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Introduction

Tools for modelling the behaviour of interest rates are essential for all participants of
financial markets. When aiming to construct a realistic model the most important
question is what features of bond markets we aim to capture. Some models accurately
evaluate the bonds, others provide a good approximation of the prices of interest rate
derivatives such as options on bonds, caps and floors, some produces yield curve shapes
which are close to the observable ones etc. Many objectives can be worked out to assure
the model reflects the real-life features of the market, but unfortunately, none of the
models can perform well in respect to all these features. Thus in case of applying an
interest rate model our choice depends on the task we would like to accomplish.

Not surprisingly, the more accurate we would like to be, the more complex and the
less tractable the model becomes. In case of yield curve dynamics, one has to describe
the special joint behaviour of infinite number of points of the curve. Some approaches
assume that the problem can be handled by introducing finite number of factors.

In the present study, firstly I discuss a general mathematical framework of bond
markets modelled by random factors, namely the use of Brownian motions, Itô calcu-
lus and the PDE method for pricing interest rate derivatives. Secondly, focusing on
practical issues and historical data, I introduce a three-factor model of the Hungarian
government bond market. Finally, I examine some applications of the derived pricing
PDEs.

Summarising the main results of the study, firstly, I refer to the derivation of
the relation between the pricing PDEs based on two different approaches, and some
mathematical consequences of the economic relations between the factors. I also point
out that as a result of having access to historical bond data, the three-factor model can
be calibrated numerically. Finally, I present a method to approximate the risk-adjusted
drift terms of the factors.
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Chapter 1

Mathematical framework of bond
markets

In the present study, I examine the theory of government bond markets. General
bonds are simple financial products1: the issuer of a bond has the obligation to pay
pre-specified coupons2 and principal on pre-specified dates to the owner. A zero-coupon
bond pays no coupons but principal, and theoretically all bonds can be broken down
into series of zero-coupon bonds. Pricing bonds is based on calculating the present
value of future cash-flows.

In a simple approach, if the future cash-flow is fixed and guaranteed and the time
value of money, that is the interest rates are deterministic and known, the present
value is calculated as the sum of the discounted payments.

Fixed-rate government bonds are assumed to be risk-less in the sense that there is
no default risk on the payment of coupons and the repayment of principal3, thus the
first assumption holds.

Indeed the interest rates are not known. Bonds are issued and traded on the
market, the demand and supply create the prices which are observable. Discount rates
and interest rates can be estimated based upon bond prices. [Anderson 1996] chapter
2 reviews the main approaches and methods of estimation of interest rates based on
market prices.

On the other hand interest rates are stochastic even if there is no default risk on the
repayments because demand and supply appreciate or devalue the price of guaranteed
future cash-flows.

In this chapter, the stochastic framework of bond markets is discussed.

1“A bond is securitized form of a loan.” as in [Cairns 2004].
2Usually fix coupons are specified at issue (fix-rate bonds), or coupons are linked to a benchmark,

index or floating rate such as inter-bank rate (floating-rate bonds).
3One of my colleagues pointed on the fact that default on Russian government bonds has already

been recorded thus the no default on government bonds assumption does not hold universally .
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CHAPTER 1. MATHEMATICAL FRAMEWORK OF BOND MARKETS 5

1.1 Fundamentals of interest rates

The elementary notions of interest rate models are defined below. These definitions
are more-or-less identical in the referred literature:4, although the notation may differ.

When considering term structures and interest rates, the elemental product is the
bank account.

Definition 1. Bank account is a continuously interest paying financial product. If one
unit of money invested at time zero into a bank account its value at time t is denoted
by β(t). The evolution of β is as follows:

β(0) = 1, (1.1)

dβ(t) = r(t)β(t)dt, (1.2)

thus

β(t) = exp

{∫ t

0

r(s)ds

}
, (1.3)

where r(t) is the instantaneous rate of interest.
�

The instantaneous rate is assumed to be non-negative. If non-negativity holds, the
value of a bank account is non-decreasing. As the instantaneous rate is guaranteed
it can be viewed as the minimum expected rate of return on investments, that is the
risk-free rate of return, and the bank account is the risk-free asset. All the other
financial products whose value can either increase or decrease at any time are called
risky assets.

As we will see later, the interest rate derivatives, including bonds, can be valued
using the process r(t). Factor models of interest rates mainly differ in the way they
describe this process.

In the factor models, usually the instantaneous rate is the factor (or one of the
factors) or can be derived from the factors.

