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1 Introduction

In what follows, G will always denote a Polish group, i.e. a separable topo-
logical groups whose topology can be induced by a complete metric. In 1970,
Christensen introduced the so-called Haar null sets in [2] (for a definition of
a Borel measure see Definition 2.1.7):

Definition 1.0.1. A ⊆ G is called Haar null, if there exists a Borel set B
with B ⊆ A and a Borel probability measure µ on G such that µ(gBh) = 0

for every g, h ∈ G.

Haar null sets were introduced by Christensen as a generalization of the
so-called Haar measure zero sets to groups that are non-locally-compact.
Haar null sets form a σ-ideal (see Definition 2.2.7), which is a natural ex-
pectation for a notion of any "null set". It turned out that it is a fruitful
concept in mathematics and Haar null sets have numerous applications, see
e.g. [5].

Sometimes it is hard to get a natural Borel covering set B in the definition
of a Haar null set. To get a wider class of covering sets, we may use the so-
called universally measurable sets (see Definition 2.1.8) and we arrive at the
definition of generalized Haar null sets:

Definition 1.0.2. A ⊆ G is called generalized Haar null, if there exists a
universally measurable set B with B ⊇ A and a Borel probability measure µ
on G such that µ(gBh) = 0 for every g, h ∈ G.

It is natural to ask what the Baire category analogues of the Haar null
and generalized Haar null sets are. Meager sets (see Definition 2.1.11) make
sense in every topological space, but it turned out that the best category
analogue of the Haar null sets are not the meager sets. The following notion
turned out to be a very good category analogue of Haar null sets.

Definition 1.0.3. A ⊆ G is called Haar meager, if there exists a Borel set
B with B ⊇ A and a compact metric space K with a continuous function
f : K −→ G such that f−1(gBh) is meager in K for every g, h ∈ G.
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The aim of this thesis is to introduce the generalized Haar meager sets
as a category analogue of generalized Haar null sets. To do this, we need a
category analogue of the universally measurable sets. For this purpose, we
will introduce the universally Baire sets as a nice category analogue for the
universally measurable sets first. It turned out that there are various math-
ematical objects called universally Baire sets, so we will start with collecting
various notions of universally Baire sets in Section 3 that appeared in the
literature and we will systematically investigate them. In Section 4, we will
choose our definition of a universally Baire set, which will serve as a nice
category analogue of the universally measurable sets and as an application
we will introduce the generalized Haar meager sets.

2 Notations and preliminaries

2.1 Descriptive set theoretical preliminaries

Definition 2.1.1. A topological space X is called a Polish space, if it is
separable and completely metrizable.

Notation 2.1.2. Let A be a nonempty set and n ∈ ω. We denote by An the
set of finite sequences s = (s0, ..., sn−1) of length n from A (for n = 0 we have
that A0 = {∅}).The length of a finite sequence s is denoted by length(s). If
s ∈ An and m ≤ n, we denote by s|m the restriction of s of length m, that
is, s|m = (s0, ..., sm−1). If a ∈ A and s ∈ An, then saa denotes the sequence
(s0, ..., sn−1, a). We say that the finite sequence t extends the finite sequence
s if there exists a m ≤ length(t) such that t|m = s, in symbols s ≺ t. We will
denote by A<ω the set of all finite sequences from A, that is, A<ω =

⋃
n∈ω

An.

Notation 2.1.3. When λ is a cardinal, we also consider it as a topological
space with the discrete topology and when we write λω, we consider λω as a
topological space equipped with the product topology. In the case λ = ω, we
will write Nω, which is called the Baire space and the topological space 2ω is
called the Cantor space.
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Notation 2.1.4. When X is a topological space, we will denote the Borel
sets of X by B(X).

Fact 2.1.5. The Baire space and the Cantor space are Polish spaces.

Theorem 2.1.6. (see [12, Exercise 3.4]) The Baire space is homeomorphic
to the the irrationals and the Cantor space is homeomorphic to the standard
triadic Cantor set. The Baire space is also homeomorphic to the irrationals
in the unit interval [0, 1].

Definition 2.1.7. Let X be a Polish space, a measure µ on X is called a
Borel measure, if it is the completion of a measure which is defined on the
Borel σ-algebra of X.

Definition 2.1.8. Let X be a Polish space and A ⊆ X. The set A is called
a universally measurable set if it is measurable with respect to any σ-finite
Borel measure.

Remark 2.1.9. It is easy to see that if we only require A to be µ measurable
for every finite Borel measure µ, then A is already a universally measurable
set.

Definition 2.1.10. Let Y be a topological space, then A ⊆ Y is called a
nowhere dense set, if for every nonempty open set U ⊆ Y there exists a
nonempty open set V ⊆ U , such that V ∩ A = ∅.

Definition 2.1.11. Let Y be a topological space, then A ⊆ Y is called a
meager set, if it is the countable union of nowhere dense sets. The set B ⊆ Y

is called residual or comeager, if Bc is meager.

Notation 2.1.12. For a topological space Y we denote the meager subsets
of Y byM(Y ).

Notation 2.1.13. For sets A,B we denote by A4B the symmetric difference
of A and B, that is A4B = (A \B) ∪ (B \ A).

Definition 2.1.14. Let Y be a topological space, a set A has the property
of Baire if there exists an open set U such that U4A is meager.
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Theorem 2.1.15. (see [12, Proposition 8.22.]) The family of sets that have
the property of Baire forms a σ-algebra, and it is the smallest σ-algebra con-
taining all open sets and meager sets. Moreover, every set with property of
Baire can be written as the union of a Borel set and a meager set

Definition 2.1.16. Let Y, Z be topological spaces. A function f : Y −→ Z

is Baire measurable if whenever U ⊆ Z is open then f−1(U) has the property
of Baire.

Theorem 2.1.17. (Baire category theorem, see [12, Theorem 8.4.]) Let Y
be a complete metric space, then the countable intersection of dense open sets
is a dense set.

Definition 2.1.18. A topological space Y is said to be perfect, if it has no
isolated points.

Definition 2.1.19. A subset of a topological space is called perfect if it is
closed and perfect with respect to the subspace topology.

Theorem 2.1.20. (see [12, Theorem 6.4.]) Let X be a Polish space, then X
can be uniquely written as X = P ∪C, where P and C are disjoint and P is
a perfect subset of X and C is a countable open set.

Theorem 2.1.21. (see [12, Theorem 3.11.]) A subspace of a Polish space
is completely metrizable if and only if it is a Gδ subspace. Equivalently, a
subspace of a Polish space is Polish if and only if it is a Gδ subspace.

Definition 2.1.22. Let X be a Polish space. The set A ⊆ X is called
analytic if there exists a Polish space Y and a continuous f : Y −→ X such
that f(Y ) = A or A = ∅. The set A ⊆ X is called coanalytic if Ac is
analytic.

2.2 Topological and set theoretical preliminaries

Convention: Whenever we consider a topological space Z, we do not assume
that Z is Hausdorff and we will carefully emphasize when the space Z is
assumed to be Hausdorff.
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Notation 2.2.1. When Z is a topological space with A ⊆ Z, then we will
denote the interior of A by intA, the closure of A will be denoted by A and
the boundary of A will be denoted by ∂A.

Notation 2.2.2. Let (Z, d) be a metric space and take an arbitrary A ⊆ Z

and r > 0. We will denote by Nr(A) the open r-neighborhood of A, that is,
Nr(A) = {x ∈ Z | ∃z ∈ A : d(x, z) < r}.

Definition 2.2.3. Let Z be a topological space and let U ⊆ Z be an open
set, then U is called a regular open set, if intU = U . We will say that Z has
a regular open basis, if it has a basis such that every element of the basis is
a regular open set.

Theorem 2.2.4. (see [15, Theorem 4.6.]) Let X be a topological space with
A ⊆ X having the property of Baire. There exists a regular open set U and
a meager set M such that A = U4M = A.

Definition 2.2.5. A topological space Z is called Čech-complete, if Z is
homeomorphic to a Gδ subset of a compact Hausdorff space.

Definition 2.2.6. A topological space X is called extremally disconnected
if the closure of every open set is open.

Definition 2.2.7. A system I (of subsets of some set) is called a σ-ideal if
(i) ∅ ∈ I,
(ii) A ∈ I, B ⊆ A⇒ B ∈ I and
(iii) if An ∈ I for all n ∈ ω, then

⋃
nAn ∈ I.

Definition 2.2.8. We will denote by add(M) the additivity of the σ-ideal
of the meager sets of Nω, that is the least cardinal κ, such that there exist
meager sets {Mα | α < κ}, such that

⋃
α<κ

Mα is not meager.

Definition 2.2.9. We will denote by add(N ) the additivity of the σ-ideal of
the Lebesgue null sets of R, that is the least cardinal κ, such that there exist
Lebesgue null sets {Nα | α < κ}, such that

⋃
α<κ

Nα is not a Lebesgue null set.

Fact 2.2.10. The cardinal add(N ) is equal to the least cardinal κ such that
there exist Lebesgue null sets {Nα | α < κ} such that for every α < κ we
have that Nα ⊆ [0, 1] and

⋃
α<κ

Nα is not a Lebesgue null set.



3 UNIVERSALLY BAIRE SETS 8

3 Universally Baire sets

3.1 The case of general Polish spaces

We start with the various definitions of a universally Baire sets.

Definition 3.1.1. Let F be a class of topological spaces, Z be an arbitrary
topological space and let A ⊆ Z. The set A is called F-universally Baire,
if f−1(A) has the property of Baire in Y for every Y ∈ F and for every
continuous function f : Y −→ Z.

We are mainly interested in the case, when Z is a Polish space and we will
consider the cases, when F = topological spaces, compact Hausdorff spaces,
Polish spaces, compact metric spaces, λω for every cardinal λ, Čech-complete
spaces, the Baire space or the Cantor space. We will define now each type
of the previously mentioned universally Baire sets and give references where
we can where they appeared.

In [10] the following was called a universally Baire set: A ⊆ Z is uni-
versally Baire if f−1(A) has the property of Baire in Y whenever Y is a
Čech-complete space (see Definition 2.2.5) and f : Y −→ Z is a continuous
function. Let us formulate it in a definition, but let us use a different name:

Definition 3.1.2. Let F = Čech-complete spaces. Then A ⊆ Z is called
Čech-complete-universally Baire if A is F-universally Baire. For brevity, we
denote the Čech-complete-universally Baire sets of Z by UBČech−complete(Z).

In [7] the following notions were introduced by Feng, Magidor and
Woodin: let A ⊆ Nω and let λ be an infinite cardinal. The set A is called
λ-universally Baire if whenever Y is a topological space with a regular open
basis (see Definition 2.2.3) of cardinality ≤ λ, f−1(A) has the property of
Baire in Y for every continuous function f : Y −→ Nω. Finally, A ⊆ Nω is
called a universally Baire set if it is λ-universally Baire set for every infinite
cardinal λ.

