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Introduction

The main goal of this thesis is to prove the Hodge and Lefschetz decompositions
of the cohomology groups of a compact Kéhler manifold using harmonic theory.
Both of these are standard and beautiful theorems with many applications and

generalisations.

The thesis mainly follows the books of [7] Wells, R. O. - Differential Analysis on
Complex Manifolds and [3] Huybrechts, D. - Complex Geometry: An Introduction.
We assume that the reader is familiar with the basic theory of smooth manifolds

and Lie groups.

The thesis consists of two parts. The first is the foundational material, which
consists of definitions and results used in the second part. There are five sections in
the foundational material. In the first we introduce the notion of almost complex
structures and compatible metrics on a real vector space V. We will show how
these structures decompose the exterior algebra of V. We define the Hodge *-star
operator on the exterior algebra of V', which is uniquely determined by the almost
complex structure and compatible metric, and show that it is compatible with the
decomposition of the exterior algebra. We will finish by showing that the almost
complex structure and the compatible metric also define a Lie-algebra representaion

of s[(2,C) on the exterior algebra.
The second section starts with sketching the representation theory of sl(2,C),

where we show that every finite dimensional representation can be broken down to
irreducible representations and then characterise the finite dimensional irreducible
representations. With this tool at our disposal we return to the representation de-
fined in the previous section, and prove the Lefschetz decomposition theorem, which
further decomposes the exterior algebra of V. After that we connect the represen-
tation of s[(2,C) and the Hodge *-operator.

The third and fourth section is a collection of required definitions and results
about sheaf cohomology and complex manifolds. These sections can not serve as a
proper introduction to the subjects, but we hope that it is enough to get the feeling
of them and understand the main objects and results and how we use them later.

The last section of the first part is about harmonic theory on compact oriented
manifolds. This section is halfway between the first and second two sections. We
prove most of the theorems but leave out the most technical ones. Here we intro-
duce the notion of differential operators between vector bundles. Differential opera-
tors between vector bundles naturally occur when one studies smooth manifolds, as
the most standard example of a differential operator between vector bundles is the
exterior derivative. We will also see that complex manifolds naturally come with a

differential operator which is very closely related to holomorphic functions defined



on them. We will define the symbol of a differential operator which captures the
most important proterties of a differential operator. With the symbol we define el-
liptic differential operators, and prove the elliptic regularity theorem. After that we
define the elliptic complexes, which are the generalisation of the de Rham complex
and prove the Hodge decomposition theorem of elliptic complexes which will be one
of our main tool later.

The second part is about applications of the Hodge decomposition on complex
manifolds. It consists of two sections. In the first we will deal with general compact
complex manifolds and prove the Poincaré and Serre duality theorem. If a com-
plex manifold is equiped with a Riemannian metric compatible with the complex
structure, then we can naturally assign three different Laplace operators. We will
show that these three operators are not related to each other on a general compact
complex manifold.

The second section is about Kéahler manifolds, which are complex manifolds with
a Riemannian structure that has a more subtle relation with the complex structure,
than simple compatibility. We will prove some basic properties of Kéahler manifolds,
and show that not every complex manifold is Kéahler. After that we show that on
compact Kéahler manifolds, the three differential operators are very strongly related
(they are constant multiples of each other) and give a lot of corollaries such as the

Hodge and Lefschetz decompositions of the cohomology of a Kéhler manifold.
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1 Foundational material

In the sections Complex and Hermitian structures, Representation theory of
s[(2,C) and Complex manifolds and vector bundles we follow the book of [3] Huy-
brechts, D. - Complex Geometry: An Introduction. In the section Sheaves and sheaf
cohomology we follow the book of [5] Ramanan, S. - Global Calculus. Lastly in the
section Harmonic theory on compact manifolds we mainly follow the books of [7]
Wells, R. O. - Differential Analysis on Complex Manifolds. and [1] Gilkey, P. B. -
Invariance Theory: The Heat Equation and the Atiyah-Singer Index Theorem.

1.1 Complex and Hermitian structures

In this section we shall study additional structures on a real finite-dimensional
vector space, such as almost complex structures, scalar products and we will be

interested in the interactions between these structures.

In the following V shall denote a real finite-dimensional vector space.

Definition 1.1. A linear map [ : V — V such that I? = —id is called an almost

complex structure on V.

If V' is a complex vector space, then it is a real vector space too, and the mul-
tiplication with ¢ is an almost complex structure on V. The next lemma says that

the converse is also true.

Lemma 1.2. Let V' be a finite-dimensional vector space with an almost complex

structure I, then I induces a complex vector space structure on V.

Proof. 1t is easy to check, that (a +bi)v = a-v+b- I(v) will give a complex vector

space structure on V. O

Corollary 1.3. If V is an m-dimensional vector space with an almost complex

structure I, then m = 2n and I induces an orientation on V.

Proof. By the previous lemma [ induces a complex vector space structure on V', so
we can choose a complex basis ey, ..., e,. It is clear that ey, Iey, ..., e,, le, is a real
basis for V' so m = 2n, and this basis gives the required orientation. Indeed, if we take
another complex basis fi, ..., f, then there exists A € GL¢((V, I)) such that A(e;) =
fi. Since the determinant of A as a real operator is equal to dete(A)dete(A) > 0,

we see that the orientation is well defined. ]

For a real vector space V let’s denote the complex vector space V ®r C by V.
It is clear that V' — V¢, v — v ®1 is an injective linear map. If w = v ® ¢ € V¢ then

the conjugate of w is W = v ® ¢ = v®FC. It is easy to see, that the image of V in V¢



is precisely those elements that stay fixed under conjugation, i.e. w € V¢ such that
w = w.

Suppose that V' is endowed with an almost complex structure /. Then we will
also denote by [ its complex linear extension to an endomorphism V¢ — V. Clearly,

the only eigenvalues of I on V¢ are +i.

Definition 1.4. Let I be an almost complex structure on the real vector space V/,

and let I : Vo — Vi be its complexification. Then define the following subspaces:
VI =lveVe | Iv=iv} Vo' ={ve V| Iv=—iv}.

So V19 and V%! are the eigenspaces of I.

Lemma 1.5. Let V' be a vector space equipped with an almost complex structure I.
Then
Vo=V V>

The conjugation on Vi gives a complex antilinear isomorphism between VP and
VOl e V10 =VyO0lL

Proof. Because V1? and V9! are different eigenspaces of I we have V30N V%! =0,

so the natural map:

VeV = e

(Ul,?}g) = U1 + U9

is injective. We will prove the first part by giving an inverse map, which is is given
by:

Ve — V0 vot

- (v—;’[(v)’ v+;1(v)) |

It is easy to see that these two maps are inverses to each other.

Let ve Ve, thenv =24+ =2® 1+ y®1, where z,y € V, then

v—il(v) =2 —iy+il(z)+ I(y)
=x—iy+i(l(x —iy)) =0+ il(v)
thus conjugation gives a complex antilinear isomorphism between V1% and V%!, O

One should be aware of the existence of two almost complex structures on V.

One is given by I and the other is given by multiplication with i. They coincide on



the subpsace V10 but differ by a sign on V%!, Obviously, V3? and V%! are complex
subpsaces of V¢ with respect to both almost complex structure. From now on, we
will always regard Vi as the complex vector space with respect to i.

If V19 and V%! are complex vector spaces with respect to 4, then the following

compositions:

V> Ve— V0 Vo Ve—- Vo

v—1il(v) v+l (v)
VU s v v ——

are complex linear respectively complex antilinear isomorphisms.

If V has an almost complex structure I, then [ induces an almost complex
structure on V* = Homg(V,R) by I(f)(v) = f(I(v)). This means, that V* @ C =
Hompg(V, C) = Home (V, C) = V¥ also has a decomposition:

(VO ={feVe [ If =if} = (V)
(V)M ={feVE | If =—if} = (V™)

such that V¢ = (V)10 & (V*)%1. Also note that (V*°)* = Home((V, I),C).
If V is an m dimensional real vector space, then the natural decomposition of its

exterior algebra is of the form:
NV=DAV
i=0

Analogously, A" V¢ denotes the exterior algebra of the complex vector space Vg,

which also decomposes as:
A ve - B
i=0

Also note that A" Ve = A"V @ C and A"V is the real subspace of A" V¢ that is left
invariant under conjugation.

If V' is also endowed with an almost complex structure I, then dimg (V) = 2n
and Ve = VI @ VO with dime(V1HY) = dime(VO!) = n.

Definition 1.6. One defines

/\p’q V= /\p V0 9 /\‘1 Vol

where the exterior products of V19 and V%! are taken as exterior products of com-

plex vector spaces. An a € AV is of bidegree (p, q).



Proposition 1.7. Suppose that V' is equipped with an almost complex structure I,

then one has:

a) NV is naturally a subspace of N7 Ve.

D ANVe= @ NV

p+a=k

c) Complex conjugation on N\ Vi defines a complex antilinear isomorphism. be-
tween N>V and NV i.e. NOV = NP V.

d) The exterior product is of bidegree (0,0) i.e. if o € N9V and B € N7, then
aAB e /\p+p’7q+q’ V.

Proof. Let vy,...,v, and wy,...,w, be a basis of V1? and V%! respectively. If
I =(i1,...,4p) wherei; € {1,...,n}, then let’s denote v;, A- - - Av;, by vi. With these
notations we get that v;®@w;, where 1 <i4; <--- <, <mand1 < j; <--- <j, <,
forms a basis of A”? V', and v; @ wy — v; Awj is an injective linear map. This proves
a),b) and d).

To prove ¢) we have to notice that the conjugation on A" V¢ is multiplicative,
i.e. v Aw =7 Aw, and with that in mind, ¢) follows from b) and Lemma 1.5.

[]

Suppose that z; = 1(z; —iy;) € V¥ is a complex basis of V', where z;,y; € V.
Since z; € V1% we have Iz; = iz;, which implies that I(z;) = y; and I(y;) = —z;,
and z;,y; = I(z;) forms a real basis of V. Also note that z; = 1(z; + iy;) is a
complex basis of V01,

Conversely if v € V, then 1 (v —iI(v)) € V1, therefore if z;,y; = I(z;) is a real
basis of V, then z; = %(xj — y;) is a complex basis of V1.

With these notations we have the following.

Lemma 1.8. For any | < dim¢ V'° we have the following:
(=20 (2 AZ) A A AZ) = (@ Ag) A A (o Ayr)

if | = dime VY0, then this gives the positive orientation induced by the almost com-

plex structure.

Remark 1.9. If V is a vector space with dim(V') = m, then choosing an orientation

is the same thing as choosing a nonzero element in A" V.
Proof. 1If z; = 3(x; — iy;), then

_ 1 . . 1, . )
2 NZj = (g — iy A +ayy) = (g Ay — iy Aag) = 525 Ay

4



Now we just have to substitute this into the left side of the lemma and the assertation
follows. O]

We can do the same with V*. Suppose that x;,y; = I(x;) is a basis of V, then
lets denote the (real) dual basis by z7,y/. Notice, that we have I/ = —y’ and
I/ = 7. It follows that 2/ = 27 4 i3/ and Z7 = 27 — 4y’ are the basis of V*" and
Vo1 (complex) dual to z; respectively z;. A similar computation as above yields

the formula

(%) (21/\31)/\---/\(21/\?):<£L'1/\y1)/\"'/\(xl/\yl)'

If we have an I almost complex structure on V', then we can extend this operator
to an endomorphish T: A"V — A"V as follows, if a = a; A--- Ay, € A"V, then

[(a) =I(ag) A+ A ().

It is not hard to see that this is a well defined endomorphism of A" V. If we extend
ITto NV ®&C = A\ V¢ and still denote the extension by I, then it is easy to see,
that I(a) = " 9o, with a € A7V

Definition 1.10. With respect to the direct sum decompositions, one defines the

natural projections:
* k * X
AN Ve AN Ve w Nve— NV

With these notations we see that I =} P~ 97P.

Remark 1.11. We denote the corresponding operators on the dual space A" V¢ also
by m*, 74 and I. Notice, that I(a)(vy, ..., ve) = a(I(v1), ..., I(vy)) with o € A Vg
and v; € V.

Suppose that V' is also endowed with a scalar product ( , ), i.e. {, ) is a positive

definite symmetric biliniear form.

Definition 1.12. An almost complex structure I on V' is compatible with the scalar
product ( , ) if (I(v), I(w)) = (v,w) for all v,w € V.

Definition 1.13. The fundamental form associated to (V,(, ), ) is the form:

Lemma 1.14. The associated form w is real of type (1,1), i.e. w € NV AM V>,

5



Proof. Let v,w € V arbitrary, then:

This proves that w is a real 2-form. To see that it is of type (1,1) we compute as

follows:
lw(v,w) = w(I(v), I(w)) = (I*(v), I (w)) = (I(v), w) = w(v, w)
Thus w is of type (1,1). O

Lemma 1.15. Let (V,(, ),1I) as before. Then (, ) = (, ) —iw is a positive definite

Hermitian form on the complex vector space (V,I).

Proof. 1t is clear that the form ( , ) is real linear, and for any v € V| with v # 0,

we have (v,v) = (v,v) > 0. Moreover (v,w) = (w,v), and

We can extend ( , ) to a positive definite Hermitian form on V¢ the following

way, let v ® p, w ® A € Ve, then:
(v @ p,w @ N = pM{v, w).

Lemma 1.16. Let (V,{ , ),I) as before, then Vo = V1 & VO is an orthogonal

decomposition with respect to (| )c.

Proof. let v,w € V, then v — il (v) € V' and w + il (v) € V%! and
(v—il(v),w+ il (w))c = (v,w) — (I(v), [(w)) —i{I(v),w) —i{v, [(w)) =0

]

Lemma 1.17. Let (V,(, ),I) as before, then we have the canonical complex iso-

morphism (V,I) — (V°,4). Under this isomorphism one has ( , Yc = 3(, ).

6



Proof. The canonical isomorphism was v —

fu—izl (v)7 and the computation goes as

follows:
= ;’I(v)’ w— ;'J(w> ) = i(<v,w> +(I(), I(w)) + i{v, T(w)) — i(T(v), w)
= (20 w) — 20(I(0),w) = L (v.w)

It is useful to compute in coordinates, so lets see how the above looks once a

basis have been chosen.

Let z1,..., 2, be a C basis of V'*, then z; = £ (z; — iI(x;)), with z; € V. Then

r1,y1 = I(x1),...,2n,yn = I(z,) is a real basis of V' and zy,...,x, is a complex

basis of (V,I). Then we compute as follows:

< an: a’zy., z"; bszs>(C = % Z arlssh,n7s.

Using the previous lemma we get that (x,,xs) = h,,. Since ( , ) is Hermitian on
(V,I) we have that (z,,ys) = —h,s and (y,,ys) = h,.s. By definition of ( , ). one
has that —Im(, ) = w and Re(, ) = ( ). Hence w(z,,z5) = w(y,ys) = —Im(h, ),
w(zr, ys) = Re(hys), (xr, xs) = (Yr, ys) = Re(h,s) and (x,,ys) = Im(h, ). Thus

w=— Z Im(h,s) (2" N2 +y" ANy®) + Z Re(h,s)(z" A y®).

r<s

Using that 2, AZs = (2" +iy" ) A (2° +iy®) = 2" Ax® —i(x" Ay +2° ANy") +y" AN y°
yields the following:

i -
w= - E hys2" NZ°.
2
r,8

If x1,41,..., %, Yy is an orthonormal basis of V' with respect to (, ), then:
_2 r —-r _ r r
w-2Zz NZ —Zw ANy .
T T

Note that there always exists an orthonormal basis like above because we can pick
xq arbitrarily, then (z1, Ix1) = (Ixy,21) = — (21, [x1), thus (x1,1;) = 0 and we can

continue on the orthogonal complement of Span(zy,y;).

Corollary 1.18. If x1,y1,...,%pn, Yn @S an orthonormal basis as above, then:
Wwr=nlat Ayt A AT A YY)

7



Notice that by definition xy,y1,...,%,,y, is a positively oriented orthonormal
basis of (V,I), thus #' Ay' A--- A z™ Ay™ is the unique 2n-form which takes value

1 on any positively oriented orthonormal basis.

Proposition 1.19. Let zy, ..., 2, be a basis of V1Y and let w be a (1,1)-form. Then
by definition w = %ers hyszr N Zs. We claim, that w is a real form if and only if
the matriz (h.s) is Hermitian, moreover if this matriz is also positive definite, then
w is the fundamental form of a scalar product compatible with the almost complec

structure.

Proof. The form w is real if and only if w = w. With that in mind we compute as

follows:

i e — 1 i—
ihr,s =w(zr, Zs) = wW(Zr, 25) = —§hs,r = ihs,r
Hence @ = w if and only if the matrix (h, ;) is Hermitian.

Suppose that (h,.s) is positive definite Hermitian form. Clearly if such a scalar
product exists, then it has to be equal to w(—,I—). It is then an easy excercise
to show that w(—,I—) satifsies the properties of the proposition, which we will

omit. O

If V is a finite-dimensional vector space with a scalar product ( , ), then
( , ) induces a scalar product on AV for every k the following way: if

V1, ooy Up, W1, ..., W, €V, then
(U1, U, W, ..., wy) — det((v;, wy))

defines multilinear map g : V¥ @ V* — R. It is easy to see that this map is antilinear

in the first and second k variables, thus by the universal property of exterior product,

O ANVANV SR

It is easy to see that this map is symmetric. Note that det((v;,v;)) equals 0 if

we get a map:

and only if vy, ..., v, are linearly dependant. If vy, ..., vy are linearly independent,
the previous determinant is just the square of the k-dimensional volume of the

parallelepiped formed by vy, ..., vg. Thus ( , ) is positive definite.
Corollary 1.20. Ifeq,..., e, is an orthonormal basis of V', then
{eil/\em/\---/\eik|1§i1<i2<---<ik§m}

is an orthonormal basis of N°V with respect to (| ).

We define a scalar product on A"V by stating that A’V is orthogonal to N V
if i # j, and on \°V it is (, ). We also denote this scalar product by ( , ).

8



Suppose that (V, (, )) also has an orientation. If ey, ..., e, is a positively oriented
orthonormal basis, then lets denote e; A---Ae, by Vol. Then the Hodge *-operator
is defined by:

aAxf = (a, f)Vol

for o, 8 € N\ V. This determines x, for the exterior product defines a nondegenerate
pairing AV @& N "V — A"V = RVol. It is easy to see that * : A"V — A" F V.

Proposition 1.21. Let (V,{, }) be an oriented euclidian vector space. Let ey, ..., e,
be a positively oriented orthonormal basis, and let ey A --- A e, = Vol. The Hodge

x-operator associated to (V,( , ), Vol) satisfies the following conditions:

a) If {i1,i0, .. ik, G1s oy Jmek} = {1,...,m}, then
*67L1/\"'/\€ik :56j1/\"'/\6jm_k

where € = sqn(iy, ..., ik, J1s -« s Jm—k)- In particular x1 = Vol.
b) The x-operator is selfadjoint up to sign i.e. if a € /\k V, B e /\mfk V', then

(o, #8) = (=1)*" P (xa, B).

¢) fFW=> (=1)"* 7" : A"V — NV, then
ok = W.

In particular = - N\* — N"% is an isomorphism.
d) The x-operator is an isometry with respect to { , ).

Proof. For a) we first note, that for (e;,e;) =1 for any I = (i1, ..., 1), thus
er Axep = {eg,ef)Vol =e; Aeag A+ Aep,

This means that xe; = sgn(1, J)es, where J = (ji, ..., jm—x) and IUJ = {1,... ,m}.
This also proves proves d) because we see that the s-operator sends orthonormal
basis to orthonormal basis. Let a € /\k V,pe /\m_k V', then we have

{a, xB)Vol = (%8, ) Vol = *[5 A x«v
= (—1)k(m_k) xa A\ xf = (—1)k(m_k)(*a, B)Vol



This proves b). Lastly let I = (i,...,ix), by a) it is trivial, that * x e; = aey, and

we compute « as follows
& = (er,+ % er) = (—1)H 0 (xep, xep) = (=10
O]

Now we want to move to A* V¢, we first note that there are two ways to give a
Hermitian metric on A" V. First we can extend (, ) to positive definite Hermitian
form on A" Ve = A"V ®C, or, we can ( , )¢ extend from Vi to A" V¢ the same way
we extended (, ) from V to A" V. It is not hard to see that we get the same metric
on /" V¢ either way. We denote this new Hermitian form by (, )c.

The Hodge *-operator associated to (V,{ , ), Vol) is extended complex linearly
to * : /\k Ve — /\2”_k Ve. On A" Ve these two operators are related by:

a A6 = {a, B)cVol.
Lemma 1.22. Let (, )¢ and x be as above. Then
a) /\k Ve =B, NV is an orthogonal decomposition with respect to { , )c.
b) x: NV = NPV where = dime((V, 1)) =n
¢) x| ppay = (—1)PT4d.