Example 1. One-factor models5

• In the Vasicek model r(t) is given by the following stochastic differential equation
(further on SDE):

dr(t) = α(µ− r(t))dt + σdW (t),

• In the Black, Derman and Toy model r(t) is given as:

r(t) = eX(t),

4[Cairns 2004], [Elliott-Kopp 2000], [James-Webber 2004], [Shreve 1998] etc.
5See [Cairns 2004], Chapter 4 for details.
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where X(t) is the factor:

dX = α(µ−X(t))dt + σdW (t).

�

Example 2. Multi-factor models6

• In the Longstaff and Schwartz model there are two factors:

dX(t) = αX(µX −X(t))dt +
√

X(t)dWX(t), (1.4)

dY (t) = αY (µY − Y (t))dt +
√

Y (t)dWY (t), (1.5)

and r(t) = X(t) + Y (t).

• The model of Duffie and Kan also has two factors, but the processes are given
differently:

dX(t) = (µ11X(t) + µ12Y (t))dt + σ1

√
α + β1X(t) + β2Y (t)dWX(t), (1.6)

dY (t) = (µ21X(t) + µ22Y (t))dt + σ2

√
α + β1X(t) + β2Y (t)dWXY (t),(1.7)

where
dWXY (t) = ρdWX(t) +

√
1− ρ2dWY (t).

In this model r(t)=̊X(t) and Y (t) denotes the long rate.

�

In the above examples the dW (t), dWX(t) and dWY (t) terms denote the increments
of Brownian motions. The accurate mathematical definition of financial markets is
given in the next section.

Definition 2. A simple zero-coupon bond (further on bond) is a product, which has
one unit of money payoff at maturity. The price of a bond with maturity T at time t
(0 ≤ t ≤ T ) is denoted by P (t, T ). Obviously P (T, T ) = 1.

�

Definition 3. The discount factor of maturity T at time t is defined as:

D(t, T )=̊P (t, T )−1. (1.8)

�
6See [Cairns 2004] chapter 6.2.3 and [Shreve 1998] chapter 28 for details. Further examples are

classified in [James-Webber 2004] chapter 7.6.
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Definition 4. The spot rate at time t for maturity T is defined as the (logarithmic)
yield to maturity of a P (t, T ) bond, and denoted by R(t, T ). Given the economic
relation between bond prices and yield-to-maturity

P (t, T ) = exp {−(T − t)R(t, T )} ,

we get

R(t, T )=̊− log P (t, T )

T − t
. (1.9)

�

Remark 1. We will see later, that R(t, t)=̊ limT→t+ R(t, T ) = r(t) also holds. That is
why instantaneous rate is sometimes referred to as short rate.

Definition 5. The yield curve at time t is defined as a [0, T ∗] → R+ mapping:

Yt(T )=̊R(t, T ), (1.10)

where T ∗ denotes the time horizon (T � T ∗).
�

Trivially, there is a one-to-one relation between the bond prices and discount fac-
tors. As the logarithm function is strictly monotone, equation (1.9) also indicates a
one-to-one relation between R(t, T ) and P (t, T ). Although in reality there is finite
number of bonds traded on the market, the yield curve is defined on the whole [0, T ∗]
interval7. Because of economic argumentation, the yield curve is assumed to be con-
tinuous and smooth8. Hereafter, let assume that at time t the T 7→ P (t, T ) curve is
also continuous and smooth9, that is theoretically there exists a bond price curve as
well.

The next definition requires the introduction of forward rate agreements (here-
inafter FRA). Let 0 ≤ t ≤ T ≤ T + ε ≤ T ∗ be given. Under a FRA contract at time t
one participant agrees to borrow one unit of money at time T with repayment (princi-
ple and interest) at time T + ε. Assuming that there is no arbitrage10 opportunity on
the market, the interest to be payed under that agreement can be given without the

7Indeed, the Hungarian zero-coupon government bonds are issued with maturity less then one year.
Bonds maturing over one year are coupon-paying bonds. These coupon-paying bonds can be broken
down into series of theoretical zero-coupon bonds. Although the individual prices of these theoretical
zeros are not known, the market values of coupon-paying bonds provide us enough information for
fitting the theoretical continuous yield curve. See [Anderson 1996] for methods.

8Smoothness means that the discount curve indicated by the yield curve is monotonically decreas-
ing without oscillations. See [Anderson 1996] chapter 1 for the economic reasoning.