In [7, Theorem 2.1.] the following was proved:
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Theorem 3.1.3. Let λ be an infinite cardinal and A ⊆ Nω. The set A is
λ-universally Baire if and only if f−1(A) has the property of Baire in λω for
every continuous f : λω −→ Nω.

This motivates the following definition:

Definition 3.1.4. Let F={λω | λ is a cardinal}. Then A ⊆ Z is called
cardinal-universally Baire if A is F-universally Baire. For brevity, we denote
the cardinal-universally Baire sets of Z by UB∀λω(Z).

The previously mentioned two notions of universally Baire sets are the
most well-known ones, but the following are also natural and interesting
notions, we start with the most restrictive definition:

Definition 3.1.5. Let F = topological spaces. Then A ⊆ Z is called
topological-universally Baire if A is F-universally Baire. For brevity, we
denote the topological-universally Baire sets of Z by UBtopological(Z).

In [17] a set A ⊆ Rn is called universally Baire, if f−1(A) has the prop-
erty of Baire for every compact Hausdorff space Y and for every continuous
function f : Y −→ Rn. This motivates the following definition:

Definition 3.1.6. Let F = compact Hausdorff spaces. Then A ⊆ Z is
called compact Hausdorff-universally Baire if A is F-universally Baire. For
brevity, we denote the compact Hausdorff-universally Baire sets of Z by
UBcompact Hausdorff(Z).

It is worth to note that the previous definitions of universally Baire sets
are interesting in an arbitrary topological space Z, but the following defini-
tions are mostly considered when the space Z is a Polish space.

In [13] a subset A of a Polish space Z is called universally Baire, if f−1(A)

has the property of Baire for every Polish space Y and for every continuous
f : Y −→ Z. This motivates the following definition:

Definition 3.1.7. Let F = Polish spaces. Then A ⊆ Z is called Polish-
universally Baire if A is F-universally Baire. For brevity, we denote the
Polish-universally Baire sets of Z by UBPolish(Z).
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Note that the following definition is closely related to the ω-universally
Baire notion of Feng, Magidor and Woodin:

Definition 3.1.8. Let F={Nω}. Then A ⊆ Z is called Nω-universally Baire
if A is F-universally Baire. For brevity, we denote the Nω-universally Baire
sets of Z by UBNω(Z).

In [11] a subset A of a Polish space Z is called universally Baire, if f−1(A)

has the property of Baire for every compact metric space Y and for every
continuous f : Y −→ Z. This motivates the following definition:

Definition 3.1.9. Let F = compact metric spaces. Then A ⊆ X is called
compact metric-universally Baire if A is F-universally Baire. For brevity, we
denote the compact metric-universally Baire sets of Z by UBcompact metric(Z).

It is well-known that any Polish space is the continuous image of Nω

(see [12, Theorem 7.9.]) and every compact metric space is the continuous
image of the Cantor space (see [12, Theorem 4.18.]). Therefore the following
definition is also of interest parallel to Definitions 3.1.7 and 3.1.8:

Definition 3.1.10. Let F={2ω}. Then A ⊆ Z is called Cantor-universally
Baire if A is F-universally Baire. For brevity, we denote the Cantor-
universally Baire sets of Z by UBCantor(Z).

Throughout this subsection whenever we write X for a space, then X

is assumed to be a Polish space. The main result of Subsection 3.1 is the
following theorem:

Theorem 3.1.11. The relationship between the various notions of univer-
sally Baire sets in X are the containments of the diagram below and no more
containments are provable in ZFC.
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UBtopological(X) = UB∀λω(X) = UBČech−complete(X)

UBNω(X) = UBPolish(X) UBcompact Hausdorff (X)

UBcompact metric(X) = UBCantor(X)

Con
*

Con
+

⊇ * Con⊇* Con

* Con⊇ * Con⊇

Diagram 3.1.11 (Implications in a general Polish space X.)

Since Diagram 3.1.11 is quite large, we prove Theorem 3.1.11 through
several theorems and lemmas. We start with two simple lemmas, which
often come up later:

Lemma 3.1.12. Let Z be an arbitrary topological space with A ⊆ Z̃ ⊆ Z,
and F be a class of topological spaces. If A is F-universally Baire in Z, then
A is also F-universally Baire in Z̃.

Proof. We need to check that f−1(A) has the property of Baire in Y for
every Y ∈ F and continuous f : Y −→ Z̃. But this is trivial, because every
continuous f : Y −→ Z̃ can be considered as a continuous f : Y −→ Z and
A is F -universally Baire in Z, hence f−1(A) has the property of Baire in
Y .

Lemma 3.1.13. Let Z be a topological space and A ⊆ Y ⊆ Z. Suppose that
Y has the property of Baire in Z and A has the property of Baire in Y , then
A also has the property of Baire in Z.

Proof. Since A has the property of Baire in Y , we have that A = B ∪M ,
where B is a Borel set in Y and M is a meager set in Y . Since B is a Borel
set in Y , there exists a Borel set B̃ in Z, such that B = B̃ ∩ Y . It is easy
to see that if N is a nowhere dense subset of Y , then it is a nowhere dense
subset of Z, hence any meager set in Y is also a meager set in Z. To finish
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the proof, we only need to note that A = (B̃ ∩Y )∪M , which clearly has the
property of Baire in Z.

Remark 3.1.14. The converse of Lemma 3.1.13 is not true, because we can
take a set A in the standard triadic Cantor set, which does not have the
property of Baire in the Cantor set, but it will have the property of Baire
in R, because the standard triadic Cantor set is nowhere dense, hence A is
nowhere dense, too.

We turn to the proof of the first row of Diagram 3.1.11:

Theorem 3.1.15. UB∀λω(X) = UBtopological(X) = UBČech−complete(X).

Proof. We start with recalling two theorems from [10, 1K Theorem, 1E The-
orem]:

Theorem 3.1.16. If Z is a metrizable space, then UBČech−complete(Z) =

UB∀λω(Z).

We do not recall the proof of Theorem 3.1.16, we only apply it in the
case of Polish spaces. Since every Polish space X is metrizable, from the
previously mentioned theorem follows that UB∀λω(X) = UBČech−complete(X).
The second theorem we recall from [10]:

Theorem 3.1.17. Let Z be a compact Hausdorff space. The following are
equivalent for A ⊆ Z:

(i) A ∈ UBtopological(Z),
(ii) A ∈ UBČech-complete(Z),
(iii) f−1(A) has the property of Baire in Y , whenever Y is an extremally

disconnected compact Hausdorff space and f : Y −→ Z is a continuous
function.

We will recall the proof of Theorem 3.1.17 later, but at this point we
postpone it till the end of Subsection 3.2.

The containment UBtopological(X) ⊆ UBČech−complete(X) is trivial, so let
us choose an arbitrary A ∈ UBČech−complete(X) and our goal is to prove that
A ∈ UBtopological(X). Now the only problem with Theorem 3.1.17 to apply
for X is that X is not necessarily compact. It turns out that this is not
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a big problem, since for an arbitrary Polish space X there exists a Polish
compactification of X - that is a compact metric space X̃, which contains a
dense homeomorphic copy of X (see [12, Theorem 4.14.]).

Let X̃ be a Polish compactification of X. Note that it would be enough
to prove that A ∈ UBČech−complete(X̃), because then Theorem 3.1.17 would
imply that A ∈ UBtopological(X̃) and Lemma 3.1.12 would imply that A ∈
UBtopological(X).

To prove that A ∈ UBČech−complete(X) =⇒ A ∈ UBČech−complete(X̃), take
an arbitrary Čech-complete space Y and a continuous f : Y −→ X̃ and we
need to prove that f−1(A) has the property of Baire in Y . First notice that
X is a Gδ subspace of X̃, because it is a completely metrizable subspace of
a Polish space (see Theorem 2.1.21), so f−1(X) is a Gδ subspace of Y , hence
f−1(X) is a Čech-complete space. If we denote by g the restriction of f
to f−1(X), then g is a continuous function from the Čech-complete space
f−1(X) to X, hence g−1(A) = f−1(A) has the property of Baire in f−1(X).

By Lemma 3.1.13 f−1(A) has the property of Baire in Z, since f−1(X)

has the property of Baire in Z.

To continue the proof of the containments of Diagram 3.1.11, we mention
that the containments from the first row to the second row are trivial.

Fact 3.1.18. UBtopological(X) ⊆ UBPolish(X) and UBtopological(X) ⊆
UBcompact Hausdorff(X).

Let us continue with the proof of the containments of the second row of
Diagram 3.1.11, we start with a lemma:

Lemma 3.1.19. Every perfect Polish space contains a dense subspace home-
omorphic to Nω.

Proof. Let X be an arbitrary perfect Polish space and d be a complete com-
patible metric on X.

Claim 3.1.20. Let U ⊆ X be an arbitrary nonempty open set, then for every
n there exists an infinite sequence of pairwise disjoint nonempty open balls
{Bi}i∈ω such that ∀i : Bi ⊆ U with

⋃
i∈ω

Bi dense in U and the radii of the

balls are at most 1
n
.
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Proof. We first enumerate a dense sequence {qi}i∈ω in U . Let B0 be a ball
centered at q0 and with radius r0, such that q1 /∈ B(q0, r0) and r0 ≤ 1

n
. If

we have defined B0, B1, . . . Bn−1 such that they are pairwise disjoint, having
radius at most 1

n
andB0∪· · ·∪Bn−1 6= U , then U\B0∪· · ·∪Bn−1 is a nonempty

open set, so we can choose a qj ∈ U \B0∪· · ·∪Bn−1, with j minimal. By the
perfectness of the Polish space, we can also choose p ∈ U \ B0 ∪ · · · ∪ Bn−1,
p 6= qj. We will choose Bn to be a ball centered at qj with radius rn ≤ 1

n
,

such that p /∈ Bn.
By construction we have that the above defined balls are pairwise disjoint

and they have radii at most 1
n
. We also have that if qj /∈ B0 ∪ · · · ∪ Bj−1,

then qj ∈ Bj, so
⋃
i∈ω

Bi is dense in U .

After the previous claim we can easily construct a dense subspace of X
homeomorphic to Nω. Let B∅ := X and on the first level, we set U = X

and n = 1. Applying Claim 3.1.20, we get an infinite sequence of pairwise
disjoint nonempty balls B0, B1, . . . with radius at most 1, such that their
union is dense in X. Suppose that we have defined open balls Bs, s ∈ N<ω

for every s with |s| ≤ n with the following properties:
(i) if s ≺ t, then Bs ⊃ Bt,

(ii) Bs has radius at most 1
|s| , when s 6= ∅,

(iii) for |s| < n we have that
⋃
i∈ω

Bsai is dense in Bs.

