).
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1.5 Harmonic theory on compact manifolds

The purpose of this chapter is to state the Hodge decomposition theorem and
introduce the framework for the statement. For detailed proofs we recommend the
book [7] Wells, R. O. - Differential Analysis on Complex Manifolds.

1.5.1 Sobolev spaces

In this section X denotes an n-dimensional, compact orientable smooth manifold.
On X we fix a volume element dV ol which is just a nowhere zero smooth differential
n-form.

Let E be a Hermitian (smooth) vector bundle over X. Let Γk(X,E) be the set
of kth order differentiable sections of E (0 ≤ k ≤ ∞), where Γ(X,E) = Γ∞(X,E).
Define an inner product ( , ) on Γ(X,E) by setting

(ξ, η) =

∫
X

〈ξ(x), η(x)〉E dV ol

Where 〈 , 〉E is the Hermitian metric on E. Let

‖ξ‖ 0 = (ξ, ξ)
1
2

be the L2-norm and let W 0(X,E) be the completion of Γ(X,E) in this norm. Let
{Uα, ϕα} be a finite trivialising cover of X, making the following diagram commuta-
tive,

E|Uα Ũα × Cp

Uα Ũα
ϕ̃α

π

ϕα

pr1

Here ϕα is a bundle isomorphism, and ϕ̃α : Uα → Ũα ⊂ Rn are a local coordinate
system for the manifold X. Let

ϕα∗ : Γ(Uα, E|Uα)→ Γ(Ũα, Ũα × Cp) = [C∞(Ũα)]p

be the induced isomorphism. Let {ρα} be a finite partition of unity subordinate to
{Uα} and define, for ξ ∈ Γ(X,E)

‖ξ‖ s =
∑
α

‖ϕα∗ραξ‖ Rn,s,

46



where ‖ ‖ Rn,s is the Sobolev norm. Let f ∈ C∞c (Rn), then

‖f‖ Rn,s =

∫
Rn

(1 + |y| 2)s|f̂(y)|
2
dy,

where
f̂(y) = (2π)−n

∫
Rn
e−i〈y,x〉f(x)dx

is the Fourier transform in Rn. If f ∈ C∞c (Rn,Cp) then

‖f‖ 2
Rn,s = ‖f1‖ 2

Rn,s + ...+ ‖fp‖ 2
Rn,s.

Let W s(X,E) be the completion of Γ(X,E) with respect to the ‖ ‖ s norm. Notice
that the ‖ ‖ s depends on the choices we made, but it can be shown that any two
such norm is equivalent so W s(X,E) is a well defined space. For s = 0 we have
defined two norms, but these will be equivalent as well.

Remark 1.110. Intuitively ‖ξ‖ s <∞ for s ∈ Z>0 means that the first s derivatives
of ξ are in L2(X). This follows from the fact, that on C∞c (Rn) the following norm
is equivalent to ‖ ‖ s,Rn ∑

|α|≤s

∫
Rn
|Dαf | 2dx

 1
2

with Dα = (−i)|α|∂α1
x1
. . . ∂αnxn . The equivalence of the two norms basically follows

from D̂αf(y) = yαf̂(y).

Notice that for t < s and f ∈ C∞c (Rn) one has∫
Rn

(1 + |y| 2)t|f̂(y)|
2
dy ≤

∫
Rn

(1 + |y| 2)s|f̂(y)|
2
dy.

Thus W t(E) ⊆ W s(E).

Theorem 1.111. Let t < s, then one has the following:

a) (Rellich) id : Γ(E)→ Γ(E) extends to an i : W s(E)→ W t(E) compact, norm
non-increasing linear operator.

b) (Sobolev) For k + 1 + n
2
< s we have W s(E) ⊆ Γk(E).

c) The L2 pairing on Γ(E) extends to a

W s(E)×W−s(E)→ C

perfect pairing, and |(ξ, η)| ≤ ‖ξ‖ s‖η‖ −s for all ξ, η ∈ Γ(E).
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The previous theorem says that if we want to prove that a section ξ is smooth
we just have to show that ξ ∈ W s(E) for all s. Typically we will do the following.
First we show that ξ ∈ W t(E) for some t, then we will show that if ξ ∈ W s(E) then
ξ ∈ W s+1(E).

Definition 1.112. Let E,F be Hermitian vector bundles over X. Let L : Γ(E)→
Γ(F ) be a complex linear map. Then a complex linear map S : Γ(F ) → Γ(E) is
called the formal adjoint of L if:

(Lξ, η) = (ξ, Sη),

for all ξ ∈ Γ(E) and η ∈ Γ(F ). We denote S by L∗.

Remark 1.113. Since Γ(E) is dense inW 0(E) the formal adjoint is unique if it exists.

1.5.2 Differential operators

Let E,F be smooth complex vector bundles over X. We say that a complex
linear map

L : Γ(E)→ Γ(F )

is a differential operator if it is locally a differential operator, i.e. if for any choice
of local coordinates and local trivialisations, there exists a linear partial differential
operator L̃, such that the following diagram commutes

[
C∞(Ũ)

]p [
C∞(Ũ)

]q
Γ(Ũ, Ũ × Cp) Γ(Ũ, Ũ × Cq)

Γ(X,E)|U Γ(X,F )|U

L̃

L

where U ⊂ X open and ϕ : U → Ũ ⊂ Rn is a local coordinate system. That is, if
f = (f1, . . . , fp) ∈ [C∞(U)]p, then

L̃(f)i =

p∑
|α|≤k,j=1

ai,jα D
αfj,

with i = 1, . . . , q. We say that a differencial operator is of order k, if there are no
derivatives of order ≥ k + 1 in a local representation. We denote by Diffk(E,F ) the
vector space of all differential operators of order k.

Let’s denote by OPk(E,F ) the vector space of all complex linear maps

T : Γ(E)→ Γ(F ),
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such that there is a continuous extension of T

Ts : W s(E)→ W s−k(F )

for all s. These are the operators of order k mapping E to F .

Proposition 1.114. Suppose that L ∈ OPk(E,F ), then L∗ the formal adjoint of L
exists and L∗ ∈ OPk(F,E), and the extensions

(L∗)s : W s(F )→ W s−k(E)

is given by the adjoint map

(Lk−s)
∗ : W s(F )→ W s−k(E).

Remark 1.115. Here we mean the adjoint of Lk−s : W k−s(E)→ W−s(F ) with respect
the L2 pairings in Theorem 1.111.

Proposition 1.116. Diffk(E,F ) ⊂ OPk(E,F ), and if L ∈ Diffk(E,F ), then the
formal adjoint of L is a differential operator, i.e. L∗ ∈ Diffk(F,E).

We now want to define the symbol of a differential operator. Let T ∗X be the real
cotangent bundle of X, and π : T ∗X → X the projection map. Let’s denote the non-
zero covectors by T ′(X), i.e. T ′(X) = T ∗(X) \ {zero section}, thus π : T ′(X) → X

is a locally trivial bundle. If E,F are complex vector bundles over X, then π∗(E)

and π∗(F ) are complex vector bundles over T ′(X). We set, for any k ∈ Z

Smblk(E,F ) ={σ ∈ Hom(π∗(E), π∗(F )) | σ(x, ρv) = ρkσ(x, v),

with (x, v) ∈ T ′(X), ρ > 0}.

We define a linear map

σk : Diffk(E,F )→ Smblk(E,F ),

where σk(L) is called the k-symbol of the differential operator of L. To define σk(L),
we first note that σk(L)(x, v) needs to be a linear mapping from Ex to Fx, where
(x, v) ∈ T ′(X). Therefore let (x, v) ∈ T ′(X), and e ∈ Ex. Pick g ∈ C∞(X) and
f ∈ Γ(E) such that dg(x) = v, and f(x) = e. Then we define

σk(L)(x, v)e = L

(
ik

k!
(g − g(x))kf

)
(x) ∈ Fx.

49



This defines a linear mapping

σk(L)(x, v) : Ex → Fx,

which then defines an element of Smblk(E,F ), as is easily checked. Also, it is easy
to see that σk(L)(x, v)e doesn’t depend on the choices we made.

Proposition 1.117. The symbol map σk induces an exact sequence

0 Diffk−1(E,F ) Diffk(E,F ) Smblk(E,F )
j σk ,

where j is the natural inclusion.

Proof. Locally L has the following form

L =
∑
|α|≤k

AαD
α,

where {Aα} are q×p matrices of C∞ functions on U , with U ⊂ X open. With these
notations one has

σk(L) =
∑
|α|=k

Aαξ
α,

with v = ξ1dx1 + · · ·+ ξndxn. For each fixed (x, v), σk(L)(x, v) is a linear map from
x×Cp → x×Cq, given by the usual multiplication of a vector in Cp by the matrix∑

|α|=k

Aαξ
α.

We now see, that σk(L) is a smooth section of Hom(π∗E, π∗F ), and that σk(L) = 0

iff L has no non-zero kth order term, i.e. L ∈ Diffk−1(E,F ). To see that the symbol
σk(L) is really of the form above, choose g ∈ C∞(U) and f ∈ Γ(E) such that
dgx =

∑n
i=1 ∂xig(x)dxi = v and f(x) = e, then one has the following:

σk(L)(x, v)e =
∑
|α|≤k

AαD
α

(
ik

k!
(g − g(x))kf

)
(x)

=
∑
|α|≤k

Aα(−i)k∂α1
x1
. . . ∂αnxn

(
ik

k!
(g − g(x))kf

)
(x)

Clearly, the evaluation at x of derivatives of order ≤ k − 1 will give zero, since
there will be a [g− g(x)]|x = 0 term left remaining. This means that the only terms
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remaining will be the following∑
|α|=k

Aα∂x1g(x)α1 . . . ∂xng(x)αnf(x) =
∑
|α|=k

Aαξ
αe.

The most important properties of the symbol map σk are collected in the follow-
ing proposition.

Proposition 1.118. Let E,F,G be Hermitian vector bundles over X. Then we have
the following

a) Let L1 ∈ Diffk(E,F ) and L2 ∈ Diffl(F,G), then L2 ◦ L1 ∈ Diffk+l(E,G) and
σk+l(L2 ◦ L1) = σl(L2)σk(L1).

b) Let L ∈ Diffk(E,F ), then σk(L∗) = σk(L)∗.

Example 1.119. Let’s see some example.
1) Consider the de Rham complex of a compact manifold X

A0
X(X) A1

X(X) A2
X(X) . . . AnX(X)d d d d ,

We want to compute the associated 1-symbol mappings

∧0 T ∗C,xX
∧1 T ∗C,xX

∧2 T ∗C,x(X) . . .
σ1(d)(x,v) σ1(d)(x,v) σ1(d)(x,v)

We claim that for e ∈
∧k T ∗C,xX, and (x, v) ∈ T ′(X) one has

σ1(d)(x, v)e = iv ∧ e.

To see that, choose g ∈ C∞(X) such that dg(x) = v, and f ∈ Γ(X,
∧k T ∗CX) such

that f(x) = e, then one has

σ1(d)(x, v)e = d

(
i

1!
(g − g(x))f

)
(x) = i · dg(x) ∧ f(x) = iv ∧ e.

2) The Dolbeault complex of a compact complex manifold X

Ap,0X (X) Ap,1X (X) Ap,2X (X) . . . Ap,nX (X)∂ ∂ ∂ ∂ .

This has an associated symbol sequence

∧p,0 T ∗xX ∧p,1 T ∗xX ∧p,2 T ∗xX . . .
σ1(∂)(x,v) σ1(∂)(x,v) σ1(∂)(x,v)
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Let v ∈ T ∗xX ⊂ T ∗C,xX be a nonzero covector, and e ∈
∧p,q T ∗xX, then one has

σ1(∂)(x, v)e = iv0,1 ∧ e,

with v = v1,0 + v0,1. Indeed, let g be a smooth function on X, such that dg(x) = v,
and f ∈ Ap,q(X) = Γ(X,

∧p,q T ∗X) with f(x) = e. Since d = ∂ + ∂ we see that
v1,0 = ∂g(x) and v0,1 = ∂g(x), hence we have that

σ1(∂)(x, v)e = i∂
(
(g − g(x))f

)
(x) = i

(
∂(g − g(x)) ∧ f

)
(x) +

(
(g − g(x))∂f

)
(x)

= i∂g(x) ∧ f(x) = iv0,1 ∧ e

3) For the last example, let E be a holomorphic vector bundle over X, then we
have the following complex

Ap,0E (X) Ap,1E (X) Ap,2E (X) . . . Ap,nE (X)
∂E ∂E ∂E ∂E .