9As that is needed for the (1.12) formula.
10At this level, arbitrage defined as a portfolio valued zero at time t and having guaranteed positive

payoff at time T . The definition is given in the next subsection.
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specification of a precise mathematical framework. Suppose that at time t one buys
one unit of bond maturing at time T and short sell P (t,T )

P (t,T+ε)
units of a bond maturing

at time T + ε. Since

P (t, T )− P (t, T )

P (t, T + ε)
P (t, T + ε) = 0

at time t the value of the portfolio is zero. As time goes by, the portfolio has a double
payoff, firstly at time T :

P (T, T ) = 1,
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Figure 1.1: Estimated yield curves of the Hungarian bond market (1st quarter, 2005)



CHAPTER 1. MATHEMATICAL FRAMEWORK OF BOND MARKETS 9

and secondly at time T + ε:

− P (t, T )

P (t, T + ε)
P (T + ε, T + ε) = − P (t, T )

P (t, T + ε)
.

The effective interest rate of the contract on the time interval [T, T +ε] is derived from
the following formula:

P (t, T )

P (t, T + ε)
= exp {εF (t, T, T + ε)} ,

hence:

Definition 6. i) The forward rate at time t for the time interval [T, T +ε] is defined
as:

F (t, T, T + ε)=̊− log(P (t, T + ε))− log(P (t, T ))

ε
. (1.11)

ii) The instantaneous forward rate at time t for the maturity T is defined as

f(t, T )=̊ lim
ε→+0

F (t, T, T + ε) = −∂ log P (t, T )

∂T
. (1.12)

�

The above portfolio determines the hedge strategy for the contract. If the interest
rate of the FRA differs from F (t, T, T + ε), simple consideration shows that arbitrage
opportunity exists. Thus the agreed rate of an FRA is given by the corresponding
forward rate.

Equation (1.12) indicates that given the instantaneous forward curve the bond
prices can be determined and vice versa:

P (t, T ) = exp

{
−
∫ T

t

f(t, u)du

}
. (1.13)

Remark 2. As we will see later r(t) = f(t, t) also holds.
�

The consequence of the relationship between the bond price curve and the instan-
taneous forward curve indicates that by modelling the dynamics of the latter one the
dynamics of the former one are described as well. The approach of Heath, Jarrow and
Morton11 models the processes f(t, T ) for each T ∈ [t, T ∗]. The drawback of this ap-
proach for my purpose is that complex versions lead to such non-Markovian cases when

11For example, see [Cairns 2004] chapter 5.3, [Shreve 1998] chapter 34.1, [Elliott-Kopp 2000] chap-
ter 9.7 etc. for details.
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the PDE method cannot be applied. That is the reason why I insist on multi-factor
Markovian models in this study.

Finally, the formal definition of term-structure models12 is given as follows.

Definition 7. Any mathematical model which determines any of the following stochas-
tic processes:

i) P (t, T ), or

ii) D(t, T ), or

iii) R(t, T )

for all t ∈ [0, T ] and all T ∈ [0, T ∗], is called term-structure model.
�

1.2 Mathematical markets

In the present study, I assume that the price processes of financial products (such
as bonds, shares and derivatives) are deduced from random factors. The math-
ematical formulation of this approach is analogous to the definition of markets in
[Øksendal 2003] chapter 12:

Definition 8. Suppose there exists a probability space given by the triplet (Ω,F (m),P)

with a filtration
(
F (m)

t

)
t≥0

and the σ-algebra F (m)
t is generated by {W (m)(s); s ≤ t}

for all t ≥ 0 where W (m)(s) denotes an m-dimensional P-Brownian motion.
The random factors of the mathematical market are (or the market is) given by

an F (m)
t -adapted n-dimensional Itô process X(t) = (X1(t), . . . , Xn(t))T ; 0 ≤ t ≤ T ∗,

where the following SDEs hold:

dXi(t) = Mi(t, ω)dt +
m∑

j=1

Σij(t, ω)dWj(t) (1.14)

= Mi(t, ω)dt + Σi(t, ω)dW (m)(t); i = 1, 2, . . . , n.

�

In the above reference, the first factor is the bank account:

X1(t) = β(t)

12Analogously as in [Shreve 1998].
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and the other factors are themselves risky assets, which are traded on the market.
I present the fundamental results of derivative pricing in that special case based on
[Medvegyev 2004] chapter 4.3.1 and [Øksendal 2003] chapter 12. The following defini-
tions are essential.