We continue the construction for n+ 1 as follows: we apply Claim 3.1.20
for every Bs with |s| = n to get a countable sequence of balls Bsai (i ∈ ω)
such that they are pairwise disjoint with their union dense in Bs and radii
at most 1

|s|+1
. By construction it is easy to see that

⋃
|s|=m

Bs is dense in X for

every m ≤ n.

We claim that N :=
∞⋂
n=0

⋃
s∈Nn

Bs is a dense subspace homeomorphic to

Nω. First notice that N is dense, since by the Baire category theorem the
countable intersection of dense open sets is dense. We also have to observe
that N =

⋃
x∈Nω

⋂
n∈ω

Bx|n . By the construction we have that ∀x ∈ Nω:

⋂
n∈ω

Bx|n =
⋂
n∈ω

Bx|n
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which consists of exactly one element, because the diameters tend to zero
and at each finite level Bx|n is nonempty. Now the above argument gives rise
to the natural function f : Nω −→ X:

f(x) ∈
⋂
n∈ω

Bx|n .

By construction it can be easily seen that this function is injective and sur-
jective onto N . We claim that f is continuous, to see this, fix x ∈ Nω and
ε > 0. If y ∈ Nω such that x|n = y|n, then d(f(x), f(y)) ≤ 2

n
, so if we take n

large enough, such that 2
n
< ε and we set U := {y ∈ Nω : y|n = x|n}, then U

is an open set such that x ∈ U and f(U) ⊆ B(f(x), ε).
We show that f−1 is also continuous. We fix an arbitrary f(x) and n and

we want to find a neighbourhood U of f(x), such that whenever f(y) ∈ U
we have that x|n = y|n. Clearly, such a neighbourhood is Bx|n ∩N . Hence f
is a homeomorphism between Nω and N .

Theorem 3.1.21. For every Polish space X we have that UBPolish(X) =

UBNω(X).

Proof. The containment UBPolish(X) ⊆ UBNω(X) is obvious, since Nω is
Polish, so let us suppose that A ∈ UBNω(X) and our goal is to prove that
A ∈ UBPolish(X). For this let Y be an arbitrary Polish space and f : Y −→ X

be an arbitrary continuous function. We need to prove that f−1(A) has the
property of Baire.

Take a partition of Y in a form Y = P ∪ C, where P and C are disjoint
and P is a perfect subset and C is a countable open set (such a decomposition
exists, see Theorem 2.1.20). If Y is countable, then each of its subsets have
the property of Baire. Hence, we can assume that Y is uncountable. In this
case the above P is nonempty.

It is enough to prove that f−1(A) ∩ P has the property of Baire in Y ,
because f−1(A)∩C is countable and by Lemma 3.1.13 it is enough to prove
that f−1(A) ∩ P has the property of Baire in P .

All in all, we have that if g denotes the restriction of f to P , it is enough to
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prove that g−1(A) has the property of Baire in P . Let N be a dense subspace
of P homeomorphic to Nω, by Lemma 3.1.19 such a subspace exists. P \N
is meager, because N is completely metrizable, hence it is a Gδ subspace of
P (see Theorem 2.1.21), which is also dense, so it is enough to prove that
g−1(A) ∩ N has the property of Baire in P . Again, by Lemma 3.1.13, it is
enough to prove that g−1(A)∩N has the property of Baire in N . Denoting by
h the restriction of g to N , we only need to prove that h−1(A) = g−1(A)∩N =

f−1(A) ∩ Y ∩ N has the property of Baire in N . But the latter is trivial,
because h is also a continuous function from the space N homeomorphic to
Nω, hence h−1(A) has the property of Baire in N .

We turn to the third row of Diagram 3.1.11, let us first note that the
containments from the second row to the third row are obvious:

Fact 3.1.22. UBPolish(X) ⊆ UBcompact metric(X) and UBcompact Hausdorff(X) ⊆
UBCantor(X).

Finally, we prove the last unproved equality from Diagram 3.1.11, namely:

Theorem 3.1.23. For every Polish space X we have that
UBcompact metric(X) = UBCantor(X).

Proof. The containment UBcompact metric(X) ⊆ UBCantor(X) is trivial, be-
cause 2ω is a compact metric space. To prove the other direction, we start
with recalling an important definition:

Definition 3.1.24. Let Z and Y be arbitrary topological spaces. A contin-
uous surjective f : Y −→ Z is called irreducible if for every proper closed
F ⊆ Y the image f(F ) is a proper closed subspace of Z.

In [18, Lemma 2.1.] the following was proved about irreducible maps:

Lemma 3.1.25. Let K be a perfect compact metric space, then there exists
an irreducible f : 2ω −→ K.

Let us consider in a lemma one of the most fruitful properties of an
irreducible mapping:
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Lemma 3.1.26. Let f : Y −→ Z be an irreducible mapping, then for every
nowhere dense N ⊆ Y we have that f(N) is nowhere dense in Z. If M ⊆ X

is meager then f(M) is meager in Y .

Proof. Let N be a nowhere dense subset of Y and we want to prove that
f(N) is a nowhere dense subset of Z. For this, let U ⊆ Z be a nonempty
open set. Since f is surjective and continuous, f−1(U) is a nonempty open
set in Y . By the nowhere density of N there exists a nonempty V ⊆ f−1(U),
such that N ∩ V = ∅.

In this case V c is a proper closed subset of Y , hence f(V c) is a proper
closed subset of Y and f(N) ⊆ f(V c). From this we can see that f(V c)c is
a nonempty open set, which is disjoint from f(N) and f(V c)c ⊆ f(V ) ⊆ U

(the first containment follows from the surjectivity of f). All in all, we have
proved that for every nonempty open set in Y there exists a nonempty open
subset, which is disjoint from f(N), so f(N) is nowhere dense. The last
assertion of the lemma is trivial from the first assertion.

After this short detour about irreducible mappings, let us turn to the
proof of the harder part of the theorem. Suppose that A ∈ UBCantor(X) and
our goal is to prove that A ∈ UBcompact metric(X). Take an arbitrary compact
metric space K and an arbitrary continuous g : K −→ X, we need to check
that g−1(A) has the property of Baire in K.

If K is a countable, then the statement is trivial, so we can assume that
K is uncountable. Take a partition of K into a perfect and a countable set,
that is, K = P ∪ C, where C is a countable open set and P is perfect set
(such a decomposition exists, see Theorem 2.1.20). If K is uncountable then
also P is uncountable, especially it is nonempty.

Since C is countable, it is enough to prove that g−1(A) ∩ P has the
property of Baire inK. By Lemma 3.1.13, it is enough to prove that g−1(A)∩
P has the property of Baire in P . We denote by g̃ the restriction of g to P .
By Lemma 3.1.25, there exists an irreducible map f : 2ω → P and since g̃ ◦f
is continuous, by assumption f−1(g̃−1(A)) has the property of Baire in 2ω,
so we can write f−1(g̃−1(A)) = B ∪M , where B is Borel and M is meager.
Since f was also surjective, we have that g−1(A) ∩ P = f(f−1(g̃−1(A))) =
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f(B)∪f(M). We have that f(B) is an analytic set (see [12, Theorem 14.2.]),
so it has the property of Baire (see [12, Theorem 21.6.]) and f(M) is meager
by Lemma 3.1.26, so f(B) ∪ f(M) has the property of Baire in P .

Now we prove that none of the containments can be reversed in ZFC

in Diagram 3.1.11 (apart from the equalities, where the containments are
already reversed). We will need the following lemma:

Lemma 3.1.27. Let κ < add(M) be a cardinal and let X be a Polish space
and suppose that we are given a collection of subsets H = {Bα | α < κ} of
X such that every member of H has the property of Baire, then

⋃
α<κ

Bα has

the property of Baire.

Proof. First, we assume that X = Nω. For every α < κ there exists an open
set Uα and a meager set Mα such that Bα = Uα4Mα. It is easy to see that⋃
α<κ

Bα4
⋃
α<κ

Uα ⊆
⋃
α<κ

Mα, but
⋃
α<κ

Mα is a meager set, hence
⋃
α<κ

Bα differs

from the open set
⋃
α<κ

Uα by a meager set so
⋃
α<κ

Bα has the property of Baire.

Now we consider the case, when X is an arbitrary Polish space. First, if
X is countable, then each of its subset has the property of Baire, especially⋃
α<κ

Bα also has the property of Baire, so we can assume that X is uncount-

able. We can take the partition of X into a nonempty perfect set P and a
countable open set C (see Theorem 2.1.20). We will consider two cases, first
we assume that intP = ∅, then C is a nonempty open subset and P is a
nowhere dense subset of X. Since Bα∩C has the property of Baire in X and
since C is an open set, it is easy to see that Bα∩C has the property of Baire
in C, too. Since C is countable we can conclude that

⋃
α<κ

(Bα ∩ C) has the

property of Baire in C and by Lemma 3.1.13
⋃
α<κ

(Bα ∩ C) has the property

of Baire in X. Adding the nowhere dense set
⋃
α<κ

(Bα∩P ) to
⋃
α<κ

(Bα∩C) we

can see that
⋃
α<κ

Bα has the property of Baire in X.

The second case is when we assume that intP 6= ∅. By the first case, we
can see that

⋃
α<κ

(Bα∩C) has the property of Baire and since ∂P is a nowhere

dense set, it is enough to prove that (
⋃
α<κ

Bα) ∩ intP =
⋃
α<κ

(Bα ∩ intP )
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has the property of Baire. By Lemma 3.1.13 it is enough to prove that⋃
α<κ

(Bα ∩ intP ) has the property of Baire in the subspace intP .

For brevity, letDα := Bα∩ intP . We first check thatDα has the property
of Baire in intP . Since Dα has the property of Baire in X, it can be written
as Dα = Fα ∪Mα, where Fα is a Borel set in X and Mα is a meager set in
X. It is clear that Fα is also a Borel set in intP and if we can prove that
Mα is meager in intP , then Dα has the property of Baire in intP .

To see that Mα is meager in intP , it suffices to prove that whenever
N ⊆ intP is a nowhere dense set in X, then N is also a nowhere dense set
in intP . Any nonempty open set of intP is of the form V ∩ intP for some
nonempty open set V in X, for this V we have that V ∩ intP is a nonempty
open set in X and since N is a nowhere dense set, there exists a nonempty
open subset W of X, such that W ⊆ V ∩ intP , which is disjoint from N .
This W is also a nonempty open subset of intP which is disjoint from N ,
hence N is also a nowhere dense subset of intP . All in all, we have proved
that Dα has the property of Baire in intP .