This has the following associated symbol sequence

∧p,0 T ∗xX ⊗ Ex ∧p,1 T ∗xX ⊗ Ex ∧p,2 T ∗xX ⊗ Ex . . .
σ1(∂E)(x,v) σ1(∂E)(x,v) σ1(∂E)(x,v)

We let v = v1,0+v0,1 as before, and f⊗e ∈
∧p,q T ∗xX⊗Ex, then a similar computation

as above shows that

σ1(∂E)(x, v)f ⊗ e = (iv0,1 ∧ f)⊗ e.

Notice that every symbol sequence from above was an exact sequence. This can be
seen easily by choosing a proper basis.

Definition 1.120. Let σ ∈ Smblk(E,F ). We call σ elliptic if and only if for any
(x, v) ∈ T ′(X) the linear map

σ(x, v) : Ex → Fx

is an isomorphism.

Note that in this case E and F must have the same dimension.

Definition 1.121. Let L ∈ Diffk(E,F ), then L is said to be elliptic of order k if
and only if σk(L) ∈ Smblk(E,F ) is elliptic.

Notice that being elliptic depends only on the highest term of L. Also note that
if L is an elliptic operator of order k, then it is an operator order k + 1, but not an
elliptic operator of order k + 1, since σk+1(L) = 0.
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Proposition 1.122. Let L ∈ Diffk(E,F ), then L is elliptic if and only if its formal
adjoint L∗ ∈ Diffk(F,E) is elliptic.

Proof. We have to show that σk(L)(x, v) is invertible if and only if σk(L∗)(x, v)

is invertible, but by Proposition 1.118 we know that σk(L∗)(x, v) = σk(L)(x, v)∗,
and we know from classic linear algebra that a linear map A is invertible iff A∗ is
invertible.

Theorem 1.123. Let L ∈ Diffk(E,F ) elliptic, then there exists an L̃ ∈ OP−k(E,F ),
such that

L ◦ L̃− idF ∈ OP−1(F )

L̃ ◦ L− idE ∈ OP−1(E)

Definition 1.124. Let L ∈ OPk(E,F ). We say that L is compact operator, if for
all s the extension Ls : W s(E)→ W s−k(F ) is a compact operator.

Proposition 1.125. Let S ∈ OP−1(E,E), then S is a compact operator of order 0.

Proof. We have for any s the following commutative diagram,

W s(E) W s(E)

W s+1(E)

Ss

Ss j

where j is natural inclusion, and by Theorem 1.111 a) this is a compact operator.

Definition 1.126. Let L ∈ Diffk(E,F ), then we set

KL = {ξ ∈ Γ(E) | L(ξ) = 0},

and we let
K⊥L = {η ∈ W 0(E) | (ξ, η) = 0 for all ξ ∈ KL}

denote the orthogonal complement of KL in W 0(E). It follows immediately that K⊥L
is a closed subspace of the Hilbert space W 0(E).

In the following, we want to prove that if L is elliptic, then KL is finite dimen-
sional. To do that, we need a little bit of functional analysis.

Definition 1.127. Let A,B be Banach spaces, a linear operator T : A → B is
compact, if it sends bounded sets to precompact sets, i.e. if {xn} is a bounded
sequence of elements in A, then there exists a subsequence xnk such that Txnk
converges to some y ∈ B.
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Let’s denote the space of compact operators from A to B by Com(A,B). It is
easy to see, that compact operators are automatically bounded. Indeed, suppose
that T is not bounded. Then there exists a sequence of unit vectors {xn} such that
‖Txn‖ > n. Now {xn} is a bounded sequence and T is compact, hence we have a
subsequence xnk such that Txnk converges, which is absurd.

Lemma 1.128. Let H and K be Hilbert spaces. Then 1) Com(H,K) is a closed
linear subspace of B(H,K) which is closed under composing with elements of B(H)

or B(K), and 2) C ∈ Com(H,K) if and only if C∗ ∈ Com(K,H).

Proof. 1) It is trivial that Com(H,K) is a linear subspace. Suppose that C ∈
Com(H,K) and L ∈ B(K). Let {xn} be a bounded sequence in H, then there
exists a subsequence {xnk} such that Cxnk → y, then since L is continuous, we see
that LCxnk → Ly, i.e. LC is a compact operator. Now let T ∈ End(H), then {Txn}
is a bounded sequence in H so it has a subsequence Txnk such that CTxnk → y, so
CT is compact.

To prove that Com(H,K) is closed, choose a sequence {Cn} in Com(H,K), such
that Cn → C in the operator norm. Let {xn,0} be a bounded sequence in H. Since C1

is compact we have a subsequence of {xn,0} denoted by {xn,1} such that {C1xn,1}
converges. Now {xn,1} is a bounded sequence and C2 is compact, so we have a
subsequence {xn,2} such that {C2xn,2} converges. Since {xn,2} is a subsequence of
{xn,1} we see that {C1xn,2} still converges. Repeating this procces inductively, we see
that for each j ∈ N the sequence {Ckxn,j} converges for all k ≤ j. Let x̃r = xr,r, we
see that for this sequence {Ckx̃r} converges for all k. We show that C is compact, by
showing that {Cx̃j} is Cauchy. Note that x̃n is a bounded sequence, so there exists
a M > 0, such that ‖x̃n‖ ≤M for all n, and by that we get the following

‖Cx̃n − Ckx̃n‖ ≤ ‖C − Ck‖ ‖x̃n‖ ≤ ‖C − Ck‖M.

Let ε be arbitrary, and choose k > 0 such that ‖C − Ck‖ ≤ ε. Choose n0 > 0 such
that ‖Ckx̃n − Ckx̃m‖ ≤ ε for all m,n > n0. Now we compute as follows

‖Cx̃n − Cx̃m‖ ≤‖Cx̃n − Ckx̃n‖ + ‖Ckx̃n − Ckx̃m‖ + ‖Ckx̃m − Cx̃m‖

≤εM + ε+ εM = ε(2M + 1)

This proves that Com(H,K) is closed.

2) Pick C ∈ Com(H,K) and suppose that C∗ /∈ Com(K,H). Therefore, we can
choose a sequence of unit vectors {xn} in K, such that

‖C∗xj − C∗xi‖ ≥ δ > 0,
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if i 6= j. Since C∗ is continuous, we see that yn = C∗xn is a bounded sequence, and
we also see that

2‖Cyn − Cym‖ ≥|(Cyn − Cym, xn − xm)|

=|(yn − ym, yn − ym)| = ‖C∗xn − C∗xm‖ 2 ≥ δ2 > 0,

if m 6= n. Thus, there is no convergent subsequence of {Cym} which is a contradic-
tion.

Definition 1.129. Let H,K be Hilbert spaces. We say that the T : H → K

continuous operator is Fredholm, if it is invertible modulo compact operators, i.e. if
there exists S1, S2 ∈ Hom(K,H) such that

S1T − idH ∈ Com(H) and TS2 − idK ∈ Com(K).

We denote the Fredholm operators from H to K by Fred(H,K).

Remark 1.130. If such S1 and S2 exists, then S1 − S2 ∈ Com(K,H), thus we can
assume, that S1 = S2. Also it is easy to see that T is Fredholm if and only if T ∗ is
Fredholm.

Lemma 1.131. Let H,K be Hilbert spaces, and T ∈ Hom(H,K), then the following
are equivalent

a) T is Fredholm.

b) dim(Ker(T )) <∞, dim(Ker(T ∗)) <∞, Im(T ) is closed, and Im(T ∗) is closed.

c) dim(Ker(T )) <∞, dim(Ker(T ∗)) <∞ and Im(T ) is closed.

Proof. We only prove that a) implies c). Let T ∈ Fred(H,K), and {xn} ∈ Ker(T ),
‖xn‖ = 1. Then one has

xn = (id− S1T )xn = Cxn,

with C ∈ Com(H). Thus {xn} has a convergent subsequence. We just showed that
the unit sphere in Ker(T ) is compact thus Ker(T ) is finite dimensional. Since T ∗ ∈
Fred(K,H) we also have that Ker(T ∗) is finite dimensional.

To prove that Im(T ) is closed pick a sequence {yn} in Im(T ), such that yn → y.
We want to prove that y ∈ Im(T ). Since yn ∈ Im(T ) we can choose a sequence
{xn} ⊂ H, such that Txn = yn for all n. We can assume that {xn} ⊂ Ker(T )⊥ and
first we assume that there exists some M > 0 such that ‖xn‖ ≤ M for all n i.e.
{xn} is bounded. Then one has that

xn = S1yn + (id− S1T )xn.
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Now id − S1T is compact so we have a convergent subsequence of {(id − S1T )xn},
moreover {S1yn} is Cauchy. This means that we have a subsequence {xnk} such that
xnk → x, and we have that Tx = y.

Now assume that {xn} is not bounded, i.e. |xn| → ∞. Then let x̃n = xn
|xn| ,

and with this we get that T (xn) = yn
|xn| → 0. By the previous argument we get a

subsequence {x̃nk} with x̃nk → x̃ and T (x̃) = 0. This means that x̃ ∈ Ker(T ), but
x̃n ⊂ Ker(T )⊥ which is closed, so we get that x̃ = 0, but we also have that ‖x̃‖ = 1,
which is clearly a contradiction.

Remark 1.132. Since H,K are Hilbert spaces, for any T ∈ Hom(H,K) one has

Im(T )⊥ = Ker(T ∗).

If we also know that Im(T ) is a closed, then

Im(T ) = Ker(T ∗)⊥.

Thus if Im(T ) is closed one hasK = Im(T )⊕Im(T )⊥, andK/ Im(T ) ' Im(T )⊥. This
means that T is Fredholm if and only if dim(Ker(T )) <∞ and dim(coker(T )) ≤ ∞.

Now we can go back to differential operators.

Corollary 1.133. If L ∈ Diffk(E,F ) is an elliptic operator of order k, then

Ls : W s(E)→ W s−k(F )

is Fredholm for all s.

Proof. By Theorem 1.123 there exists L̃ ∈ OP−k(F,E) such that

L̃ ◦ L− idE ∈ OP−1(E)

L ◦ L̃− idF ∈ OP−1(F ).

By Proposition 1.125 we know that L̃◦L− idE and L◦L̃− idF are compact operators
of order 0, i.e. they are in Com(W s(E)) and Com(W s(F )) respectively for all s.

Now we can prove the elliptic regularity theorem which is the key step towards
the Hodge decomposition.

Theorem 1.134 (Elliptic regularity). Let L ∈ Diffk(E,F ) be an elliptic operator
and ξ ∈ W s(E). Suppose that Lsξ = η ∈ Γ(F ), then ξ ∈ Γ(E), i.e. ξ is smooth if its
image is smooth.

56



Proof. Since L is elliptic we have L̃ such that L̃ ◦ L− id = S ∈ OP−1(E). We know
that Lsξ ∈ Γ(F ) thus L̃s−k ◦ Lsξ = (L̃ ◦ L)sξ ∈ Γ(E). Now one has

ξ = (L̃ ◦ L− S)sξ

with (L̃ ◦ L)sξ ∈ Γ(E) and Ssξ ∈ W s+1. Thus ξ ∈ W s+1(E), and by induction we
see that ξ ∈ W s+n(E) for all n. By Theorem 1.111. b) we see that ξ ∈ Γ(E).

Theorem 1.135. Let L ∈ Diffk(E,F ) be an elliptic operator, and denote by KLs

the kernel of Ls : W s(E)→ W s−k(F ). Then we have the following

a) KLs ⊂ Γ(E) and hence KLs = KL for all s.

b) dim(KLs) = dim(KL) <∞.

Proof. First we show that dim(KLs) <∞, which is trivial since we know, that Ls is
Fredholm, thus dim(KLs) = dim(Ker(Ls)) <∞. Note that by the elliptic regularity
theorem if ξ ∈ Ker(Ls) then ξ is smooth thus Ker(Ls) = Ker(L).

Theorem 1.136. Let L ∈ Diffk(E,F ) be an elliptic operator. and suppose that
τ ∈ K⊥L∗ ∩ Γ(F ). Then there exists a unique η ∈ Γ(E) such that Lη = τ and such
that η is orthogonal to KL in W 0(E).