Definition 9. i) A portfolio of the assets (or investment strategy) on the time in-

terval [0, T ] is an n-dimensional (t, ω)-measurable and F (m)
t -adapted stochastic

process:
θ(t, ω) = (θ1(t, ω), . . . , θn(t, ω))T ; 0 ≤ t ≤ T. (1.15)

ii) The value at time t of a portfolio θ(t) is defined by

V θ(t, ω) =̊ θ(t)T X(t) =
n∑

i=1

θi(t)Xi(t). (1.16)

iii) The portfolio θ(t) is called self-financing if the inequality∫ T

0

{∣∣∣θ1(s)r(s)X1(s) +
n∑

i=2

θi(s)Mi(s)
∣∣∣+ m∑

j=1

[ n∑
i=2

θi(s)Σij(s)
]2}

ds < ∞ (1.17)

a.s. holds and

V (t)− V (0) =
n∑

i=1

∫ t

0

θi(s)dXi(s), (1.18)

i.e.

dV (t) =
n∑

i=1

θi(t)dXi(t). (1.19)

iv) A self-financing portfolio is called admissible if the corresponding value process
V θ(t) is (t, ω) almost surely (a.s) lower bounded, i.e. there exists K = K(θ) < ∞
such that:

V θ(t, ω) ≥ −K (1.20)

for almost all (t, ω) ∈ [0, T ]× Ω. �

The condition (1.20) is necessary for the sake of reality of finance: that gives a
limit for the level of debt the creditors can tolerate.

Definition 10. An admissible investment strategy θ(t) is arbitrage on the time interval
[0, T ] if the following conditions hold:

V θ(0) = 0,

V θ(T ) ≥ 0
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a.s. and
P
[
V θ(T ) > 0

]
> 0.

�

Because of content limits, the scope of the study is restricted to European type
derivatives.

Definition 11. i) A European T -claim (or claim) is given by a (lower bounded)

F (m)
T -measurable random variable13 F (ω) ∈ L2(Q). That is the derivative14 has a

payoff F at time T .

ii) The value of a claim at time t is denoted by cF (t).

iii) The claim is called attainable if there exist an admissible portfolio θ(t) and a real
number z such as:

F (ω) = V θ
z (T ) = z +

∫ T

0

θ(s)dX(t) (1.21)

a.s. holds.

iv) The strategy θ(t) is called replicating or hedging strategy for F .

v) The market is complete if every T -claim is attainable.

�

The main idea behind derivative pricing is hedging15. If there exists a unique self-
financing strategy with a.s. the same payoff as the given T -claim, then the price of
the claim at time t (0 ≤ t ≤ T ) must be equal to the value of the hedging portfolio
otherwise an arbitrage portfolio could be created. The question is how to find the
strategy.

In this study the bank account is used as the numeraire, that is we express the
discounted prices of assets in units of bank account. The discounted price of the asset
Xi is denoted by

X i(t) =
Xi(t)

β(t)
,

13The measure Q in the expression F ∈ L2(Q) will be introduced later on.
14Basically, in this study only claims with F payoff are considered, where F is someway the function

of the factors. In that sense claims are derivatives.
15Practically, a hedging strategy is realizable if the following assumptions hold. On one hand,

markets are frictionless, that is the assets and derivatives can be freely bought and sold, without
restrictions, there are no tax consequences associated with trading, and there are no transaction
cost. On the other hand, trading is continuous with no gaps in the price change of the assets. See
[Natenberg 1994] for details.
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thus the discounted value of a portfolio equals:

V
θ
(t) =

V θ(t)

β(t)
=

n∑
i=1

θi(t)X i(t). (1.22)

Definition 12. Let the (Ω,F (m),P) probability space and the
(
F (m)

t

)
t

filtration be

given. The probability measure Q on
(
Ω,F (m)

T

)
equivalent to the measure P is called

equivalent martingale measure (up to time T ) if the discounted value processes of assets
are local martingales.

�

The equivalent martingale measure has two important features. The first one is
indicated by the following proposition16.

Proposition 1. Suppose that an equivalent martingale measure exists. Then there is
no arbitrage on the market.

See [Øksendal 2003] Lemma 12.1.6 for proof.
�

Further on, we assume that there exists an equivalent martingale measure.

Proposition 2. Suppose a process u(t, ω) satisfies the following conditions

i) (t, ω) → u(t, ω) is B × F (m)-measurable, where B denotes the Borel σ-algebra on
[0,∞),

ii) u(t, ω) is F (m)
t -adapted, and17

iii) EP

[
exp

{
1
2

∫ T

0
u2(s, ω)ds

}]
< ∞.