The last step to finish the proof is to prove that
⋃
α<κ

Dα has the property

of Baire in intP . Since P is a perfect subset of X we have that intP also
does not have isolated points and since intP is open, we have that intP is
Polish by Theorem 2.1.21. By Lemma 3.1.19 there exists a dense subspace
N homeomorphic to Nω, which is automatically a Gδ subspace of intP (see
Theorem 2.1.21). Since N is a dense Gδ subspace, intP \ N is a meager
subset of intP , so it is enough to prove that

⋃
α<κ

(Dα∩N ) has the property of

Baire in intP and by Lemma 3.1.13 it is enough to prove that
⋃
α<κ

(Dα ∩N )

has the property of Baire in N .
We are almost done, because in Nω we have seen that the union of κ

many (κ < add(M)) sets with the property of Baire also has the property
of Baire, so we need to check that for every α < κ the set Dα ∩ N has the
property of Baire in N . This will be very simple, because Dα can be written
as Dα = Aα ∪ Lα, where Aα is a Borel set in intP and Lα is a meager set
in intP . It is clear that Aα ∩ N is a Borel set in N and we will prove that
Mα ∩N is a meager set in N which is enough to conclude that Dα ∩N has
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the property of Baire in N . To see the meagerness of Mα ∩ N , it is enough
to prove that whenever L ⊆ N is a nowhere dense subset of intP , then it
is also a nowhere dense set in N . Let L ⊆ N be a nowhere dense subset of
intP and take an arbitrary nonempty open set U in N . Since U is open in
N , there exists a nonempty open subset V of intP such that U = V ∩ intP .
Since L is a nowhere dense set, there exists a nonempty open set W such
that W ⊆ V and W is disjoint from L, but N is a dense subspace of intP ,
hence W ∩ N is a nonempty open set in N such that W ∩ N ⊆ U and it is
disjoint from L, so L is a nowhere dense subset of N .

We give examples which show that no more containments are provable
in ZFC in Diagram 3.1.11. For the definition of add(M) and add(N ), see
Definitions 2.2.8, 2.2.9 and see also Fact 2.2.10.

Theorem 3.1.28. Suppose that ω1 = add (N ) < add (M) = ω2, then we
have that UBPolish([0, 1]) * UBČech-complete([0, 1]).

Proof. We first mention that there exists a model of set theory, where ω1 =

add(N ) < add(M) = ω2 holds (see [1, Model 7.6.9.]). Throughout the proof,
we will denote by λ(A) the Lebesgue measure of a set A ⊆ R.

Since add(N ) = ω1, there exists {Nα | α < ω1} with λ(Nα) = 0 for every
α < ω1 such that N :=

⋃
α<ω1

Nα has positive outer measure. We can cover

each Nα by a Borel null set B̃α. We will make the B̃α-s disjoint by setting
Bα := B̃α \

⋃
β<α

B̃β. Note, that for every α < ω1 the set Bα is a Borel null

set. Now our goal is to find E ⊆ ω1, such that
⋃
α∈E

Bα is not measurable.

Suppose for a contradiction that
⋃
α∈E

Bα is measurable for every E ⊆ ω1.

We will show that in this case we can define a finite measure µ on all subsets
of ω1, which vanishes on singletons. In [15, Theorem 5.6.] it was proved that
if µ is a finite measure on all subsets of ω1, which vanishes on singletons,
then µ is identically zero. If E ⊆ ω1, then we define the measure µ of E as:

µ(E) := λ
( ⋃
α∈E

Bα

)
.
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We clearly defined a finite measure µ on P(ω1) (the σ-additivity of this
measure follows from the σ-additivity of the Lebesgue measure), which also
vanishes on singletons. But µ(ω1) = λ(B) > 0, because λ(B) has positive
outer measure, contradiction.

So there must be a set E ⊆ ω1, such that C :=
⋃
α∈E

Bα is not Lebesgue

measurable. To see that C ∈ UBPolish([0, 1]), take an arbitrary Polish space
Y and a continuous f : Y −→ [0, 1], we need to check that f−1(C) has the
property of Baire. But this is clear from Lemma 3.1.27, because f−1(Bα)

is a Borel set for every α < ω1 and by assumption ω1 < add(M), hence
f−1(C) =

⋃
α∈E

f−1(Bα) also have the property of Baire.

On the other hand, it was proved in [10, 1C Proposition] that if D ∈
UBČech-complete(R), then D is Lebesgue measurable. It is easy to see that if
C ∈ UBČech-complete([0, 1]), then also C ∈ UBČech-complete(R) holds, but this
contradicts the previously mentioned result, so C /∈ UBČech-complete([0, 1]).

The following theorem is a consequence of the previous theorem:

Theorem 3.1.29. For Polish spaces the following containments are not
provable in ZFC: UBPolish(X) ⊆ UBČech−complete(X), UBPolish(X) ⊆
⊆ UBcompact Hausdorff(X).

Proof. The first assertion of the theorem follows from the previous theorem
and to see the second assertion, it is enough to note that in previous the-
orem the Polish space was X = [0, 1] and by Theorem 3.1.17 we have that
UBČech-complete([0, 1]) = UBcompact Hausdorff([0, 1]).

We will now prove that being a compact Hausdorff-universally Baire set
cannot guarantee in ZFC to be a Polish-universally Baire set.

Theorem 3.1.30. Assuming the Continuum Hypothesis, there exists an un-
countable set A ⊆ Zω, such that C ∩ A is countable for every compact set
C ⊆ Zω. For such a set A we have that for every compact space K and for
every continuous f : K −→ Zω, f−1(A) is Fσ in K, but A does not have
the property of Baire in Zω, especially A is a compact Hausdorff-universally
Baire set, but not a Polish-universally Baire set.
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Proof. The construction is simply the so-called Sierpiński set. First, take
any well-ordering of the nowhere dense closed subsets of Zω: {Cα | α < ω1}
(we used here the assumption 2ω = ω1). It is easy to see that by transfinite
recursion, we can pick for each α < ω1 a point pα, such that pβ 6= pα for
every β < α and pα /∈

⋃
β≤α

Cα, we only need to remark that pα can be chosen

to be not an element of
⋃
β≤α

Cα∪
⋃
β<α

{pβ}, but the latter set is meager so such

a choice of pα exists. Let A := {pα | α < ω1}.
We have that A is uncountable but A has countable intersection with

any of the sets Cα. Taking the union of countably many Cα-s still have
countable intersection with A. We know that any meager set can be covered
by countably many nowhere dense closed sets, so any meager set also has
countable intersection with A. Using the well-known fact that every compact
subspace C of Zω is nowhere dense, we get the first part of the example
(namely C ∩ A is countable for any compact C ⊆ Zω).

Take any compact space K and a continuous f : K −→ Zω. Then
f(K) ∩A is countable, since f(K) is compact (it is the continuous image of
a compact space). It is clear that f−1(A) has the property of Baire, because
it is an Fσ set, so A is a compact Hausdorff-universally Baire set.

We also have that A cannot have the property of Baire, because if we
suppose for a contradiction that A = U4M for some open U and meager
M , then U must be empty (otherwise we could construct an uncountable
closed nowhere dense set in U disjoint from M). On the other hand if A
were a meager set, then A itself would be countable, as A has countable
intersection with every meager set, but A is uncountable, a contradiction.

The identity function id on Zω shows that id−1(A) does not have the
property of Baire, so A is not a Polish-universally Baire set.

The following theorem is a trivial consequence of the previous theorem:

Theorem 3.1.31. For Polish spaces the following containments
are not provable in ZFC: UBcompact Hausdorff(X) ⊆ UBPolish(X),
UBcompact Hausdorff(X) ⊆ UBČech−complete(X).
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3.2 The case of σ-compact Polish spaces

As we have seen before, Diagram 3.1.11 is quite complicated, in this subsec-
tion we will prove that when X is a σ-compact Polish space, the diagram
becomes very simple, the aim of this subsection is to prove the following:

Theorem 3.2.1. Let X be a σ-compact Polish space. Then the relationship
between the various notions of universally Baire sets in X are the contain-
ments of the diagram below and no more containments are provable in ZFC.

UBtopological(X) UB∀λω(X) = UBČech−complete(X) UBcompact Hausdorff(X)

UBNω(X) UBPolish(X) = UBcompact metric(X) UBCantor(X)

⊇ * Con

==

= =

Diagram 3.2.1 (Implications in a σ-compact Polish space X.)

We will prove Diagram 3.2.1 in two steps. First, we will assume that the
space X is also compact, after that we will move towards the σ-compact case.
We start with the first row of Diagram 3.2.1:

Theorem 3.2.2. Let X be a compact metric space, then
UBČech−complete(X) = UBcompact Hausdorff(X).

Proof. SinceX is a compact Hausdorff space, by Theorem 3.1.17 we have that
A ∈ UBČech−complete(X) is equivalent with A ∈ UBcompact Hausdorff(X).

We will now weaken the compactness assumption:

Theorem 3.2.3. Let X be a σ-compact Polish space, then
UBČech−complete(X) = UBcompact Hausdorff(X).

Proof. The containment UBČech−complete(X) ⊆ UBcompact Hausdorff(X) is al-
ways true, so let us turn to the reverse direction and assume that A ∈
UBcompact Hausdorff(X) and our goal is to derive that A ∈ UBČech−complete(X).
Let Y be a Čech-complete space and take an arbitrary continuous f : Y −→
X, we need to check that f−1(A) has the property of Baire in Y .
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Let X =
⋃
n∈ω

Cn, where all the Cn-s are compact subspaces of X. We

can assume that all the Cn-s are nonempty. First note that by Lemma
3.1.12 Cn ∩ A ∈ UBcompact Hausdorff(Cn) for all n, hence by Theorem 3.2.2
Cn ∩ A ∈ UBČech-complete(Cn).

Fix n and let fn denote the restriction of f to f−1(Cn). Since Cn is a
Gδ subspace of X, f−1(Cn) is a Gδ subspace of Y , hence f−1(Cn) is also a
Čech-complete space, so f−1

n (Cn ∩ A) = f−1(Cn) ∩ f−1(A) has the property
of Baire in f−1(Cn). Since f−1(Cn) is a Gδ subspace, it has the property of
Baire in Y , so by Lemma 3.1.13 f−1(Cn)∩ f−1(A) has the property of Baire
in Y , and since the sets with the property of Baire form a σ-algebra, f−1(A)

has the property of Baire in Y .

To see that UBPolish(X) ⊆ UBcompact Hausdorff(X) is not provable in ZFC,
even when the space X is compact, we only need to remember that under
certain extra set-theoretic assumption we constructed a set A ⊆ [0, 1] such
that A ∈ UBPolish([0, 1]) but A /∈ UBČech−complete([0, 1]) in Theorem 3.1.28.
On the other hand we know by Theorem 3.2.3 that UBČech−complete([0, 1]) =

UBcompact Hausdorff([0, 1]).
Let us continue with the second row of Diagram 3.2.1:

Theorem 3.2.4. Let X be a compact metric space, then UBPolish(X) =

UBcompact metric(X).