Proof. First we show that Lη = τ can be solved in W k(E), then it will follow by the
elliptic regularity theorem that η is smooth and we will have our desired solution.
To prove that we can solve Lkη = τ in W k(E) consider the following diagram

W k(E) W 0(F )

W−k(E) W 0(F )

Lk

(Lk)∗

The vertical arrows indicate the duality between the Banach spaces, and by 1.114
we know that (Lk)

∗ = (L∗)0. We know from functional analysis that the closure of
the image is the orthogonal complement of the kernel of the transpose, i.e. Im(Lk) =

Ker((Lk)∗). In our case since Lk is Fredholm we know that Im(Lk) is closed thus
Im(Lk) = Im(Lk). It follows that there exists η ∈ W k(E) such that Lkη = τ . Since
τ is smooth we know that by the elliptic regularity theorem that η is smooth. To get
the unique solution we just have to project orthogonally η onto the closed subspace
K⊥L .

1.5.3 Elliptic complexes

Definition 1.137. Let E0, . . . , EN be complex vector bundles over the compact
manifold X. Let’s fix k ∈ Z>0, and let Li ∈ Diffk(Li, Li+1) for i = 0, 1, . . . , N − 1.
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We say that (E,L) = ({Ei}, {Li}) is a complex if the following sequence is half
exact

Γ(E0) Γ(E1) Γ(E2) . . . Γ(EN)
L1 L2 LN−1L0 ,

i.e. Li+1Li = 0 for i = 0, 1, . . . , N − 1.

If we have a complex (E,L), then we can define it’s cohomology groups as follows,
let E−1 = EN+1 = 0, and let L−1 = LN = 0, then the qth cohomology group of the
complex is

Hq(E) =
Ker(Lq : Γ(Eq)→ Γ(Eq+1))

Im(Lq−1 : Γ(Eq−1)→ Γ(Eq))
,

with q = 0, 1, . . . , N .

Definition 1.138. Let (E,L) be a complex as above, then we say that (E,L) is
elliptic if the following sequence of symbols is exact

0 π∗(E0) π∗(E1) . . . π∗(EN) 0
σ(L0) σ(L1) σ(LN−1)

,

i.e. for all (x, v) ∈ T ′(X) we have Im(σ(Li)(x, v)) = Ker(σ(Li+1)(x, v)), where
σ(L−1) = σ(LN) = 0.

Let (E,L) be an elliptic complex. Then we can equip each Ej with a Hermitian
metric and thus we can define the formal adjoints L∗j ∈ Diffk(Ej+1, Ej). With respect
to these Hermitian metric the Laplace of operators of (E,L) are

∆j = L∗jLj + Lj−1L
∗
j−1 ∈ Diff2k(Ej, Ej).

with symbols

σ2k(∆j) =σk(L
∗
j)σk(Lj) + σk(Lj−1)σk(L

∗
j−1)

=σk(Lj)
∗σk(Lj) + σk(Lj−1)σk(Lj−1)∗.

Proposition 1.139. Let (E,L) be a complex, then the following are equivalent

a) (E,L) is an elliptic complex.

b) The Laplace operator ∆j is an elliptic operator for j = 0, 1, . . . , N .

Proof. We have to prove the following linear algebraic fact. Let V ′, V, V ′′ be finite
dimensional complex vector spaces equipped with Hermitian metric, and consider
the following commutative diagram

V ′ V V ′′

V ′ V V ′′

A B

B∗A∗
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Suppose that B ◦ A = 0, then we have to prove that Im(A) = Ker(B) if and only
if C = B∗B + AA∗ is invertible. It is clear that Ker(C) ⊇ Ker(B) ∩ Ker(A∗). Now
suppose that C(x) = 0, then

0 = 〈Cx, x〉 = 〈Bx,Bx〉+ 〈A∗x,A∗x〉,

so we also see that Ker(C) ⊆ Ker(B)∩Ker(A∗). Now suppose that Im(A) = Ker(B)

and suppose that Cv = 0, we want to show that in this case v = 0. By the argument
above we have that A∗v = 0 and Bv = 0. Since Bv = 0 and we assumed that
Ker(B) = Im(A) we have w ∈ V ′ with Aw = v, and we have the following

0 = 〈A∗v, w〉 = 〈A∗Aw,w〉 = 〈Aw,Aw〉,

thus 0 = Aw = v.
Now suppose that C is invertible and let v ∈ V with Bv = 0. We want to show,

that v = Aw′ for some w′ ∈ V ′. Since C is invertible we have w ∈ V with Cw = v,
thus

0 =〈Bv,Bw〉 = 〈BCw,Bw〉

=〈BB∗Bw +BAA∗w,Bw〉 = 〈B∗Bw,B∗Bw〉,

where we used that BA = 0. The computation above shows that B∗Bw = 0, thus
v = Cw = B∗Bw + AA∗w = AA∗w.

We now have the following fundamental theorem concerning elliptic complexes.

Theorem 1.140 (Hodge decomposition). Let (E,L) be an elliptic complex. Then
we have that

a) dim(Ker(∆j)) <∞, for j = 0, 1, . . . , N .

b) The following direct sum decompositions are orthogonal in the L2 inner prod-
uct:

Γ(Ej) = Ker(∆j)⊕ Lj−1Γ(Ej−1)⊕ L∗jΓ(Ej+1)

W 0(Ej) = Ker(∆j)⊕ Lj−1W
k(Ej−1)⊕ L∗jW k(Ej+1)

c) Ker(∆j) = Ker(Lj) ∩Ker(L∗j−1), and the natural map

Ker(∆j)→ Hj(E)

α 7→ [α]
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is an isomorphism.

Proof. In this proof the extensions of ∆j, Lj, L
∗
j to W s(E) will be denoted by

∆j, Lj, L
∗
j , since (∆j)s, (Lj)s and (L∗j)s are just way too wonky.

Part a) immediately follows from Proposition 1.139 and Theorem 1.135. We know
from the proof of Theorem 1.136, that we have the following orthogonal decompo-
sition:

W 0(Ej) = Im(∆j)⊕Ker(∆∗j) = Im(∆j)⊕Ker(∆j),

where we used the fact that the Laplace operator is (formally) self-adjoint, i.e.
∆∗j = ∆j.Thus if ξ ∈ W 0(E), then

ξ = ξ0 + (L∗jLj + Lj−1L
∗
j−1)η,

with ξ0 ∈ Ker(∆j) and η ∈ W 2k(Ej). Let’s denote L∗j−1η ∈ W k(Ej−1) and Ljη ∈
W k(Ej+1) by η1 and η2 respectively. We get that:

ξ = ξ0 + Lj−1η1 + L∗jη2.

Since LjLj−1 = 0 we get that

(L∗jη2, Lj−1η1) = (η2, LjLj−1η1) = 0,

thus L∗jη2⊥Lj−1η1. To show, that ξ0 is orthogonal to L∗jη2 and Lj−1η1 we show that
Ker(∆j) = Ker(Lj) ∩Ker(L∗j−1). Let α ∈ Ker(∆j), then we have the following:

0 = (∆jα, α) = ((L∗jLj + Lj−1L
∗
j−1)α, α) = (Ljα,Ljα) + (L∗j−1α,L

∗
j−1α),

thus ∆jα = 0 if and only if α ∈ Ker(Lj)∩Ker(L∗j−1). This shows, that ξ0 is orthogonal
to L∗jη2 and Lj−1η1, and with that we proved the first half of b). For the second part
assume that ξ ∈ Γ(Ej), i.e. ξ is smooth. Then ξ − ξ0 = ∆j(η) is smooth and by
elliptic regularity theorem we get that η is smooth thus η1 and η2 are smooth.

Lastly, from Ker(∆j)⊥ Im(Lj−1) it follows that α 7→ [α] is injective. Let α ∈
Ker(Lj). To prove that the map above is surjective we have to show [α] can be
represented by an element β ∈ Ker(∆j). We know that α = α0 + Lj−1α1 + L∗jα2.
If L∗jα2 = 0, then we are done, since [α0] = [α], with α0 ∈ Ker(∆j). To see that
L∗jα2 = 0 we compute as follows:

0 = (Ljα, α2) = (LjL
∗
jα2, α2) = (L∗jα2, L

∗
jα2),

thus L∗jα2 = 0 and we proved the Hodge decomposition theorem.
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Example 1.141. 1) Let X be a compact oriented m-dimensional manifold with vol-
ume element dV ol. We have seen that the complex (A∗X(X), d) have exact symbol
sequence, hence it is an elliptic complex. If we introduce Hermitian metrics on the
bundles

∧∗ T ∗CX, then we can define the Laplace operators ∆j = dd∗ + d∗d, where
j = 0, . . . ,m. Let Kj = ker(∆j), then by the Hodge decomposition theorem we get
that

Kj ' Hj(A∗X(X)).

If we denote by AC the sheaf of locally constant functions on X, then the complex
(A∗X , d) is clearly a soft resolution of AX . Let H∗(X,C) denote the cohomology
groups of AC, then by lemma 1.78 we get that

Hj(X,C) ' Hj(A∗X(X)).

Let bi(X) = dim(H i(X,C)), then as a corollary of the Hodge decomposition theo-
rem, we get thet bi(X) <∞ for all i, and bi(X) = 0 for i > m. The numbers bi(X)

are called the Betti numbers of X.

2) If we also assume that X is a compact complex manifold, then we have the
Dolbeault complex (Ap,∗X (X), ∂). We have seen that this complex also has exact sym-
bol sequence, hence it is elliptic. If we introduce Hermitian metrics on the bundles∧p,q T ∗X, then we can define the Laplace operators �q = ∂∂

∗
+ ∂

∗
∂. If Kp,q denotes

ker(�q), then we get that

Kp,q ' Hq(Ap,∗X (X)) = Hp,q(X) ' Hq(X,Ωp
X).

The latter isomorphism is the Dolbeault isomorphism from Theorem 1.106. Let’s
denote dim(Hq(X,Ωp)) by hp,q(X), then hp,q(X) < ∞ for all (p, q). The numbers
hp,q(X) are called the Hodge numbers of X.

3) Let E be a holomorphic vector bundle over X (compact, complex). We have
the complex (Ap,∗E (X), ∂E), which is elliptic since it has exact symbol sequence. If we
equip E with a Hermitian metric, then the tensor product of metrics clearly give a
Hermitian metric on

∧p,q T ∗X⊗E for all q, and we can define the Laplace operators
�E,q = ∂E∂

∗
E + ∂

∗
E∂E. If we denote the kernel of �E,q by K

p,q
E , then we have the

following
Kp,q ' Hq(Ap,∗E (X)) = Hp,q(X,E) ' Hq(X,Ωp

E)

The latter isomorphism is from Theorem 1.109. Since OE(X) ' H0,0(X,E), we
get as a corollary, that the global holomorphic sections of a holomorphic vector
bundle E over a compact complex manifold is always finite dimensional. If we pick
E = T 1,0X, then we see that the vector space of holomorphic vector fields are finite
dimensional, which implies that the biholomorphism group of a compact complex
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manifold X is a finite dimensional Lie group. For more details we recommend the
book [4] Kobayashi, S. - Transformation Groups in Differential Geometry.
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2 Harmonic theory on compact complex manifolds

In the section Pincaré duality we follow the books of [3] Huybrechts, D. - Complex
Geometry: An Introduction. and [7] Wells, R. O. - Differential Analysis on Complex
Manifolds. The section Comparison of the Laplace operators follows the lecture notes
of Róbert Szőke on Kähler manifolds.