Define the measure Q = Qu on F (m)
T by

dQ(ω) =̊ exp

{
−
∫ T

0

u(s, ω)dW (s)− 1

2

∫ T

0

u(s, ω)2ds

}
dP(ω). (1.23)

Consequently

W̃ (t) =̊

∫ t

0

u(s, ω)ds + W (t) (1.24)

16The second one is discussed later in this subsection
17The last condition is referred to as the Novikov condition
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is an F (m)
t -Brownian motion with respect to Q and any random variable G ∈ L2

(
F (m)

T ,Q
)

has a unique representation

G(ω) = EQ [G] +

∫ T

0

φ(s, ω)dW̃ (s), (1.25)

where φ(t, ω) is an F (m)
t -adapted, (t, ω)-measurable Rm-valued process such that

EQ

[∫ T

0

φ(s, ω)2ds

]
< ∞ (1.26)

holds.

See [Øksendal 2003] chapter 12 for proof.
�

Proposition 3. Suppose there exist an m-dimensional process u(t, ω) as in the previ-
ous proposition and for the X(t, ω) = (X2(t), . . . , Xn(t)) factors

Σ(t, ω)u(t, ω) = M(t, ω)− r(t, ω)X(t, ω) (1.27)

a.a. (t, ω) holds. Define the measure Qu and the process W̃ (t) as above.

Then in terms of W̃ (t), the discounted assets have the following representation:

dX1(t) = 0 (1.28)

dX i(t) = β(t)−1Σi(t)dW̃ (t); 2 ≤ i ≤ n. (1.29)

The discounted value process of the portfolio θ∗ is local Q-martingale given by

dV
θ∗

(t) = β(t)−1

n∑
i=2

θi(t)Σi(t)dW̃ (t). (1.30)

Here only the strategy of risky assets is defined. The term θ∗ refers to a strategy:
θ∗ = (θ2, . . . , θn)T . See [Øksendal 2003] chapter 12 for proof.

�

Remark 3. As a consequence, the discounted value process

V
θ
(t) = V

θ
(0) +

∫ t

0

θ∗(s)dX
∗
(s) (1.31)

can be rewritten as

V
θ∗

(t) = z +

∫ t

0

β(s)−1

n∑
i=2

θi(s)Σi(s)dW̃ (s). (1.32)

with z = V
θ∗

(0).
�
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Given a T -claim with a payoff F , the proposition 3 indicates the process u(t, ω)
and a strategy can be derived from the process φ(t, ω) of the proposition 2 on G =̊ F
combined with the representation of the remark 3.

In this representation the coefficient of the numeraire is arbitrary. That indicates
the following proposition.

Proposition 4. Suppose the X(t) and V
θ∗

(t) processes are a.s. continuous. Then the
strategy (1.32) on X∗ can be completed with a strategy on the bank account β, such as
the complete strategy on X = {β, X∗} is self-financing.

Proof18 of Proposition 4:

For the sake of simplicity, let us use the following notation: N(t)=̊V
θ∗

(t). It is
clear form the representation (1.32) that:

N(T ) = F ,

and

N(t) = EQ

[
F
∣∣Ft

]
= N(0) +

∫ t

0

n∑
i=2

θidX i = N(0) +

∫ t

0

θ∗dX
∗
, (1.33)

where X
∗
=̊(X2, . . . , Xn). The process X∗ is defined analogously.

Let θ1 be defined as follows

θ1(t) =̊
N(t)β(t)− θ∗(t)T X∗

β(t)
. (1.34)

Thus the value of the portfolio at time t is given by:

V (t) = β(t)N(t) = θ1(t)β(t) + θ∗(t)T X∗(t). (1.35)

The left hand side of the formula (1.18) can be rewritten as

n∑
i=1

∫ t

0

θi(s)dXi(s) = (1.36)

=

∫ t

0

θ1(s)dβ(s) +

∫ t

0

θ∗(s)dX∗(s)

=

∫ t

0

N(s)β(s)− θ∗(s)T X∗(s)

β(s)
dβ(s) +

∫ t

0

θ∗(s)dX∗(s)

=

∫ t

0

N(s)dβ(s)−
∫ t

0

θ∗(s)dY (s) +

∫ t

0

θ∗(s)dX∗(s),

18The proof of [Medvegyev 2004] for a market with one risky asset is generalised below.
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where Y (t)=̊
∫ t

0
X
∗
(s)dβ(s).

Since X∗(t) = X
∗
(t)β(t), we have

dX∗(t) = X
∗
dβ(t) + β(t)dX

∗
+ d〈β(t), X

∗
(t)〉. (1.37)

Here d〈β(t), X
∗
(t)〉 = 0 is indicated by the equation (1.2) of β(t).