Proof. The containment UBPolish(X) ⊆ UBcompact metric(X) is trivial, so let
us suppose that A ∈ UBcompact metric(X) and our goal is to prove that in this
case A ∈ UBPolish(X). Take an arbitrary Polish space Y and an arbitrary
continuous f : Y −→ X, we need to check that f−1(A) has the property of
Baire in Y .

First, we identify X with a compact (equivalently a closed) subspace of
the Hilbert cube [0, 1]ω (this is a well-known result, see [12, Theorem 4.14.]).
Then the function f has the form f = (fn)n∈ω, where fn is a continuous
function fn : Y → [0, 1] for every n.

We choose a metric d on Y compatible with its topology with d ≤ 1. Let
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(yn)n∈ω be dense in Y and let gn denote the continuous function

gn : Y → [0, 1], gn(y) := d(y, yn).

It is easy to see that the gn-s separate the points, that is ∀y 6= y′ ∈ Y ∃n,
such that gn(y) 6= gn(y′). We consider the following embedding of the space
Y into the Hilbert cube ı : Y → [0, 1]ω:

ı : y 7→ (f0(y), g0(y), f1(y), g1(y), . . . ).

It is easy to see that ı is really an embedding (or see [12, Theorem 4.14.]), so
from now on we identify Y with ı(Y ).

Now here comes the beautiful observation, after this identification f takes
the point (f0(y), g0(y), f1(y), g1(y), . . . ) to (f0(y), f1(y), . . . ), in other words,
f is simply a projection on the even coordinates. So we can extend f to a
f̃ : [0, 1]ω → [0, 1]ω by the formula

f̃ : (x0, y0, x1, y1, . . . ) 7→ (y0, y1, . . . )

which is clearly continuous. By the continuity of f̃ we have that f̃(Y ) ⊆
f(Y ) ⊆ X, where for the latter containment we used the fact that X is
closed in [0, 1]ω.

We will denote by h the restriction of the function f̃ to Y . Since Y is
compact and h : Y −→ X is continuous and A ∈ UBcompact metric(X), we
have that h−1(A) has the property of Baire in Y and by the fact that Y is
comeager in Y we have that h−1(A)∩ Y = f−1(A) has the property of Baire
in Y , which we wanted to prove.

From compact Polish spaces we can easily go to σ-compact Polish spaces:

Theorem 3.2.5. Let X be a σ-compact Polish space, then UBPolish(X) =

UBcompact metric(X).

Proof. The containment A ⊆ UBcompact metric(X) is trivial, so let us suppose
that A ∈ UBcompact metric(X). To prove that in this case A ∈ UBPolish(X) is
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also true, take an arbitrary Polish space Y and a continuous f : Y −→ X,
we need to check that f−1(A) has the property of Baire.

Let X =
⋃
n∈ω

Cn, where all the Cn-s are compact subspaces of X (we can

assume that every Cn is nonempty). By Lemma 3.1.12 we have that Cn∩A is
a compact metric-universally Baire set in Cn for every n, so by Theorem 3.2.4
Cn ∩ A is also Polish-universally Baire in Cn. Let fn denote the restriction
of f to f−1(Cn). Since f−1(Cn) is a closed set, it is a Polish subspace. Since
Cn ∩A is Polish-universally Baire, f−1

n (Cn ∩A) = f−1(Cn)∩ f−1(A) has the
property of Baire in f−1(Cn), hence by Lemma 3.1.13 f−1(Cn)∩ f−1(A) has
the property of Baire in Y .

With the proof of Theorem 3.2.5 we finished the proof of Diagram 3.2.1.
We will now prove Theorem 3.1.17, which we promised in Subsection 3.1.
We will use the theory of Boolean algebras and Stone spaces in the proof of
Theorem 3.1.17 and we assume that the reader is familiar with these notions.
We refer the reader to [8, Chapters 1-3]. We recall what the theorem says:

Theorem 3.2.6. Let X be a compact Hausdorff space. The following are
equivalent for A ⊆ X:

(i) A ∈ UBČech−complete(X),
(ii) A ∈ UBtopological(X),
(iii) f−1(A) has the property of Baire in Z, whenever Z is an extremally

disconnected compact Hausdorff space and f : Z −→ X is a continuous
function.

In fact, in [10] there is a fourth equivalent condition in the previous theo-
rem, but we will give only the proof of the above mentioned three equivalent
conditions. The fourth condition sounds as:

Theorem 3.2.7. Let X be a compact Hausdorff space. For A ⊆ X we have
that A ∈ UBČech−complete(X) if and only if there exists a compact Hausdorff
space K and a continuous surjection f : K −→ X, such that f−1(A) ∈
UBČech−complete(K).
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Proof. (of Theorem 3.2.6) The implication (ii) ⇒ (i) is trivial, because
for an arbitrary topological space X we have that UBtopological(X) ⊆
UBČech−complete(X).

The implication (i) ⇒ (iii) follows from the simple fact that every com-
pact Hausdorff space is Čech-complete.

We turn to the proof of implication (iii) ⇒ (ii). Let W be an arbitrary
topological space and f : W −→ X be an arbitrary continuous function. We
need to check that f−1(A) has the property of Baire in W .

Let E := {A ⊆ W | int ∂A = ∅}, or in other words, E is the collection
of subset of W with nowhere dense boundary. It is well-known and easy to
check that the family E is a field, hence E forms a Boolean algebra with the
usual set-theoretic operations (∅,W,∪,∩,c ). Note that E contains the open
and closed sets.

We denote by RO(W ) the regular open algebra of W and we will also
need the space Z := St(RO(W )), the Stone space of the regular open algebra
of W . Since RO(W ) is a complete Boolean algebra, in this case it is well-
known that Z is an extremally disconnected space (see Definition 2.2.6, in
fact the Stone space of a Boolean algebra is extremally disconnected if and
only if the Boolean algebra is complete). We denote by ∆0

1(Z) the clopen
sets of Z and recall that if for U ∈ RO(W ) we introduce the following:

TU := {U | U is an ultrafilter on RO(W ) and U ∈ U}, (3.1)

then these sets form the usual clopen basis of Z.
We denote by α the canonical Boolean isomorphism between the regular

open algebra RO(W ) and the algebra of clopen sets ∆0
1(Z):

α : RO(W ) −→ ∆0
1(Z), U 7→ TU .

For A ∈ E , let A∗ := α(int(A)). Note that the previous expression makes
sense because the interior of a closed set is always a regular open set, hence we
can apply the Boolean isomorphism α to int(A). We will use the well-known
result that A 7→ A∗ is a Boolean homomorphism between E and ∆0

1(Z).
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We now define g ⊆ Z ×X and our goal is to show that actually g defines
a continuous function g : Z −→ X. Set

g :=
⋂

F⊆X, F closed

(Z × F ) ∪ ((Z \ (f−1(F ))∗)×X) = (3.2)

=
⋂

G⊆X, G open

(Z × (X \G)) ∪ ((f−1(G))∗)×X).

By the first (defining) equality, we can see that g is a closed subset of
Z ×X. To see the second equality, we need to check that if F ⊆ X is closed
and G = X \ F , then Z \ (f−1(F ))∗ = (f−1(G))∗, but this is clear because ∗

is a homomorphism between E and ∆0
1(Z) and f−1(G) = W \ f−1(F ).

Claim 3.2.8. For every z ∈ Z there exists a unique x ∈ X such that (z, x) ∈
g. In other words, g is a function (it is customary in set theory that we
identify a function with its graph).

Proof. We fix an arbitrary z ∈ Z and we define the following subcollection
of closed sets:

Lz := {F | F ⊆ X closed and z ∈ (f−1(F ))∗}. (3.3)

We will check that the elements of Lz have the finite intersection property,
hence their intersection will be nonempty. Every element of Lz is nonempty,
so it is enough to see that if F1, F2 ∈ Lz, then F1 ∩F2 ∈ Lz and by induction
we get that if F1, ..., Fn ∈ Lz, also F1 ∩ ... ∩ Fn ∈ Lz.

Suppose that F1, F2 ∈ Lz, to establish that F1 ∩ F2 ∈ Lz, by definition
we need that z ∈ (f−1(F1 ∩ F2))∗. Using that ∗ is a homomorphism we get
that (f−1(F1 ∩ F2))∗ = (f−1(F1) ∩ f−1(F2))∗ = (f−1(F1))∗ ∩ (f−1(F2))∗.

We can see now that
⋂
Lz is not empty because X is compact. We

should now derive that for every x ∈ Lz we have that (z, x) ∈ g. Recall that
in the definition of g, we intersected elements of the form (Z × F ) ∪ ((Z \
(f−1(F ))∗)×X), where F was closed. So by fixing such a closed F ⊆ X, if
x ∈ F , we are done, so suppose that x /∈ F , in this case we need to prove
that z ∈ Z \(f−1(F ))∗. Suppose for a contradiction that z ∈ (f−1(F ))∗, then
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F ∈ Lz so x ∈ F , contradiction.
So we have proved half of the lemma, namely that for any z ∈ Z there

exists some x (in fact, every x ∈ Lz would be good by the above chain of
ideas) such that (z, x) ∈ g. To show the uniqueness of this x, suppose for a
contradiction that ∃x0 6= x1 ∈ X such that (z, x0), (z, x1) ∈ g.

Since X was Hausdorff, there are closed sets F0, F1, such that xi /∈ Fi

and F0 ∪ F1 = X. For such Fi-s we have that W = f−1(F0) ∪ f−1(F1) and
Z = (f−1(F0))∗ ∪ (f−1(F1))∗. If z ∈ (f−1(Fi))

∗, then (z, xi) /∈ g by (3.2),
contradiction.

We have proved that g is a Z −→ X function. To see that it is continuous,
recall the well-known fact (see [14, Exercise 8, page 171]) that if A,B are
topological spaces with B compact Hausdorff and if graph(h) ⊆ A × B is
closed for a function h : A −→ B, then h is continuous. The graph of g is
closed because we defined g as an intersection of closed sets in (3.2). We
are in a favourable position now, because we have a continuous function
g : Z −→ X, where Z is an extremally disconnected compact Hausdorff
space. By assumption of the theorem, we have that g−1(A) has the property
of Baire in Z. We want to conclude from this that f−1(A) has the property
of Baire in W .

We remind the reader that if we take the Stone space of a complete
Boolean algebra, then the regular open sets of the Stone space are exactly
the clopen sets. Since g−1(A) has the property of Baire, there exists a regular
open set O (by Theorem 2.2.4), which is also clopen such that O4g−1(A)

is meager in Z. Hence, there exists an element E ∈ RO(W ), such that
O = E∗(= α(E)) and there are dense open sets {Zn | n ∈ ω} in Z such that
(E∗4g−1(A)) ∩

⋂
n∈ω

Zn = ∅.