2.1 Poincaré and Serre duality

For the beginning let’s just assume that X is a compact oriented Riemannian
manifold of dimensionm with Riemannian metric g. Let dV ol be the induced volume
form of the metric g. If v1, . . . , vm is a local frame of TX, and v1, . . . , vm is the dual
frame, then locally dV ol is of the following form:

dV ol =
√
|det(gij)| v1 ∧ · · · ∧ vm,

where gij = g(vi, vj).
The orientation and the Riemannian metric induces a ∗p :

∧∗ T ∗pX → ∧∗ T ∗pX
operator for all p ∈ X. This defines a ∗ :

∧∗ T ∗X → ∧∗ T ∗X vector bundles ho-
momorphism. It is smooth, since if we fix an positively oriented local orthonormal
frame e1, . . . , em, then

∗(ei1 ∧ ei2 ∧ · · · ∧ eik) = sgn(I, J)ej1 ∧ ej2 ∧ . . . ejm−k ,

with I∪J = {1, . . . ,m}. We know by Proposition 1.21 that ∗ :
∧k T ∗X → ∧m−k T ∗X

is a bundle isomorphism. Notice that if we denote by 1 the constant 1 function,
then ∗(1) = dV ol. We can extend ∗ complex linearly to a

∧∗ T ∗CM →
∧∗ T ∗CM

homomorphism, we also denote this map by ∗. Since ∗ restricted to
∧k T ∗X is an

isomorphism it induces a ∗ : Ak(X)→ Am−k(X) isomorphism. Now we can define a
Hermitian metric on A∗(X) the following way, let ϕ, ψ ∈ Ak(X), then

(ϕ, ψ) =

∫
X

ϕ ∧ ∗ψ,

if ϕ ∈
∧p T ∗X and ψ ∈

∧q T ∗X with p 6= q, then (ϕ, ψ) = 0.

Proposition 2.1. The form defined above is a positive definite Hermitian form on
A∗(X).

Proof. The Riemannian metric g also induces a Hermitian metric on
∧∗ T ∗CX, lets

denote it by 〈 , 〉C. By the definition of the Hodge ∗-operator we know that if
ϕ, ψ ∈ Ak(X), then

ϕ ∧ ∗ψ = 〈ϕ, ψ〉CdV ol,
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thus ( , ) is Hermitian and positive semidefinite. To prove that it is definite let
ϕ ∈ Ak(X) be nonzero, i.e. there exists a z0 ∈ X such that ϕ(z0) 6= 0. This means
that 〈ϕ, ϕ〉C is a non-negative function on X and it is positive in z0, thus

(ϕ, ϕ) =

∫
X

〈ϕ, ϕ〉CdV ol > 0.

This means that on the elliptic complex (A∗(X), d) we have a Hermitian product
depending only on the orientation of X and the Riemannian metric g.

Suppose now also that X is also a complex manifold, with almost complex struc-
ture I : TX → TX.

Definition 2.2. We say that a Riemannian metric g on a complex manifolds X
with almost complex structure I is compatible with the complex structure, if

g(Iu, Iv) = g(u, v),

for all u, v ∈ Γ(TX). We call g a compatible Riemannian metric if it is compatible
with the complex structure.

Proposition 2.3. If X is a complex manifold, then there exists at least one com-
patible Riemannian metric on X.

Remark 2.4. The proof depends on the following, let V be a finite dimensional
vector space with almost complex structure I. Suppose that we have a finite num-
ber compatible scalar product 〈 , 〉i, where i = 1, . . . , N . Suppose that we have
α1, . . . , αN ∈ R>0 such that

∑N
j αj = 1, then

N∑
j

αj〈 , 〉j = 〈 , 〉

is a compatible scalar product on V , i.e. the compatible scalar products over (V, I)

forms a convex set.

Proof. Let {(Ui, ϕi)}i a holomorphic atlas, with {Ui}i being a locally finite cover, and
{ψi}i is a partition of unity subordonite to the cover. Over an open set Uj ∈ {Ui}i we
have holomorphic coordinates zi, where zi = xi + iyj. With these notations we have,
that I∂xi = ∂yi and I∂yi = −∂xi . Define a Riemannian metric over Uj as follows:

gj(∂xi , ∂xj) =δij

gj(∂yi , ∂yj) =δij

gj(∂xi , ∂yj) =0
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It is easy to see that gj over Uj is a compatible Riemannian metric. Thus, we have
a compatible Riemannian metric gj over each open set Uj ∈ {Ui}i. Now define a
compatible Riemannian metric on X as follows:

g =
∑
j

ψjgj.

It is clear that g is a Riemannian metric on X, so we only have to show that g is
compatible with the complex structure. Let u, v ∈ Γ(TX), clearly it is enough to
chech the compatibility over each point of X, hence we just need to prove the that
gp(Iup, Ivp) = gp(up, vp) for all p ∈ X. Since {ψi} is a partition of unity, we have a
finite number ψi such that ψi(p) 6= 0, denote them by ψi1 . . . , ψiN , and compute as
follows:

gp(Iup, Ivp) =
∑
j

ψj(p)gj,p(Iup, Ivp) =
∑
j

ψij(p)gij ,p(Iup, Ivp)

=
∑
j

ψij(p)gij ,p(up, vp) =
∑
j

ψj(p)gj,p(up, vp) = gp(up, vp).

Since a complex manifold has a natural orientation induced by the almost com-
plex structure I, to define a Hodge ∗-operator on

∧∗ T ∗CX we only need a Riemannian
metric on X.

Proposition 2.5. Let X compact complex manifold with a compatible Riemannian
metric g, then Ak(X) = ⊕p+q=kAp,q(X) is an orthogonal decomposition with respect
to the Hodge inner product.

Proof. We have to show that if ϕ ∈ Ap,q(X) and ψ ∈ Ap′,q′(X) with p+q = p′+q′ = k,
but (p, q) 6= (p′, q′), then ∫

X

ϕ ∧ ∗ψ =

∫
X

〈ϕ, ψ〉CdV ol = 0,

and this follows from lemma 1.22. a).

From now on if X is a complex manifold, and g is a Riemannian metric on X,
then we will always assume that g is compatible with the complex structure.

By 1.22. b) we know that ∗ :
∧p,q T ∗X → ∧n−q,n−p T ∗X is an isomorphism,

but we want to modify ∗ a little bit, because we do not want this (p, q) swap. Let
∗̃ :
∧p,q T ∗X → ∧n−q,n−p T ∗X be defined as follows:

∗̃(ϕ) = ∗ϕ,
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where ϕ ∈
∧p,q T ∗X. It follows that ∗̃ is an antilinear isomorphism of vector bundles,

since it is a composition of two isomorphism.
Suppose now that E is an Hermitian vector bundle over X. The Hermitian

product on E defines an antilinear isomorphism

τ : E → E∗

x 7→ 〈−, x〉.

Define the E valued Hodge ∗-operator as follows:

∗̃E :
∧k

T ∗CX ⊗ E →
∧2n−k

T ∗CX ⊗ E∗

∗̃E(ϕ⊗ e) 7→∗̃ϕ⊗ τ(e).

It is easy to see that the E valued Hodge ∗-operator ∗̃E is a conjugate linear iso-
morphism of vector bundles.

We want to define a non-degenerate pairing like the Hodge inner product, but to
do this, we will need a wedge product between A∗E(X) and A∗E∗(X). Let α ∈

∧r T ∗xX,
γ ∈

∧s T ∗xX, e ∈ Ex and f ∈ E∗x, then we define the wedge product as follows:

(α⊗ e) ∧ (γ ⊗ f) = α ∧ γ · f(e).

One can prove that this gives a well defined smooth bundle morphism, :

∧ :
∧r

T ∗X ⊗ E ×
∧s

T ∗X ⊗ E∗ →
∧r+s

T ∗X,

and this induces a wedge product on the sections:

∧ : ArE(X)× AsE(X)→ Ar+s(X).

Now we have a Hodge inner product on the E-valued forms defined as follows, let
ϕ, ψ ∈ AkE(X), then

(ϕ, ψ) =

∫
X

ϕ ∧ ∗̃E(ψ).

Proposition 2.6. The Hodge inner product on AkE(X) is positive definite, and
AkE(X) =

∑
p+q=k A

p,q
E (X) is an orthogonal decomposition with respect to this in-

ner product.

Proof. Every section of AkE(X) can be written as ϕ ⊗ e, where ϕ ∈ Ak(X) and
e ∈ Γ(E), and for sections ϕ ⊗ e, α ⊗ f ∈ AkE(X), the Hodge inner product is the
following

(ϕ⊗ e, α⊗ f) = ϕ⊗ e ∧ ∗̃Eα⊗ f = ϕ ∧ ∗̃Eα · 〈e, f〉.
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By that everything follows.

Proposition 2.7. Let X be a compact m-dimensional oriented Riemannian mani-
fold. Let d∗ be the formal adjoint of d with respect to the Hodge inner product, and
let ∆ = d∗d + dd∗ be the Laplace operators of the elliptic complex (A∗(X), d). With
these notations we have the following:

a) d∗ = (−1)m+mp+1∗̃d∗̃ = (−1)m+mp+1 ∗ d∗.

b) ∗∆ = ∆∗, ∗̃∆ = ∆∗̃.

Remark 2.8. Notice, that unlike in Example 1.141 the metrics on
∧∗ T ∗CX are related

to each other. We will see later, that the better we choose metric on a manifold, the
more informiation we get out of the harmonic forms.

Proof. Let W =
∑

(−1)mp+pπp, by Proposition 1.21 c) we know that, W = ∗∗, also
notice, that

∗̃∗̃(ϕ) = ∗∗(ϕ) = ∗∗(ϕ) = ∗ ∗ ϕ = Wϕ,

where ϕ ∈ A∗(X), and ∗ = ∗ since ∗ is the complexification of a real operator. Now
let ϕ ∈ Ak−1 and ψ ∈ Ak, and compute as follows:

(dϕ, ψ) =

∫
X

dϕ ∧ ∗̃ψ =

∫
X

d(ϕ ∧ ∗̃ψ)− (−1)k−1

∫
X

ϕ ∧ d∗̃ψ.

On the second equality we used the Leibniz rule for d. Notice, that by Stokes theorem∫
X
d(ϕ ∧ ψ̃ = 0, and we have (−1)k

∫
X
ϕ ∧ d∗̃ψ left only, which is almost what we

want, we just have to put in the conjugate Hodge *-operator,

(−1)k
∫
X

ϕ ∧ d∗̃ψ =(−1)k
∫
X

ϕ ∧ ∗̃∗̃−1d∗̃ψ = (−1)k
∫
X

ϕ ∧ ∗̃(∗̃Wd∗̃ψ)

=(−1)k(−1)m(m−k+1)+m−k+1

∫
X

ϕ ∧ ∗̃(∗̃d∗̃ψ)

=(−1)mk+m+1(ϕ, ∗̃d∗̃ψ).

To finish a), we have to show that, ∗̃d∗̃ = ∗d∗. Let α ∈ A∗(X) arbitry, then:

∗̃d∗̃(α) = ∗d ∗ (α) = ∗d∗(α) = ∗d ∗ (α).

Here we used the fact that d = d, since d is the complexification of a real operator.
We now want to prove b). Let ϕ ∈ Ak(X), then

∗∆ϕ = (−1)m+mk+1(∗d ∗ d ∗+(−1)m ∗ ∗d ∗ d)ϕ

∆ ∗ ϕ = (−1)m+m(m−k)+1(d ∗ d ∗ ∗+ (−1)m ∗ d ∗ d∗)ϕ.
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The equations above shows, that we only have to check the coefficients of ∗d ∗ d ∗ ϕ
and d∗dϕ. The easiest is ∗d∗d∗ϕ, in the first equation its coefficient is (−1)m+mk+1,
in the second it is (−1)m+m(m−k)+1+m = (−1)m+mk+1. Now we go to d ∗ dϕ, since
ϕ ∈ Ak(X) we have that d ∗ dϕ ∈ Am−k(X), thus Wd ∗ dϕ = (−1)m(m−k)+m−kd ∗ dϕ,
also d ∗ dWϕ = (−1)mk+kd ∗ dϕ. The coefficient of d ∗ dϕ in the first equation is the
following:

(−1)m+mk+1(−1)m(−1)m(m−k)+m−k = (−1)k+1,

and in the second equation:

(−1)m+m(m−k)+1(−1)mk+k = (−1)k+1.

Thus ∗∆ = ∆∗.

We want to prove a similar statement for ∂E, but first note, that we have ∗̃E∗ on
A∗E∗(X), we just have to use τ−1.

Theorem 2.9. Let X be a compact complex manifold equipped with a compatible
Riemannian metric, and let E be a holomorphic vector bundle over X. Then, we
have the following:

a) The operator ∂E : Ap,qE (X) → Ap,q+1
E (X) has a formal adjoint with respect to

the Hodge inner product, and it is given by the following:

∂
∗
E = −∗̃E∗∂E∗ ∗̃E.

b) If �E = ∂E∂
∗
E + ∂

∗
E∂E, and �E∗ = ∂E∗∂

∗
E∗ + ∂

∗
E∗∂E∗ are the Laplace operators

on A∗,∗E (X) and A∗,∗E∗ respectively, then we have the following relation:

�E∗ ∗̃E = ∗̃E�E.