Applying the result of (1.37) on the
∫ t

0
θ∗(s)dX∗(S) term of (1.36), we get∫ t

0

θ∗(s)dX∗(S) = (1.38)

=

∫ t

0

θ∗(s)dY (s) +

∫ t

0

β(s)θ∗(s)dX
∗

=

∫ t

0

θ∗(s)dY (s) +

∫ t

0

β(s)dZ(s),

where Z(t)=̊
∫ t

0
θ∗(s)dX

∗
(s) = N(t)−N(0), that is dZ(s) = dN(s). Thus∫ t

0

θ∗(s)dX∗(S) =

∫ t

0

θ∗(s)dY (s) +

∫
0

β(s)dN(s). (1.39)

Analogously to (1.37)

dV (t) = V dβ(t) + β(t)dV . (1.40)

Finally, (1.36), (1.39) and (1.40) indicate:

n∑
i=1

∫ t

0

θi(s)dXi(s) = (1.41)

=

∫ t

0

β(s)dN(s) +

∫ t

0

N(s)dβ(s)

= β(t)N(t)− β(0)N(0) = V (t)− V (0),

that is the strategy is self-financing.
�

Since the self-financing feature of the strategy is ensured by the previous proposi-
tion, equation 1.33 determines the discounted value process of the claim by a condi-
tional expected value formula. Thus the real price19 of the claim is given as follows.

Corollary 1. (The fundamental theorem of pricing T -claims)

19That is price without discounting.
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Let a T -claim with a payoff F at time T be given. The price of the T -claim at time
t equals to the following formula:

cF (t) = β(t)N(t) = β(t)EQ

[
F

β(T )

∣∣∣∣Ft

]
. (1.42)

�

For the pricing formula, knowing the particular hedging strategy is not necessary
but the existence of the strategy is. The expected value in the price is calculated with
respect to Q not with respect to the real world measure P. This is the other important
feature of the equivalent martingale measure.

Corollary 2. i) As β(t) is defined as in Definition 1, the value of a derivative at
time t is given by

cF (t) = EQ

[
F exp

{
−
∫ T

t

r(s)ds

}∣∣∣∣Ft

]
. (1.43)

ii) In particular, a bond maturing at time T has a payoff 1, then its’ value at time t
is as follows:

P (t, T ) = c1(t) = EQ

[
exp

{
−
∫ T

t

r(s)ds

}∣∣∣∣Ft

]
. (1.44)

�

Remark 4. Although the above pricing argumentation is based on the case where the
factors are traded assets, the result (1.43) may hold when the factors themselves are
not traded. The necessary condition is that enough derivatives of the factors should
be traded thus a portfolio hedging the randomness in the claim could be created. The
exact proof will be derived from the PDE method.

�

A term-structure model is well tractable if formulae like (1.43) can be given by
analytical forms20 or can be estimated by fast and easy methods. Unfortunately, as we
make our model more complex for the sake of fitting the reality we loose the tractability
even for bond prices given by the formula (1.44). In the next sections such model will
be introduced.

I close the section with the proof of the remarks 2 and 1.

Remark 5. The propositions of remark 2 and 1 are derived from the formula 1.44:

20See the Vasicek, CIR etc. models in [Cairns 2004], [Elliott-Kopp 2000], [Shreve 1998], or
[James-Webber 2004]
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On one hand, based on 1.44 we have

∂P (t, T )

∂T
= EQ

[
−r(T ) exp

{
−
∫ T

t

r(s)ds

}∣∣∣∣Ft

]
,

thus the following holds

∂P (t, T )

∂T

∣∣∣∣
T=t

= EQ [−r(t)| Ft] = −r(t). (1.45)

On the other hand, the formula (1.13) indicates

∂P (t, T )

∂T
= −f(t, T ) exp

{
−
∫ T

t

f(t, s)ds

}
,

thus
∂P (t, T )

∂T

∣∣∣∣
T=t

= −f(t, t). (1.46)

The equations (1.45) and (1.46) result in r(t) = f(t, t).
According to the formula (1.9), we have:

lim
T→t+

R(t, T ) = (1.47)

= lim
T→t+

− log P (t, T )

T − t

= − ∂ log P (t, T )

∂T

∣∣∣∣
T=t

= − 1

P (t, T )

∣∣∣∣
T=t

∂P (t, T )

∂T

∣∣∣∣
T=t

.