Proof. To prove part a) let @« = vy A=~ Av, Awy A -+ Aw, € NV and let
B=vi A AV AW A Awl, € N with p+g=p/ +¢ =k and p < p. We
want to show that these two elements are orthogonal with respect to ( , )¢, which

means, that we have to show that the following matrix has zero determinant:

M:CWWC@WM>:C%@C 0 )
<IUi,U/.>C <w,~,w;.><c 0 <wi’w9>c

Here we used lemma 1.16 to see that (v;, W)

left block of M is a p x p’ matrix and the lower left block is a ¢ x ¢’ matrix. We know

)¢ = (w;, v})c = 0 for all i, j. The upper

that the determinant is nonzero if and only if the columns are linearly independent.
Now look at the last ¢’ columns, all of them are elements of a ¢ dimensional subspace,
but ¢’ > ¢ so they must be linearly dependant, thus («, 5)c = det(M) = 0.

Now we want prove part b). First notice, that if a; € A’"* V and ay € N*'®
with p; +¢1 +p2 + ¢2 = 2n and a3 A ag # 0, then (p1 + pa2, ¢1 + ¢2) = (n,n). Now let
B € NV, then one has that a A x3 = (a, 3)¢Vol, and we know that (o, B)c # 0
implies that o € A”? V*. This implies that 3 € A’ " V* for some (p',q'). We also

10



know that SA*3 # 0, thus by the previous remark we get that (p+p', ¢+¢') = (n, n),
thus 8 € A" ?"7?V* hence *3 = x5 € N *" PV~

Lastly ¢) is an easy consequence of Proposition 1.21. O]

Definition 1.23. If we have (V,( , ),I) as above, then the Lefschetz operator
L:NVE— NV is given by @ — w A o, where w is the associated fundamental

form.

It is easy to see, that L is the complexification of the real map o — w A «, and
that L is of bidegree (1,1).

Note, that an inner product ( , ) on V induces an inner product on V* by the
following: let ey,...,e, an orthonormal basis in V and e',...,e™ the dual basis
in V*, then we define the induced inner product { , )* by stating that el,... e™
is an orthonormal basis. One can show that this is actually independent of the
choices we made as follows; the map v — ( ,v) gives a V' — V* isomorphism.
With this isomorphism we can pullback the metric on V', and it is easy to see that
the pullback coincides with the metric defined above. It is also easy to see that if
(V,(, )) is a euclidean space and I is a compatible almost complex structure, then
I* on (V* (, )*) is a compatible almost complex structure. This means that we
have an innerproduct on A" V¢ and thus we have an adjoint of L denoted by A. We
claim that A = %L, to see that, let o € A*VZ and 8 € A" Vg, then

(La, B)Vol =La A =wAaA*B=aAwA*B=aALx*p
—aA*(*'Lx ) =aAx(x1L*B) = (a,x 'L x B)Vol.

This implies that A is of bidegree (1,1), and it is easy to see, that A is the complex-

ification of the real map % 'L|p« .

Definition 1.24. Let H : \"V* — /\" V* be the counting operator, i.e.

where 2n = dim(V)
We can extend H complex linearly to A"V, it is also denoted by H.

Theorem 1.25. We have the following commutation relation between the real oper-
ators L, A\ and H:

a) [H,L] = —-2L, b) [H,A] =2\, and ¢) [A, L] = H.
Proof. See [3] Proposition 1.2.26. O

11



Definition 1.26. Let k be a field, then sl(n, k) denotes the Lie-algebra of n x n

matrices with k& entries and trace 0.

Corollary 1.27. The operators L, A, H gives a representation of s{(2,R) on N V*
and s1(2,C) on N\ V.

Proof. The Lie-algebras sl(2,R) and s((2, C) = sl(2, R) ® C have the following basis:

1
X:O ,Y:OO,leo
0 0 10 0 —1
It is an easy computation, that

[B,Y] = —2Y, [B,X]=2X, and [X,Y] = B,

thus the map
Y—L X+—A and B—~ H

is a representation of s[(2,R) on A" V*, and if we tensor everything with C then we

get a representation of s[(2,C) on A" V. O
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1.2 Representation theory of s((2,C)

In this section we will sketch the representation theory of sl(2, C), and then study
the representation we got on A" V7. We assume that the reader is familiar with the

basic theory of Lie-algebras and Lie groups.

Proposition 1.28. s((2,C) is a simple Lie-algebra.

Proof. Let I <sl(2,C) be a non-zero ideal. First notice that if B € I, then I =
5[(2,C). To see that let B € I, then since [ is an ideal we get that

[X,B]=-2X €I, and [Y,B] =2Y € I.

Thus X, Y, B € I and X, Y, B generate s[(2,C). Now let aX +bY +¢B € I anon-zero
element. Applying [B, —| we get that:

[B,aX 4+ bY + ¢B] = 2aX —2bY € I.

This means that 2aX + ¢B,2bY + ¢B € I, applying [B,—| again, we see that
4aX,4bY € I.Ifa #0or b # 0, then B € I. If a = b = 0, then ¢B € I, i.e. if
aX +bY +¢B #0, then B € I thus I =sl(2,C). O

Corollary 1.29. Every finite dimensional representation of sl(2,C) is completely

reducible, i.e. direct sum of irreducible representations.

Proof. By Weyl’s theorem if g is a semisimple Lie-algebra over a field of characteristic
0, then every finite dimensional representation of g is completely reducible. We just

showed that s[(2,C) is simple, hence it is semisimple. ]

Definition 1.30. Let p : sl(2,C) — End¢ (V) be a finite dimensional representation.
Let V} = {v e V | p(B)v = Av}. We say that v € V* is of weight \. We say that
an element v € V is primitive if v # 0 and p(X)v = 0.

Lemma 1.31. Let’s fix a representation p. Then:
a) Yoyee V? is a direct sum decomposition.
b) If v € V*, then p(X)v € VA2 and p(Y)v € V272

Proof. a) We only have to show that if A # X then VANV =0, but this is trivial
since V* is just the eigenspace of p(B).
b) Let v € V?, then:

p(B)p(X)v =(p(B)p(X) — p(X)p(B))v + p(X)p(B)v
=p([B, X])v+ Ap(X)v = 2p(X)v + Ap(X)v = (A + 2)p(X)v.
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p(Y) follows the same way. O

Proposition 1.32. FEvery finite dimensional representation p admits a primitive

element.

Proof. Let vy € V be a non-zero eigenvector of p(B). Look at the following sequence

of vectors:
vg, p(X)vg, p(X)vo, ..., p(X) v, . ..

The non-zero vectors are all linearly independent, since they correspond to different
eigenvalues. Thus there exists a k > 0 such that p(X)*v # 0 but p(X)*(X)v = 0.
Hence, p(X)*v is a primitive vector, and we also got that v is of weight A for some
A e C. O

Theorem 1.33. Let p be a finite dimensional irreducible representation of s1(2,C).
Let vy be a primitive vector of weight \. Let v_y = 0 and v, = (%)p(Y)”vg. Then
for all n > 0 one has that:

a) p(B)v, = (A —2n)v,.
b) p(Y)on = (n+ 1)vni1.
c) p(X)v, =(A—n+1)v,_1.
Also, A =m, where m + 1 = dim¢(V), and p(Y')"vg = 0 for all n > m.

Proof. a) we use induction on n. We have already seen for n = 1, suppose that we

know for all m < n. Then

p(B)p(Y)" o =(p(B)p(Y') — p(Y)p(B))p(Y)" vg + p(Y)p(B)p(Y )" 'ug
=—2p(Y)" v + (A +2(n — 1)) p(Y)"vo = (A = 2n)p(Y)"vp.

oV )0 = = p(¥)" 0y = (n + 1)

) e = D

¢) We use induction on n. Let n = 0, then vy is primitive, thus p(X)vg = 0 = v_3.

Suppose that we know for all m < n. Then

np(X)vn =p(X)p(Y )vn-1
=p([X, Yo+ p(Y)p(X) v
—p(B)on 1+ p(Y) (A =1+ 2)n s
=A=2n+2)v,.1+ (n—1)(A—=n+2)v,4
=n(A—n+ 1)v,_1.
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To finish the proof we start with showing that A € N. Since V' is finite dimensional
there exists m > 0 such that

Vg, - - ., Uy are all non-zero

Umat,--. are all zero.
Now use ¢) on v,,41:
0=p(X)nt1=A—=(m+1)+ Doy, = (A —m)vy,.

We know that v, is non-zero, thus A = m € N. Now we show that m+1 = dim¢(V).
Let V,,, = Span{vy, . .., vy, }. We claim that V,, is an invariant subspace of V. Indeed,
let v=>"",a'v; € V;,, then:

p(B)v = Zai(m —2n)v, € V,,
=0

p(X)v = Zo/(m —n+ v, €V,
i=0

p(Y)v = Z &' (n 4 Dps1Vnp1 € Vi
i=0

Here we used that v; = v,;,01 = 0. This means that V), is an invariant non-zero
subspace of V', but we assumed that p is irreducible, hence V,,, = V and dim¢ (V) =
dim¢ (V) = m + 1. O

The theorem states that every irreducible representation of s[(2, C) looks like the

following drawing:

O @ O @
X X X X
» LU —— Y > 0
% C Y

X \
/Um_l p 7 .
Y

< Um
Y

Theorem 1.34. Up to isomorphism there is only one (m+1)-dimensional irreducible
representation of s(2,C), and it is of the following form: let vy, ..., v, be a basis of

a vector space V. Then
a) p(B)v, = (A —2n)v,.
b) p(Y)v, = (n+ 1)v4q.
c) p(X)v, = (A —n+ 1)v,_1.
Wheren =0,...,m, and v_1 = V41 = 0.
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Proof. Tt is easy to check that this really is a representation of sl(2,C). Now to
show that this is an irreducible representation, suppose that Vy; C V is a non-zero
invariant subspace. Then p(B) : Vy — Vj has an eigenvector in Vj. Since every
eigenvector (up to non-zero scalar) of p(B) is of the form v; for some 0 < j < m,
we get that v, € V for some k. Again since V; is an invariant subspace we get that
p(X)*v, = cvy € Vi with ¢ # 0. Now we use that v, = %p(Y)TUO € Vp, thus V. .C Vj,
so V =1,.

The previous theorem stated, that if p is an irreducible representation, then it is

isomorphic to this representation. O

Corollary 1.35. Let p be an irreducible representation. If ¢ € V*, then there exists
an r € N such that pg is a primitive element of weight A\ + 2r such that

(m—r)!

0= p(Y)"po and @o = p(X) o,

mlr!
where m + 1 = dim¢(V).

Proof. Let vy, ...,v, be a basis of V like in theorem 1.33. Let’s fix r, where 0 < r <
m. Then

p(X)v. =(m—7r+1)v,_4
p(X)v,=m—r+1)(m—7r+2)v,

p(X) v, = TRk

m!
p(Y)p(X) v, = TED
e e
p(Y ) (X0, = (mm—i'),

If ¢ is an eigenvector of p(B), then ¢ = av, for some r € N and « is a non-zero

scalar. Hence

_ (m — 7”)' r r
v = WP(Y) p(X) e,
with ¢y = % (X)"¢ is a primitive element of weight A\+2r and ¢ = p(Y)"po. O

One can get all the irreducible representation of s[(2,C) in one neat representa-

tion. Let C[z,y| be the polynomial ring in two variables over the complex numbers.
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Then one can easily compute that the following map

X — 20,
Y — y0,
B — 20, — y0,,

is a Lie-algebra homomorphism. Let’s denote this map by 7. Since 7(X), 7(Y"), 7(B)
are all degree zero map one can restrict these maps to Clz, y],, the vector space of
polynomials of degree m to get an m + 1-dimensional irreducible representation.
Now let (V, (, }) be an euclidean space of dimension 2n with a compatible almost
complex structure /. By Corollary 1.27 we have a representation of s[(2,C) on A" V¢

given by
2n

X A=L, YL B H=> (n-pp
p=0
Let’s denote this representation by . We say that ¢ € A"V is a primitive if ¢ # 0
and Ap = a(X)p =0.

Proposition 1.36. Let ¢ € N'VZ be a primitive p-form, then Li(¢) = 0 for all
¢ > max(0,n —p+1).

Proof. Let V,, = Span{L’p | i € N} be the invariant subspace generated by .
Restricting a to this subspace gives an irreducible representation of sl(2,C). By
Theorem 1.33 we know that a(B)yp = me, where m+1 = dim(V,,), but we also know
that a(B)p = Hp = (n— p)p, thus m = n — p. This means that a(Y)%p = Lip =0
for all ¢ > max(0,n —p+1). O

Corollary 1.37. There are no primitive p-forms for p > n.

Proof. Suppose that ¢ is a primitive p-form where p > n. Then, by the previous
proposition, dim(V,,) = (n —p+ 1) <0, thus ¢ = 0, which is a contradiction. [

Theorem 1.38 (Lefschetz decomposition). Let (V,{ , ), I) be as before, and let
o e NVE. Then

a) ¢ can be written uniquely in the form

o= Y. L,

r>max(0,p—n)

where @, is a primitive (p — 2r)-form or zero. We call this the primitive de-

composition of ¢.

b) If L™p = 0, then the primitive (p — 2r)-forms @, in the decomposition of ¢

vanish for all r > max(0,p — n +m).
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c) If p <mn, then L™ Pp =0 if and only if ¢ = 0.
Proof. a) Every finite dimensional representation of sl(2,C) are completely re-

ducible, thus
A Ve=viD. .V

where V; are all invariant subspaces, and the restriction of o to V; gives an irreducible

representation. This means that

where 1" € V;. Since every ¢ is a p-form they are all eigenvectors of a(B) = H with
eigenvalue (n — p). Thus by Corollary 1.35 for all j, we get that

¢j - Lrjéja

where ¢; is a primitive (p — 2r;)-form. Now if we collect the primitive forms of the

same degree we get the decomposition

p= > Lo,

r>max(0,p—n

To get that the decomposition is unique, we only have to show that 0 = pg+ Ly +
o+ + L™, implies ¢, = 0 for all m. Suppose that there is a non-trivial element in
this decomposition, and let m be the largest such that ¢, # 0. Again by Corollary
1.35 we know that A*LFy, = cppp, for some 0 # ¢ € Q. Then

primitive primAitive
m m—1 m—17m—1 A mrm
0=A"po+ A (ALpy ) +---+ A(A L Om-1) FA" L™ pp,.
T "\, s e’ \ X ,

Thus 0 = A™L™p,, = ¢npm, with ¢,, # 0, but this is a contradiction since we
assumed that ¢, # 0.
b) Let ¢ € N’ V¢ and suppose that L™¢ = 0. By part a) we know that ¢ =
> L7, thus
0=L"p= Y L',

r>max(0,p—n)

Since ¢, is a primitive (p — 2r)-form we can use Proposition 1.36 see that L%, =0
for all ¢ > max(0,n — (p — 2r) + 1). This means that L™y, = 0 for all r <

max(0,p —n + m), hence

0= Z L,

r>max(0,n—p+m)

18



is a primitive decomposition of 0. By part a) we get, that ¢, = 0 for all r >
max(0,p —n +m).

c¢) Let p < n, and suppose that L" Py = 0. By part b) we get that o, = 0 for all
r > max(0,p—n+mn—p) =0, thus ¢ = 0. O

Corollary 1.39. Let ¢ € N\ 'VE. Then ¢ is primitive if and only if p < n and
L Pty = 0.

Proof. 1f ¢ is primitive, then we have already seen that p < n. We also know that
Hy = (n —p)e and dim(V,) = n — p + 1, where V,, = Span{L‘p | ¢ > 0}. Hence
LTy = 0.

Now suppose that p < n and that L"?*'p = 0. By Theorem 1.38 part a)
we know that ¢ = > ., L"¢, and by part b) we know that ¢, = 0 for all » >
p—n—i—n—p+1:1,t¥1usg0:g00. ]

Corollary 1.40. Let P* = {o € N° Vg | L"*+1a = 0} for all k < n and let P¥ =0
for all k > n. Then

a) NV = @B, L(P*%) is an orthogonal decomposition with respect to (, )c.
n—k kyr« 2n—k yrx . .
b) L% N VE — Vi is an isomorphism.

Proof. a) The fact that this is a direct sum decomposition follows from Corollary
1.39 and Theorem 1.38 part a). To see that this is an orthogonal decomposition, let
Lo, Ly € /\k V¢, with @ < j and oy, o; primitive. Then

0
—_——

(L'oi, ag)e = (AN Lia;), N~ Vag)e = 0.

b) By Theorem 1.38 part ¢) we know that L™ * restricted to A" Vg is injective,
also dim(A" V) = dim(A” ¥ V%), so we get that this is an isomorphism. O

Remark 1.41. Since L, A and H are the complexifications of real operators, they
map A" V* to A" V*. Thus let P = P* N A" V*. Then

a) N'V* =@, L'(PF%) is an orthogonal decomposition with respect to ( , ).
b) L% A"V — A*FV* is an isomorphis.

We also know that L, A and H respects the (p,q) decomposition, thus if we
denote P* N A (p,q) by PP? we get the following:

a) Pk = @p +q=x P77 1s an orthogonal decomposition with respect to (, )c-
b) If p+q =k, then L" % : AP?V* — A""P"PV* is an isomorphism.
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In the following we will connect the representation of sl(2,C) with the Hodge
*_operator. The results will be important in the proof of the Kéhler identities. The
following statements and proofs require some knowledge of Lie groups which we will
use only.

Let ey, ey, ..., e, Ie, be an orthonormal basis in V. Then z° = (—,¢;) and
Yy =(—,Ie;) andw =>""  a' Ay'. Let o,n € N V¢, then e(n)p = n A ¢. We claim,
that if 7 is a real 1-form, then e*(n) = e(n)* = *e(n)*. Indeed, let o € A*' V& and
Be N V¢, then

(e(n)a, B) :nAaA*B:(—l) YaAnAxp = (- )k Ya A (- 1)’“_1**77/\*5
—a AT RB) = (o, A +8) = {a, xe(n) * B).

Now let f!,..., f™ be an oriented orthonormal basis in V*. Then one can compute

easily that

(NN AF)
is zero if and only if i ¢ {4;,... 4}, and if i = i, for some a, then it is equal to
(=1)aF L fin- oA flamt A flett A-c A fi L Also notice, that L = e(w) = >0 e(z')e(y")
and A = e*(w) = Y7, e*(y')e*(2"). Since w is a 2-form, we get that for all n € A"V
[L,e(n)] = 0.

Proposition 1.42. Let ey, ey, ..., e, Ie, be an orthonormal basis, 7 = (—,e;)
and y' = (—,Ie;). Then

a) [Ae(z')] = e*(y)
b) [N e(y’)] = —e*(a?)
Proof. a) We compute as follows:
(A, e(a?)] Ze 27) — e(x?)e* (y")e* (")
=e (yj)e (a7)e(2?) — e(a?)e" (y e (a7).

Now let ¥ be a monom which does not contain 2/ and y’. Then

e*(y' )y =0
e*(y)ax? Ay =0
e (y)y N =y

()l Ny Ap = —aT AN,
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and

e*(y)e" (27)e(a?) — e(2’)e’ (y")e" (a7)¢) =0
e*(y)e"(a’)e(a’) — e(a?)e” (y)e" (27)a? Avp =0
e*(y)e"(a7)e(a?) — e(a?)e” (y)e" (a7 )y’ Ny =v)

e*(y)e"(a7)e(a?) — e(a?)e" (y')e" (a7)a? Ay’ Aoy = — a7 A

The proof of b) is very similar to the previous computation. n
Corollary 1.43. Let n € N"°V*, then

a) [A,e(n)] = —ie*(7).

b) [A,e(m)] = ie*(n).
Proof. One can assume, that n = 2! + iy*. Then

A, e(n)] =[A, e(a?) +ie(y)] = e*(y") — ie*(z') = —i(e*(a) + ie* ("))
— i (@) + (=) = —ie" (¢ — iy") = —ie" ()

b) is similar. O
Corollary 1.44. Let n be a real 1-form, then

(A, e(n)] = —le" ()™,
Where 1= % iP~rP.

Proof. Since 7 is a real 1-form there exists a ¢ (1,0)-form, such that n = ¢ + @.
Then

[Ase(m)] = [A e(@)] + [N e(@)] = —ie" (@) +ie"(p) = e (ip) + e (—iw).