Remark 2.10. On E∗, we have a Hermitian metric induced by τ : E → E∗.

Proof. To prove part a), let ϕ ∈ Ap,q−1
E (X), and ψ ∈ Ap,qE (X), then ϕ ∧ ∗̃Eψ ∈

An,n−1(X), thus
∂(ϕ ∧ ∗̃Eψ) = d(ϕ ∧ ∗̃Eψ),

also note that we have a product rule for the ∂, i.e. we have

∂(ϕ ∧ ∗̃Eψ) = ∂Eϕ ∧ ∗̃Eψ + (−1)p+q−1ϕ ∧ ∂E∗ ∗̃Eψ.

68



With these in our hands we compute as follows:

(∂Eϕ, ψ) =

∫
X

d(ϕ ∧ ∗̃Eψ)− (−1)p+q−1

∫
X

ϕ ∧ ∂E∗ ∗̃Eψ

=(−1)p+q
∫
X

ϕ ∧ ∗̃E(W ∗̃E∗∂E∗ ∗̃Eψ)

=−
∫
X

ϕ ∧ ∗̃E(∗̃E∗∂E∗ ∗̃Eψ)

=(ϕ,−∗̃E∗∂E ∗̃Eψ).

Here we also used, that if α ∈ A∗(X), and f ∈ Γ(E), then

∗̃E∗ ∗̃E(α⊗ f) = ∗̃E∗(∗̃α⊗ τf) = ∗̃∗̃α⊗ f = W (α)⊗ f = W (α⊗ f).

The proof of part b) is exactly the same as the proof of part b) of proposition 2.7.

Theorem 2.11 (Poincaré duality). Let X be a compact oriented m-dimensional
manifold. Then there exists

σ : Hr(X;C)→ Hm−r(X;C)

conjugate linear isomorphism.

Proof. Let’s introduce a Riemannian metric on X, then we have have Harmonic
forms with respect to the induced Laplace operator, let’s denote them by K∗(X).
Then by proposition 2.7 and theorem 1.140 we have the following commutative
diagram:

Ar(X) Am−r(X)

Kr(X) Km−r(X)

Hr(X;C) Hm−r(X;C)

∗̃

H∆ H∆

∗̃

σ

Remark 2.12. We have a pairing between Hm(X;C) and Hm−r(X;C) given by the
following, let [α] ∈ Hr(X;C) and [β] ∈ Hm−r(X;C), then

([α], [β]) =

∫
X

α ∧ β

This is well defined by Stokes’ theorem and we claim that it is non-degenerate.
To show that this is non-degenerate pick 0 6= [α] ∈ Hr(X;C). We need to find
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[β] ∈ Hm−r(X;C) such that ([α], [β]) 6= 0. Represent [α] with a harmonic form α

and let [β] = [∗̃α], where ∗̃α is a harmonic m− r-form, then

([α], [∗̃α]) =

∫
X

α ∧ ∗̃α > 0.

Thus Hm−r(X;C) ' Hm(X;C)∗. This is also called Poincaré duality.

Corollary 2.13. If X is a compact oriented manifold, then

bi(X) = bm−i(X)

Where bi(X) are the Betti numbers of X defined in Example 1.141 1).

Theorem 2.14 (Serre duality). Let X be a compact complex manifold, with complex
dimension n, and let E be a holomorphic vector bundle over X. Then there exists a
conjugate linear isomorphism

σ : Hr(X; Ωp
E)→ Hn−r(X; Ωn−r

E∗ )

Proof. Let’s introduce a compatible Riemannian metric on X, and a Hermitian
metric on E, with these fixed we have E- and E∗-valued Harmonic (p, q)-forms, let’s
denote them by K

∗,∗
E (X) and K

∗,∗
E∗(X). By theorem 2.9 and theorem 1.140 and the

Dolbeault isomoprhism we have the following commutative diagram:

Ap,qE (X) An−p,n−qE∗ (X)

K
p,q
E (X) K

n−p,n−q
E∗ (X)

Hp,q(X;E) Hn−p,n−q(X;E∗)

Hq(X,Ωp
E) Hn−q(X; Ωn−q

E∗ )

∗̃

H∆ H∆

∗̃

σ̃

σ

Remark 2.15. Just like with Poincaré duality, we have a natural pairing between
Hp,q(X;E) and Hn−p,n−q(X;E∗), given by the following; let [α] ∈ Hp,q(X;E) and
[β] ∈ Hn−p,n−q(X;E∗), then

([α], [β]) =

∫
X

α ∧ β.
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To show that this is well defined we need the following: If α ∈ Ap,q−1
E (X) and β ∈

An−p,n−qE∗ (X), then d(α∧β) = ∂(α∧β)., and ∂(α∧β) = ∂Eα∧β+(−1)p+q−1α∧∂E∗β.
Now also suppose that β is ∂E∗-closed, then∫

X

∂Eα ∧ β =

∫
X

d(α ∧ β)− (−1)p+q−1

∫
X

α ∧ ∂E∗β = 0

The first integral is 0 because of Stokes’ theorem the second is zero, because we
assumed that β is ∂E∗-closed. It is also non-degenerate, since if 0 6= α ∈ K

p,q
E (X),

then ∗̃Eα ∈ K
n−p,n−q
E∗ (X), and

([α], [∗̃Eα]) =

∫
X

α ∧ ∗̃Eα > 0.

Thus, Hp,q(X;E) ' Hn−p,n−q(X;E∗)∗.

Corollary 2.16. If E is the trivial line bundle, then Hp,q(X,E) = Hp,q(X) and we
get that there exists a conjugate linear isomorphism

Hp,q(X) ' Hn−p,n−q(X).

Hence hp,q(X) = hn−p,n−q(X), where hp,q are the Hodge numbers defined in Examples
1.141 2).

2.2 Comparison of the Laplace operators

Suppose that X is a compact complex manifold with a compatible Riemannian
metric. We can define three Laplace operators on X with respect to the metric

1. ∆ = d∗d+ dd∗ : Ak(X)→ Ak(X).

2. � = ∂
∗
∂ + ∂∂

∗
: Ap,q(X)→ Ap,q(X).

3. � = ∂∗∂ + ∂∂∗ : Ap,q(X)→ Ap,q(X).

By proposition 2.7 and theorem 2.9 we know that d∗ = − ∗ d∗, ∂∗ = − ∗ ∂∗ and it
is easy to see that ∂∗ = − ∗ ∂∗

When p + q = k, it is a natural question, whether these Laplace operators are
related, i.e. is it true, that ∆ maps (p, q) forms to (p, q) forms. We can also ask
whether a form β being �-closed implies that it is ∆-closed. For a general compact
complex manifold X with compatible Riemannian metric, none of these hold. First
we will give a counter example for the second case.

If β is a (1, 0)-form, then ∂
∗
β = 0 by definition. If we also assume that β is

holomorphic, i.e. ∂β = 0, then �β = 0. The idea is to find a holomorphic (1, 0)-form
β which is not d-closed, since such a β can not be harmonic.
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The next proposition shows, that if we want to find a holomorphic (1, 0)-form
which is not d-closed, the dimension of our space must be at least three.

Proposition 2.17. Suppose that X is a compact 2-dimensional complex manifold.
If α ∈ Ω1(X), then dα = 0.

Proof. Let α ∈ Ω1(X), then

dα = (∂ + ∂)α = ∂α.

It is easy to see, that if ∂α 6= 0, then:∫
X

∂α ∧ ∂α 6= 0,

also note that, ∂α = ∂α, thus

∂(∂α) = ∂(∂α) = −∂(∂α) = −∂(∂α) = 0,

and by that, we get the following:

d(α ∧ ∂α) = dα ∧ ∂α− α ∧ d∂α = ∂α ∧ ∂α.

Suppose, that dα 6= 0, then

0 6=
∫
X

∂α ∧ ∂α =

∫
X

d(α ∧ ∂α) = 0,

by Stokes’ theorem, which is clearly a contradiction.

Let H be the complex Heisenberg group:

H =


 1 x y

0 1 z

0 0 1


∣∣∣∣∣∣∣ x, y, z ∈ C


It is clear that H ' C3 as a complex manifold.

Proposition 2.18. β = dz − ydx is a right-invariant holomorphic (1, 0)-form, and
dβ 6= 0.

Proof. It is clear that β is holomorphic (1, 0)-form, and dβ = −dy ∧ dx 6= 0. Let

γ =

 1 a c

0 1 b

0 0 1

 ∈ H,
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then

Rγ

 1 x z

0 1 y

0 0 1

 =

 1 a+ x c+ xb+ z

0 1 b+ y

0 0 1

 ,

thus

R∗γβ = d(c+ xb+ z)− (b+ y)d(a+ x) = bdx+ dz − bdx− ydx = dz − ydx.

The complex Heisenberg group is not compact, but let

Γ =


 1 a c

0 1 b

0 0 1


∣∣∣∣∣∣∣ a, b, c ∈ Z[i]

 < H.

Γ is a discrete subgroup of H which acts on H by right multiplication. Since Γ is
a closed subgroup of H this action is proper, i.e. this is a properly discontinuous
action. Thus H/Γ, called the Iwasawa manifold, is a complex manifold. Clearly the
projection C3 → C2 mapping (x, y, z) to (x, y) descends to a holomorphic submersion
H/Γ→ T×T , where T is a torus. It can be shown that this is a locally trivial bundle
with torus fibers, hence the Iwasawa manifold is compact. Since β is invariant under
the action of Γ it descends to a β′ holomorphich (1, 0)-form which is not d-closed.

Now we want to show a complex manifold X and an α =
∑
αp,q form, such that

∆α = 0, but ∆αp,q 6= 0 for some (p, q).

Definition 2.19. Let X be a complex manifold. We call a smooth map ρ : X → C
pluriharmonic, if ∂∂ρ = 0.

Proposition 2.20. Let X be a compact complex connected manifold. If f : X → C
is a pluriharmonic function, then f is constant.

Before we prove this we need the following:

Lemma 2.21. If f : X → R is a pluriharmonic function, then locally f is the real
part of a holomorphic function.

Proof. Let ∂f = α, then ∂α = ∂α = 0, thus dα = 0. This means that locally there
exists a function β with dβ = α. Since α is a (0, 1)-form we know that ∂β = 0. Let
h = f − β, then

∂h =∂f − ∂β = α− α = 0

∂h =∂f − ∂β = ∂f,
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Write h as u + iv, where u, v are smooth real valued functions. By the equations
above we get that

∂xju− i∂yju = ∂zjh = ∂zjf =
1

2
(∂xjf − i∂yjf),

thus locally u/2 − f ≡ c. Let F = h/2 − c, then F is holomorphic, since ∂F =

∂(h/2− c) = 0, and Re(F ) = f .

Now we can prove the previous proposition.

Proof. Let f : X → C be a pluriharmonic function. Since ∂∂f = 0, we have that

0 = ∂∂f = ∂∂f = −∂∂f,

thus if f is pluriharmonic, then f is also pluriharmonic, so we can assume that f
is a real valued function. Since X is compact f reaches its maximum at p ∈ X.
Let U = f−1(f(p)), it is clear that U is non-empty and closed. Let q ∈ U , by the
previous lemma we know that in a small neighbourhood of q f = Re(F ), where F
is a holomorphic function. Now eF is a holomorphic function around q, and |eF |
reaches its maximum at q, thus eF = c and we get that f = Re(F ) is constant
around q. This means that if q ∈ U , then a small neighbourhood of q is in U , hence
U is also open, thus U = X.

Let λ ∈ C∗, |λ| 6= 1. Then Z×C2\{0} → C2\{0}, (k, x) 7→ λkx defines a Z action
on C2 \ {0}. Clearly this a properly discontinuous action, and M = C2 \ {0}/Z is a
complex manifold called the Hopf surface. It is clear that topologicallyM ' S3×S1,
thus by the Künneth formula H1(X;C) = C.

Proposition 2.22. H0(M,Ω1
M) = 0, i.e. there are no non-trivial global holomorphic

(1, 0)-forms on M .