Our goal is now to derive that E4f−1(A) is meager in W . For this, let
us define the following open sets in W :

Vn := ∪{U | U ⊆ W, U is open and U∗ ⊆ Zn}. (3.4)

Claim 3.2.9. For every n we have that Vn is an open dense set in W .
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Proof. By definition, all Vn-s are open sets, so suppose for a contradiction
that there is a nonempty open set U such that U ⊆ W \ Vn. It is easy
to see that we can choose U to be a regular open set (take int(U) instead
of U). Since U is nonempty, U∗ is also nonempty, therefore U∗ ∩ Zn is a
nonempty open set. Since U∗ ∩ Zn is a nonempty open set, we can choose a
standard basic clopen set TG ⊆ U∗ ∩Zn for some nonempty regular open set
G ∈ RO(W ) (see (3.1) above).

Since TG = G∗ ⊆ U∗ and ∗ is a Boolean isomorphism between RO(W )

and ∆0
1(Z) we have that G ⊆ U , so G is disjoint from Vn. On the other hand

G∗ ⊆ Zn, so by the definition of Vn we have that G ⊆ Vn, a contradiction.

Claim 3.2.10. (E \ f−1(A)) ∩ (
⋂
n∈ω

Vn) = ∅.

Proof. Suppose for a contradiction that there is an x ∈ E ∩
⋂
n∈ω

Vn, but

x /∈ f−1(A). We consider the following collection of clopen sets in Z:

H := {U∗ | U ⊆ W, U is open, x ∈ U}.

The elements of H have the finite intersection property, because if we
take U∗1 , ..., U∗n ∈ H, then x ∈ U1 ∩ ...∩Un, so (U1 ∩ ...∩Un)∗ = U∗1 ∩ ...∩U∗n
is nonempty. Since Z is compact, we have that ∩H 6= ∅. Pick an arbitrary
z ∈ ∩H, we must have that z ∈ E∗, because x ∈ E and it means that
E∗ ∈ H.

For all n we have that x ∈ Vn and by (3.4) there exists an open set U
such that x ∈ U and U∗ ⊆ Zn, but the latter also means that z ∈ Zn. So we
have a z such that z ∈ E∗ ∩

⋂
n∈ω

Zn and we have that z ∈ g−1(A), because

(E∗4g−1(A)) ∩
⋂
n∈ω

Zn = ∅.

From x /∈ f−1(A) we get that f(x) 6= g(z), so there are disjoint open sets
G,H in X such that f(x) ∈ G and g(z) ∈ H. We know that x ∈ f−1(G),
so z ∈ (f−1(G))∗, but we also claim that z ∈ (f−1(H))∗. If z /∈ (f−1(H))∗,
then (z, g(z)) ∈ g would fail, because (z, g(z)) ∈ g implies either (z, g(z)) ∈
Z × (X \H) or (z, g(z)) ∈ (f−1(H))∗ ×X.
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All in all we have that

z ∈ (f−1(G))∗ ∩ (f−1(H))∗ = (f−1(G) ∩ f−1(H))∗ = ∅,

contradiction.

Claim 3.2.11. (int(W \ E) \ f−1(X \ A)) ∩ (
⋂
n∈ω

Vn) = ∅.

Proof. The proof is similar to the proof of the previous claim, we have to
define similarly H as before and do the same reasoning as before with the
appropriate modifications. We leave it to the reader.

By the previous two claims we get that int(W \ E) \ f−1(X \ A) and
E \ f−1(A) are disjoint from

⋂
n∈ω

Vn, so they are meager in W . Summarizing,

E4f−1(A) = (E \ f−1(A)) ∪ (f−1(A) \ E) ⊆

⊆ (E \ f−1(A)) ∪ (f−1(A) ∩ [((W \ E) \ int(W \ E)) ∪ int(W \ E)]).

Since f−1(A)∩ int(W \E) = int(W \E)\f−1(X \A) and (W \E)\ int(W \E)

is a nowhere dense closed set (we used here that W \E is closed) we get that
the above set is meager. So E4f−1(A) is also meager.

Remark 3.2.12. It would be interesting to examine which of the seven con-
sistent noncontainments in Diagrams 3.1.11 and 3.2.1 hold in ZFC.

4 Application to Haar meagerness

Our goal in this section is to introduce the generalized Haar meager sets in
Polish groups. To have a reasonable definition, one should have a reasonable
definition of a universally Baire set, which serves as a category analogue of a
universally measurable set. In the previous section we offered various ways
how someone can choose a "universally Baire" notion. In the first subsection
we are going to cast our vote to the Polish-universally Baire sets and we
will argue why the Polish-universally Baire sets are the "best" choice as
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a category analogue to universally measurable sets. We are also going to
investigate some basic properties of Polish-universally Baire sets.

In the second subsection we will collect theorems on Haar null, generalized
Haar null and Haar meager sets. In the third subsection we will define
the generalized Haar meager sets and we are going to investigate how the
theorems collected in the second subsection can be carried out in the theory
of generalized Haar meager sets.

4.1 The right definition and basic properties

We mentioned in the introduction that our purpose is to introduce the gen-
eralized Haar meager sets, but to do this we need the "right" notion of a
universally Baire set which is the analogue in some sense to the universally
measurable sets. Looking at the definition of Haar meager sets (see Defini-
tion 4.2.3) we could think that for our purpose we should choose the compact
metric-universally Baire sets as "the universally Baire sets". On the other
hand if we have a look at Theorem 3.1.30, we can see that consistently there
exists a set which is compact metric-universally Baire, but does not have the
property of Baire and one naturally expects a universally Baire set to have
the property of Baire.

Remark 4.1.1. If we define a set to be universally Baire if and only if it is
compact metric-universally Baire, one could easily check that the set we have
constructed in Theorem 3.1.30 would contradict Theorem 4.3.4.

The next natural choice of a universally Baire set in Polish spaces would
be the Polish-universally Baire sets. It turns out that in the sense of Theorem
4.1.3 and Corollary 4.1.6 Polish-universally Baire sets behave like universally
measurable sets. Hence, from this point on we will call a Polish-universally
Baire set simply just a universally Baire set, and we formulate it in a defini-
tion to emphasize this notion:

Definition 4.1.2. Let X be a Polish space with A ⊆ X. The set A is called
universally Baire if f−1(A) has the property of Baire for every Polish space
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Y and for every continuous f : Y −→ X. We denote the universally Baire
sets of X by UB(X).

Let us make some easy observations about universally Baire sets. First,
every universally Baire set has the property of Baire (because id : X −→ X

is continuous). We also have that universally Baire sets form a σ-algebra
(because the sets with the property of Baire form a σ-algebra, see Theorem
2.1.15), which contains the Borel sets. We can say even more, every analytic
set is universally Baire, because analytic sets are closed under continuous
preimage (see [12, Proposition 14.4.]) and it is well known that analytic sets
have the property of Baire (see [12, Theorem 21.6.]). It is also easy to see that
universally Baire sets are closed under the Souslin operation (for a definition
see [12, Definition 25.4.]), because the sets with the property of Baire are
closed under the Souslin operation (see [12, Theorem 29.13.]).

Our goal is to show that universally Baire sets behave like the universally
measurable sets. Recall the following important theorem about universally
measurable sets:

Theorem 4.1.3. (see [9, 434D]) Let X be a Polish space with A ⊆ X. The
set A is universally measurable if and only if f−1(A) is Lebesgue measurable
for every Borel f : [0, 1] −→ X.

We will show that a similar theorem holds for universally Baire sets in
the sense of category.

Theorem 4.1.4. Let X, Y be arbitrary Polish spaces with a Borel function
f : Y −→ X. If A ∈ UB(X), then f−1(A) ∈ UB(Y ).

Proof. Let Z be an arbitrary Polish space and let g : Z −→ Y be an arbitrary
continuous function, we need to check that g−1(f−1(A)) has the property of
Baire. The function f ◦ g : Z −→ X is Baire measurable, so it is continuous
on a dense Gδ subspace N ⊆ Z (see [12, Theorem 8.38.]). The subspace N is
Polish, because it is a Gδ subspace of a Polish space (see Theorem 2.1.21). If
h denotes the restriction of f ◦ g to N we get that h−1(A) has the property
of Baire in N . From Lemma 3.1.13 follow that h−1(A) has the property of
Baire in Z. To see that g−1(f−1(A)) has the property of Baire, it is enough
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to note that Z \ N is meager, hence g−1(f−1(A)) = h−1(A) ∪ B for some
meager set B ⊆ Z \N .

Corollary 4.1.5. Let X be a Polish space with A ⊆ X. The set A is uni-
versally Baire if and only if f−1(A) has the property of Baire for every Borel
function f : Nω −→ X.

Proof. If A ∈ UB(X), then the previous theorem guarantee that f−1(A) has
the property of Baire for every Borel function f : Nω −→ X.

Conversely, if f−1(A) has the property of Baire for every Borel function
f : Nω −→ X, then we get that as a special case that f−1(A) has the property
of Baire for every continuous function f : Nω −→ X. From Theorem 3.1.21
follow that A ∈ UB(X).

The following corollary "justifies" our definition of a universally Baire set:

Corollary 4.1.6. Let X be a Polish space with A ⊆ X. The set A is uni-
versally Baire if and only if f−1(A) has the property of Baire for every Borel
function f : [0, 1] −→ X.

Proof. If A ∈ UB(X), then Theorem 4.1.4 guarantee that f−1(A) has the
property of Baire for every Borel function f : [0, 1] −→ X.

Conversely, suppose that f−1(A) has the property of Baire for every Borel
function f : [0, 1] −→ X. By Theorem 3.1.21 it is enough to prove that
g−1(A) has the property of Baire for every continuous g : Nω −→ X. By
Theorem 2.1.6 we have that Nω is homeomorphic to [0, 1]\Q and throughout
the proof we will identify Nω with [0, 1] \Q.

If A = X, then it is clear that A ∈ UB(X) so we can assume that
A 6= X and we can fix an arbitrary y ∈ X \A. Take an arbitrary continuous
g : Nω −→ X and define the following function:

h(a) =

g(a) if a ∈ [0, 1] \Q,

y if a ∈ [0, 1] ∩Q.

It is clear that h is a Borel function from [0, 1] to X, hence h−1(A) =

g−1(A) has the property of Baire in [0, 1]. To see that g−1(A) has the property
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of Baire in Nω we can choose an open set U in [0, 1] and a meager set M in
[0, 1] such that U4M = g−1(A). It is easy to see that in this case g−1(A) =

(U ∩Nω)4(M ∩Nω) and (U ∩Nω) is open in Nω and (M ∩Nω) is meager in
Nω, hence g−1(A) has the property of Baire in Nω.