Now suppose that a) e(ip) = —Ie(@)I! and b) e(—ip) = Ie(p)I~!. Since T! = T*
we get that

e*(ip) = e(ip)" = (~le(@)I™")" = ~Ie"(@)I ",
and similarly e*(—¢) = —Ie*(p)I!. This finishes our proof, since we got that

(A, e(n)] =e*(ip) + e*(—ip) = —le*(P)I " = Te* ()1
=—Ie"@+ I =—Te*(nl".
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Now to see a) let « € A" V*. Then

—Te(@) I a = (-1)i"Ple(@)a = (-1)i" PIg Aa = (=1)i 'p A a = e(ip)a.
(pa+1)
P

b) follows in a similar way. ]

It is known that sl(2, C) is the Lie-algebra of the Lie group SL(2,C). Let G be
an arbitrary Lie group with Lie-algebra g. Since SL(2,C) is simply connected there
is a one-one correspondence between the Lie-algebra homomorphisms sl(2,C) — g
and Lie group homomoprhisms SL(2,C) — G. Moreover if p : sl(2,C) — g is a
Lie-algebra homomorphism and 7, : SL(2,C) — G is the corresponding Lie group

homomorphism, then the following diagram is commutative:

sl(2,C) 7 g

EXPl lexp

SL(Q, C) 7r—a> G

Definition 1.45. Let # = exp(1/2im(A + L)) = exp(1/2im(a(X) + a(L)).

Proposition 1.46. Let n be a real 1-form. Then
re(n)# ' = —ile* (nI".
Proof. Let t € R and define the following;:
e:(n) = exp(it(A + L))e(n)exp(—it(A + L)).

It is clear that e;jo(n) = #e(n)# ' The idea is to show that e;(n) satfisfies a
differential equation with initial condition ey(n) = e(n). We will solve the differential
equation, eveluate it in 77/2 and hopefully get what we wanted. First notice that we

have the following commutative diagram:

s(2,C) —2— End(A\* V2)

expl lexp

SL(2,C) —— GLIN'VE)
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Where 7, corresponds to the Lie-algebra homomorphism «a. Let w; = exp(it(X+Y)),

then e;(n) = mq(w;)e(n)ma(w;) . We also have the following commutative diagram:

End(A* V) —9 End(End(\* Vg))

expl lexp

GL(N'VE) —xg= GL(End(A"VE))

It is also known that if g € GL(A" V{), then Ad,(e(p)) = ge(¢)g~*. In our case,
we get that

e+(n) IWa(wt)e(n)m(wt)*l = Adﬂ'a(wt)e(n) = Adexp(it(A+L)(e(n))
—exp(ad(it(A + L)) (e(n)) = Y %[ad(’it(/\ + L))Fe(n).

k>0

Since ad is complex linear, we get the following:

Ley(n) = i(ad(A + L)) (ex(n))
eo(n) = e(n)

One can easily check that cos(t)e(n) + isin(t)ad(A)e(n) solves the differential equa-

tion above. Now eveluating in 7/2 we get that

#e(m# ™ = exa(n) = ad(A)(e(n)) = [A, e(n)] = —Te*(n)L.

The third equality holds because ad(A) = [A, —] for all A € End(/A" V) and for the
last equality we used Corollary 1.44. O

We had the representation 7,,,:s((2, C) — End(C|[z, y],). One can easily compute
that the corresponding Lie group homomorphism 7, : SL(2,C) — GL(Clz,y]m) is
defined as follows: let A € SL(2,C) and f € Clx,y], then 7(A)f = f o AT. Notice
that if f,g € Clz,y|, then 7(A)(fg) = 7(A)f7(A)g. It is easy to see that if f is
polynomial of degree m then 7(A)f is of degree m, thus we can restrict 7(A) to a
Tm(A) : Clz,ylm — Clz, y], map. Let w = exp(1/2in(X 4+ Y)), then 7y (w)(z) = iy
and 7T (w)(y) = iz, thus

T (w)a™ Myt = (Fr(w)a)" (T (w)y)" = ety

Let ¢ = 1, (Y)F2™ = (y0,)Fa™ = (m”jlk)!mm_kyk, for all 0 < k& < m. Then

~ k _ m‘ -m_ m—k _k __ k' -m
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thus ol
T (W) (Y) 00 = im(m—_'k)!M(Y)m"“m

Our computation used concrete representations, but one sees that this last form holds

for all (m + 1)-dimensional irreducible representation of sl(2, C) and corresponding

Lie group representation.

Corollary 1.47. Let oy € N\ V¢ be a primitive form of weight m. Then
#LEpy =i™
forall0 <k < m.

Lemma 1.48. Let ¢ € N Vg, then s = i?” "I ' #¢.

Proof. The Hodge *-star operator satisfies the following: a) x1 = Vol, and b) if n is a
real 1-form, then xe(n)|pr vz = (—1)Pe*(n)*. Notice that a) and b) determine * since
if 7 is a real 1-form, then *xn = *e(n)(1) = ¢*(¢)(Vol), and we can use induction to
define it on p-forms for all p.

Let %|pr Ve = #* I~ 14. We want to show that * = %. We will do that by proving
% also satisfies a) and b). To prove a) we first note that 1 is a primitve form of weight
n. Thus #1 = £, L"(1), and

#(1) =i "I L (1) =TVl = i Vol = Vol.
n!
To prove b) let  be a real 1-form and ¢ € A’ V. Then

ke(n)p =iV M ke (n)p = i e (n)# T ke
=i PP iyer (I = (—1)Pe* ()i T e
=(—1)"¢*(n)*gp.

We just showed that % also satisfies b), hence * = %. ]

Theorem 1.49. Let ¢ be a primitive p-form. Then

rl

«LTp=(—1pPt2____~
A ]

LTL i T:[[go,

forall0 <r <n-—p.
Proof. Since ¢ is a p-form it is of weight n — p. Thus by Corollary 1.47

|
#Lr(p:in—p r [P T(P
(n—p—r)
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Now we use Lemma 1.48 to compute the following:

*LTQO :i(p+2r)2—nH—1#Lrs0

2 —n—1 n— r! e
—P ] 1271 P 'Ln P 7"90

(n—p—r)!
r!
n—p—r
(n—p—r)!L Lp

7! =]
(n—p—r)! 4
7!

:infp(Hfl)2
:iPQ—p(_l)p

:(_1>p(p+1)/2 ‘L”*p*”]lgo.

(n—p—r)!

Here we also used that L™l = IL™ for all m.
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1.3 Sheaves and sheaf cohomology

This section is devoted to collect some standard results and definitions that we
will use later in the thesis. For a more detailed treatment we recommend the book
[5] Ramanan, S. - Global Calculus.

Definition 1.50. Let X be a topological space, then F is a presheaf of sets over X
if

a) For each open set U C X corresponds a set F(U).

b) For all U,V C X open, with V' C U a map resyy : F(U) — F(V) is given
satisfying the following properties: resyy = idr@y, and if W C V C U are
open sets in X, then

resywlresyy = resyw.

Elements of the set F(U) are called sections of F over U, and the maps resyy are
called restriction maps. If F maps open sets to sets with extra structures like vector
spaces, abelian groups, rings, etc. and the restriction maps are linear maps, group
homomorphisms, ring homomorphisms, etc. then we call F a presheaf of vector

spaces, abelian groups, rings, etc.

Remark 1.51. One can look at the topological space X as a category by declaring
that the objects are the open sets of X and the morphisms are the inclusions. Then a
presheaf F over X is just a contravariant functor from this category to the category
of sets Set.

Definition 1.52. A presheaf F is called a sheaf if it satisfies the following properties:

let U = J..; U; be an open cover of the open set U. Then

el
S1) If s,t € F(U), with resyy,(s) = resyy, (t) for all i € I, then s = t.

S2) If s; € F(U;) with resy,u,nu, (si) = resy,uinu, (s;) for all i,j € I, then there
exists s € F(U), such that resyy,(s) = s; for all i € I.

S1 says that if two elements in a sheaf are locally the same, then they are globally
the same, and S2 says that in a sheaf you can glue together elements if they agree
on overleaps.

It follows from the definitions, but we assume that in a sheaf F(()) consist of a

single point.

Fxample 1.53. Since the definition is very abstract lets look at some examples.
1) Let X be a topological space, then the assigment U +— C(U) with the obvious

restriction maps clearly defines a sheaf over X. It is called the sheaf of continuous
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functions on X. Notice that C(U) is an R-algebra for all U and the restriction maps

are R-algebra homomorphisms.

2) Let X, Y be topological spaces, then C'(—,Y") the continuous maps to Y with
obvious restriction maps is clearly a sheaf over X. Unlike above it is just a sheaf of

sets since we cannot add or multiply maps to Y.

3) By a bundle we mean a triple £ = (E, w, B), where E, B are topological spaces

and 7 : E — B is a continuous map. Define the sections of £ over U as follows:
I(U,€) = {s € C(U, E) | mos —idy)

Clearly the assigment U — I'(U, £) with the obvious restriction maps is a sheaf over
X. This sheaf is called the sheaf of sections of the bundle &.

4) Let X be a smooth manifold, and U C X open. Denote by C*(U) the set of
k-times continuously differentiable functions on U. The assigment U +— C*(U) for
all open set U, with the obvious restriction maps clearly defines a sheaf over X for
all k € NU oo.

5) Let X =R and let F(U) be the bounded continuous functions on U. Then F
with the obvious restriction maps is clearly a presheaf over X but F is not a sheaf.
It is clear that F satisfies S1) since F consists of functions. The problem is with
S2). Indeed, let U; = (i — 1,7 + 1), then clearly |J

that x|y, is a bounded function on U;, but z is not a bounded function on R. The

ez Ui = R, and it is also clear
problem with this sheaf is that being bounded is not a local condition. Notice that
if we define F(U) as the locally bounded functions on U, then F is a sheaf.

6) Let X be a topological space, and A a set of order at least two. Let F(U)
be the constant A-valued functions on U if U # () and let F(()) be a one point set.
Then F with the obvious restriction maps is clearly a presheaf on F satisfying S1)
but not S2). The problem comes again from the fact, that being constant is not a
local property. Again if we localise the defining property, i.e. we set F(U) to be the
locally constant A-valued functions on U, then clearly it will become a sheaf over
X.

7) For a harder example let R be a commutative ring with unity. Denote by
Spec(R) the set of prime ideals in R. First we define a topology on Spec(R). Let
S C R, then V(S) = {P € Spec(R) | S C P}. We say that V' C Spec(R) is closed,
if there exists a set S C R such that V' = V/(S). To see that this will define a
topology, let S, C R for some index set A. Then clearly NuecaV(S,) = V(UaeaSa),
and V(S,) UV (S5) = V(S.55), where 5,55 = {uavp € R | o € Sa, v € Ss}. Let
D(f) = Spec(R)\V(f), where f € R. One can check that {D(f) | f € R} is a basis
of the topology on Spec(R). We will define the structure sheaf of R only on a basis
of the topology, but one can check that this indeed defines a sheaf over Spec(R).
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Let f € R, then Or(D(f)) = Ry, where Ry = S™'Rand S =1, f, f2,.... For more
details see the book Algebraic geometry by R. Hartshorne.

Definition 1.54. Let Fi, F> be presheaves over the topological space X. A mor-
phism of presheaves f : F; — JF, assigns to every open set U a morphism
f(U): Fi(U) = F,5(U), making the following diagram commutative:

f(U)
—

F1(U) Fao(V)

resyy resyy

L%
AV) L W)
for all V' C U open sets.

Remark 1.55. If we think of sheaves as contravariant functors from the category of
open sets of X, then a morphism of sheaves is just a natural morphism between the

two functor.

Definition 1.56. Let X be a topological space and F a presheaf over X. Let x € X,
then the stalk of F at the point z denoted by F, is the equivelence class of pairs
(U,s), where U is an open neighborhood of = and s € F(U). Two pairs (U, s) and
(V,t) are equivalent if there exists a open neighborhood W of z, with W C U NV,
such that resyw (s) = resyw (t). We denote the equivalence class of (U, s) by [(U, s)].

If F is a presheaf then we can define the set F' = E(F) = | |,y Fz. There is a
natural map 7 : £ — X that maps an element of F, to x. Notice that if we have an
element s € F(U), then the equivalence class of the pair (U, s) defines an element
in F, denoted by s,, for all x € U. Hence an element s € F(U) gives a section of
the bundle 7 : E — X defined by §(x) = s,. We want to define a topology on F
that makes 7 continuous, and which makes the sections § continuous. Look at the
sets {5(U) | U open, and s € F(U)}. One can check easily that this is a basis of a
topology, and this topology satisfies what we wanted. We call E(F) the Etale space
of F. We saw in example 3) that the sections of a bundle define a sheaf, hence given
a presheaf F one can associate to it naturaly a sheaf F, the sections of the Etale
space, associated to F. Also notice that one has a natural morphism F — F, which
maps s € F(U), to § € F(U) = T'(U, E(F)).

If F,G are presheaves over X and f : F — G is a morphism of presheaves, then
f induces a map f, : F, — G, by the following: let’s represent an element of F, by
(U, s), then the image of this element is the class of (U, f(s)). It is easy to check, that
this is a well defined map between the stalks. We claim that the map F — F induces
an isomorphism F, — F, for all z € X. Indeed, let z € X and [(U, 5)],[(V,1)] € Fa.
Suppose that [(U, 3)] = [(V,%)] € F,, by definition this means that there exists an
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open set W C U NV containing z, with 8|y = resyw (3) = resyw () = f|w, hence
[(U,s)] = s, = 3(x) = t(z) = t, = [(V,t)], so the map is injective. To see that it is
surjective let [(U,7)] € F, then y(z) € F,, since 7 is a section. Hence by definition
there exists an open set V' containing x and ¢ € F(U) such that y(x) = [(V,1)].
Since 7 is a continuous map and by definition #(V') is open, we get that the open set
7~L(#(V)) is not the empty set since it contains x. Thus there exists an open set W,
with € W such that v(y) = t(y) for all y € W, hence the set VNUNW = A is not

empty and resya(y) = resy 4(t) which by definition means that [(U,v)] = [(V,1)].

Proposition 1.57. Let F be a presheaf, then F is a sheaf if and only if the natural
morphism F(U) — F(U) is an isomorphism for all U open.

Definition 1.58. Let F,G be sheaves over X. A morphism of sheaves is just a
morphism of presheaves. We say that F is a subsheaf of G if there exists a morphism

L F — G, with ¢, : F, — G, being injective for all z € X.

One can check that this is equivalent to saying that «(U) : F(U) — G(U) is

injective for all U open.

Definition 1.59. Let X be a topological space, let R be a sheaf of rings and M
be a sheaf of abelian groups. We say that M is a sheaf of R-modules, if for all open
set U, the group M(U) is an R(U)-module, and the restriction maps of M respects

the module structure, i.e. for all V' C U open sets we have the following:

resyy (fs) = resyv (f)respy(s),

where f € R(U) and s € M(U).

Definition 1.60. Let F', F, F' be sheaves of abelian groups over X. Suppose we
have morphisms F' — F and F — F'. We say that that the sequence

F'— F — F

is exact, if the sequence

F. — Fp — FI
is exact, for all x € X.

Remark 1.61. Let F,G be sheaves, then the exactness of the sequence
F—G—0

means that F, — G, is surjective for all x € X, which basically means that if
U is an open neighborhood of = and s € G(U), then there exists a V' C U open
neighborhood of z, and t € F(V'), such that the image of ¢ in G(V') is resyy(s).
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Proposition 1.62. Suppose that that we have a short exact sequence of sheaves

0O —F —F —F"—0

then
0 — F(X) — F(X) — F'(X)

18 an exact sequence.

Usually the map F(X) — F”(X) is not surjective. For example let D be an open

domain in C, then we have the exponential sequence

0— Z 25 0p 22 05 — 0

where Z is the locally constant Z-valued sheaf, Op is the sheaf of holomorphic
functions on D and Oj, is the sheaf of nowhere zero holomorphic functions on D.
Since locally we have complex logarithm this is an exact sequence of sheaves, however
let D = C\0, then z € Og,((C\0) is not the exponential of a holomorphic function.
Indeed, if it were, then we would have a complex logarithm I(z) on C\ 0. If we
differentiate both side of exp(l(z)) = z we get that I'(z) = 1/z, hence we have a
primitive function of 1/z which would imply that the integral of 1/z around the
origin is zero, which is a contradiction.

The point of sheaf cohomology is to understand what happens at F(X) —

F"(X). In some sense sheaf cohomology measures the nonexactness of this sequence.

Definition 1.63. Let F,G, G’ be sheaf of R-modules over X. Suppose that G’ is a
subsheaf of G. We say that F is injective if arbitrary morphism from G’ to F can
be extended to a morphism from G to F, i.e. we have the following commutative

diagram:

0 > G’ > G

Definition 1.64. Let F be a sheaf of abelian groups. We say that F is flabby /soft
if an arbitrary section of F over an open/closed set can be extended to the whole

F.

Notice that if F is a sheaf, then we can identify F with F the sheaf of sections
of the Etele space, and then it makes sense to look at sections over a closed set K.
We can look at this in a little bit more abstract way. Let f : Y — X be a continuous
map, and F a sheaf over X, then we have 7 : E(F) — X. We can define the pullback
of this bundle as having total space f*(E(F)) = {(y,e) €Y x E(F) | f(y) =7(e)}
and the map 7 : f*(E(F)) — Y is just the restriction of the projection pr; to Y.
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Define the inverse image sheaf f~!(F) as the sections of the bundle (f*(E(F)),w,Y).
If K is a closed subset of X then this will give back what we just defined before.
Let ¢ be the inclusion map of K to X, then we denote (~1F by F|x-.

Proposition 1.65. If X is paracompact, and K is a closed subspace of X, then
every element of F|x(K) is the restriction of some s € F(U), where K C U open.

Proposition 1.66. Suppose that X is paracompact, and R is a soft sheaf of rings.
Then every sheaf of R-modules is soft.

Let M be a smooth manifold, then it is known that M is paracompact. Let
E — X be a smooth vector bundle over X, and denote it’s smooth sections over U
by I'(U, E). This is clearly a sheaf, moreover if we denote the sheaf of smooth real
valued functions by C'*°, then I'(—, E) is clearly a C*°-module. Suppose we have a
section of E(C*) over a closed set K, then by Proposition 1.65 it is a restriction of
a section over U where K C U, which is just a smooth function f on U. It is known
from general topology that there exists a smooth function ¢ which is constant one
on some neighborhood of K and Suppy C U. Hence we can define ¢f on whole X
by defining it zero outside of U, and it is clear that the restriction of this map to
K is the same as [ restricted to K. Hence we just showed that C'*° is a soft sheaf,

which by the previous claim implies that I'(—, F) is soft.

Theorem 1.67. If F is a sheaf of R-modules, then there exists an injective sheaf T
and an injective morphism F — I, i.e. every R-module is a subsheaf of an injective

R-module.

If we have a morphism of presheaves f : F — G, then one can define the
presheaves ker(f), im(f) and coker(f) in a natural way, by assigning to U the set
ker(f(U)),im(f(U)) and G(U)/im(f(U)). If F, G are sheaves, then ker f is a subsheaf
of F, but im(f) and coker(f) are just presheaves. Still one can associate the sheaves

im(f) and coker(f) to them. One can prove that in this case one has two exact

sequnces of sheaves:

—_— —_—

0 — im(f) — G — Coker(f) — 0

and

O—>ker(f)—>.7:—>in/1\(?)—>0
From now on we will not write out the ~ sign, and by im(f) and Coker(f) we will
always mean the associated sheaves.
By Theorem 1.67 one can always embed F into an injective sheaf Z°. Then one
can look at the factor sheaf X' = Z°/F. Since X! is also a sheaf of R-modules, one

can embed it to an injective sheaf Z', and then one has the following exact sequence:
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0 s F y 70 y T1 > K2 » 0

where K? = Z' /im(Z°). By induction, we see that there is a long exact sequence of

sheaves:

0 y F y 70 y Tt y T2 s I

where F is a subsheaf of Z° and Z" is injective for all n € N.

Definition 1.68. A sequence of sheaves of abelian groups
o —— Ft s Pl

is called a complex, if any two consecutive map is zero. We denote the complex by

F*. The maps are called differentials, usually denoted by d or §.

Definition 1.69. An exact sequence of sheaves

0 s F A y T1 72

is called the resolution of F, and the complex

7° = 1Y y T1 y 12

is called the resolving complex of F. If in addition every sheaf in Z*® is an injective

sheaf, then we call Z*® an injective resolution of F.
By the reasoning above, we see that every sheaf F has an injective resolution.

Definition 1.70. A morphism of complexes ¢©°® : Z° — J°* is a sequence of mor-
phisms ¢* : F' — G’ which is commuting with the differentials, i.e. we have the

commutative diagram:

o I T T

90”71\[ @nl (anrll

o TV T T L

Proposition 1.71. Let 0 - F — Z° and 0 — G — J* be injective resolutions.