Thus, R(t, t) = r(t) is indicated by (1.45).
�



Chapter 2

PDE approach

In this chapter, the pricing method, based on partial differential equations derived
from hedging argument and referred as PDE-approach is presented.

The theorem called Itô-lemma is necessary for the argumentation.

2.1 Itô-lemma

Before stating the theorem, some notions need to be defined1.

Definition 13. Let space (Ω,F) be given with the filtration (Ft)t≥0. The mapping
τ : Ω → [0,∞) is called stopping time if

{τ < t} ∈ Ft (2.1)

holds for all t ∈ [0,∞).
�

Definition 14. Let (Ω,F ,P) probability space be given with the filtration (Ft)t≥0. The
process X is local martingale if there exists a series of stopping times (τn)n, where
τn →∞ monotonically a.s. holds, and the stopped process Xτn is uniformly integrable
martingale for all n.

�

Definition 15. Let (Ω,F ,P) probability space be given with the filtration (Ft)t≥0. The
adapted process S is called semi-martingale if there exist a representation

S = L + V, (2.2)

where L is local martingale and V is an (Ft)-adapted process with finite variance.
�

1As in [Medvegyev 2004].

19
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Theorem 1. (Itô-lemma)
Let the vector X = (X1, . . . , Xn) with semi-martingale components and the function

F ∈ C2(Rn) be given. Then

F (t)− F (0) = (2.3)

=
n∑

k=1

∫ t

0

∂F

∂Xk

(X)dXk +
1

2

∑
i,j

∫ t

0

∂2F

∂Xi∂Xj

(X)d〈Xi, Xj〉

holds.

See [Medvegyev 2004] chapter 3.1 for proof.
�

2.2 Deriving the PDE - first version

The main idea behind the PDE-approach is applied on a one factor share-price model
in [Hull 1997] and on two factor market models in [Willmott 1998]. The slight gener-
alisation of the idea is presented below.

Suppose the market is given by n factors X = (X1, . . . , Xn)T :

dXi = Mi(X(t))dt + Σi(X(t))dWi(t), i = 1, . . . n. (2.4)

where the correlation between the terms dWi(t) and dWj(t) is denoted by ρi,j, for
i, j = 1, . . . n. In this study, the correlation coefficients assumed to be constant. Let
the first factor X1 = r be the instantaneous rate of return as in the previous chapter.

Remark 6. An equivalent form2 of definition (2.4) can be given as below

dX = Mdt + ΣdW (t) (2.5)

where M = (M1, . . . ,Mn)T ,

Σ =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

. . .
...

0 · · · 0 Σn




1 ρ1,2 · · · ρ1,n

ρ2,1 1 · · · ρ2,n
...

. . .
...

ρn,1 · · · ρn,n−1 1


1
2

(2.6)

and W = (W1, . . . ,Wn)T denotes an n dimensional Brownian motion3.
�

2The mathematical markets were defined in the first chapter by this representation.
3The increments of the components are independent by definition
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Suppose there is a T -claim C0 to be valued. Suppose there are n derivative products
traded on the market with prices depending on the factors4. Let these prices be denoted
by C1, . . . , Cn. The idea is to construct a portfolio V at time t, which includes one
contract of C0 and some of the other derivatives.

V (t) = C0(t)−
n∑

i=1

∆i(t)Ci(t) (2.7)

where the ∆i weights of the elements are chosen at every moment to eliminate the risk.
As it was underlined earlier, the bank account is risk-less in the sense, that its’ value
over time is non-decreasing. Any product with a non-decreasing value must produce
the same return as the bank account, otherwise arbitrage opportunity would exist on
the market. The increment of the portfolio is derived by the Itô-lemma:

dCi =
∂Ci

∂t
+

n∑
j=1

∂Ci

∂Xj

dXj +
1

2

∑
j,k

∂2Ci

∂Xj∂Xk

d〈Xj, Xk〉 (2.8)

for i = 0, 1, . . . , n. The d〈.〉 terms can be derived from (2.4):

d〈Xj, Xk〉 = ρj,kΣjΣkdt. (2.9)

where ρj,j = 1. Therefore

dV = dC0 −
n∑

i=1

∆idCi (2.10)

=

(
Λ0 −

n∑
i=1

∆iΛi

)
dt +

n∑
i=1

ΨidXi (2.11)

where

Λi =
∂Ci

∂t
+

1

2

∑
j,k

ρj,kΣjΣk
∂2Ci

∂Xj∂Xk

, (2.12)

and

Ψi =
∂C0

∂Xi

−
n∑

j=1

∆j
∂Cj

∂Xi

. (2.13)

The risk is eliminated, if the increment of the portfolio includes only the dt term, thus
Ψi = 0 for all i = 1; . . . , n.