Theorem 4.1.4 tells us that we could define equivalently the universally
Baire sets of a Polish space X in the following way: the set A ⊆ X is
universally Baire if and only if f−1(A) has the property of Baire for every
Polish space Y and for every Borel function f : Y −→ X. Theorem 4.1.4
also gives us that being a universally Baire set only depends on the Borel
structure in the following sense: if τ ′ is any other Polish topology on X for
which τ and τ ′ has the same Borel sets, then A is universally Baire in (X, τ)

if and only if A is universally Baire in (X, τ ′). So we can set the definition
of a universally Baire set for standard Borel spaces:

Definition 4.1.7. Let (X,S) be a standard Borel space with A ⊆ X. We will
say that A is universally Baire in X if it is universally Baire for some Polish
topology τ , where B(X, τ) = S. We will denote by UB(X) the universally
Baire sets of X for a standard Borel X.

We will not deal with theory of universally Baire sets in standard Borel
spaces, but we present here some easy theorems about the behavior of uni-
versally Baire sets in standard Borel spaces.

Theorem 4.1.8. Let (X,S) be a standard Borel space with A ∈ UB(X) and
B ∈ S. Then A ∩B is universally Baire in (B,S |B).

Proof. If A∩B is empty then we are done, so we can assume that A∩B 6= ∅
and we can fix an arbitrary x ∈ A ∩ B. Let τ be a Polish topology on X

such that τ |B (i.e. the restriction of τ to B) is also Polish (such a topology
exist, see [12, Theorem 13.1.]) and B(τ) = S.

Let Y be an arbitrary Polish space and let f be an arbitrary continuous
function from Y to B, we need to check that f−1(A∩B) has the property of
Baire in Y . Consider the following function g : Y → X:
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g(a) =

f(a) if a ∈ B,

x if a /∈ B.

It is clear that g is a Borel function and g−1(A) = f−1(A ∩ B). By
Theorem 4.1.4 g−1(A) has the property of Baire.

Theorem 4.1.9. Let (X,S) be a standard Borel space with A ⊆ X. Suppose
that Bn ∈ S for every n, X =

⋃
n∈ω

Bn and A ∩ Bn is a universally Baire

subset of Bn for every n. Then A ∈ UB(X).

Proof. Let τ be a Polish topology on X such that B(τ) = S and let Y be a
Polish space with a continuous function f : Y → X, we need to check that
f−1(A) has the property of Baire. Let Hn := f−1(A ∩Bn) and let

I := {n ∈ ω | Hn 6= ∅}.

For every n ∈ I we fix an arbitrary point xn ∈ A ∩ Bn and define a
function gn : Y → Bn:

gn(a) =

f(a) if a ∈ f−1(Bn),

xn otherwise.

It is clear that gn is a Borel functions for every n ∈ I, hence g−1
n (A∩Bn)

has the property of Baire. By the definition of the gn-s we have that

f−1(A) =
⋃
n∈A

g−1
n (A ∩Bn) \ f−1(Bc

n)

and from the right side of the above equation it is clear that f−1(A) has the
property of Baire.

Theorem 4.1.10. Let Xn be standard Borel spaces for all n ∈ ω and let An
be universally Baire sets in Xn. Then×

n∈ω
An ⊆×

n∈ω
Xn is universally Baire.

Proof. Let τn be Polish topology on Xn compatible with the Borel structure
of Xn. Let Y be an arbitrary Polish space and take an arbitrary continuous
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f : Y −→×
n∈ω

Xn. We need to check that f−1(×
n∈ω

An) has the property of

Baire. Let fn denote the coordinate functions of f , that is f = (fn)n∈ω, where
fn : Y −→ Xn is continuous. It is easy to see that f−1(×

n∈ω
An) =

⋂
n∈ω

f−1
n (An),

hence f−1(×
n∈ω

An) has the property of Baire.

4.2 Preliminary results

In this subsection we recall the definition of Haar null sets, generalized Haar
null sets and Haar meager sets and we also recall some basic theorems that
we are going to investigate in Subsection 4.3 in light of generalized Haar
meager sets. Throughout Subsections 4.2 and 4.3 whenever we use G, it will
denote a Polish group.

Definition 4.2.1. A ⊆ G is called Haar null, if there is a Borel set B with
B ⊇ A and a Borel probability measure µ on G such that µ(gBh) = 0 for
every g, h ∈ G. The system of Haar null sets will be denoted by HN (G).

Definition 4.2.2. A set A ⊆ G is called generalized Haar null, if there is
a universally measurable set B with B ⊇ A and a Borel probability measure
µ on G such that µ(gBh) = 0 for every g, h ∈ G. The system of generalized
Haar null sets will be denoted by GHN (G).

Definition 4.2.3. A set A ⊆ G is called Haar meager, if there is a Borel
set B with B ⊇ A and a compact metric space K with a continuous function
f : K −→ G such that f−1(gBh) is meager in K for every g, h ∈ G. The
system of Haar meager sets will be denoted by HM(G).

Maybe the most important theorem about Haar null, generalized Haar
null and Haar meager sets is the following:

Theorem 4.2.4. (see [5, Theorem 3.2.5, Theorem 3.2.6]) The systems of
Haar null, generalized Haar null and Haar meager sets form σ-ideals.

The following theorem gives us the relation between meager and Haar
meager sets:
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Theorem 4.2.5. (Darji, Doležal-Rmoutil-Vejnar-Vlasák, see [5, Theorem
3.3.12]) Every Haar meager set is meager, that is, HM(G) ⊆M(G).

We also recall the connection between Haar meager sets and meager sets
when the group G is locally compact:

Theorem 4.2.6. (Darji, Doležal-Rmoutil-Vejnar-Vlasák, see [5, Theorem
3.3.13]) In a locally compact Polish group G we have that Haar meager and
meager sets coincide, that is, HM(G) =M(G).

On the other hand we have the following theorem, when the group G is
non-locally-compact and admits a two-sided invariant metric:

Theorem 4.2.7. (Darji, Doležal-Rmoutil-Vejnar-Vlasák, see [5, Theorem
3.3.14]) In a non-locally-compact Polish group G that admits a two-sided in-
variant metric meagerness is a strictly weaker notion than Haar meagerness,
that is, HM(G) $M(G).

We recall the following theorem about Haar meager sets:

Theorem 4.2.8. (Doležal-Vlasák / Darji, see [5, Theorem 4.1.11] For a
Borel set B ⊆ G the following are equivalent:

(1) there exists a (nonempty) compact metric space K and a continuous
function f : K → G such that f−1(gBh) is meager in K for every g, h ∈ G
(i.e. B is Haar meager),

(2) there exists a continuous function f : 2ω → G such that f−1(gBh) is
meager in 2ω for every g, h ∈ G,

(3) there exists a (nonempty) compact set C ⊆ G, a continuous function
f : C → G such that f−1(gBh) is meager in C for every g, h ∈ G,

In the following theorem we will assume that G is a locally compact Polish
group. It is well-known that one can introduce the so-called Haar measure(s)
on a locally compact Hausdorff group and one can introduce the so-called
Haar null sets, which are well-defined (see [3]). In the following theorem we
denote by N (G) the system of sets with Haar measure zero.
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Theorem 4.2.9. (Christensen, Mycielski, see [5, Theorem 3.3.7]) If G is a
locally compact Polish group, then the system of sets with Haar measure zero
is the same as the system of Haar null sets and is the same as the system of
generalized Haar null sets, that is, N (G) = HN (G) = GHN (G).

Recall the following theorem about an equivalent characterization for a
universally measurable set to be a generalized Haar null set:

Theorem 4.2.10. (Hunt-Sauer-Yorke, see [5, Theorem 4.1.5]) For a uni-
versally measurable set B ⊆ G the following are equivalent:

(i) there exists a Borel probability measure µ on G such that µ(gBh) = 0

for every g, h ∈ G, that is, B is generalized Haar null.
(ii) there exists a Borel probability measure µ on G and a generalized

Haar null set N ⊆ G such that µ(gBh) = 0 for every g, h ∈ G \N .

4.3 The theory of generalized Haar meager sets

Finally, we are in the position to define the generalized Haar meager sets:

Definition 4.3.1. A set A ⊆ G is called a generalized Haar meager set,
if there exists a universally Baire set B with B ⊇ A and a compact metric
space K with a continuous f : K −→ G such that f−1(gBh) is meager in
K for every g, h ∈ G. The system of generalized Haar meager sets will be
denoted by GHM = GHM(G).

We call a function f a witness function (for a set A ⊆ G) if it satisfies the
assumptions of the above definition. We will now prove that GHM forms a
σ-ideal, the proof is essentially the same as the proof that Haar meager sets
form a σ-ideal.

Theorem 4.3.2. The system GHM of generalized Haar meager sets is a
σ-ideal.

Proof. It is trivial that ∅ ∈ GHM and if B ∈ GHM then every subset of
B is also a generalized Haar meager set. So we need to check that GHM is
closed under countable union.
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Let An be generalized Haar meager for all n ∈ ω. By definition there are
universally Baire sets Bn ⊆ G, compact metric spaces Kn with continuous
functions fn : Kn → G such that f−1

n (gBnh) is meager in Kn for every
g, h ∈ G. Let also d be a complete metric on G such that d is compatible
with the topology of G.

We construct for all n ∈ ω a compact metric space K̃n with a continuous
function f̃n : K̃n → G satisfying that f̃−1

n (gBnh) is meager in K̃n for every
g, h ∈ G (i.e. f̃n is a witness function) and the size of the images f̃n(K̃n) ⊆ G

decreases quickly.
First, take neighborhoods Un of 1G such that if u ∈ Un, then d(k · u, k) <

2−n for every k in the compact set f0(K0)f1(K1) · · · fn−1(Kn−1). Note that
this is possible from the well-known fact that if C ⊆ V , where C is compact
and V is open in a topological group G, then there exists a neighborhood U
of 1G, such that C · U ⊆ V . Setting C = f0(K0)f1(K1) · · · fn−1(Kn−1) and
V := N2−n(f0(K0)f1(K1) · · · fn−1(Kn−1)) gives us an appropriate Un.

Let xn ∈ fn(Kn) be an arbitrary element and K̃n = f−1
n (xnUn). The set

K̃n is compact (because it is a closed subset of a compact set) and nonempty.
Let f̃n : K̃n → G, f̃n(k) = x−1

n fn(k). It is clear that f̃n continuous. Of course
f̃n(k) can be extended to Kn by the formula f̃n(k) = x−1

n fn(k) and we will
also write f̃n(k) for this function.

Claim 4.3.3. For every n ∈ ω and g, h ∈ G we have that f̃−1
n (gBnh) is

meager in K̃n.

Proof. Fix n ∈ ω and g, h ∈ G. The set f̃−1
n (Un) is open in Kn and because

fn is a witness function, the set f̃−1
n (gBnh) = f−1

n (xngBnh) is meager in Kn.
This means that f̃−1

n (Un) ∩ f̃−1
n (gBnh) is meager in f̃−1

n (Un).
Since each open subset of Kn is comeager in its closure and the closure

of f̃−1
n (Un) = f−1

n (xnUn) is f−1
n (xnUn) = K̃n and an easy formal calculations

yield that f̃−1
n (gBnh) ∩ K̃n is meager in K̃n.