Then every R-module homomorphism f : F — G extends to a morphism of com-
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plexes ©* : I®* — J°*, making the following diagram commutative:

F—T

1o

g — J*

Definition 1.72. Let f*, ¢°* : Z°* — J° be two morphisms of complexes. We say that
f* and g¢® are homotopic, if there exists a sequence of morphisms A : 78 — J¢ 71,

such that do k' — k'L od = f' — ¢*, i.e. we have the following diagram:

A y Tt , Titl
kilf/ilﬁ )gil Lt /flﬁ )gi ki‘*‘lf"/ﬂﬁ )gi+1 ki+2/
- / - 7
L g y Tt , Titl

Proposition 1.73. Let 0 — F — Z°* be an injective resolution of F and 0 — G —
J* a resolution of G. Let f : F — G be a morphism of R-modules and suppose

©* W I — J* are morphisms of complexes, making the diagram commutative

F—T

e

g——J°
Then ¢©* and ¥* are homotopic.

Since we have morphism of complexes, we can define isomorphism of complexes.
One hopes that the injective resolution of a sheaf is unique. This is not true, but

some other kind of uniquenes holds.

Corollary 1.74. Suppose that 0 — F — I®* and 0 — F — J* are two injective
resolutions of the sheaf F. Then there exist morphisms @® : Z°® — J* and ¢* : J°* —
I°* which are inducing the identity map on F, moreover the compositions ©® o 1)°,

and *op® are homotopic to the identity map of the complex J* and Z*® respectively.

Definition 1.75. Let F be a sheaf, and let 0 — F — Z° be an injective resolution
of F. Then we define the cohomology groups of the sheaf F, as the cohomologies of

the complex
(X)) — THX) — T*(X) — ...

We denote the i-th cohomology group of F by H' (X, F).

This is well defined, since one can prove, that the homotopy between two injective

resolution induces isomorphism between the cohomologies. One should also notice,
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that H°(X, F) = F(X). Indeed, by Proposition 1.62 we know that the sequence
0 — F(X) — I°X) — THX)

is exact, hence H*(X, F) = F(X).

Proposition 1.76. Suppose that we have an exact sequence of sheaves

0 Fi > Fo y Fa > 0

then there exisits injective resolutions 0 — F; — I*, making the diagram commuta-

tive.

0 > 13y > 13 > 13 > 0

Corollary 1.77. A short exact sequence of sheaves

0 fl > fg > fg s 0
mduce a long exact sequence of cohomologies

0 —— H°X,F) — HY X, F) — H (X, F3)

-

S HN X, F) —— HY(X, Fa) — HY(X, Fs) — ...

As a corollary we get that, the sequence
0 — F(X) — FX) — FHX)—0

is exact, if the first cohomology group of F; is zero.

Injective resolutions are a really strong tools for proving these kind of statements,
but it is very hard to do computations with them, so we want to look at other types
of resolutions that will give back the cohomology groups of F but are easier to work
with.
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Lemma 1.78. Let 0 — F — Z° be an arbitrary resolution of F. Suppose that
HY(X,Z7) =0 for all i > 0 and j > 0. Then the cohomologies of the complex Z(X)®

are naturally isomorphic with the cohomologies of F.

Now we need to find conditions that asserts that the cohologies of a sheaf F are

all zero.

Proposition 1.79. If F is a flabby sheaf, then H'(X,F) = 0 for all i > 0. The

same result holds for soft sheaves over paracompact spaces.

Proposition 1.80. Let 0 — F — Z®* and 0 — G — J* be resolutions such that
H{(X,Z') = H(X,J?) = 0 for alli > 0 and j > 0. Suppose we have morphisms
f:F—=Gand ¢*:I° — J* making the diagram commutative

Fi —— T

|

G——J°
Then we have the following commutative diagram:

Hi(p*(X))
—r

HY(Z(X)*) H'(J(X)*)

! |

Hi(X Hi(X
(X, F) —iy— H'(X,9)

where the vertical maps are the isomorphisms from Lemma 1.78, H'(p*(X)) is the
map induced by the maps ©'(X) : TH(X) — J4X), and H'(f) is the induced map

on the sheaf cohomologies.
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1.4 Complex manifolds and vector bundles

In this section we collect some standard definitions and results (mainly with-
out proofs) that we need later on in the thesis. For a more detailed treatment we

recommend the book [3] Huybrechts, D. Complex Geometry: An Introduction.

Definition 1.81. Let Q C C” open and F : Q — C*. We say that F is complex
differentiable in a € €, if there exists an L, : C* — C* linear, such that

F(z)=F(a)+ Ly(z — a) + rq(2),

with 72& 5 0'if 2 — a. We denote L, by F'(a).

[lz—all

Definition 1.82. We say that F' : Q — CF is holomorphic, if F' is complex differ-
entiable for all a € .

Proposition 1.83 (Chain rule). Let Q C C? open, G : Q — C?, with G complex
differentiable in a € Q, let Q@ C C? open G(a) € Q, F : Q — C*, with F complex
differentiable in G(a). Then F o G is complex differentiable in a and

(FoG)(a) = F'(G(a)G (a).

Proposition 1.84. Let 8, = 3(9,, —i0,,) and 8;, = 3(dx;+idy;). Let F : U — C™
be a smooth map, where U C C". Then F' is holomorphic if and only if 0z, F}, = 0
for all j, k, and in this case F'(a) = (0., Fx(a));x-

Definition 1.85. A holomorphic atlas on a smooth manifold M?" is an atlas
{(Uq, a)} of the form ¢, : Uy ~ ¢4 (U,) C C™ such that whenever U, N Up # 0
the transition functions g,z = @4 © gogl : 08U NUp) = 9a(Us N Ug) are holomor-
phic. The pair (U,, ¢4) is called a holomorphic chart. Two holomorphic atlases are

compatible, if their union is a holomorphic atlas.

Definition 1.86. A complex manifold X of dimension n is a differentiable manifold

M of (real) dimension 2n endowed with a maximal holomorphic chart.

A complex manifold is called compact, connected, simply connected, etc., if the
underlying differentiable manifold has this property. By abuse of notation we will
denote the underlying manifold M by X. It is clear that any open subset of X is a

complex manifold.

Definition 1.87. A holomorphic function on a complex manifold X is a function
f: X — C such that f o' : ¢,(U,) — C is holomorphic for any (U,, p,) chart

in the maximal holomorphic atlas.
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Definition 1.88. Let X be a complex manifold, and let U be an open subset of X.
Then
Ox(U)=T(U,0x)={f:U — C| f is holomorphic},

with the obvious restrictions, defines a sheaf of rings over X. We call this the sheaf

of holomorphic functions on X.

The following proposition shows the first difference between complex and differ-

entiable manifolds.

Proposition 1.89. Let X be a complex manifold. If X is compact and connected,
then Ox(X) = C, i.e. the only global holomorphic functions are the constant func-

tions.

Proof. Let f € Ox(X). Since X is compact || f|| : X — R attains it’s maximum at
some point x € X. Let U = f~!(c), with ¢ = f(x). It is clear that ) # U is closed,
and if y € U, then by the maximum principle f is constant in a small neighborhood
of y, thus U is open, hence X = U. O

Definition 1.90. Let 7 : £ — X be a holomorphic map between complex manifolds.
We say that the triple (E, 7, X) is a holomorphic vector bundle if it satisfy the

following;:
a) For all z € X the fiber F, = 7 !(x) is a d-dimensional complex vector space.

b) There exists {(Ua, ¢a)}a, Where {U,} is an open cover of X, and for all «
¢o : T HU,) — U, x C? is a biholomorphism, such that pr,(¢.(v)) = 7(v)
for all v € E,, and for all x € X the composition pry o ¢o|g, — C¢ is a linear

isomorphism.

The pairs (U,, ¢o) are called holomorphic charts and the set {(Us,, ¢4)} is called
a holomorphic atlas of the bundle E.

Suppose that U, N Us # (). Since ¢, and ¢ has to respect the fibers, one sees
that that composition of gba(bgl :UaNUz x C* = U, NUs x C% is of the form

Yoty (2,0) = (¥, gap(7)(v))

where gop : Uy, N Usg — GL(d,C) is a holomorphic map. It is not hard to see that
the maps {gag} satisfies the relations
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a) Jao(r) =1id, for all z € U,.
b) gap(x)gsa(z) = id, for all z € U, N Up.
¢) Gay(z) = gap()gsy(2), for all x € U, N Uz N U,.

We call the maps {g,s} the transition functions of E associated to the atlas

{(Ua, da)}-

One can show that if we have an open covering {U, } of X, and holomorphic maps
gap : Us NUz — GL(d, C) satistying a),b) and c), then there exists a holomorphic
vector bundle 7 : F — X, with holomorphic charts ¢, : 7~ }(U,) — U, x C¢ and

transition functions g,z associated to the holomorphic atlas {(U,, ¢a)}-

Theorem 1.91. Let E, F' — X be holomorphic vector bundles over X . Suppose that

over the same covering E has gop and F' has hag transition functions. Then

1. E®F — X giwen by transition functions gog @ hag 15 a holomorphic vector
bundle with fibers E, ® F, over x € X.

2. E® F — X given by transition functions gos ® hapg is a holomorphic vector
bundle with fibers E, ® F,, over x € X. If E and F' are line bundles, then the

transition functions of the tensor product is just goshag-

3. E* — X given by transition functions (ggﬂl)T 1s a holomorphic vector bundle
with fibers B over x € X.

4. /\k E,S*E — X given by transition functiong /\k(gaﬁ),Sk(gag) is a holomor-
phic vector bundle with fibers /\k E, and S'E, over x € X. If the dimension
of the fibers, called the rang of E, is r, then \' E denoted by det(E) is a line

bundle, with transition functions det(gop). It is called the determinant bundle
of E.

5. IfY C X a complex submanifold, then |1y : 7 (Y) = Y is a holomorphic

vector bundle overY .

Definition 1.92. Let E, F — X be vector bundles. We say that ¢ : £ — F'is a

holomorphic vector bundle morphism, if:
a) ¢ is holomorphic.
b) ¢ is a bundle morphism, i.e. p(E,) C F,.
¢) ¢lg, : Ex — F, is complex linear.
d) rank(p|E,) is constant.
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Definition 1.93. Let £ — X be holomorphic vector bundle. We say that F' is a
holomorphic subbundle of E, denoted by F < E| if F' is a complex submanifold of
E, and F, is a complex subspace of FE, for all x € X with dim(F,) being constant
on X.

Proposition 1.94. Let E be a vector bundle then F' C E s a holomorphic subbundle
of E if and only if there exists an holomorphic atlas {(Uy, pa)}a of E making the

diagram commutative
Wﬁl(Ua) NnF (i?—) Ua X Cl

| |

7Y U,) —22 U, x €4

where the first vertical map is the inclusion map and the second maps (z, (c1, ..., c1))
to (z,(c1,...,c,0,...,0)).

Definition 1.95. Let E, ' — X be holomorphic vector bundles, and f: E — F a
holomorphic vector bundle morphism. Then ker(f) = {v € E | f(v) =0 € Frw},
Im(f) = f(E). Let v,w € F, we say that v is equivalent with w if 7(v) = 7(w) and
v —w € Im(f). If two elements are equivalent, then they have to be in the same

fibrum, hence we have a map 7 : F// ~— X, and this bundle is denoted by Coker(f).

Proposition 1.96. ker(f) is a holomorphic subbundle of E, Im(f) is a holomorphic
subbundle of F' and Coker(f) is a holomorphic vector bundle. Moreover, if we have a
holomorphic atlas of F like in Proposition 1.94, then the transition functions {gas}

associated to this atlas is of the form

has ¥
Gap = < 0 k@ﬁ) )

where {hag} and {kng} are transition functions of Im(f) and Coker(f) respectively.

Definition 1.97. Let £ — X be a holomorphic vector bundle. Then
Op(U) ={s:U — 7 *(U) | s is holomorphic, and 7 0 s = idy}
defines a sheaf over X. It is called the sheaf of holomorphic sections of E.

Notice that if f € Ox(U) and s € Og(U), then fs makes sense, and it is an
element of Og(U). Hence Op is a sheaf of Ox-modules.

Let X be a complex manifold of dimension n, then TX, T* X, det(7T*X) are com-
plex vector bundles over X but not holomorphic vector bundles in a natural way.

However let {(U,, ¢a)} be a holomorphic atlas of the complex manifold X. Suppose
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that U, N Ug # 0, then by definition ¢, o 9051 t Uy NU) = ¢9o(Uy) is holomor-
phic, hence the complex derivative of ¢, o @51 is an element of GL(n,C). The maps
(Pq © gpgl)/ og : Us — GL(n, C) are clearly holomorphic, moreover they satisfy the
relations a),b) and c¢) defined on page 36. Hence there exists a holomorphic vector
bundle TX with the above defined transition functions. This bundle is called the
holomorphic tangent bundle of X. It is clear that TX and T X are isomorphic as
smooth complex vector bundles over X, but unlike TX, T X is a complex manifold.
Define the holomorphic cotangent bundle as the dual of TX, denoted by T*X and
denote the exterior powers by A" T*X. If » = n, then the line bundle

textdet(T*X) is called the canonical bundle of X denoted by Kx. We will see later

how important this line bundle is, which justifies its fancy name.

Definition 1.98. Let M be a smooth manifold and £ — M be a smooth vector
bundle. A smooth bundle homomorphism J : £ — FE is called an almost complex
structure if J2 = —id. An almost complex structure on a manifold M is just an

almost complex structure on T'M.

Notice that not every bundle has an almost complex structure, for example bun-

dles of odd rank can not admit an almost complex structure.

Proposition 1.99. If X is a complex manifold, then X admits an almost complex

structure induced by the complex structure of X.

Suppose that M is a smooth manifold with almost complex structure J, then
one hopes that J defines a complex structure on M which induces J, however this is
not true. There are examples of manifolds that admit an almost complex structure

but do not have a single complex structure.

Corollary 1.100. Let X be a complex manifold, and denote with I the almost
complex structure induced by the complex structure of X. Let TX @ C denote the
tensor product of T X with the trivial C-bundle X xC, then TX®@C = T X T X,

where

TYYX ={veTeX | Iv=iv}
THX ={veTeX | Iv=—iv}.

Sometimes we will denote T X ® C with TeX. T X ® C is called the complexified
tangent bundle of X. Suppose that (U,, ¢4) is a holomorphic chart on X. Then this

chart induces holomorphic coordinates on U, denoted by zq,..., 2,, more precisely
we have the natural projections m,. : C* — C, which sends (¢4, ..., ¢,) to ¢,. Then
Z, = T, 0 p,. It is clear that z. = z, + iy,, and the functions x1,¥1,...,T,,y, are
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smooth coordinate functions on U,. If I is the almost complex structure induced by
the complex structure on X, then

10,, = 8,, 19, = —0,

T

Hence 0,,,0,, ..., 0s,,0,, gives a complex basis of Tt X, over any p € U,. But as we
saw in page 3, there is a better choice of basis for T X, which is more compatible

with the almost complex structure, namely

0., = 5(0., ~0,) = 50, ~ 10.,)

r

[\

0s, = 50, +0,) = (0, +10,,).

By Lemma 1.5 we know that 9,,,...,0,, is a basis of T"'X,, and 95,,...,05, is a
basis of T%' X, for all p € U,. Notice that the elements of TcX act naturally on
complex valued functions, defined by as follows: if f = u + iv where u and v are
smooth functions on X, and w = r +is € Tc X, then w(h) = r(u) — s(v) +i(r(v) +
s(u)). Let X and Y be complex manifolds, and suppose that we have a smooth map
f + X — Y. then this induces a morphism of vector bundles T'f : Tc X — T¢Y,
which is just the complexification of the map T'f. Suppose that locally we have
holomorphic coordinates z; = x;+iy; and w; = r;+1is;, then locally f = (f1,..., fm)
and f; = u; + tv;, where u;,v; are smooth functions. Then the Jacobian of f with

respect to the basis 0y, ...,04,,0y,,...,0,, and Oy,...,0,,,,0s,...,0s, is just

( ou; ) (8ui )

92 )5 \%i)i;

< avi ) < avi >
9% )5 \%i)i;

Since 0,,,0.,,,...,0%,...0s, and Oy,,..., 0, 07, -.,0g, are also bases of T X

and TcY we can compute the Jacobian of f with respect to these bases, which is

(), (@
%5 /05 \%i /i
(), (3
% )i \%i/)i;

J]R(f) =

Je(f) =
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This implies that the chain rule for 9., and 0., is the following. Let g : U — V and
f:V — C be smooth maps, where U C C" and V C C™ then

of dg;  ~~(9f 99,
azl(f 9)= zj: (azj g) 92 +zj: (azj Og) 92
0 af agy S 8§j
Notice that if f is holomorphic, then

ofi
<8zj>z‘,j 0
ofi
o (%),

This means that if f is holomorphic, then f respects the (1,0) and (0,1) de-
compositions. Also notice that if f : U — C™ is holomorphic, where U C C" i

Je(f) =

open, then the complex derivative of f’ is precisely (0., f;); ;. Hence if {(U., goa)} is

a holomorphic atlas of X, then the transition functions of T X are

(va 005" 0 @p 0
Gapg = -
0 (a0 w5 ) 0pps

Hence we see that the transition functions of T'°X are the same as the transition
functions of 7X. This means that 71X is a holomorphic vector bundle over X and

TX and T'YX are isomorphic as holomorphic vector bundles.

Let’s look at the cotangent bundle of X. Clearly it also has an almost complex
structure, which acts on a 1-form by composing it with I. Let’s denote this almost
complex structure on 7*X also with /. Hence 7% X ® C = T¢X also splits to T+ X
and 7% X, where

T*I,OX:{QETEX | IO‘:OZO]:ZQ}:TLO*X
T*U,lX:{O{GTEX | Ia:ao]:—l&}:TO’l*X

Let NT*X = NT"" X @ AN'T%" X. Then by Proposition 1.7 we know that

N7ex = @

pt+g=k

Definition 1.101. Let A% be the sheaf of smooth sections of A* T3 X, and A%? be
the sheaf of smooth sections of A T*X.
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Clearly we have A% = @, ,_x A%%. Notice that A" T* X is a holomorphic bundle,
hence it makes sense to look at holomorphic sections of A 07X Let ot NTeX —
N TEX and 779 : N°T*X — N“T*X be the canonical projections coming from
the direct sum decompositions. Then 7% and 777 induce morphisms on the sheaves

A% denote them also by 7% and 7P,

Definition 1.102. Let d : A% — A% be the complexification of the exterior

derivative d. Then we define the morphisms:

O =m"od: AR — ARFHI

= q+1 AP q+1
0 =naPttlod: ART — ARTT.
We claim, that d = 0+ 9. Indeed, if 21, . .., 2, are holomorphic coordinates, then

de = dCL’j —|— Zdyj

is the dual basis of 9, ,9z,, hence dzy, ..., dz, and dz7, ..., dZ, are bases of T""" X
and T%" X respectively.

Let f = u + v be a smooth complex valued function on X. Then

df =0y, fdu; + 0y, fdy; = > (Ouyu+ i0y,0)da; + (9, u +0,,v)dy;
J

J
=" 0., fdzj + Oconjz, fdZ; = Of + OFf.
—_—— Y

(1,0)—form (0,1)—form

Hence on O-forms d = 9+ 0. Now let ¢ be a (p, ¢)-form, then ¢ = ZI,J o1 ydzr NdZ;,

where @7 5 is a smooth complex valued map. Then we compute as follows:

ng:ZdQO[J/\dZ[/\dzJ = Z(a+5)g0[,JAdZ]Ad§J
1,J I,J
= Za@IJ/\dZ[/\dZ]—l-g(p[’J/\dZ]/\dZ] =8g0+5<p.

I J TV TV
’ (p+1,9)—form (p,g+1)—form

As a corollary we get that 9 =0>=00+00 = 0, since
0=d>=(0+0)(0+0)=0>+90+00+0,

and looking at the bidegrees of these maps the corollary follows.

Proposition 1.103. Let f : X — Y be a holomorphic map. Then f* : AD? — ALY,
and f*0 = 0f*, f*0 = 0f*.
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Proposition 1.104. Let’s denote the sheaf of holomorphic p-forms by P, then QP
is a subsheaf of APC, in fact QP = ker(0).

This means that we have the following sequence of sheaves

Qp [SEN AP,O i} Ap’l 9 I\ AP:Q 9 s

This is clearly half-exact since 9" = 0. The next theorem will show that this sequence

is actually exact.

Theorem 1.105 (0-Poincaré lemma). Let U be an open neighborhood of the closure
of a bounded polydisc B. C B. C U C C". If a € AZI(U) is O-closed, then there
exists a form B € ALI(B,), with 98 = o on B..

Hence the sequence of sheaves above, called the Doulbeault complex, is an exact
sequence. Also notice that AR? are soft sheaves for all (p, ¢), since they are all C*°-

modules which is soft as we saw in the previous section. Define the following groups:

_ ker(9: ARI(X) — AR (X))

) = 1@ ) > A (X))

Clearly this is just the comohologies of the complex (AP*(X),d ).