Proof. Suppose that there is an 0 6= α global holomorphic (1, 0)-form. Since
dim(M) = 2 we know that dα = 0. We claim that α is not ∂ exact. Suppose
on the contrary, that α = ∂β. Then

∂∂β = d∂β = dα = 0,

hence β is a pluriharmonic function, but M is compact, so by the previous propo-
sition β is constant and α = ∂β = 0 which is a contradiction. We also have the
following:

∂α = ∂α = dα = 0.
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This means, that α defines a non-trivial element in H0,1(M), and by Dolbeault’s
theorem we know that H0,1(M) = H1(M,OM). Let’s look at the following sequence
of sheaves:

0 C OM ΩM 0ι d

The first map is the natural embedding of the locally constants sheaf to the sheaf
of holomorphic functions, the second is the exterior derivative. It is clear that this
sequence is exact, the only nontrivial part is that it is surjective, but if α ∈ Ω1(M),
then locally α = dβ, but if we check the bi-grading, we get that ∂β = 0, i.e. α = dβ,
where β is a holomorphic function. By the short exact sequence of sheaves we get
the following exact sequence:

0 H0(M ;C) H0(M ;OM) H0(M ; Ω1
M)

H1(M ;C) H1(M ;OM) H1(M ; Ω1
M) . . .

We know that ι induces isomorphism between H0(M ;C) and H0(M ;OM), since
both are one dimensional vector spaces and the induced map is injective. Thus the
map H0(M ;OM)→ H0(M ; Ω1

M) is the zero-map, hence we have to following exact
sequence:

0 H0(M ; Ω1
M) H1(M ;C) H1(M ;OM) . . .

Now by the assumption that we have a global non-trivial holomorphic (1, 0)-
form, i.e. H0(M ; Ω1

M) 6= 0, we got that H1(M ;OM) 6= 0, but this means that
dim(H1(M ;C)) > 1, which is a contradiction.

Corollary 2.23. We have the following corollaries:

a) H1,0(M) = 0.

b) H0,1(M) 6= 0.

Proof. By the Doulbeault theoremH1,0(M) = H0(M,Ω1
M) = 0. SinceH0(M ; Ω1

M) =

0, we get that the map C = H1(M ;C)→ H1(M ;OM) = H0,1(M) is injective.

Corollary 2.24. If g is a Riemannian metric on the Hopf surface M , and 0 6= α =

α1,0 + α0,1 is a harmonic 1-form, i.e. ∆α = 0, then ∆α1,0 6= 0 and ∆α0,1 6= 0.

Proof. We will only show that α0,1 can not be harmonic. Since ∆α = 0 we get that
dα = 0, but

0 = dα = (∂ + ∂)(α1,0 + α0,1) = ∂α1,0 + ∂α1,0 + ∂α0,1 + ∂α0,1,
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hence ∂α1,0 = ∂α0,1 = 0. Now suppose that ∆α0,1 = 0, then dα0,1 = 0, thus
∂α0,1 = 0, and this means that

∂α0,1 = ∂α0,1 = 0,

i.e. α0,1 is a holomorphic (1, 0)-form, hence α0,1 = 0. This means that α = α1,0, and
0 = dα1,0 = ∂α1,0 + ∂α1,0. Looking at the bigrades we get that ∂α1,0 = 0, but this
means α1,0 is holomorphic, hence it is zero. Thus α = 0 which is a contradiction.

The key point of this section was to show that in general the complex and real
Laplace operators are not related. The reason behind this is that the compatibility
of the complex structure and the metric, we used so far, is too weak. One needs
a stronger compatibility condition between the Riemannian structure and complex
structure.
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3 Kähler manifolds

This section is devoted to introduce a special class of complex manifolds, the
Kähler manifolds, and prove the Hodge decomposition theorem on their cohomolo-
gies. Kähler manifolds are in some sense a generalisation of projective manifolds and
share really interesting properties with them.

The section Definitions and examples follows the books of [3] Huybrechts, D. -
Complex Geometry: An Introduction., [6] Voisin, C. - Hodge Theory and Complex
Algebraic Geometry I: Volume 1 and the section Harmonic theory on compact Käh-
ler manifolds follows the book [7] Wells, R. O. - Differential Analysis on Complex
Manifolds..

3.1 Definitions and examples

Definition 3.1. Let X be a complex manifold with almost complex structure I and
compatible Riemannian metric g. Let v, w ∈ Γ(TX), then

ω(v, w) = g(Iv, w)

is the fundamental form associated to g.

By lemma 1.14 we know that ω is a real (1, 1)-form.

Definition 3.2. Let X be a complex manifold with compatible Riemannian metric
g and fundamental form ω, then we have the Lefschetz operator

L :
∧∗

T ∗X →
∧∗+2

T ∗X

α 7→ ω ∧ α

We can extend L complex linearly to
∧∗ T ∗CX and this induces a linear map

between the sections of
∧∗ T ∗CX also denoted by L, i.e. L : A∗(X)→ A∗+2(X).

Define the following operators

a) Λ = ∗−1L∗ :
∧∗ T ∗X → ∧∗−2 T ∗.

b) H =
2n∑
k=0

(n− k)πk :
∧∗ T ∗X → T ∗X, where n = dim(X).

Clearly these are vector bundle morphisms, hence at every point x ∈ X, the maps
Lx,Λx and Hx give a representation of sl(2,C) on

∧∗ T ∗C,xX. Thus we can use the
results of section 1.2 while studying complex manifolds manifolds.

Corollary 3.3. Let P k(X) = ker{Ln−k+1 :
∧k T ∗CX → ∧2n−k+2 T ∗CX} for 0 ≤ k ≤ n

and P k(X) = 0 for k ≥ n+ 1. Then by Corollary 1.40 we get that
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a)
∧k T ∗CX =

⊕
i≥0 L

i(P k−2i(X)).

b) Ln−k :
∧k T ∗CX → ∧2n−k T ∗CX is a bundle isomorphism.

Let P p,q(X) = P p+q(X) ∩
∧p,q T ∗X. Then

a) P k(X) =
⊕

p+q=k P
p,q(X)

b) If p+ q = k, then Ln−k : P p,q(X)→ P n−q,n−p(X) is a bundle ismomorphism.

Clearly these impy that:

a) Ln−k : Ak(X)→ A2n−k(X) is a linear isomorphism.

b) Ak(X) =
⊕

i≥0 L
i(Γ(P k−2i(X))) is an orthogonal decomposition with respect

to the Hodge inner product.

To see b) let αi ∈ Γ(P k−2i(X)) and βj ∈ Γ(P k−2j), where i 6= j. Then

(Liαi, L
jβj) =

∫
X

〈Liαi, Ljβj〉dV ol = 0,

since by Corollary 1.40 we are integrating 0 on X.

Proposition 3.4. If X is compact, then the Lefschetz operator L has a formal
adjoint L∗ with respect to the Hodge inner product, and it is equal to Λ.

Proof. Let α ∈ Ak(X) and β ∈ Ak+2(X), then

(Lα, β) =

∫
X

g(Lα, β)dV ol =

∫
X

g(α,Λβ)dV ol = (α,Λβ)

Here we used the fact, that at every point x ∈ X, the adjoint of Lx with respect to
gx is Λx.

Definition 3.5. Let X be a complex manifold and g a compatible Riemannian
metric. We call (X, g) a Kähler manifold, if the fundamental form associated to g is
d-closed, in which case g is called a Kähler metric on X. The complex manifold X
is of Kähler type if there exists a Kähler metric on X.

Remark 3.6. The fundamental form associated to a Kähler metric g is also called
the Kähler form of g.

At first this definition might seem strange, but as we will see, being Kähler type
has many non-trivial consequence.

Proposition 3.7. Let X be a compact Kähler manifold of dimension n. Then the
forms ω, ω2, . . . , ωn are d-closed, but not exact.
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Proof. It is trivial that ωi is closed, since it is the product of d-closed forms. To
see that they are not exact, first notice, that by Corollary 1.18 ωn = n!dV ol. Now
suppose that ωn = dα, then by Stokes’ theorem

0 =

∫
X

dα = n!

∫
X

1 dV ol = n!V ol(X) > 0

which is clearly a contradiction. Now suppose that ωi = dα for some i < n, then

d(ωn−i ∧ α) = dωn−i ∧ α + (−1)n−iωn−i ∧ dα = (−1)n−iωn,

which is a contradiction since we just showed, that ωn is not exact.

Corollary 3.8. If X is a compact Kähler manifold, then H2i(X;R) 6= 0, for i =

0, . . . , n.

As a corollary, we see that the Hopf surface is not Kähler, since H2(S1×S3) = 0

by the Künneth formula. More generally we can define a Z action on Cn \ {0} by
mapping k to multiplication with λk, where λ 6= 0, and |λ| 6= 1. This action is
properly discontinuous, hence the manifold M = Cn/Z admits a complex structure.
The manifoldM is called Hopf manifold. It’s not hard to show, thatM ' S1×S2n−1,
hence the Hopf manifolds can not be Kähler manifolds for n > 1, since for n > 1 we
have H2(S1 × S2n−1,R) = 0.

Let (X, g) be a Kähler manifold with Kähler form ωX . Suppose that Y ⊂ X is
complex submanifold. and denote the natural inclusion of Y by ι. Then ι∗g is clearly
a compatible Riemannian metric on Y . If we denote the fundamental form of ι∗g
by ωY , then it is trivial that ωY = ι∗ωX , hence ι∗g is a Kähler metric on Y . As a
corollary, we get the following.

Corollary 3.9. If Y is a compact complex submanifold of the Kähler manifold X.
Then Y is not a boundary in X

Proof. Suppose that Y = ψ(∂M) for a differentiable map ψ : M → X of a manifold
with boundary M . Let k = dim(Y ), then by Stokes’ theorem we have that

k!V ol(Y ) =

∫
Y

ωkY =

∫
Y

ι∗(ωkX) =

∫
M

dψ∗(ωkX) = 0.

which is clearly a contradiction.

As we saw, being Kähler has some restriction on the topology of the underlying
manifold. Before we give some examples we need the following.

Definition 3.10. Let’s call a real (1, 1)-form ω positive if locally in holomorphic
coordinates it is of the form ω = i

2

∑
r,s hr,s(x)dzr∧dzs, such that the matrix (hr,s(x))

is positive definite Hermitian for all x where it is defined.
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Proposition 3.11. There is a one-one correspondence between d-closed real (1, 1)-
forms and Kähler metrics on X.

Proof. Easy consequence of Proposition 1.19.

Hence to give examples of Kähler manifolds, it will be enough to show complex
manifolds with d-closed real (1, 1)-forms, which is sometimes easier, then giving the
metric g and proving that it is Kähler.

Lemma 3.12 (local ∂∂-lemma). Let ω be a real (1, 1)-form on the complex manifold
X. Then dω = 0 if and only if for x ∈ X there exists an U open neighborhood of x
and a smooth function ϕ : U → R, such that ω|U = i∂∂ϕ.

Proof. For the "if" part, let ϕ : U → R be a smooth function, then i∂∂ϕ is clearly
a (1, 1)-form, to see that it is real we compute as follows:

i∂∂ϕ = −i∂∂ϕ = i∂∂ϕ.

To compute that it is also d-closed, we use that ∂2 = ∂
2

= 0,

d(−i∂∂ϕ) = i(∂ + ∂)(∂∂ϕ) = 0

Now for the only if part let ω be a real d-closed (1, 1)-form and let x ∈ X. By the
real Poincaré lemma there exists an U open neighborhood of x, and τ real form on
U such that ω = dτ . Let τ = τ 1,0 +τ 0,1, since τ is real 1-form we get that τ 1,0 = τ 0,1.
Let’s look at the following:

ω = dτ = (∂ + ∂)(τ 1,0 + τ 0,1).

Since ω is (1, 1)-form, ∂τ 1,0 and ∂τ 0,1 has to be zero, and ω = ∂τ 0,1 + ∂τ 1,0. By the
∂-Poincaré lemma, on an even smaller open set U there exists a smooth function f
such that ∂(f) = τ 0,1. Hence if we summarise everything we get that

ω = ∂τ 0,1 + ∂τ 1,0 = ∂τ 0,1 + ∂τ 0,1 = ∂∂f + ∂∂f = ∂∂(f − f) = ∂∂(2iIm(f)).

To finish the proof let ϕ = 2iIm(f).

As a collorary of the local ∂∂-lemma, we see that locally a Kähler form of a Kähler
manifold is of the form i

2
∂∂ϕ. We call this function the local potential function of

the Kähler form.