Let K be the compact set
∏
n∈ω

K̃n and define the continuous function

ψn : K → G such that for k = (k0, k1, · · · ) ∈ K we have that:

ψn(k) = f̃0(k0) · f̃1(k1) · . . . · f̃n−1(kn−1).
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By the choice of Un and f̃n(K̃n) ⊂ Un we obtain that d(ψn−1(k), ψn(k)) ≤
2−n for every k ∈ K. Using the completeness of d this means that the
sequence of functions (ψn)n∈ω is uniformly convergent. Let f : K → G be
the limit of this sequence. The function f is continuous because it is the
uniform limit of continuous functions.

We claim that f witnesses that A =
⋃
n∈ω

An is generalized Haar meager.

Note that A is contained in the universally Baire set B =
⋃
n∈ω

Bn, so it is

enough to show that f−1(gBh) is meager in K for every g, h ∈ G. As meager
subsets of K form a σ-ideal, it is enough to show that f−1(gBnh) is meager
in K for every g, h ∈ G and n ∈ ω.

Fix g, h ∈ G and n ∈ ω and also fix kj ∈ K̃j for every j 6= n. Claim 4.3.3
yields that

{kn ∈ K̃n : f(k0, k1, . . . , kn, . . .) ∈ gBnh} =

= {kn ∈ K̃n : f̃0(k0) · f̃1(k1) · . . . · f̃n(kn) · . . . ∈ gBnh} =

= f̃−1
n

((
f̃0(k0) · . . . f̃n−1(kn−1)

)−1

· gBnh ·
(
f̃n+1(kn+1) · f̃n+2(kn+2) · . . .

)−1
)

is meager in K̃n. Applying the Kuratowski-Ulam theorem (see [12, Theorem
8.41.]) in the product space

(∏
j 6=n K̃j

)
× K̃n we get that the set f̃−1

n (gBnh)

is meager.

We know that every Haar meager set is meager by Theorem 4.2.5. We
show that the same is true for generalized Haar meager sets:

Theorem 4.3.4. Every generalized Haar meager set is meager, that is,
GHM(G) ⊆M(G).

Proof. Let A be a generalized Haar meager subset of G. By definition there
is a universally Baire set B ⊇ A and a compact metric space K with a
continuous function f : K → G such that f−1(gBh) is meager in K for every
g, h ∈ G.

Consider the set

S = {(g, k) : f(k) ∈ gB} ⊆ G×K,
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which has the Baire property, because it is the preimage of B under the
continuous map (g, k) 7→ g−1 · f(k). For every g ∈ G we have that the g-
section of S, that is Sg = {k ∈ K : f(k) ∈ gB} = f−1(gB) is meager in
K by assumption. Hence, by the Kuratowski-Ulam theorem S is meager in
G × K. Using the Kuratowski-Ulam theorem again, there exist comeager
many k ∈ K such that the section Sk = {g ∈ G : f(k) ∈ gB} = f(k) · B−1

is meager in G. Since K is compact, there is at least one such k. Then the
homeomorphism x 7→ x−1 ·f(k) maps the meager set Sk to B and this shows
that B is meager.

As an analogue to Theorem 4.2.9 we have the following theorem when G
is locally compact Polish:

Theorem 4.3.5. If G is a locally compact Polish group, then the system of
Haar meager sets is the same as the system of generalized Haar meager sets
and the same as the the system of meager sets, that is,M(G) = HM(G) =

GHM(G).

Proof. The containment HM(G) ⊆ GHM(G) is obvious from the fact that
every Borel set is a universally Baire set.

The containment GHM(G) ⊆ M(G) is Theorem 4.3.4 and M(G) ⊆
HM(G) is Theorem 4.2.6.

Theorem 4.2.7 tells us that in a non-locally-compact Polish group which
admits a two-sided invariant metric meagerness is a strictly weaker notion
than Haar meagerness. We show that with the same assumptions meagerness
is a strictly weaker notion than generalized Haar meagerness:

Theorem 4.3.6. In a non-locally-compact Polish group G that admits a two-
sided invariant metric meagerness is a strictly weaker notion than generalized
Haar meagerness, that is GHM(G) $M(G).

Proof. Almost the same proof can be done as in [5, Theorem 3.3.14]. We
know that GHM(G) ⊆M(G) by Theorem 4.3.4, to construct a meager but
not generalized Haar meager set, we will use the first theorem from [16]:
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Theorem 4.3.7. (Solecki) Assume that G is a non-locally-compact Polish
group that admits a two-sided invariant metric. Then there exists a closed
set F ⊆ G and a continuous function ϕ : F → 2ω such that for any x ∈ 2ω

and any compact set C ⊆ G there is a g ∈ G with gC ⊆ ϕ−1({x}).

The sets {ϕ−1({x}) : x ∈ 2ω} are disjoint closed sets. SinceG is separable,
only countable many ϕ−1({x}) can have nonempty interior. Fix an x0 ∈
2ω such that M := f−1({x0}) has empty interior. It is clear that M is
closed, hence nowhere dense. On the other hand M is not a generalized
Haar meager set because for every compact metric space K and continuous
function f : K → G there exists a g ∈ G such that gf(K) ⊆ M , thus
f−1(g−1M) = K.

We now give an equivalent characterization for a universally Baire set to
be a generalized Haar meager set analogously to Theorem 4.2.10.

Theorem 4.3.8. For a universally Baire set B ⊆ G the following are equiv-
alent:

(i) there exists a compact metric space K and a continuous function
f : K −→ G, such that f−1(gBh) = 0 for every g, h ∈ G, in other words, B
is a generalized Haar meager set.

(ii) there exists a compact metric space K, a continuous function f :

K −→ G and a generalized Haar meager set N ⊆ G such that µ(gBh) = 0

for every g, h ∈ G \N .

Proof. (i) ⇒ (ii) is trivial from the definition, so let us turn to the proof
of (ii) ⇒ (i). Since N is generalized Haar meager, we can cover it by a
generalized Haar meager set which is also universally Baire. Without loss
of generality we may assume that N itself is a generalized Haar meager
set, which is also universally Baire. Let L be a compact metric space and
j : L −→ G continuous, which witnesses the generalized Haar meagerness of
N , that is, for every g, h ∈ G, j−1(gNh) is meager in L. Let α denote the
inverse function, that is α : G −→ G, g 7→ g−1.

We will prove that

m : L×K × L −→ G, (a, b, c) 7→ j(a)−1 · f(b) · j(c)−1
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witnesses that B is generalized Haar meager. Note that L×K×L is compact
and m is continuous.

Fix g, h ∈ G, we need to prove that m−1(gBh) is meager in L ×K × L.
For brevity, we will denote m−1(gBh) by H.

m−1(gBh) = {(a, b, c) | f(b) ∈ j(a)gBhj(c)}

We want to use Kuratowski-Ulam theorem in the following setup: there are
comeager many (a, c) ∈ L×L, such that the section of H at (a, c) (= H(a,c))
is meager in K. And we can easily guarantee comeager many such pairs,
because if j(a) ·g /∈ N and h · j(c) /∈ N , then the section at (a, c) is meager in
K. So all the sections at (a, c) for which (a, c) ∈ (j−1(Ng−1))c×(j−1(h−1N))c

is meager, and (j−1(Ng−1))c×(j−1(h−1N))c is comeager, because j witnesses
that N is generalized Haar meager.

To continue the theory of generalized Haar meager sets we recall the
following lemma from [5, Lemma 4.1.10]:

Lemma 4.3.9. If (K, d) is a compact metric space, then there exists a con-
tinuous function ϕ : 2ω → K such that if M is meager in K, then ϕ−1(M)

is meager in 2ω.

With the previous lemma we can do the analogue of Theorem 4.2.8 to
generalized Haar meager sets:

Theorem 4.3.10. For a universally Baire set B ⊆ G the following are
equivalent:

(1) there exists a compact metric space K with a continuous function
f : K → G such that f−1(gBh) is meager in K for every g, h ∈ G (i.e. B is
generalized Haar meager),

(2) there exists a continuous function f : 2ω → G such that f−1(gBh) is
meager in 2ω for every g, h ∈ G,

(3) there exists a compact set C ⊆ G with a continuous function f : C →
G such that f−1(gBh) is meager in C for every g, h ∈ G.
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Proof. The implication (1)⇒ (2) is an easy consequence of Lemma 4.3.9. If
K and f satisfies the requirements of (1) and ϕ is the function granted by
Lemma 4.3.9, then f̃ = f ◦ ϕ : 2ω → G will satisfy the requirements of (2)
because f̃ is continuous and for every g, h ∈ G the set f−1(gBh) is meager
in K, hence ϕ−1(f−1(gBh)) = f̃−1(gBh) is meager in 2ω.

The implication (2) ⇒ (3) is obvious when G is countable, since the
only generalized Haar meager subset of G is the empty set. In this case any
compact C ⊆ G and continuous function f : C → G are sufficient. If G
is not countable then it is well known that there is a compact set C ⊆ G

that is homeomorphic to 2ω. Composing the witness function f : 2ω → G

granted by (2) with this homeomorphism yields a function that satisfies our
requirements (together with C).

The implication (3)⇒ (1) is trivial.

As a final word we want to mention here some interesting results on
coanalytic hulls. In [5, Theorem 4.1.1 and Theorem 4.1.8] it was proved that
the Borel hull in the definition of Haar null sets and Haar meager sets can
be replaced by an analytic hull. The following theorems show that it cannot
be replaced by a coanalytic hull. These theorems were proved in the abelian
case, but they can be generalized to groups with a two-sided invariant metric.

In [6, Theorem 1.8] the following theorem was proved:

Theorem 4.3.11. (Elekes-Vidnyánszky) If G is a non-locally-compact
abelian Polish group, then there exists a coanalytic set A ⊆ G that is not Haar
null, but there is a Borel probability measure µ on G such that µ(gAh) = 0

for every g, h ∈ G.

Since every analytic and coanalytic set is universally measurable (see [12,
Theorem 21.10]) we get that the set A is generalized Haar null, but not Haar
null:

Corollary 4.3.12. If G is a non-locally-compact and abelian Polish group,
then GHN (G) ) HN (G).

In the case of Haar meager sets, the following theorem is known (see [4,
Theorem 13]):
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Theorem 4.3.13. (Doležal-Vlasák) If G is a non-locally-compact abelian
Polish group, then there exists a coanalytic set A ⊆ G that is not Haar
meager, but there is a compact metric space K and a continuous function
f : K → G such that f−1(gAh) is meager in K for every g, h ∈ G.

Since every analytic and coanalytic set has the property of Baire (see [12,
Theorem 21.6]) we get that the set A is generalized Haar meager, but not
Haar meager.

Corollary 4.3.14. If G is a non-locally-compact and abelian Polish group,
then GHM(G) ) HM(G).
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