Theorem 1.106 (Dolbeault’s thoerem). There exists a canonical isomorphism
HP(X) ~ HI(X,QP),

for all (p,q).

By Proposition 1.103 a holomorphic map f : X — Y induces a morphism of
sheaves f* : AD? — AR, Since f* commutes with 0, we see that f* induces a
morphism of complexes f* : A)" — AL* ie. we have the following commutative

diagram:

p p0 0  4pl 9 |
O —— AV > AV >

f*l f*l f*l

D p,0 0 . gp.l 9
QX (—> AX 7 AX 7

By Proposition 1.80 there is a commutative diagram

Py ) XD pa )

! !

p P
Hq(Ya QY) Hq—(fz) Hq(X7 QX)
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where the vertical maps are the isomorphisms from the Doulbeault’s theorem,
HI(f*(X)) is the morphism induced by f* : AVY(Y) — ARY(X) and HI(f*) is
map induced by the sheaf morphism f*: Q}, — QF.

Let £ — X be a complex vector bundle, then denote by A% and A% the sheaf
of sections of the bundle A" T3¢ X ® E and N T*X ® E. Elements of A% and A2¢

are called E-valued k-forms and (p, ¢)-forms respectively.

Lemma 1.107. If E is a holomorphic vector bundle, then there exists a natural
complex linear operator Op : ARY — ARIT such that 5215 = 0 and satisfies the
Leibniz product rule, i.e. Op(fa) = 0f Aa+ f A dpa.

If s1,...,s, are holomorphic sections of F over U, which are a basis of E, for all
z € U, then an E-valued (p, g)-form over U can be written as ), a; ® s;, where a;

is a (p, ¢)-form for all j. One then defines dg as

5;;04 = Zgaj N S;.

J

Since 0 annihilate holomorphic functions, this is well defined. One can check that

this will satisfy properties in the lemma.

Proposition 1.108. Let’s denote by QF, the sheaf of holomorphic E-valued p-forms.
Then Qb = ker(0g : A%’ — ABY), and Q° is naturally isomorphic the sheaf of

holomorphic senctions of E.
Since O locally is just 7 copies of O we see that the sequence

E) 0
0 — Qb — AR0 Py gpt 95,

is exact, hence the complex (AP*, ) is a soft resolving complex of Q25,. Lets denote
the g-th cohomology group of the complex (AP*(X), ) by HP (X, E).

Theorem 1.109 (Dolbeault’s theorem). There exists a canonical isomorphism
HP(X,E) — HY(X,0h,),

for all (p,q).

Notice that H°(X, Q%) ~ Op(X).
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1.5 Harmonic theory on compact manifolds

The purpose of this chapter is to state the Hodge decomposition theorem and
introduce the framework for the statement. For detailed proofs we recommend the
book [7] Wells, R. O. - Differential Analysis on Complex Manifolds.

1.5.1 Sobolev spaces

In this section X denotes an n-dimensional, compact orientable smooth manifold.
On X we fix a volume element dV ol which is just a nowhere zero smooth differential
n-form.

Let E be a Hermitian (smooth) vector bundle over X. Let I'y(X, E) be the set
of kth order differentiable sections of E (0 < k < 00), where I'(X, E) = I'o(X, E).
Define an inner product (, ) on I'(X, F) by setting

(&n) = /X<f($),77($)>E dV ol

Where (, )g is the Hermitian metric on E. Let

Il = (€,6)2

be the L:norm and let W°(X, F) be the completion of I'(X, F) in this norm. Let
{Uq, pa} be a finite trivialising cover of X, making the following diagram commuta-
tive,

E|Ua L) (7& x CP

ﬂl [

U, —2 U,

Here ¢, is a bundle isomorphism, and ¢, : U, — ﬁa C R™ are a local coordinate

system for the manifold X. Let
Gas : T(Up, Elp,)) = T(Uy, Uy x CP) = [C(Uy)]?

be the induced isomorphism. Let {p,} be a finite partition of unity subordinate to
{U,} and define, for € € T'(X, F)

1l = D lPaspatll gns,
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where [| || gn , is the Sobolev norm. Let f € C2°(R"), then

.= [ (0+1o2 1)

where

A~

fo) = @ry [ e )

is the Fourier transform in R™. If f € C2°(R"™, CP) then

2 2 2
1A R s = il g s 4 oo+ (1ol o o

Let W*(X, E) be the completion of I'(X, E) with respect to the || ||, norm. Notice
that the || ||, depends on the choices we made, but it can be shown that any two
such norm is equivalent so W*(X, E) is a well defined space. For s = 0 we have

defined two norms, but these will be equivalent as well.

Remark 1.110. Intuitively ||£]|, < oo for s € Z~( means that the first s derivatives
of ¢ are in L*(X). This follows from the fact, that on C2°(R") the following norm

is equivalent to || ||, pn

VI

with D* = (—i)l*lg21 ... 92, The equivalence of the two norms basically follows
from D f(y) = y*f(y).
Notice that for t < s and f € C2°(R") one has

N 2 ~ 2
[ aswiiwla < [ ael®iiwl
Thus WH(E) C W5(E).
Theorem 1.111. Lett < s, then one has the following:

a) (Rellich) id: T'(E) — T'(E) extends to ani: W5(E) — W'(E) compact, norm

non-increasing linear operator.
b) (Sobolev) For k+1+ % < s we have W*(E) C T'w(E).
c) The L? pairing on T'(E) extends to a
W3 (E)x W*(E) - C
perfect pairing, and |(§,n)| < [|€]] |Inll _; for all §n € T(E).
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The previous theorem says that if we want to prove that a section £ is smooth
we just have to show that & € W#(E) for all s. Typically we will do the following.
First we show that £ € W*(E) for some ¢, then we will show that if £ € W*(E) then
& e WtH(E).

Definition 1.112. Let E, F' be Hermitian vector bundles over X. Let L : I'(E) —
['(F) be a complex linear map. Then a complex linear map S : I'(F) — ['(E) is
called the formal adjoint of L if:

(L&,n) = (& 5n),

for all ¢ € I'(E) and n € I'(F'). We denote S by L*.

Remark 1.113. Since I'(E) is dense in W9(E) the formal adjoint is unique if it exists.

1.5.2 Differential operators

Let E, F' be smooth complex vector bundles over X. We say that a complex
linear map

L:T(E) - T(F)

is a differential operator if it is locally a differential operator, i.e. if for any choice
of local coordinates and local trivialisations, there exists a linear partial differential

operator L, such that the following diagram commutes

[C"O(U)r _L, [coo(z?)]q
[ [
I'(U,U x C?) — T(U,U x C9)
) )

(X, E)|y —— T(X,F)|y

where U € X open and ¢ : U — U C R" is a local coordinate system. That is, if
f=(f1,..., fp) € [C®(U)]’, then

p
L= Y aipey,
o <k.j=1
with ¢ = 1,...,q. We say that a differencial operator is of order k, if there are no

derivatives of order > k + 1 in a local representation. We denote by Diff,(F, F) the
vector space of all differential operators of order k.

Let’s denote by OP(E, F') the vector space of all complex linear maps
T:T(E) - T(F),
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such that there is a continuous extension of T’
T, : WS(E) — W (F)
for all s. These are the operators of order £ mapping F to F.

Proposition 1.114. Suppose that L € OPy(E, F'), then L* the formal adjoint of L
exists and L* € OPy(F, E), and the extensions

(L*)s : WH(F) — W H(E)
1 gien by the adjoint map
(Lp_s)* : WE(F) — W**(E).

Remark 1.115. Here we mean the adjoint of Ly_, : W*=$(E) — W~%(F) with respect
the L? pairings in Theorem 1.111.

Proposition 1.116. Diff,(E, F) C OPy(E,F), and if L € Diff,(E, F), then the
formal adjoint of L is a differential operator, i.e. L* € Diff (F, E).

We now want to define the symbol of a differential operator. Let T* X be the real
cotangent bundle of X, and 7 : T*X — X the projection map. Let’s denote the non-
zero covectors by T'(X), i.e. T'(X) = T*(X) \ {zero section}, thus 7 : T"(X) — X
is a locally trivial bundle. If E, F' are complex vector bundles over X, then 7*(FE)

and 7*(F') are complex vector bundles over T7"(X). We set, for any k € Z

Smbl(E, F) ={c € Hom(r*(E),n*(F)) | o(z, pv) = p*o(z,v),
with (z,v) € T'(X), p > 0}.

We define a linear map
Ok : lefk(E, F) — Smblk(E, F),

where o (L) is called the k-symbol of the differential operator of L. To define oy (L),
we first note that o (L)(x,v) needs to be a linear mapping from E, to F,, where
(x,v) € T'(X). Therefore let (x,v) € T'(X), and e € E,. Pick ¢ € C*(X) and
f € T'(F) such that dg(z) = v, and f(x) = e. Then we define

'k

on(L)(z,v)e = L (%@ . g(x))kf) (z) € F,.
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This defines a linear mapping
or(L)(z,v) : By — Fy,

which then defines an element of Smbl,(F, F), as is easily checked. Also, it is easy

to see that o4 (L)(z,v)e doesn’t depend on the choices we made.

Proposition 1.117. The symbol map o) induces an exact sequence
0 — Diff, ,(E,F) -2 Diff,(E,F) -2 Smbly(E, F)

where j 1s the natural inclusion.

Proof. Locally L has the following form

where {A,} are ¢ X p matrices of C* functions on U, with U C X open. With these
notations one has
on(L) = ) Aul",
o=k
with v = &dzy + - - - + &, dx,,. For each fixed (z,v), ox(L)(z,v) is a linear map from

x X CP — x x CY, given by the usual multiplication of a vector in CP by the matrix

> AL

jal=k
We now see, that oy (L) is a smooth section of Hom(7*E, 7*F'), and that ox(L) =0
iff L has no non-zero kth order term, i.e. L € Diff,_;(E, F'). To see that the symbol
or(L) is really of the form above, choose ¢ € C*(U) and f € I'(E) such that
dg, = > ¢, 0p,9(x)dz; = v and f(x) = e, then one has the following:

ik
aD)(wo)e = Y 4.0 (o= 901 ) @

la|<k
Nk Ao o ("
=3 iy o (o - o)) @
lal<k '
Clearly, the evaluation at x of derivatives of order < k — 1 will give zero, since

there will be a [g — g(2)]|. = 0 term left remaining. This means that the only terms
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remaining will be the following

Z A0y, g(2)* ... 0y, g(x Z A& %.

laf=k laf=Fk
[

The most important properties of the symbol map o, are collected in the follow-

ing proposition.

Proposition 1.118. Let E, F, G be Hermitian vector bundles over X . Then we have
the following

a) Let Ly € Diff,,(E, F) and Ly € Diffy(F,G), then Ly o Ly € Diff, ,(E,G) and
O'k_H(LQ e} Ll) = O'l(LQ)O'k(Ll).

b) Let L € Diff(E,F), then ox(L*) = or(L)*.

Example 1.119. Let’s see some example.

1) Consider the de Rham complex of a compact manifold X
A% (X) LN AL (X) LN A% (X) S N A% (X)

We want to compute the associated 1-symbol mappings

&/\Tcx

o1(d)(z,v) o1(d)(z,v)

/\0 T(é,x /\ T(C :c( )
We claim that for e € A® 1¢ X, and (z,v) € T'(X) one has

o1(d)(z,v)e =iv Ae.

To see that, choose g € C*°(X) such that dg(z) = v, and f € (X, A" Tz X) such
that f(x) = e, then one has

(@)(ev)e = (§ilo = o(a)F ) (0) = i+ dyfo) A fl0) = v A
2) The Dolbeault complex of a compact complex manifold X
ARO(X) =25 ARY(X) -2 AR(X) 25 2 ARM(X) .
This has an associated symbol sequence
a1(9)(z,v)

0 ey Ly 2@@0) pp2 v 1@ @)
NP TxX N TEXx TR NPT T
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Let v € T; X C T¢ X be a nonzero covector, and e € A”* Ty X, then one has
01(0)(z,v)e = "' Ae,

with v = v 4 v%1. Indeed, let g be a smooth function on X, such that dg(z) = v,
and f € APY(X) = ['(X, \*T*X) with f(x) = e. Since d = 0 + 0 we see that
v10 = 9g(z) and v*! = Jg(z), hence we have that

01(0)(x,v)e = i0((g — g(x)) f)(x) = i(0(g — g(x)) A f)(x) + ((g — g(2))df) (x)
= i0g(x) A f(x) = iv™ Ae

3) For the last example, let E be a holomorphic vector bundle over X, then we

have the following complex

IE
\
7

AR0(X) 25 AR () s AR(X) Py A(X)

This has the following associated symbol sequence

o1 (EE)(ac,v
—

) /\p,l T*X @ E o1(9p) (= (9p)(xv)

NOT*X @ E, ) N2 TEX @ B, TP

We let v = v!0+0%! as before, and f@e € N T X @ E,, then a similar computation

as above shows that
o1(0g)(r,v)f ®e= ("' A f)®e.

Notice that every symbol sequence from above was an exact sequence. This can be

seen easily by choosing a proper basis.
Definition 1.120. Let 0 € Smbli(E, F). We call o elliptic if and only if for any
(x,v) € T"(X) the linear map

o(x,v): E, = F,

is an isomorphism.
Note that in this case E and F must have the same dimension.

Definition 1.121. Let L € Diffy(E, F), then L is said to be elliptic of order k if
and only if (L) € Smbl,(E, F) is elliptic.

Notice that being elliptic depends only on the highest term of L. Also note that
if L is an elliptic operator of order k, then it is an operator order k + 1, but not an

elliptic operator of order k + 1, since o4,1(L) = 0.

52



Proposition 1.122. Let L € Diff (E, F), then L is elliptic if and only if its formal
adjoint L* € Diff,,(F, E) is elliptic.

Proof. We have to show that o4 (L)(z,v) is invertible if and only if o4 (L*)(z,v)
is invertible, but by Proposition 1.118 we know that oy (L*)(x,v) = op(L)(x,v)*,
and we know from classic linear algebra that a linear map A is invertible iff A* is
invertible. O

Theorem 1.123. Let L € Diff,.(E, F) elliptic, then there ezists an Le OP_y(E,F),
such that

Lo L —idr € OP_(F)
Lol —idg € OP_\(E)

Definition 1.124. Let L € OP,(FE, F'). We say that L is compact operator, if for
all s the extension L, : W*(E) — W* *(F) is a compact operator.

Proposition 1.125. Let S € OP_(FE, E), then S is a compact operator of order 0.
Proof. We have for any s the following commutative diagram,

W(E) ——>— W(E)

\/

Ws+1

where j is natural inclusion, and by Theorem 1.111 a) this is a compact operator. []

Definition 1.126. Let L € Diff,(E, F'), then we set

K ={£ € T(E) [ L() = 0},

and we let

Ky ={ne W E) | (&n) =0forall £ € K.}

denote the orthogonal complement of K7, in WO(E). It follows immediately that X1
is a closed subspace of the Hilbert space WO(E).

In the following, we want to prove that if L is elliptic, then X is finite dimen-

sional. To do that, we need a little bit of functional analysis.

Definition 1.127. Let A, B be Banach spaces, a linear operator 7' : A — B is
compact, if it sends bounded sets to precompact sets, i.e. if {z,} is a bounded
sequence of elements in A, then there exists a subsequence z,, such that Tz,

converges to some y € B.
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Let’s denote the space of compact operators from A to B by Com(A, B). It is
easy to see, that compact operators are automatically bounded. Indeed, suppose
that 7" is not bounded. Then there exists a sequence of unit vectors {x,} such that
|Tx,| > n. Now {z,} is a bounded sequence and T is compact, hence we have a

subsequence z,,, such that T'z,, converges, which is absurd.

Lemma 1.128. Let H and K be Hilbert spaces. Then 1) Com(H, K) is a closed
linear subspace of B(H, K) which is closed under composing with elements of B(H)
or B(K), and 2) C' € Com(H, K) if and only if C* € Com(K, H).

Proof. 1) It is trivial that Com(H, K) is a linear subspace. Suppose that C €
Com(H,K) and L € B(K). Let {z,} be a bounded sequence in H, then there
exists a subsequence {z,, } such that Cz,, — vy, then since L is continuous, we see
that LCx,, — Ly, i.e. LC is a compact operator. Now let T € End(H), then {Tz,}
is a bounded sequence in H so it has a subsequence T'z,,, such that C'T'z,, — v, so
C'T is compact.

To prove that Com(H, K) is closed, choose a sequence {C,,} in Com(H, K), such
that C,, — C in the operator norm. Let {x, 0} be a bounded sequence in H. Since C4
is compact we have a subsequence of {z, o} denoted by {z, 1} such that {Ciz, 1}
converges. Now {z,1} is a bounded sequence and Cy is compact, so we have a
subsequence {z, 2} such that {Cyx, 2} converges. Since {z, 2} is a subsequence of
{1} we see that {C}z,, -} still converges. Repeating this procces inductively, we see
that for each j € N the sequence {Cyx, ;} converges for all k < j. Let Z, = x,,, we
see that for this sequence {Cy, } converges for all k&. We show that C' is compact, by
showing that {C'z;} is Cauchy. Note that Z,, is a bounded sequence, so there exists
a M > 0, such that ||Z,]] < M for all n, and by that we get the following

1€ = Cinl| < ||C = Cil[ 7]l <€ = Cil M.

Let € be arbitrary, and choose k£ > 0 such that ||C' — Ci|| < e. Choose ny > 0 such

that ||CxZ, — CrZm|| < € for all m,n > ng. Now we compute as follows

ICZ, — CZy|| <||CZp — CrZnl| + [|CrZn — CrZml| + |Ckm — CZp|
<eM+ec+eM =e(2M + 1)

This proves that Com(H, K) is closed.
2) Pick C' € Com(H, K) and suppose that C* ¢ Com(K, H). Therefore, we can

choose a sequence of unit vectors {z,,} in K, such that
|C*; — Cral| > 60,
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if © # j. Since C* is continuous, we see that vy, = C*x,, is a bounded sequence, and

we also see that

21CYn — Cyml|l Z[(CYn — Cym, T — 1))
=Y = Y Y — Ym)| = [|C" 20 — C* || * > 6% > 0,

if m # n. Thus, there is no convergent subsequence of {C'y,,} which is a contradic-
tion. [

Definition 1.129. Let H, K be Hilbert spaces. We say that the " : H — K
continuous operator is Fredholm, if it is invertible modulo compact operators, i.e. if
there exists S, So € Hom(K, H) such that

S1T —idy € Com(H) and T'Sy; — idgx € Com(K).

We denote the Fredholm operators from H to K by Fred(H, K).

Remark 1.130. If such S; and S5 exists, then S; — S5 € Com(K, H), thus we can
assume, that S; = Sy. Also it is easy to see that T is Fredholm if and only if 7™ is
Fredholm.

Lemma 1.131. Let H, K be Hilbert spaces, and T € Hom(H, K), then the following

are equivalent

a) T is Fredholm.
b) dim(Ker(7)) < oo, dim(Ker(7*)) < oo, Im(T') is closed, and Im(T*) is closed.
¢) dim(Ker(7)) < oo, dim(Ker(T*)) < oo and Im(T') is closed.

Proof. We only prove that a) implies ¢). Let T' € Fred(H, K), and {z,} € Ker(T),

|zn]] = 1. Then one has
z, = (id — S17)x, = Cxp,

with C' € Com(H). Thus {x,} has a convergent subsequence. We just showed that
the unit sphere in Ker(7') is compact thus Ker(7') is finite dimensional. Since 7™ €
Fred(K, H) we also have that Ker(7*) is finite dimensional.

To prove that Im(7") is closed pick a sequence {y,} in Im(7T'), such that y, — y.
We want to prove that y € Im(7). Since y, € Im(7) we can choose a sequence
{z,} C H, such that Tx, =y, for all n. We can assume that {x,} C Ker(T)* and
first we assume that there exists some M > 0 such that ||z,|| < M for all n i.e.
{z,} is bounded. Then one has that

Ty = S1yn + (id — S17)x,,.
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Now id — ST is compact so we have a convergent subsequence of {(id — 517z, },
moreover {S1y,} is Cauchy. This means that we have a subsequence {x,, } such that

Zn, — =, and we have that Tx = y.

Zn
lznl”

Now assume that {x,} is not bounded, i.e. |z,|] — oo. Then let z, =

and with this we get that T'(z,) = # — 0. By the previous argument we get a

- |xn|

subsequence {Z,, } with Z,, —  and 7'(Z) = 0. This means that € Ker(7), but
T, C Ker(T)* which is closed, so we get that & = 0, but we also have that ||Z|| = 1,

which is clearly a contradiction. O

Remark 1.132. Since H, K are Hilbert spaces, for any 7' € Hom(H, K') one has
Im(7T)* = Ker(T™).

If we also know that Im(7") is a closed, then
Im(7) = Ker(T*)*.