Example 3.13. Now we will give some examples of Kähler manifolds.
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1) Let X = Cn, and ϕ(z) = ‖z‖ 2 =
∑n

j zjzj. Then

i

2
∂∂
( n∑

j

zjzj
)

=
i

2

n∑
j=1

∂(zj)dzj =
i

2

n∑
j=1

dzj ∧ dzj

The matrix (hr,s) is the identity matrix, which is clearly positive definite. Hence
there exists a Kähler metric on Cn such that i

2

∑
j dzj ∧ dzj is its Kähler form. One

can check easily that the Kähler form comes from the standard Euclidean metric on
R2n.

2) Let X = Bn = {z ∈ Cn | |z| < 1}, and ϕ(z) = − log
(
1− ‖z‖ 2). Then

−∂zj log
(
1− ‖z‖ 2) =

zj

(1− ‖z‖ 2)

∂zi
zj

(1− ‖z‖ 2)
=
zjzi + δi,j(1− ‖z‖ 2)(

1− ‖z‖ 2)2

Hence we see that the (1, 1)-form is

i

2
∂∂ϕ =

i

2
hi,jdzi ∧ dzj =

i

2

∑
i,j

zizj + δi,j(1− ‖z‖ 2)(
1− ‖z‖ 2)2 dzi ∧ dzj.

Clearly the matrix (hi,j) is Hermitian matrix, and to see that it is positive definite,
we only have to show, that the matrix h̃i,j =

(
1− ‖z‖ 2)2

hi,j is positive definite. Let
ξ = (ξ1, . . . , ξn) ∈ Cn, then we compute as follows:∑

i,j

h̃i,jξiξj =
∑
j

(1− ‖z‖ 2)ξjξj +
∑
i,j

zjziξjξi = (1− ‖z‖ 2)‖ξ‖ 2 + 〈z, ξ〉〈ξ, z〉

= (1− ‖z‖ 2)‖ξ‖ 2 + |〈z, ξ〉| > 0,

hence the matrix is positive definite. Bn with the corresponding Kähler metric is
called the complex hyperbolic space.

3) Let X = CP n, and let Ui = {zi 6= 0} for i = 0, 1, . . . , zn. On Uj we define

the function ρj([z]) = log

(∑n
k=0

∣∣∣ zkzj ∣∣∣2). The functions ρj and ρi will not agree on

Ui ∩Uj, but the forms ∂∂ρi and ∂∂ρj will. Indeed on Ui ∩Uj we compute as follows

ρi([z]) = log

(
n∑
k=0

∣∣∣∣zkzi
∣∣∣∣2
)

= log

(∣∣∣∣zjzi
∣∣∣∣2 n∑

k=0

∣∣∣∣zkzj
∣∣∣∣2
)

= log

(∣∣∣∣zjzi
∣∣∣∣2
)

+ log

(∑
k

∣∣∣∣zkzj
∣∣∣∣2
)

= log

(∣∣∣∣zjzi
∣∣∣∣2
)

+ ρj([z])
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Hence, we only have to show that ∂∂ log

(∣∣∣ zjzi ∣∣∣2) = 0. Notice zj
zi
∈ O∗CPn(Ui ∩ Uj).

We will show something stronger. Suppose that U ⊂ Cn is a small polydisc, and
f ∈ O∗(U), then ∂∂(log

(
|f | 2

)
= 0. Indeed, locally there exists log(f) ∈ O(U). It

follows, that

log
(
|f | 2

)
= log

(
ff
)

= log(f) + log
(
f
)
,

where log(f) is holomorphic and log
(
f
)
is anti-holomorphic, hence

∂∂ log
(
‖f‖ 2) = ∂∂ log(f)− ∂∂ log

(
f
)

= 0.

Hence the forms ∂∂ρi = ∂∂ρj on Ui ∩ Uj. To show that it is a positive form first
use the standard charts on Ui, i.e. ϕi : Ui → Cn , [z] 7→ ( z1

zj
, . . . , ẑi

zi
, . . . , zn

zi
) =

(w1, . . . , wn). Under this map ρi([z]) corrseponds to ρi(w) = log
(
1 +

∑1
k=1 |wk|

2).
A similar calculation like in the previous example shows, that

∂∂ρi =
i

2

∑
i,j

hi,jdzi ∧ dzj =
∑
i,j

δi,j(1 + ‖w‖ 2)− wiwj(
1 + ‖w‖ 2)2 dwi ∧ dwj,

It is clear again that the matrix (hi,j) is Hermitian, and just like before, we show
that

(
1 + ‖w‖ 2)2

hi,j = h̃i,j is positive definite. To do that, let ξ = (ξ1, . . . , ξn) ∈ Cn,
and compute as follows∑
i,j

h̃i,jξiξj = (1 + ‖w‖ 2)
∑
j

ξjξj −
∑
i,j

wjwiξiξj = (1 + ‖w‖ 2)‖ξ‖ 2 − 〈w, ξ〉〈ξ, w〉

= ‖ξ‖ 2 + ‖w‖ 2‖ξ‖ 2 − |〈w, ξ〉| > 0

For the inequality, we used the Cauchy-Schwarz inequality. Thus we see that the
forms i

2
∂∂ρi are positive. One should normalise this form by multiplying it with 1

π
,

which corresponds to the potential functions 1
π
ρi. The Kähler metric corresponding

to this normalised (1, 1)-form is called the Fubini-Study metric, and the normalised
form is denoted by ωFS. We conclude this example by showing that

∫
CP 1 ωFS = 1.

The compution is the following:∫
CP 1

ωFS =

∫
C

i

2π

1(
1 + |w| 2

)2dw ∧ dw

=
1

π

∫
R2

1(
1 + |(x, y)| 2

)2dx ∧ dy

= 2

∫ ∞
0

1

(1 + r2)2dr = 1
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4) If X is a Kähler manifold, and G is a discrete group which acts on X properly
discontinuously, and every g : X → X is a holomorphic isometry of X, then the
factor manifold X/G is Kähler. Hence if we look at Cn and choose z1, . . . , z2n ∈ Cn

such that these are linearly independent over R, then we have Z2n action on Cn,
where (k1, . . . , k2n) maps to the translations with k1z1 + · · · + k2nz2n. This clearly
satisfies the properties above, hence Cn/Z2n ' S1×S1 · · ·×S1 is a Kähler manifold.
In particular every smooth elliptic curve is a Kähler manifold.

5) If X is a Rieamann surface, then any compatible Riemannian metric on X

will be Kähler, since there are no non-trivial 3-form on X.

Corollary 3.14. Every smooth projective manifold is Kähler manifold with the re-
striction of the Fubiny-Study metric.

Hence we see, that there are actually a lot of Kähler manifolds.

3.2 Harmonic theory on compact Kähler manifolds

As we saw in the previous section, on a general compact complex manifold,
there are no connections between the operators ∆,� and �. Surprisingly on Kähler
manifolds this is not case as we will see later in this section.

Theorem 3.15 (Kähler identities). Let X be a Kähler manifold, then we have the
following commutation relations:

a) [L, ∂] = [L, ∂] = [L∗, ∂∗] = [L∗, ∂
∗
] = 0

b) [L, ∂∗] = i∂ [L, ∂
∗
] = −i∂

[L∗, ∂] = i∂
∗

[L∗, ∂] = i∂∗

Remark 3.16. One can easily check that all four in a) and b) are equivalent, so it is
enough to prove only one in both of them.

Definition 3.17. Let dc = I−1dI and let d∗c = I−1d∗I.

It is easy to see that dc and d∗c are real operators since they are compositions of
real operators. Also, since I−1 = I∗ we also see that d∗c is the formal adjoint of dc.
We claim that dc = −i(∂ − ∂). Indeed, let ϕ ∈ Ap,q(X), then:

dc(ϕ) =I−1(∂ + ∂)I(ϕ) = ip−qI−1(∂ϕ+ ∂ϕ) = ip−q(iq−p−1∂ϕ+ iq+1−p∂ϕ)

=− i∂ϕ+ i∂ϕ = −i(∂ − ∂)ϕ.
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Proposition 3.18. Let X be a Kähler manifold. Then

a1) [L, d] = 0 a2) [L∗, d∗] = 0

b1) [L, d∗] = dc b2) [L∗, d] = −d∗c .

Proof. First notice that a∗1 = a2 and b∗1 = b2, so we only have to prove one in a1 and
b2. To see a1) let ϕ ∈ Ak(X), then:

[L, d]ϕ = ω ∧ dϕ− d(ω ∧ ϕ) = ω ∧ dϕ− (dω︸ ︷︷ ︸
0

∧ϕ+ ω ∧ dϕ) = 0.

We will prove b2). Using the Lefschetz decomposition it is enough to prove for Ljα,
where α ∈ Γ(P k(X)). One can use the Lefschetz decomposition and write dα in the
following form:

dα = α0 + Lα1 + L2α2 + . . .

where αj ∈ Γ(P k+1−2j). Since L and d commute and Ln−k+1α = 0 we get that:

0 = Ln−k+1α0 + Ln−k+2α1 + Ln−k+3α2 + . . .

Since the Lefschetz decomposition is a direct sum decomposition we get that
Ln−k+1+jαj = 0 for all j. On the other hand we know that Ll restricted to Ai(X) is
injective if l ≤ n − i. Thus αj ∈ Ak+1−2j is zero for all j ≥ 2, and dα = α0 + Lα1.
First we will compute [L∗, d](Ljα). To compute we will use that L and d commute,
Λαi = L∗αi = 0 and Theorem 1.33.

L∗dLjα = L∗Ljdα = L∗Ljα0 + L∗Lj+1α1

= j(n− k − j)Lj−1α0 + (j + 1)(n− k − j + 1)Ljα1.

dL∗Ljα = j(n− k − j + 1)Lj−1dα

= j(n− k − j + 1)(Ljj − 1α0 + Ljα1)

Hence we get that:

[L∗, d](Ljα) = −jLj−1α0 + (n− k − j + 1)Ljα1.
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Now we compute −d∗c(Ljα), using Theorem 1.49 and that I2 on k-forms is (−1)k.

−d∗c(Ljα) = ∗ I−1dI ∗ Ljα

= ∗ I−1dI
(
(−1)k(k+1)/2 j!

(n− k − j)!
Ln−k−jIα

)
=(−1)k(k+1)/2+k j!

(n− k − j)!
I−1 ∗ Ln−k−jdα

=(−1)k(k+1)/2+k j!

(n− k − j)!
I−1(∗Ln−k−jα0 + ∗Ln−k−j+1α1)

=− jLj−1α0 + (n− k − j + 1)Ljα1

Hence we see that [L∗, d] = −d∗c .

Corollary 3.19. a) [L, dc] = 0, b) [L∗, d∗c ] = 0, c) [L, d∗c ] = −d, d) [L∗, dc] = −d∗.

Proof. It is clear that a)∗ = b) and c)∗ = d), so we only have to prove a) and d). To
prove a) we compute as follows:

[L, dc] = LI−1dI− I−1dIL = 0.

since L commutes with I, I−1 and d. To see d) we have to notice first, that L∗

commutes with I and I−1, which is clear from the fact that I∗ = I−1. With this in
mind we compute as follows:

[L∗, dc] = I−1[L∗, d]I = I−1 − d∗cI = d∗.

With these we can finaly prove the Kähler identities.

Proof of the Kähler identities. First we will show a).

0 = [L, dc] = [L,−i(∂ − ∂)] = i[L, ∂]− i[L, ∂]

Since [L, ∂] is of bidegree (1, 2) and [L, ∂] is of bidegree (2, 1) this can be zero if and
only if [L, ∂] = 0 and [L, ∂] = 0. To see b) we compute as follows:

∂∗ + ∂
∗

= [L∗, dc] = i[L∗, ∂]− i[L∗, ∂].

Checking bidegrees again we see that [L∗, ∂] = −i∂∗ and [L∗∂] = −i∂∗.

Corollary 3.20. Let X be a compact Kähler manifold. Then

1

2
∆ = � = �.
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Proof. First we show that � = �.

� =∂∂
∗

+ ∂
∗
∂ = −i(∂[L∗, ∂] + [L∗, ∂]∂) = i(−∂L∗∂ − ∂∂L∗ + L∗∂∂ + ∂L∗∂)

=i([L∗, ∂]∂ + ∂[L∗, ∂]) = ∂∗∂ + ∂∂∗ = �.

Now we show that ∆ = �+�.