Thus if Im(7') is closed one has K = Im(T)®Im(T)*, and K/Im(T) ~ Im(T)*. This
means that 7" is Fredholm if and only if dim(Ker(7")) < oo and dim(coker(7)) < oo.

Now we can go back to differential operators.
Corollary 1.133. If L € Diff, (E, F) is an elliptic operator of order k, then
Ly : WS(E) — Wk (F)
is Fredholm for all s.
Proof. By Theorem 1.123 there exists L € OP_(F, E) such that

LoL —idg € OP_|(E)
Lol —idr € OP_(F).

By Proposition 1.125 we know that LoL—idg and Lo L—idy are compact operators
of order 0, i.e. they are in Com(W?*(E)) and Com(W?*(F')) respectively for all s. [

Now we can prove the elliptic regularity theorem which is the key step towards

the Hodge decomposition.

Theorem 1.134 (Elliptic regularity). Let L € Diff,(E, F) be an elliptic operator
and & € W3 (E). Suppose that Ls§ =n € I'(F), then £ € ['(E), i.e. £ is smooth if its

image 1 smooth.
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Proof. Since L is elliptic we have L such that Lo L —id = S € OP_,(E). We know
that L& € I'(F) thus L,_j 0 L, = (Lo L),¢ € I'(E). Now one has

§=(LoL—5)¢

with (L o L),¢ € T(E) and S¢ € W*+'. Thus ¢ € W*t(E), and by induction we
see that £ € W5t"(E) for all n. By Theorem 1.111. b) we see that £ € T'(E). O

Theorem 1.135. Let L € Diff,(E, F) be an elliptic operator, and denote by K,
the kernel of L, : W*(E) — W *(F). Then we have the following

a) K, CIT(E) and hence KX, = Ky, for all s.
b) dim(Ky,) = dim(K;) < oco.

Proof. First we show that dim(Xy,) < oo, which is trivial since we know, that L is
Fredholm, thus dim(Xy,) = dim(Ker(L;)) < co. Note that by the elliptic regularity
theorem if £ € Ker(Lg) then & is smooth thus Ker(L;) = Ker(L). O

Theorem 1.136. Let L € Diff.(E,F) be an elliptic operator. and suppose that
7 € K. NT(F). Then there exists a unique n € T'(E) such that Ly = T and such
that m is orthogonal to Xy, in WO(E).

Proof. First we show that Ln = 7 can be solved in W*(E), then it will follow by the
elliptic regularity theorem that 7 is smooth and we will have our desired solution.

To prove that we can solve Lyn = 7 in W*(E) consider the following diagram

Ly

WHE) —%— WOF)

The vertical arrows indicate the duality between the Banach spaces, and by 1.114
we know that (Ly)* = (L*)o. We know from functional analysis that the closure of
the image is the orthogonal complement of the kernel of the transpose, i.e. m =
Ker((Lg)*). In our case since Ly is Fredholm we know that Im(Ly) is closed thus
Im(L;) = Im(Ly,). It follows that there exists 7 € W*(E) such that Lyn = 7. Since
7 is smooth we know that by the elliptic regularity theorem that 7 is smooth. To get
the unique solution we just have to project orthogonally 1 onto the closed subspace

5L, 0

1.5.3 Elliptic complexes

Definition 1.137. Let Ey,..., Ex be complex vector bundles over the compact
manifold X. Let’s fix k € Z+, and let L; € Diffy(L;, L;y1) for i = 0,1,..., N — 1.
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We say that (E,L) = ({E;},{L;}) is a complex if the following sequence is half
exact
L Ly Lo Ly

[(Ey) —— I'(E)) —> T'(Ey) —— ... — ['(Ey) ,
ie. LZ‘_HLZ‘:OfOTiZO,l,...,N—l.

If we have a complex (E, L), then we can define it’s cohomology groups as follows,
let £ =FEny1 =0,and let L1 = Ly =0, then the gth cohomology group of the

complex is

v Ker(Ly:T(E) = T(E.))
H(B) = Im(Lg-1: D(Eq-1) = T'(Ey))’

with ¢ = 0,1,..., N.
Definition 1.138. Let (E, L) be a complex as above, then we say that (E, L) is

elliptic if the following sequence of symbols is exact

o(Lo) o(Ly) o(Ln—1)
% \

*(Ey) > Yy 1 (Ey) —— 0,

0 —— 7 (Ep)
ie. for all (z,v) € T"(X) we have Im(o(L;)(z,v)) = Ker(o(L;t1)(z,v)), where
o(L_y) =0(Ly)=0.

Let (E, L) be an elliptic complex. Then we can equip each E; with a Hermitian
metric and thus we can define the formal adjoints L} € Diffy(E; 1, E;). With respect

to these Hermitian metric the Laplace of operators of (F, L) are
Aj = LjLJ + Lj_lL;f,l S Diﬁgk(Ej, EJ)
with symbols

02k(A;) =ow(Lj)on(L;) + on(Lj-1)ow(Lj 1)
=01 (L;) or(Ls) + on(Lj-1)ow(Lj-1)".

Proposition 1.139. Let (E, L) be a complex, then the following are equivalent
a) (E, L) is an elliptic complex.
b) The Laplace operator A; is an elliptic operator for j =0,1,...,N.

Proof. We have to prove the following linear algebraic fact. Let V', V, V" be finite
dimensional complex vector spaces equipped with Hermitian metric, and consider

the following commutative diagram

v A,y B,y
[
VA By




Suppose that B o A = 0, then we have to prove that Im(A) = Ker(B) if and only
if C = B*B + AA* is invertible. It is clear that Ker(C') D Ker(B) N Ker(A*). Now
suppose that C(z) = 0, then

0= (Cz,z) = (Bx, Bx) + (A*x, A*z),

so we also see that Ker(C') C Ker(B)NKer(A*). Now suppose that Im(A) = Ker(B)
and suppose that C'v = 0, we want to show that in this case v = 0. By the argument
above we have that A*v = 0 and Bv = 0. Since Bv = 0 and we assumed that

Ker(B) = Im(A) we have w € V' with Aw = v, and we have the following
0= (A", w) = (A" Aw, w) = (Aw, Aw),

thus 0 = Aw = v.

Now suppose that C' is invertible and let v € V with Bv = 0. We want to show,
that v = Aw’ for some w’ € V’. Since C' is invertible we have w € V with Cw = v,
thus

0

(Bv, Bw) = (BCw, Bw)
=(BB*Bw + BAA™w, Bw) = (B*Bw, B* Bw),

where we used that BA = 0. The computation above shows that B*Bw = 0, thus
v=Cw= B*Bw+ AA*w = AA*w. m

We now have the following fundamental theorem concerning elliptic complexes.

Theorem 1.140 (Hodge decomposition). Let (E, L) be an elliptic complex. Then

we have that
a) dim(Ker(A;)) < oo, for j=0,1,...,N.

b) The following direct sum decompositions are orthogonal in the L? inner prod-

uct:

[(Ej) = Ker(A;) @ Lj1l(Ej-1) © LiT(Ej)
WO(E;) = Ker(4;) & L WH(Ej1) @ LiWH(Ej1)

c¢) Ker(A;) = Ker(L;) N Ker(L}_,), and the natural map

Ker(A;) — H(E)

a — [af
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18 an isomorphism.

Proof. In this proof the extensions of Aj, L;, Lj to W*(E) will be denoted by
Aj, Ly, L3, since (Aj)s, (Lj)s and (L})s are just way too wonky.

Part a) immediately follows from Proposition 1.139 and Theorem 1.135. We know
from the proof of Theorem 1.136, that we have the following orthogonal decompo-
sition:

WO(E;) = Im(4;) & Ker(A}) = Im(A;) & Ker(4,),
where we used the fact that the Laplace operator is (formally) self-adjoint, i.e.
A* = A; Thus if £ € WO(E), then

=28+ (LjL;+ L Lj_y)n,

with & € Ker(A;) and n € W?(E;). Let’s denote L¥_n € W*(E;_1) and L;n €
W*(E;11) by m and ny respectively. We get that:

§ =28 + Lj—1m + Ljn.
Since L;L;_1 = 0 we get that
(L;U27Lj—1771) = (12, Lij—ﬁh) =0,

thus Liny L L 1m1. To show, that & is orthogonal to Ling and Lj_1my we show that
Ker(Aj) = Ker(L;) N Ker(L}_,). Let a € Ker(4;), then we have the following:

0= (Aja,a) = ((LjL; + Lj 1 L] 1), o) = (Lo, L) + (Lo, L),

thus Aja = 0 if and only if o € Ker(L;)NKer(L7_,). This shows, that &, is orthogonal
to Ling and L; 171, and with that we proved the first half of b). For the second part
assume that £ € I'(Ej;), i.e. £ is smooth. Then £ — &, = Aj(n) is smooth and by
elliptic regularity theorem we get that n is smooth thus 7, and 7, are smooth.
Lastly, from Ker(A;)LIm(L;_;) it follows that a — [a] is injective. Let o €
Ker(L;). To prove that the map above is surjective we have to show [a] can be
represented by an element § € Ker(A;). We know that o = ag + Lj_10q + L;‘»ozg.
If Ljay = 0, then we are done, since [ag] = [a], with ap € Ker(4;). To see that

Lias = 0 we compute as follows:
0 = (LjOé,OéQ) = (LjL;O[Q, 062) = (L;Oég, L;O@),

thus Lias = 0 and we proved the Hodge decomposition theorem. O
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FEzample 1.141. 1) Let X be a compact oriented m-dimensional manifold with vol-
ume element dVol. We have seen that the complex (A% (X),d) have exact symbol
sequence, hence it is an elliptic complex. If we introduce Hermitian metrics on the
bundles A" T¢X, then we can define the Laplace operators A; = dd* + d*d, where
j=0,...,m. Let X; = ker(4;), then by the Hodge decomposition theorem we get
that

K, =~ HI (A5 (X)).

If we denote by A¢ the sheaf of locally constant functions on X, then the complex
(A%,d) is clearly a soft resolution of Ax. Let H*(X,C) denote the cohomology
groups of Ac, then by lemma 1.78 we get that

HI(X,C) ~ HI(A%(X)).

Let b;(X) = dim(H*(X,C)), then as a corollary of the Hodge decomposition theo-
rem, we get thet b;(X) < oo for all 4, and b;(X) = 0 for ¢ > m. The numbers b;(X)
are called the Betti numbers of X.

2) If we also assume that X is a compact complex manifold, then we have the
Dolbeault complex (A%*(X),d). We have seen that this complex also has exact sym-
bol sequence, hence it is elliptic. If we introduce Hermitian metrics on the bundles
N?T* X, then we can define the Laplace operators [, = 99" 48 0. If KP4 denotes

ker(LJ,), then we get that
Kt~ (A (X)) = HM(X) ~ HI(X, Q%).

The latter isomorphism is the Dolbeault isomorphism from Theorem 1.106. Let’s
denote dim(H?(X,€,)) by h?(X), then h??(X) < oo for all (p,q). The numbers
hP4(X) are called the Hodge numbers of X.

3) Let E be a holomorphic vector bundle over X (compact, complex). We have
the complex (A%*(X), dg), which is elliptic since it has exact symbol sequence. If we
equip F with a Hermitian metric, then the tensor product of metrics clearly give a
Hermitian metric on A”?T*X & E for all ¢, and we can define the Laplace operators
Opy = 050y + 0,0p. If we denote the kernel of g, by X%, then we have the
following

Kra ~ HI(AD (X)) = HP(X, E) =~ HY(X,0%)

The latter isomorphism is from Theorem 1.109. Since Og(X) ~ H°?(X, E), we
get as a corollary, that the global holomorphic sections of a holomorphic vector
bundle E over a compact complex manifold is always finite dimensional. If we pick
E =T'X, then we see that the vector space of holomorphic vector fields are finite

dimensional, which implies that the biholomorphism group of a compact complex
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manifold X is a finite dimensional Lie group. For more details we recommend the

book [4] Kobayashi, S. - Transformation Groups in Differential Geometry.
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2 Harmonic theory on compact complex manifolds

In the section Pincaré duality we follow the books of [3] Huybrechts, D. - Complex
Geometry: An Introduction. and [7] Wells, R. O. - Differential Analysis on Complex
Manifolds. The section Comparison of the Laplace operators follows the lecture notes
of Robert Szdéke on Kéhler manifolds.

2.1 Poincaré and Serre duality

For the beginning let’s just assume that X is a compact oriented Riemannian
manifold of dimension m with Riemannian metric g. Let dV ol be the induced volume
form of the metric g. If vy, ..., v, is a local frame of TX, and v!,...,v™ is the dual

frame, then locally dV ol is of the following form:

dVol = y/|det(gi;)| v' A+ Av™,

where g;; = g(v;, v;).

The orientation and the Riemannian metric induces a *, : A\’ X — N X
operator for all p € X. This defines a * : A"T*X — A\ T*X vector bundles ho-
momorphism. It is smooth, since if we fix an positively oriented local orthonormal

frame eq,...,e€,,, then
x(eTAe N Ne) =sgn(l, )l Ne AL elmk

with TUJ = {1,...,m}. We know by Proposition 1.21 that * : A" T*X — N" " T*X
is a bundle isomorphism. Notice that if we denote by 1 the constant 1 function,
then %(1) = dVol. We can extend x complex linearly to a N"TgM — N TEM
homomorphism, we also denote this map by *. Since * restricted to /\k T*X is an
isomorphism it induces a * : A*(X) — A™*(X) isomorphism. Now we can define a
Hermitian metric on A*(X) the following way, let ¢, € A*(X), then

(%¢)=/XSM*@,

if o e NNT*X and ¢ € N'T*X with p # g, then (p,1) = 0.
Proposition 2.1. The form defined above is a positive definite Hermitian form on
A (X).

Proof. The Riemannian metric g also induces a Hermitian metric on A" T3 X, lets
denote it by ( , )c. By the definition of the Hodge x-operator we know that if
¢, € AF(X), then

@ Nxth = (@, ¥)cdVol,
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thus ( , ) is Hermitian and positive semidefinite. To prove that it is definite let
¢ € A¥(X) be nonzero, i.e. there exists a 29 € X such that p(zq) # 0. This means

that (@, p)c is a non-negative function on X and it is positive in zg, thus

(p,0) = /)((w,go)cd\/ol > 0.

]

This means that on the elliptic complex (A*(X), d) we have a Hermitian product
depending only on the orientation of X and the Riemannian metric g.

Suppose now also that X is also a complex manifold, with almost complex struc-
ture [ : TX — TX.

Definition 2.2. We say that a Riemannian metric g on a complex manifolds X

with almost complex structure I is compatible with the complex structure, if
g(1u, Iv) = g(u,v),

for all u,v € T'(T'X). We call g a compatible Riemannian metric if it is compatible

with the complex structure.

Proposition 2.3. If X is a complex manifold, then there exists at least one com-

patible Riemannian metric on X.

Remark 2.4. The proof depends on the following, let V' be a finite dimensional
vector space with almost complex structure I. Suppose that we have a finite num-
ber compatible scalar product ( , );, where i = 1,..., N. Suppose that we have
ai,...,any € Ryg such that Zjv a; =1, then

Zaj<7>j:<7>

is a compatible scalar product on V', i.e. the compatible scalar products over (V1)

forms a convex set.

Proof. Let {(U;, ¢;)}; a holomorphic atlas, with {U; }; being a locally finite cover, and
{1;}; is a partition of unity subordonite to the cover. Over an open set U; € {U;}; we
have holomorphic coordinates z;, where z; = x; +14y;. With these notations we have,

that 10,, = 0,, and 10,, = —0,,. Define a Riemannian metric over U; as follows:

(axla 8:57) :5Zj
(aym 81/;) :513
9(0z;,0y,) =0
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It is easy to see that g; over U, is a compatible Riemannian metric. Thus, we have
a compatible Riemannian metric g; over each open set U; € {U;};. Now define a

compatible Riemannian metric on X as follows:
9="> 9
J

It is clear that g is a Riemannian metric on X, so we only have to show that g is
compatible with the complex structure. Let u,v € ['(T'X), clearly it is enough to
chech the compatibility over each point of X, hence we just need to prove the that
gp(Tup, Tv,) = gp(uy, v,) for all p € X. Since {1;} is a partition of unity, we have a
finite number v; such that v,;(p) # 0, denote them by v, ..., 1;,, and compute as

follows:
gp(Luy, Tv,) = Z Vi (p)gjp(Tup, Tvy) = Z Vi, (P) iy (L, T0p)
J

:szj( )i, p(Up, Up) ij P)9jp(Ups Vp) = Gp(Up, Up).
J

]

Since a complex manifold has a natural orientation induced by the almost com-
plex structure I, to define a Hodge *-operator on A" T¢: X we only need a Riemannian

metric on X.

Proposition 2.5. Let X compact complex manifold with a compatible Riemannian
metric g, then A¥(X) = @,y ,=£AP4(X) is an orthogonal decomposition with respect

to the Hodge inner product.

Proof. We have to show that if ¢ € AP9(X) and ¢ € AP (X) with p+q = p'+¢ = k,
but (p,q) # (¢',¢'), then

/X o A = /X (g, )cdVol =0,

and this follows from lemma 1.22. a). O

From now on if X is a complex manifold, and ¢ is a Riemannian metric on X,
then we will always assume that ¢ is compatible with the complex structure.

By 1.22. b) we know that * : A™T*X — A" ?""PT*X is an isomorphism,
but we want to modify x a little bit, because we do not want this (p,q) swap. Let
o NIT*X — NP T*X be defined as follows:

*(p) = *p,

65



where p € N9 T*X. It follows that % is an antilinear isomorphism of vector bundles,
since it is a composition of two isomorphism.
Suppose now that E is an Hermitian vector bundle over X. The Hermitian

product on E defines an antilinear isomorphism

T F = E*

= (—, ).
Define the F valued Hodge *-operator as follows:
~ k 2n—k
i N TEX0E - N\ TeXeE
¥e(p®e) —xp®T1(e).

It is easy to see that the E valued Hodge x-operator *xg is a conjugate linear iso-
morphism of vector bundles.

We want to define a non-degenerate pairing like the Hodge inner product, but to
do this, we will need a wedge product between A5,(X) and A% (X). Let « € A" T X,
vye NTIX,e€ E, and f € EX, then we define the wedge product as follows:

(@®@e)AN(y® f)=any- fle).
One can prove that this gives a well defined smooth bundle morphism, :
AMNTXOEx NTXoE - N T°X,
and this induces a wedge product on the sections:
A AL(X) x AL (X) — AP (X).

Now we have a Hodge inner product on the E-valued forms defined as follows, let
.Y € AR(X), then

(0. 0) = /X © N &g ().

Proposition 2.6. The Hodge inner product on Ak(X) is positive definite, and
AR(X) = 3o ABY(X) is an orthogonal decomposition with respect to this in-

ner product.

Proof. Every section of A% (X) can be written as ¢ ® e, where ¢ € A¥(X) and
e € I'(E), and for sections ¢ ® e,a ®@ f € A% (X), the Hodge inner product is the
following

(pRea® fl=pReAN*pa® f=pA*pa- (e, f).
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By that everything follows. m

Proposition 2.7. Let X be a compact m-dimensional oriented Riemannian mani-
fold. Let d* be the formal adjoint of d with respect to the Hodge inner product, and
let A = d*d+ dd* be the Laplace operators of the elliptic complex (A*(X),d). With

these notations we have the following:
a) d* = (=1)"TmPridE = (1) TPt dx
b) xA = Ax %A = Axk.

Remark 2.8. Notice, that unlike in Example 1.141 the metrics on A" TZX are related
to each other. We will see later, that the better we choose metric on a manifold, the

more informiation we get out of the harmonic forms.

Proof. Let W =" (—1)™*PxP by Proposition 1.21 ¢) we know that, W = xx, also

notice, that

*(p) = #x(9) = #%(p) = xx p = W,

where p € A*(X), and ¥ = * since * is the complexification of a real operator. Now
let p € A*=1 and ¢ € A*, and compute as follows:

(dp, ) = /X dip A T = /X Al A ) — (—1)F! /X o A di)

On the second equality we used the Leibniz rule for d. Notice, that by Stokes theorem
Jx d(e A Y = 0, and we have (—1)F Jx @ A d¥ left only, which is almost what we

want, we just have to put in the conjugate Hodge *-operator,

(—1)’“/Xg0/\d>7<¢ :(_1)’€/X¢/\ %1%y = (_1)’€/X¢/\ *(FW dx))

:(_1>k<_1)m(mk+1)+mk+1/ 90/\;(>~kd>~k¢)

X
=(=1)" (g, xdRkp).

To finish a), we have to show that, *d% = xd*. Let o € A*(X) arbitry, then:

¥dx(a) = xd * (@) = *d*(a) = *d * ().

Here we used the fact that d = d, since d is the complexification of a real operator.
We now want to prove b). Let ¢ € A*(X), then

% AQO _ (_1)m+mk+1(*d*d* +(_1)m % *d*d)go
Axop= (_1)m+m(m—’f)+1(d s dxx+ (—1)" *x d* dx).
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The equations above shows, that we only have to check the coefficients of *d x d * ¢

and d*dy. The easiest is *d*d* ¢, in the first equation its coefficient is (—1)™mF+1

in the second it is (—1)mFmm-k)+itm — (_ym+mh+l Now we go to d * dyp, since
@ € A*(X) we have that d*dp € A™#(X), thus Wd*dp = (—1)"™m=R+m=kqy dop,
also dx dW = (—1)"**kd x dp. The coefficient of d * dp in the first equation is the

following:
(_ 1)m+mk+1 (_ 1>m<_1)m(mfk)+mfk _ (_ 1>k+1 :

and in the second equation:

(_l)m-i-m(m—k:)-i-l (_1)mk+k _ (_1)k‘+1‘

Thus *A = Ax. O]

We want to prove a similar statement for dg, but first note, that we have %+ on

A%.(X), we just have to use 771

Theorem 2.9. Let X be a compact complexr manifold equipped with a compatible
Riemannian metric, and let E be a holomorphic vector bundle over X. Then, we

have the following:

a) The operator Og : API(X) — APIY(X) has a formal adjoint with respect to
the Hodge inner product, and it is given by the following:

—x =
aE = _*E*aE**E'

b) If0p = EEE*E —I—E*EEE, and Op- = EE*E*E* +5§*5E* are the Laplace operators

on ALY (X) and AZL respectively, then we have the following relation:

Remark 2.10. On E*, we have a Hermitian metric induced by 7: E — E*.

Proof. To prove part a), let ¢ € AP H(X), and ¢ € AP(X), then ¢ A Fptp €
Amn=1(X), thus

O AN xgtp) = d(p A*gi),
also note that we have a product rule for the 9, i.e. we have
5(90 N*gy) = 5E80 A *g) + (—1)P+q—1¢ A 5E*§<E1/)
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With these in our hands we compute as follows:

(Opp, ) —/

X

dlp nigw) = (<P [ A Bpie
X
(1) / o Nip(Wip-Dp-3u0)
X

X

= (¢, —*g-Opxpy).
Here we also used, that if @ € A*(X), and f € I'(E), then
¥pdpla® f)=ip(Ga@7rf)=%a® f=W(a)® f=W(a® f).
The proof of part b) is exactly the same as the proof of part b) of proposition 2.7. [

Theorem 2.11 (Poincaré duality). Let X be a compact oriented m-dimensional

manifold. Then there exists
o:H(X;C)— H""(X;C)
conjugate linear isomorphism.

Proof. Let’s introduce a Riemannian metric on X, then we have have Harmonic
forms with respect to the induced Laplace operator, let’s denote them by X*(X).
Then by proposition 2.7 and theorem 1.140 we have the following commutative

diagram:

]

Remark 2.12. We have a pairing between H™(X;C) and H™ " (X;C) given by the
following, let [a] € H"(X;C) and [5] € H™ " (X;C), then

(Lo, 18)) :/X“ﬁ

This is well defined by Stokes’ theorem and we claim that it is non-degenerate.
To show that this is non-degenerate pick 0 # [o] € H"(X;C). We need to find
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8] € H™"(X;C) such that ([, [8]) # 0. Represent [a] with a harmonic form «

and let [§] = [*a], where %« is a harmonic m — r-form, then

([a], [*a]) = / a A xa > 0.
X
Thus H™"(X;C) ~ H™(X;C)*. This is also called Poincaré duality.

Corollary 2.13. If X is a compact oriented manifold, then

Where b;(X) are the Betti numbers of X defined in Example 1.141 1).

Theorem 2.14 (Serre duality). Let X be a compact complex manifold, with complex
dimension n, and let E be a holomorphic vector bundle over X. Then there exists a

conjugate linear isomorphism
o: H'(X;Q%) — H""(X; Q%)

Proof. Let’s introduce a compatible Riemannian metric on X, and a Hermitian
metric on £, with these fixed we have E- and E*-valued Harmonic (p, ¢)-forms, let’s
denote them by X" (X) and X7:(X). By theorem 2.9 and theorem 1.140 and the

Dolbeault isomoprhism we have the following commutative diagram:

AR(X) — s AP ()
Ha Ha

KE(X) — s Ky ()

HP(X; E) % HYPn=4(X; E*)

HI(X, Q%) = H"(X; Q%)

]

Remark 2.15. Just like with Poincaré duality, we have a natural pairing between
HP(X; E) and H"P""%(X; E*), given by the following; let [a] € HP?(X; F) and
(8] € H"P"~9(X; E*), then

<mmmwaAaAﬁ

70



To show that this is well defined we need the following: If a € A2 '(X) and § €
AP X)), then d(aAB) = d(aAf)., and O(aAB) = OpaAB+(—1)PH 1 a D S.

Now also suppose that 3 is dg--closed, then

/XEECE/\,@:/Xd(a/\ﬁ)_(_1)p+q—1/Xa/\5E*/6:O

The first integral is 0 because of Stokes’ theorem the second is zero, because we
assumed that § is Jg--closed. It is also non-degenerate, since if 0 # a € K%Y (X),
then pa € K" (X)), and

([, [xpal) = /Xa A *ga > 0.

Thus, H?Y(X; E) ~ H" " 9(X; E*)*.

Corollary 2.16. If E is the trivial line bundle, then H?%(X, E) = HP9(X) and we

get that there exists a conjugate linear isomorphism
HPY(X) ~ H" P9 X).

Hence h?1(X) = k" P"~4( X)), where h? are the Hodge numbers defined in Ezamples
1.1412).

2.2 Comparison of the Laplace operators

Suppose that X is a compact complex manifold with a compatible Riemannian

metric. We can define three Laplace operators on X with respect to the metric
1. A =d*d+dd* : A*(X) — A¥(X).
2. 0=00+00 : AP(X) — AP4(X).

3. 0 =00+ 00" : AP(X) — AP4(X).

By proposition 2.7 and theorem 2.9 we know that d* = — * dx, d" = — % 9% and it
is easy to see that 9" = — % O«

When p + g = k, it is a natural question, whether these Laplace operators are
related, i.e. is it true, that A maps (p,q) forms to (p,q) forms. We can also ask
whether a form B being O-closed implies that it is A-closed. For a general compact
complex manifold X with compatible Riemannian metric, none of these hold. First
we will give a counter example for the second case.

If g is a (1,0)-form, then 88 = 0 by definition. If we also assume that 3 is
holomorphic, i.e. 98 = 0, then OB = 0. The idea is to find a holomorphic (1, 0)-form

[ which is not d-closed, since such a [ can not be harmonic.
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The next proposition shows, that if we want to find a holomorphic (1,0)-form

which is not d-closed, the dimension of our space must be at least three.

Proposition 2.17. Suppose that X is a compact 2-dimensional complex manifold.
If a € QY(X), then da = 0.

Proof. Let a € Q'(X), then
da = (0 + 0)a = da.
It is easy to see, that if da # 0, then:

/8@/\%7&0,
X

also note that, da = da, thus
d(0a) = 9(da) = —0(0a) = —0(da) = 0,
and by that, we get the following:
d(a A da) = da A da — a A doa = da A Da.
Suppose, that da # 0, then

O#/@a/\%:/d(a/\%)zo,
be b

by Stokes’ theorem, which is clearly a contradiction. O

Let H be the complex Heisenberg group:

x,y,z € C

I
o o =
S = R
R

It is clear that H ~ C?® as a complex manifold.

Proposition 2.18. 8 = dz — ydz is a right-invariant holomorphic (1,0)-form, and
dpg # 0.

Proof. 1t is clear that § is holomorphic (1,0)-form, and dff = —dy A dz # 0. Let

€ H,

2
I
o O =
S = Q
_— O



then

1 = =z 1 a+x c+ab+z
0 0 1 0 0 1

thus

R =d(c+xb+z)— (b+y)d(a+x) = bdx + dz — bdr — ydx = dz — ydz.

The complex Heisenberg group is not compact, but let

)1
Il
o O =
O~ 2

c
b a,b,c € Z[i] p < H.
1

I' is a discrete subgroup of H which acts on H by right multiplication. Since I is
a closed subgroup of H this action is proper, i.e. this is a properly discontinuous
action. Thus H/T, called the Iwasawa manifold, is a complex manifold. Clearly the
projection C* — C? mapping (x, v, 2) to (z,y) descends to a holomorphic submersion
H/T' — T'xT, where T is a torus. It can be shown that this is a locally trivial bundle
with torus fibers, hence the Iwasawa manifold is compact. Since [ is invariant under
the action of I' it descends to a 3’ holomorphich (1, 0)-form which is not d-closed.

Now we want to show a complex manifold X and an o = > a?? form, such that
Aa =0, but Aa?? # 0 for some (p, q).

Definition 2.19. Let X be a complex manifold. We call a smooth map p: X — C
pluriharmonic, if 9p = 0.

Proposition 2.20. Let X be a compact complex connected manifold. If f: X — C

15 a pluritharmonic function, then f is constant.
Before we prove this we need the following:

Lemma 2.21. If f : X — R is a pluriharmonic function, then locally f is the real

part of a holomorphic function.

Proof. Let Of = «, then da = o = 0, thus dov = 0. This means that locally there
exists a function 8 with df = a. Since a is a (0, 1)-form we know that 05 = 0. Let
h = f — 3, then

Oh=0f —0f=a—a=0
oh =0f — 0p = 0f,
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Write h as u + iv, where u,v are smooth real valued functions. By the equations

above we get that
: 1 .
Op,u —i0y,u = 0,;h =0, f = 5(8mjf —i0y, f),

thus locally u/2 — f = c. Let F = h/2 — ¢, then F is holomorphic, since OF =
d(h/2 —¢) =0, and Re(F) = f. O

Now we can prove the previous proposition.

Proof. Let f: X — C be a pluriharmonic function. Since d0f = 0, we have that
0=080f = 99f = —907,

thus if f is pluriharmonic, then f is also pluriharmonic, so we can assume that f
is a real valued function. Since X is compact f reaches its maximum at p € X.
Let U = f~!(f(p)), it is clear that U is non-empty and closed. Let ¢ € U, by the
previous lemma we know that in a small neighbourhood of ¢ f = Re(F), where F’
is a holomorphic function. Now e’ is a holomorphic function around ¢, and |e!|
reaches its maximum at ¢, thus e’ = ¢ and we get that f = Re(F) is constant
around ¢. This means that if ¢ € U, then a small neighbourhood of ¢ is in U, hence

U is also open, thus U = X. O

Let A € C*, |\| # 1. Then ZxC?*\ {0} — C?\{0}, (k,x) — Nz defines a Z action
on C?\ {0}. Clearly this a properly discontinuous action, and M = C?\ {0}/Z is a
complex manifold called the Hopf surface. It is clear that topologically M ~ S3x St
thus by the Kiinneth formula H'(X;C) = C.

Proposition 2.22. H'(M,Q},) = 0, i.e. there are no non-trivial global holomorphic
(1,0)-forms on M.

Proof. Suppose that there is an 0 # «a global holomorphic (1,0)-form. Since
dim(M) = 2 we know that da = 0. We claim that @ is not 0 exact. Suppose
on the contrary, that @ = 9. Then

808 = dop = da = 0,

hence (3 is a pluriharmonic function, but M is compact, so by the previous propo-
sition 3 is constant and o = 9 = 0 which is a contradiction. We also have the
following;:

oa = 0o = da = 0.
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This means, that @ defines a non-trivial element in H%!(M), and by Dolbeault’s
theorem we know that H%' (M) = H'(M,Oy;). Let’s look at the following sequence
of sheaves:

0 — C —> Oy % Qy — 0

The first map is the natural embedding of the locally constants sheaf to the sheaf
of holomorphic functions, the second is the exterior derivative. It is clear that this
sequence is exact, the only nontrivial part is that it is surjective, but if a € Q' (M),
then locally o = df3, but if we check the bi-grading, we get that 98 = 0, i.e. a = dJ,
where 3 is a holomorphic function. By the short exact sequence of sheaves we get

the following exact sequence:

0 — H(M;C) — H°(M;On) — HO(M;Qy,)

We know that ¢ induces isomorphism between H(M;C) and H°(M:;Oy,), since
both are one dimensional vector spaces and the induced map is injective. Thus the
map HO(M;Oy) — H°(M;Q},) is the zero-map, hence we have to following exact

sequence:
0 — HY(M;QY) — HY(M;C) — HM;O0p) — ...

Now by the assumption that we have a global non-trivial holomorphic (1,0)-
form, i.e. HO(M;Q},) # 0, we got that H'(M;Oy) # 0, but this means that
dim(H'(M;C)) > 1, which is a contradiction. O

Corollary 2.23. We have the following corollaries:
a) HY (M) = 0.
b) H*Y(M) # 0.

Proof. By the Doulbeault theorem H'*(M) = H°(M,Q},) = 0. Since H°(M; Q},) =
0, we get that the map C = H'(M;C) — H'(M; Oy) = H* (M) is injective. [

Corollary 2.24. If g is a Riemannian metric on the Hopf surface M, and 0 # o =

al? + a®t is a harmonic 1-form, i.e. Aa = 0, then Aat? # 0 and Aa®t #£ 0.

Proof. We will only show that a®! can not be harmonic. Since Ao = 0 we get that
da =0, but

0 =da=(0+9)(a™ +a”) = 0a™" + o™’ + 92! + 9a"?,
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hence da'® = 0a®' = 0. Now suppose that Aa’! = 0, then do®' = 0, thus

0a! = 0, and this means that

da! = 9adT =0,

0,1 0,

ie o 1= (. This means that a = o''%, and
0 = da™® = 9a'® + 9a'°. Looking at the bigrades we get that da'* = 0, but this

means o is holomorphic, hence it is zero. Thus o = 0 which is a contradiction. [

is a holomorphic (1, 0)-form, hence «

The key point of this section was to show that in general the complex and real
Laplace operators are not related. The reason behind this is that the compatibility
of the complex structure and the metric, we used so far, is too weak. One needs
a stronger compatibility condition between the Riemannian structure and complex

structure.
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3 Kahler manifolds

This section is devoted to introduce a special class of complex manifolds, the
Kahler manifolds, and prove the Hodge decomposition theorem on their cohomolo-
gies. Kéhler manifolds are in some sense a generalisation of projective manifolds and
share really interesting properties with them.

The section Definitions and examples follows the books of [3] Huybrechts, D. -
Complex Geometry: An Introduction., 6] Voisin, C. - Hodge Theory and Complex
Algebraic Geometry I: Volume 1 and the section Harmonic theory on compact Kéah-
ler manifolds follows the book [7] Wells, R. O. - Differential Analysis on Complex
Manifolds..

3.1 Definitions and examples

Definition 3.1. Let X be a complex manifold with almost complex structure I and

compatible Riemannian metric g. Let v,w € I'(T'X), then
w(v, w) = g(lv,w)

is the fundamental form associated to g.
By lemma 1.14 we know that w is a real (1, 1)-form.

Definition 3.2. Let X be a complex manifold with compatible Riemannian metric

g and fundamental form w, then we have the Lefschetz operator

L NTx - N rx

oa—wA\«o

We can extend L complex linearly to A" TgX and this induces a linear map
between the sections of A" Tz X also denoted by L, i.e. L: A*(X) — A*T(X).

Define the following operators

a) A=s"1Lx: N'T*X — N7°T*.
2n
b) H= Y (n—k)a*: N"T*X — T*X, where n = dim(X).
k=0
Clearly these are vector bundle morphisms, hence at every point x € X, the maps

L., A, and H, give a representation of sl(2,C) on A"T¢ ,X. Thus we can use the

results of section 1.2 while studying complex manifolds manifolds.

Corollary 3.3. Let P¥(X) = ker{L" %1 . N'TxX — N"*2T5XY for0 <k <n
and P*(X) =0 for k > n+ 1. Then by Corollary 1.40 we get that
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a) /\k TeX = @izo Li(Pk_%(X))-
b) Lk NPTEX — NF T2 X is a bundle isomorphism.

Let PP9(X) = PP*a(X) O\ NI T*X. Then

a) PH(X) = @,y qmr PP(X)

b) If p+q=k, then L" % : PP4(X) — P"=%"P(X) is a bundle ismomorphism.
Clearly these impy that:

a) L% A¥(X) — A2 R(X) is a linear isomorphism.

b) AM(X) = @so L(T(P**(X))) is an orthogonal decomposition with respect
to the Hodge inner product.

To see b) let o € T'(P*2(X)) and 3; € ['(P*~%7), where i # j. Then
(Lo, L B;) = / (L'a, L7 B;)dV ol = 0,
X

since by Corollary 1.40 we are integrating 0 on X.

Proposition 3.4. If X s compact, then the Lefschetz operator L has a formal
adjoint L* with respect to the Hodge inner product, and it is equal to A.

Proof. Let a € A¥(X) and 8 € A¥2(X), then

(La, B) = /Xg(La,B)dVOZ = /Xg(a,Aﬁ)dVOZ = (o, AB)

Here we used the fact, that at every point x € X, the adjoint of L, with respect to
gz is A,. O

Definition 3.5. Let X be a complex manifold and ¢ a compatible Riemannian
metric. We call (X, g) a Kéhler manifold, if the fundamental form associated to g is
d-closed, in which case g is called a Kahler metric on X. The complex manifold X

is of Kéhler type if there exists a Kahler metric on X.

Remark 3.6. The fundamental form associated to a Kéahler metric g is also called
the Kéhler form of g.

At first this definition might seem strange, but as we will see, being Kéahler type

has many non-trivial consequence.

Proposition 3.7. Let X be a compact Kdhler manifold of dimension n. Then the

2

forms w,w?, ..., wW" are d-closed, but not exact.
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Proof. Tt is trivial that w' is closed, since it is the product of d-closed forms. To
see that they are not exact, first notice, that by Corollary 1.18 w™ = n!dVol. Now
suppose that w™ = da, then by Stokes’ theorem

O:/ da:n!/ 1 dVol =nlVol(X) >0

b's b's

which is clearly a contradiction. Now suppose that w’ = da for some i < n, then
AW A a) =dw" " Ao+ (1) W Ada = (1) W,

which is a contradiction since we just showed, that w” is not exact. O

Corollary 3.8. If X is a compact Kdihler manifold, then H*(X;R) # 0, for i =

0,...,n.

As a corollary, we see that the Hopf surface is not Kihler, since H%(S* x S3) = 0
by the Kiinneth formula. More generally we can define a Z action on C" \ {0} by
mapping k to multiplication with A\*, where A\ # 0, and || # 1. This action is
properly discontinuous, hence the manifold M = C"/Z admits a complex structure.
The manifold M is called Hopf manifold. It’s not hard to show, that M ~ S'x §?n—1
hence the Hopf manifolds can not be Kéhler manifolds for n > 1, since for n > 1 we
have H?(S' x S?"~1 R) = 0.

Let (X, g) be a Kéhler manifold with Kéhler form wy. Suppose that Y C X is
complex submanifold. and denote the natural inclusion of Y by ¢. Then ¢*g is clearly
a compatible Riemannian metric on Y. If we denote the fundamental form of (*g
by wy, then it is trivial that wy = t*wx, hence (*g is a Kédhler metric on Y. As a

corollary, we get the following.

Corollary 3.9. IfY is a compact complex submanifold of the Kdhler manifold X .
Then Y is not a boundary in X

Proof. Suppose that Y = 1(0M) for a differentiable map ¢ : M — X of a manifold
with boundary M. Let k = dim(Y’), then by Stokes” theorem we have that

wv(y) = [ b = [ k) = [ avk) o

which is clearly a contradiction. O]

As we saw, being Kéhler has some restriction on the topology of the underlying

manifold. Before we give some examples we need the following.

Definition 3.10. Let’s call a real (1,1)-form w positive if locally in holomorphic
coordinates it is of the form w = % Zns hy s(x)dz, NdZs, such that the matrix (h, s(z))

is positive definite Hermitian for all x where it is defined.
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Proposition 3.11. There is a one-one correspondence between d-closed real (1,1)-

forms and Kdhler metrics on X.

Proof. Easy consequence of Proposition 1.19. O]

Hence to give examples of Kahler manifolds, it will be enough to show complex
manifolds with d-closed real (1, 1)-forms, which is sometimes easier, then giving the

metric g and proving that it is Kéahler.

Lemma 3.12 (local 90-lemma). Let w be a real (1,1)-form on the complex manifold
X. Then dw = 0 if and only if for x € X there exists an U open neighborhood of x
and a smooth function o : U — R, such that w|y = i00yp.