∆ =dd∗ + d∗d = (∂ + ∂)(∂ + ∂)∗ + (∂ + ∂)∗(∂ + ∂)

=∂∂∗ + ∂∂
∗

+ ∂∂∗ + ∂∂
∗

+ ∂∗∂ + ∂∗∂ + ∂
∗
∂ + ∂

∗
∂

=�+�+ ∂∂∗ + ∂∂∗ + ∂∗∂ + ∂
∗
∂︸ ︷︷ ︸

D

To finish the proof we only have to show that D = 0.

D =− i∂(L∗∂ − ∂L∗) + i∂(L∗∂ − ∂L∗)− i(L∗∂ − ∂L∗)∂ + i(L∗∂ − ∂L∗)∂

=− i∂L∗∂ + i∂L∗∂ + i∂L∗∂ − i∂L∗∂ = 0

Here we used that ∂∂ = ∂∂ = 0.

Corollary 3.21. The Laplacian ∆ commutes with L, I, L∗, d, ∂, ∂, ∂∗, ∂∗ and d∗.

Proof. Since ∆ is formally self adjoint we only have to show that ∆ commutes with
I, L, d, ∂ and ∂. Since 1/2∆ = � it is of bidegree (0, 0) hence ∆I = I∆. It is clear
that ∆ commutes with d, and since � commutes with ∂ and � commutes with ∂ we
also have that for ∆. To see that [∆, L] = 0 we compute as follows:

∆L− L∆ =dd∗L+ d∗dL− Ldd∗ − Ld∗d = dd∗L+ d∗Ld− dLd∗ − Ld∗d

=− d[L, d∗]− [L, d∗]d = −ddc − dcd = −2i∂∂ + 2i∂∂ = 0

Corollary 3.22. Let X be a compact Kähler manifold. Then ω is a harmonic form.

Proof. ω = L(1), and ∆ω = ∆L(1) = L∆(1) = L(0) = 0.

Corollary 3.23. Let X be a compact complex manifold, with compatible Riemannian
metric g and fundamental form ω. Then (X, g) is a Kähler manifold if and only if
ω is harmonic.

Proof. If ω is harmonic, then it is also d-closed. If ω is d-closed, then by the previous
corollary it is also harmonic.

Corollary 3.24. Let α ∈ Ak(X) and suppose that α =
∑

p+q=k α
p,q. Then ∆α = 0

if and only if ∆αp,q = 0 for all (p, q).
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Proof. Suppose that ∆α =
∑

p+q=k ∆αp,q = 0. We have seen in the proof of Corollary
3.21 that ∆ is of bidegree (0, 0), thus ∆αp,q ∈ Ap,q(X), hence

∑
p+q=k ∆αp,q = 0 if

and only if ∆αp,q = 0 for all (p, q).

Corollary 3.25. Let Hk = ker(∆ : Ak(X) → Ak(X)) and Hp,q = Hk ∩ Ap,q(X),
where p+ q = k, and lastly H

p,q

�
= ker(� : Ap,q(X)→ Ap,q(X)). Then

a) If p+ q = k, then πp,q(Hk) = H
p,q
∆ = H

p,q

�
.

b) Hk =
⊕

p+q=kH
p,q.

c) H
p,q
∆ = H

q,p
∆ .

Proof. Part a) and b) trivially follow from Corollary 3.24 and Corollary 3.20. To see
c) let α ∈ H

p,q
∆ . Since ∆ is a real operator we get that

∆α = ∆α = ∆α = 0.

Hence α ∈ Hq,p.

Theorem 3.26. Let X be a compact complex manifold of Kähler type. Then there
exists a direct sum decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X).

Moreover with respect to the conjugation on H∗(X,C) = H∗(X,R) ⊗ C one has
Hp,q(X) = Hq,p(X) and Hp,q(X) ' Hq(X,Ωp).

Proof. Let g be a Kähler metric on X, then with respect to this metric we have
Hk, Hp,q

∆ and H
p,q

�
. Then by Theorem 1.140 we know that Hk(X,C) ' Hk and

Hq(X,Ωp) ' H
p,q

�
= H

p,q
∆ . Hence by Corollary 3.25 b) we get that

Hk(X,C) '
⊕
p+q=k

Hp,q(X),

where Hp,q(X) is the image of Kp,q
∆ under the canonical isomorphism. The conjuga-

tion in Hk(X,C) is computed as follows, let [α] ∈ Hk(X,C), then [α] = [α], and we
can use Corollary 3.25 c) te see that Hp,q = Hq,p.

Proposition 3.27. The decomposition above does not depend on the chosen Kähler
metric.

Proof. Suppose we chose a Kähler metric g and defined Hp,q(X) as above. Define
the following:

Kp,q = {[α] ∈ Hk(X,C) | there exists β ∈ Ap,q(X), such that dβ = 0 and [β] = [α]}
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It is clear that Kp,q does not depend on the metric. We claim that Hp,q(X) = Kp,q.
It is clear that Hp,q(X) ⊂ Kp,q, since an element in Hp,q(X) can be represented
with a harmonic (p, q)-form, and we know that harmonic forms are d-closed. Now
suppose that we have an element in Kp,q. Then there exist a d-closed (p, q)-form ψ

such that [ψ] represents that element. In the proof of Theorem 1.140 we saw that
Γ(Ej) = ker(∆j) ⊕ Im(∆j). In our case we get that ψ = α + ∆β, where α is a
harmonic form. Since g is a Kähler metric we know that ∆ is of bidegree (0, 0),
hence ψ = ψp,q = αp,q + ∆βp,q, where αp,q, βp,q are (p, q)-forms and αp,q is harmonic.
Applying d to ψ we get that:

0 = dψ = dαp,q + d(dd∗ + d∗d)βp,q = dd∗dβp,q.

It follows that d∗dβp,q ∈ ker(∆) ∩ Im(d∗) = 0. Hence ψ = αp,q + dd∗βp,q, and
[ψ] = [αp,q] ∈ Hp,q(X).

Corollary 3.28. The cup product on H∗(X,C) respects the (p, q)-decomposition,
i.e. if [α] ∈ Hp,q(X) and [β] ∈ Hp′,q′(X), then [α] ∪ [β] ∈ Hp+p′,q+q′(X).

Proof. Since [α]∪[β] = [α∧β] and we know that α∧β is a d-closed (p+p′, q+q′)-form
we get that [α] ∪ [β] ∈ Hp,q = Hp+p′,q+q′(X).

Remark 3.29. This does not follow from the definition of Hp,q(X) since wedge prod-
uct of harmonic forms does not have to be harmonic.

Corollary 3.30. Let X be a compact Kähler manifold. Then b2k+1(X) is even for
all k.

Proof. By Theorem 3.26 b) we get that

b2k+1(X) = h2k+1,0(X) + h2k,1(X) + · · ·+ h1,2k(X) + h0,2k+1(X)

Also by Theorem 3.26 c) we know that hi,j = hj,i, hence

b2k+1(X) = 2(h2k+1,0(X) + h2k,1(X) + · · ·+ hk+1,k(X)).

Corollary 3.31. Let X be a compact Kähler manifold. If α ∈ H0(X,Ωp(X)), then
dα = 0.

Proof. We know that ∂α = 0 since α is holomorphic. We also know that ∂∗α = 0 by
definition, hence �α = 0. Since X is Kähler it follows that ∆α = 0, thus dα = 0.

Corollary 3.32. There exists an injective map H0(X,Ωp(X))→ Hp(X,C).
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Proof. Let α ∈ H0(X,Ωp(X)), then by the above d(α) = 0, hence it defines an
element in Hp(X,C). Since α is harmonic [α] is zero if and only if α = 0 ∈
H0(X,Ωp(X)) hence the map α→ [α] is injective.

Let X be a compact Kähler manifold of dimension n, then its hodge numbers
can be visualised by the Hodge diamond:

hn,n

hn,n−1 hn−1,1

hn,n−2 hn−1,n−1 hn−2,n

...
...

...
...

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

Conjugation

Hodge Serre

We know by Serre duality that hp,q = hn−p,n−q, i.e. the hodge diamond is stable
under rotation by π around it’s center. We also know that the Hodge ∗-operator
induces an isomorphism between Hp,q(X) and Hn−q,n−p(X), hence we have that
hp,q = hn−q,n−p, i.e. the hodge diamond is stable under reflection in the horizontal
line passing through hn,0 and h0,n. We also know that the conjugation induces a
conjugate linear isomorphism between Hp,q(X) and Hq,p(X), hence hp,q = hq,p, and
the Hodge diamond remains unchanged after reflecting in the horizontal line which
crosses h0,0 and hn,n.

Suppose that the dimension of X is one. Then by Theorem 3.26 we get that

H1(X,C) = H1,0(X) +H0,1(X),

where H1,0(X) ' H0(X,Ω(X)), H0,1(X) ' H1(X,OX), and H1,0(X) = H0,1(X).
Hence dim(H0(X,Ω(X))) = dim(H1(X,OX)) = 1

2
b1 which is a topological invariant

of X called the genus. It is just the amount of handles in X.
Now suppose that the dimension of X is two. Then we have the following Hodge

diamond:

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0
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Hence h2,1 = h1,2 = h1,0 = h0,1 = 1
2
b1 and h2,0 = h0,2. We also know that h1,1 > 0,

since [ω] ∈ H1,1(X).
Corollary 3.21 has another important consequence. It says that ∆ commutes with

L and L∗, hence they map harmonic forms to harmonic forms. Denote the primitive
harmonic r-forms by Hr

0 = Γ(P r(X)) ∩Hr and the primitive harmonic (p, q)-forms
by H

p,q
0 = Γ(P p,q(X)) ∩H

p,q
∆ .

Theorem 3.33. Let X be a compact Kähler manifold. Then

a) Hr =
⊕

s≥0 L
s(Hr−2s

0 ), and H
p,q
∆ =

⊕
s≥0 L

s(Hp−s,q−s
0 ) are both orthogonal

decompositions with respect to the Hodge inner product.

b) Hr
0 =

⊕
p+q=rH

p,q
0 is an orthogonal decomposition with respect to the Hodge

inner product.

c) Ln−k : Hk → H2n−k is an isomorphism. and restricting it to K
p,q
∆ we get that

Ln−k : Hp,q
∆ → H

n−q,n−p
∆ is an isomorphism.

Proof. Trivially follows from Remark 3.3 and that ∆ commutes with λ and λ∗.

If X is a Kähler manifold, then the map L : A∗(X) → A∗(X) induces a
homorphism on the cohomology groups of X also denoted by L as follows: let
[α] ∈ Hk(X;C), then L([α]) = [Lα] = [ω ∧ α]. Define the primitive cohomology
of X as Hk

0 (X;C) = ker(Ln−k+1 : Hk(X;C) → H2n−k+2(X;C)) and denote the
(p, q)-primitive cohomology by Hp,q

0 (X) = Hp+q
0 (X;C) ∩Hp,q(X). With these nota-

tions we have the following theorem.

Theorem 3.34. Let X be a compact Kähler manifold. Then

a) Hk(X;C) =
⊕

i≥0 L
i(Hk−2i

0 (X;C)), and Hp,q(X) =
⊕

i≥0 L
i(Hp−i,q−i

0 (X)).
We call this the Lefschetz decomposition of X.

b) Ln−k : Hk(X;C) → H2n−k(X;C) is an isomorphism. If p + q = k, then
Ln−k : Hp,q(X)→ Hn−q,n−p(X) is an isomorphism.

Proof. Notice that we have the following commutative diagram:

Hk Hk+2

Hk(X;C) Hk+2(X;C)L

L

''

Hence if we show that the image of Hk
0 is Hk

0 (X;C) and H
p,q
0 is Hp,q

0 (X), then
everyting in Theorem 3.33 is also true in the cohomology level if it makes sense. By
Corollary 1.39 we see that α ∈ Hk

0 if and only if α is harmonic and Ln−k+1α = 0,
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thus the image of Hk
0 is indeed Hk

0 (X;C). One can show similarly that Hp,q
0 maps

to Hp,q
0 (X).

Part b) of Theorem 3.34 is called the hard Lefschetz theorem. It was originally
proved by Lefschetz over integer coefficients but his proof turned out to be incorrect.

Corollary 3.35. Let X be a compact complex manifold. Then bi−2 ≤ bi for i ≤ n,
and hp−1,q−1 ≤ hp,q, for p+ q ≤ n.

Proof. Follows from the fact that the Lefschetz operator L : Hp−1,q−1(X)→ Hp,q(X)

is injectice for p+ q ≤ n.
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