Proof. For the "if" part, let ¢ : U — R be a smooth function, then i0dyp is clearly

a (1,1)-form, to see that it is real we compute as follows:

i00p = —id0p = 100.
To compute that it is also d-closed, we use that 9% = 7 = 0,
d(—i0dp) = i(0 + 0)(0dyp) = 0

Now for the only if part let w be a real d-closed (1, 1)-form and let z € X. By the

real Poincaré lemma there exists an U open neighborhood of z, and 7 real form on

U such that w = dr. Let 7 = 7104791 since 7 is real 1-form we get that 710 = 701,

Let’s look at the following:
w=dr = (0+09) (" + ).

Since w is (1,1)-form, 7"° and 97! has to be zero, and w = 97%' + 970, By the
0-Poincaré lemma, on an even smaller open set U there exists a smooth function f

such that 5( f) = %1 Hence if we summarise everything we get that
w=0r" + 070 = 97 4+ 97 = 90f + 00f = 90(f — f) = 90(2Im(f)).
To finish the proof let ¢ = 2iIm(f). O

As a collorary of the local 90-lemma, we see that locally a Kihler form of a Kihler
manifold is of the form %659@. We call this function the local potential function of
the Kéhler form.

FExample 3.13. Now we will give some examples of Kdhler manifolds.
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1) Let X =C", and ¢(2) = ||| > = > 2jZj. Then

. n
1

535(22]2] = Z(‘? 2;)dz; = idzj N dz;
j:l

J

The matrix (h, ) is the identity matrix, which is clearly positive definite. Hence
there exists a Kéahler metric on C" such that %Z ;dzj A\ dz; is its Kéhler form. One

can check easily that the Kahler form comes from the standard FEuclidean metric on
R,

2) Let X = B"={z € C" | |2] <1}, and ¢(z) = —log(1 — ||2|| ?). Then

Z.
~0:, log(1 - [l2)?) = —
(=117
R A

azi 2\ 2
(1= 1l=[17) (11217

Hence we see that the (1,1)-form is

285 h dz N dzj = Zzlzy+5w( ”ZH2>dzi/\dEj
00w = pligsi 2 '

el O R

Clearly the matrix (h; ;) is Hermitian matrix, and to see that it is positive definite,
we only have to show, that the matrix b, ; = (1= = ) ;.; 1s positive definite. Let
E= (&, ...,&") € C", then we compute as follows:

thgéz —Zl—nzu 33 +sz§j = (L= 2l *)IEN® + (2, £)(¢, 2)

=(1—HZH EN® + 1z, >| >0,

hence the matrix is positive definite. B™ with the corresponding Kéahler metric is

called the complex hyperbolic space.

3) Let X = CP", and let U; = {2; # 0} for i = 0,1,...,%,. On U; we define
2
the function p;([z]) = log (Zzzo =

U; N Uj, but the forms Ggpi and 85pj will. Indeed on U; N U; we compute as follows
n 2
o) = s 3° > [2/)
k=0

k=0
2
) = log<

). The functions p; and p; will not agree on

2 n

o2
K ) :10g<
Z.

)




2

= 0. Notice z—’ € Otpn(U; N U;).
We will show something stronger. Suppose that U C C" is a small polydisc, and

f € O*(U), then 99(log(] f| 2) = 0. Indeed, locally there exists log(f) € O(U). Tt
follows, that

Hence, we only have to show that 00 log< )

log(|f|?) = log(ff) = log(f) +log(f),

where log(f) is holomorphic and log (?) is anti-holomorphic, hence

a0 log(|| £l 2) = 901log(f) — 00log(f) = 0.

Hence the forms ddp; = 9dp; on U; N U;. To show that it is a positive form first
use the standard charts on U, ie. ¢; : Uy — C" | [z] — (2—1,,3,,2—") =
J 7 7

(wi, ..., w,). Under this map p;([z]) corrseponds to p;(w) = log(1+ >",_, [wi|?).

A similar calculation like in the previous example shows, that

i _ 0ig (1 + [Jw]| ?) — ww;
aapi:_zhi,jdzi/\dzjzz - 5 L dw; A dw;,
25 (1+ fJw] %)

It is clear again that the matrix (h, ;) is Hermitian, and just like before, we show
that (1 + [Jw]] 2)2 hi; = hy; is positive definite. To do that, let £ = (&,...,&,) € C",

and compute as follows

Zhuéz (1 + [fw] * ZEJ Zw] wiki€; = (L+ [lw] *)[€]1° = (w, )(€, w)
= [l€ll* + [lw] ® H€H —!<w,5>\ >0

For the inequality, we used the Cauchy-Schwarz inequality. Thus we see that the
forms %85@ are positive. One should normalise this form by multiplying it with %,
which corresponds to the potential functions }T pi- The Kahler metric corresponding
to this normalised (1, 1)-form is called the Fubini-Study metric, and the normalised
form is denoted by wgrg. We conclude this example by showing that f opr Wrs = L.

The compution is the following:

i 1
wps—/——dw/\dﬁ
/CPI ¢ 27 (1 + |w| 2)2
1 1
:—/ sdx N\ dy
s 2 2
w2 (1+](z,)]7)

& 1
:2/ -
o (1+47r?)
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4) If X is a Kéhler manifold, and G is a discrete group which acts on X properly
discontinuously, and every ¢g : X — X is a holomorphic isometry of X, then the
factor manifold X /G is Kéhler. Hence if we look at C™ and choose 21, ..., 23, € C"
such that these are linearly independent over R, then we have Z?" action on C",
where (kq, ..., ka,) maps to the translations with k12, + - -+ + ko,29,. This clearly
satisfies the properties above, hence C"/Z?" ~ S! x S'...x S is a Kéhler manifold.

In particular every smooth elliptic curve is a Kéhler manifold.

5) If X is a Rieamann surface, then any compatible Riemannian metric on X

will be Kéhler, since there are no non-trivial 3-form on X.

Corollary 3.14. Fvery smooth projective manifold is Kdhler manifold with the re-
striction of the Fubiny-Study metric.

Hence we see, that there are actually a lot of Kéhler manifolds.

3.2 Harmonic theory on compact Kéahler manifolds

As we saw in the previous section, on a general compact complex manifold,
there are no connections between the operators A, 0 and [J. Surprisingly on Kéhler

manifolds this is not case as we will see later in this section.

Theorem 3.15 (Kéhler identities). Let X be a Kdhler manifold, then we have the

following commutation relations:

(l) [L7a] = [L7—] = [L*vg*] = [L*,g*} =0
b) [L,0*] =id [L,0] = —id
[L*,8] =i [L*,9] = id*

Remark 3.16. One can easily check that all four in a) and b) are equivalent, so it is

enough to prove only one in both of them.
Definition 3.17. Let d, = I"'dl and let df = I~ 'd*L.

It is easy to see that d. and d are real operators since they are compositions of
real operators. Also, since I™! = I* we also see that d is the formal adjoint of d..

We claim that d, = —i(d — 0). Indeed, let p € AP?(X), then:

de(p) =I71(0 + O)I(p) = T (D + D) = P~1(i7 P~ D + 9 PDyp)
= —i0p +idp = —i(0 — ).
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Proposition 3.18. Let X be a Kdhler manifold. Then

@) [L,d =0 as)[L*,d]=0
by) [Ld*] = do by) [L*,d] = —d:.

Proof. First notice that a] = ay and b] = by, so we only have to prove one in a; and
by. To see a;) let ¢ € A*(X), then:

[L,dlp=wAdp—dwAp)=wAdp— (dwAp+wAdp) =0.
0

We will prove by). Using the Lefschetz decomposition it is enough to prove for Liq,
where o € T'(P*(X)). One can use the Lefschetz decomposition and write da in the
following form:

dOé:Oé()—I—LOq—I—LQCYQ—i—...

where o; € T'(P*17%). Since L and d commute and L"*™a = 0 we get that:
O — Ln—k—‘rlao + Ln—k:—l—Qal + Ln—k+3a2 N

Since the Lefschetz decomposition is a direct sum decomposition we get that
Ln=k+1Hiq; = 0 for all j. On the other hand we know that L' restricted to A*(X) is
injective if [ < n —i. Thus a; € AF172 is zero for all j > 2, and da = ag + Lay.
First we will compute [L*, d](L?«). To compute we will use that L and d commute,
Aa; = L*a; = 0 and Theorem 1.33.

L*dlia = L*da = L*L'ag + L* Loy
=jn—k—HL '+ G+ (n—k—j+1)La.
dL*Da = jn—k—j+ 1)L 'da
=jn—k—j+1)(L7j—lag + Lay)

Hence we get that:

[L*,d|(lPa) = -0 tag+(n—k —j+ 1)L ay.

84



Now we compute —d (L), using Theorem 1.49 and that I? on k-forms is (—1)".
~d (7o) =+ 1"l o
= % H—ld]l((—1)k<k+1)/2—(n — ‘]7:_ .)!L"—k—j]la)
(= 1)MEED 24k = i}_ j)!Hq « [ 50 gy
:(—1)k(k+1)/2+k(n+!_j)!ﬂ_l(*L”_k_jozo + LRI )
=— il "ag+(n—k—j+ 1)Ly
Hence we see that [L*,d] = —d. O

Corollary 3.19. a) [L,d.] =0, b) [L*,d] =0, ¢) [L,d}] = —d, d) [L*,d.] = —d*.

Proof. 1t is clear that a)* = b) and ¢)* = d), so we only have to prove a) and d). To

prove a) we compute as follows:
[L,d.) = LT 'dl — T"'dIL = 0.

since L commutes with I,T7! and d. To see d) we have to notice first, that L*
commutes with I and I~!, which is clear from the fact that I* = I~!. With this in

mind we compute as follows:

[L*,d,] =T L dl=T"—dl = d".

With these we can finaly prove the Kéahler identities.

Proof of the Kdhler identities. First we will show a).

0=[L,d]=[L,—i(0—0)] =i[L,d] —i[L,0)

Since [L, 9] is of bidegree (1,2) and [L, ] is of bidegree (2, 1) this can be zero if and

only if [L,0] = 0 and [L,d] = 0. To see b) we compute as follows:
O +09 =|[L* d) =i[L*, 8] —i[L*,d).
Checking bidegrees again we see that [L*, 0] = —i0" and [L*0] = —i0"*. ]

Corollary 3.20. Let X be a compact Kdhler manifold. Then

Iah_o-no
2
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Proof. First we show that O = 0.

0=08" +0 8 =—i(d[L*,d] + [L*,]0) = i(—5L*8 — Q0L* + L*00 + OL*0)

—=i([L*,0]0 + O[L*,0]) = 0"0 4+ 90" =
Now we show that A = O + .
A =dd* +d*'d=(0+0)(0+0)* + (0 + 0)*(0 + 9)
=00* + 00 + 00" +90 +00+0+00+00

=0+ 0+ 00"+ 00" +9"0+0 0
D

To finish the proof we only have to show that D = 0.

D =—id(L*0 — OL*) +id(L*0 — OL*) —i(L*0 — OL*)0 + i(L*0 — OL*)0

= —i0L*0 +i0L*0 +i0L*0 — idL*0 = 0
Here we used that 90 = 90 = 0. ]
Corollary 3.21. The Laplacian A commutes with L,1, L*,d, 0,0, 9,0 and d*.

Proof. Since A is formally self adjoint we only have to show that A commutes with
I,L,d,0 and 0. Since 1/2A = [ it is of bidegree (0,0) hence AI = IA. It is clear
that A commutes with d, and since O commutes with 9 and O commutes with 0 we

also have that for A. To see that [A, L] = 0 we compute as follows:

AL — LA =dd*L + d*dL — Ldd* — Ld*d = dd*L + d*Ld — dLd* — Ld*d
= —d[L,d"] — [L,d*)d = —dd. — d.d = —2i00 + 2i00 = 0
m
Corollary 3.22. Let X be a compact Kdhler manifold. Then w is a harmonic form.
Proof. w= L(1), and Aw = AL(1) = LA(1) = L(0) = 0. O

Corollary 3.23. Let X be a compact complex manifold, with compatible Riemannian
metric g and fundamental form w. Then (X, g) is a Kdhler manifold if and only if

w 18 harmonic.

Proof. If w is harmonic, then it is also d-closed. If w is d-closed, then by the previous

corollary it is also harmonic. O

Corollary 3.24. Let a € A¥(X) and suppose that o = Zp+q:k aP?. Then Aa =0
if and only if AaP? =0 for all (p,q).
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Proof. Suppose that Aa=3" .
3.21 that A is of bidegree (0,0), thus Aa?? € AP(X), hence }_ . _, AaP? = 0 if
and only if Aa?? = 0 for all (p, q). ]

AaP? = (. We have seen in the proof of Corollary

Corollary 3.25. Let H* = ker(A : A¥(X) — A¥(X)) and HP? = H* N AP9(X),
where p + q = k, and lastly H2" = ker(d : AP9(X) — AP(X)). Then

a) If p+q =k, then nP9(H*) = HRI = FHEL.

b) H* =@, oy HP.

¢) HRT = H4P.
Proof. Part a) and b) trivially follow from Corollary 3.24 and Corollary 3.20. To see
c) let a € HR?. Since A is a real operator we get that

Aa =Aa=Aa =0.

Hence o € HP, O

Theorem 3.26. Let X be a compact complex manifold of Kdihler type. Then there

exists a direct sum decomposition

HYX,C)= @ HM(X).

p+a=k

Moreover with respect to the conjugation on H*(X,C) = H*(X,R) ® C one has

Hra(X) = H(X) and H?(X) ~ HY(X, QP).

Proof. Let g be a Kéhler metric on X, then with respect to this metric we have
F*, HR* and HEY Then by Theorem 1.140 we know that H*(X,C) ~ 3* and
HI(X,QP) >~ H2T = I}, Hence by Corollary 3.25 b) we get that

HYX,C)~ @ HM(X),
p+q=Fk

where H™1(X) is the image of KX? under the canonical isomorphism. The conjuga-

tion in H*(X,C) is computed as follows, let [a] € H*(X,C), then [a] = [@], and we
can use Corollary 3.25 ¢) te see that HP? = H%P, O

Proposition 3.27. The decomposition above does not depend on the chosen Kdhler

metric.

Proof. Suppose we chose a Kéhler metric g and defined H?9(X) as above. Define
the following;:

K1 = {[a] € H*(X,C) | there exists § € A??(X), such that d3 = 0 and [3] = [a]}
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It is clear that KP? does not depend on the metric. We claim that H??(X) = KP4,
It is clear that H??(X) C KP4, since an element in H?9(X) can be represented
with a harmonic (p, ¢)-form, and we know that harmonic forms are d-closed. Now
suppose that we have an element in K. Then there exist a d-closed (p, ¢)-form 1)
such that [¢)] represents that element. In the proof of Theorem 1.140 we saw that
I'(E;) = ker(A;) @ Im(A;). In our case we get that ¢ = o + AS, where a is a
harmonic form. Since ¢ is a Kéhler metric we know that A is of bidegree (0,0),
hence ¢ = Y1 = oP?+ AFP9, where a??, 77 are (p, q)-forms and o7 is harmonic.

Applying d to 1) we get that:
0=dyp =daP? +d(dd" + d*d)s"? = dd"dpPI.

It follows that d*dp™® € ker(A) N Im(d*) = 0. Hence ¢ = oP? + dd*p9, and
[¢] = [aP9] € HP(X). O

Corollary 3.28. The cup product on H*(X,C) respects the (p,q)-decomposition,
i.e. if [a] € HP(X) and [3] € HY7(X), then [a] U [3] € HPTP4+d (X)),

Proof. Since [a]U[f] = [aAf] and we know that oA is a d-closed (p+p', ¢+¢')-form
we get that [a] U [8] € HP? = HPHPHa+d (X)), O

Remark 3.29. This does not follow from the definition of H??(X) since wedge prod-

uct of harmonic forms does not have to be harmonic.

Corollary 3.30. Let X be a compact Kihler manifold. Then boy1(X) is even for
all k.

Proof. By Theorem 3.26 b) we get that
borr1(X) = A#FL0(X) + 2R (X)) + -+ + B (X) 4+ ROHHH(X)
Also by Theorem 3.26 ¢) we know that A%/ = h?*  hence
bory1(X) = 2(* (X)) + 2P (X) + -+ + BFTYR(X)).

]

Corollary 3.31. Let X be a compact Kihler manifold. If « € H°(X, (X)), then
da = 0.

Proof. We know that do = 0 since « is holomorphic. We also know that d a = 0 by
definition, hence Oa = 0. Since X is Kihler it follows that Ao = 0, thus da = 0. [

Corollary 3.32. There exists an injective map H°(X, (X)) — HP(X,C).
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Proof. Let a € H°(X,QP(X)), then by the above d(a) = 0, hence it defines an
element in H?(X,C). Since « is harmonic [a] is zero if and only if @ = 0 €
H°(X,QP(X)) hence the map a — [a] is injective. O

Let X be a compact Kéhler manifold of dimension n, then its hodge numbers

can be visualised by the Hodge diamond:

hn
hn,nfl hnfl,l
hn,n—? N hn—l n—1 hn—Z,n

! F\\ /;’\
1 R .7

Holdge :-<: Serre
| . AN
I v’ b

h2’0 e hl,l h0’2
PO s B0l

Conjugation

h0,0
We know by Serre duality that AP¢ = h"7P"7¢ j.e. the hodge diamond is stable

under rotation by 7 around it’s center. We also know that the Hodge x-operator
induces an isomorphism between HP?(X) and H" 9" P(X), hence we have that
h?? = hn=9"7P je. the hodge diamond is stable under reflection in the horizontal
line passing through h™° and h%". We also know that the conjugation induces a
conjugate linear isomorphism between H?(X) and H%(X), hence h?? = h%P and
the Hodge diamond remains unchanged after reflecting in the horizontal line which
crosses h®? and h™",

Suppose that the dimension of X is one. Then by Theorem 3.26 we get that

H'(X,C) = H(X) + H(X),
where H'(X) ~ HY(X,Q(X)), H*(X) ~ H(X,Ox), and H'9(X) = H*(X).
Hence dim(H°(X,Q(X))) = dim(H' (X, Ox)) = 3b; which is a topological invariant
of X called the genus. It is just the amount of handles in X.
Now suppose that the dimension of X is two. Then we have the following Hodge

diamond:



Hence h*! = h*? = p10 = %1 = 1b; and h?° = h%2. We also know that h'! > 0,
since [w] € H"(X).

Corollary 3.21 has another important consequence. It says that A commutes with
L and L*, hence they map harmonic forms to harmonic forms. Denote the primitive
harmonic r-forms by Hj = I'(P"(X)) N H" and the primitive harmonic (p, ¢)-forms
by HE =T'(PP9(X)) N HRY.

Theorem 3.33. Let X be a compact Kahler manifold. Then

a) H" = @szo L3 (H?), and HR! = @320 L3 (FHE>97%) are both orthogonal

decompositions with respect to the Hodge inner product.

b) Hy = D,y gr HE9 is an orthogonal decomposition with respect to the Hodge

inner product.

¢) L7k HE — H2 =k s an isomorphism. and restricting it to KX we get that

Lk HRE — HTP"P s an isomorphism.
Proof. Trivially follows from Remark 3.3 and that A commutes with A and A*. [

If X is a Kéhler manifold, then the map L : A*(X) — A*(X) induces a
homorphism on the cohomology groups of X also denoted by L as follows: let
[a] € H*(X;C), then L([a]) = [La] = [w A a]. Define the primitive cohomology
of X as HY(X;C) = ker(L" %! : H*X;C) — H?**2(X;C)) and denote the
(p, ¢)-primitive cohomology by HE*(X) = HY"(X;C) N H?(X). With these nota-

tions we have the following theorem.
Theorem 3.34. Let X be a compact Kihler manifold. Then

a) Hk(X§C) = @izo Li(H§_2i(X§C>); and HP(X) = @izo Li(H(Z))_m_i(X))'
We call this the Lefschetz decomposition of X.

b) L% . H¥X;C) — H>*X;C) is an isomorphism. If p + q¢ = k, then
Lk HP9(X) — H"9"P(X) is an isomorphism.

Proof. Notice that we have the following commutative diagram:

Fck L F(k+2

gl l:

H*(X;C) & H*2(X;C)

Hence if we show that the image of H} is HF(X;C) and HP? is HYY(X), then
everyting in Theorem 3.33 is also true in the cohomology level if it makes sense. By

Corollary 1.39 we see that o € HE if and only if « is harmonic and L *la = 0,
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thus the image of 3£ is indeed HE(X;C). One can show similarly that H}5'? maps
to HY(X). O

Part b) of Theorem 3.34 is called the hard Lefschetz theorem. It was originally

proved by Lefschetz over integer coefficients but his proof turned out to be incorrect.

Corollary 3.35. Let X be a compact complex manifold. Then b;_o < b; fori < n,
and hP~19=1 < hPY for p4-q < n.

Proof. Follows from the fact that the Lefschetz operator L : HP~1471(X) — HP4(X)
is injectice for p + g < n. m
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