If the coefficients ∆1, . . . , ∆n can be found then the portfolio produces the risk-free
rate of return

dV (t) = r(t)V (t)dt. (2.14)

4The necessary characteristics of the dependence is described later.
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The equations (2.10) and (2.14) indicate

r

(
P0 −

n∑
i=1

∆iPi

)
= rV = Λ0 −

n∑
i=1

∆iΛi. (2.15)

From the formulas (2.13) and (2.15) there are n+1 equations given on n variables,
thus the system is over-prescribed. The solution exists if and only if the n + 1× n + 1
matrix A is singular for all t, where

A =


Λ0 − rC0 · · · Λn − rP
∂C0/∂X1 · · · ∂Cn/∂X1

∂C0/∂X2 · · · ∂Cn/∂X2
...

. . .
...

∂C0/∂Xn · · · ∂Cn/∂Xn

 . (2.16)

The dependence of the hedging products on the factors is required to ensure that the
first row is linear combination of the second to nth rows. In that case the above matrix
is singular, and there exist n adapted functions λ̂1, . . . , λ̂n such that

Λi − rCi = −
n∑

j=1

λ̂j
∂Ci

∂Xj

(2.17)

holds for i = 1, . . . , n. Since the equation (2.17) holds for i = 0 and the hedging
elements of the portfolio were not specified but C0, the functions λ̂j do not depend on
the choice of the elements. These coefficients are referred to as the risk adjusted drift
rates, and thus often written in the following form

λ̂j = λjΣj −Mj j = 1, . . . , n. (2.18)

The functions λj are called the market price of risk.

Proposition 5. If the factors are time-homogeneous, that is M and Σ do not depend
on t but X, the λ̂j can be chosen to be functions of X only.

Proof. The same argumentation as above can be derived at two different points of
time t1 and t2 firstly for the bond P1(t1, t1 + t) and secondly for the bond P2(t2, t2 + t).
Assuming that X(t1) = X(t2), since P1 relatively is the same product at time t1 as
the bond P2 at time t2, their values and derivatives must be equal, and therefore
λ̂j(t2, X)=̊λ̂j(t1, X) is a right choice for j = 1, . . . , n.

�
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Example 3. In a classic one factor share-model5, the instantaneous rate is constant,
and the factor S is given by a geometric Brownian motion

dS = µSdt + σSdW (2.19)

with constant coefficients. Suppose one is about to price a European call option C
with maturity T and exercise price K. The hedge portfolio is V = C − ∆S. From
Itô-lemma

dC =
∂C

∂t
dt +

∂C

∂S
dS +

1

2
σ2S2∂2C

∂S2
dt. (2.20)

Thus the increment of V is

dV =

(
∂C

∂t
+

1

2
σ2S2∂2C

∂S2

)
dt +

(
∂C

∂S
−∆

)
dS. (2.21)

Therefore the choice ∆=̊∂C/∂S eliminates the dS term, and from dV = rV dt we get

∂C

∂t
+

1

2
σ2S2∂2C

∂S2
= r(C −∆S) = r

(
C − S

∂C

∂S

)
, (2.22)

thus for the price of the derivative the equation

0 = −rC +
∂C

∂t
+ λ̂

∂C

∂S
+

1

2
σ2S2∂2C

∂S2
(2.23)

holds, with

λ̂ = rS =

(
µ− µ− r

σ
σ

)
S = (µ− λσ)S. (2.24)

In this case, r is called the risk adjusted rate of return6, and (µ − r)/σ is referred to
as the market price of risk.

�

We can summarise the results as follows:

Proposition 6. Expanding the equation (2.17) for i = 0, we get the pricing PDE for
the T -claim with a payoff F

0 = −rC +
∂C

∂t
+

n∑
j=1

λ̂j
∂C

∂Xj

+
∑
j,k

ρj,kΣjΣk
∂2C

∂Xj∂Xk

(2.25)

with the terminal condition
C(T ) = F. (2.26)

�
5See [Hull 1997] or [Elliott-Kopp 2000] for details
6Although precisely, rS would be the risk adjusted rate of return and S(µ− r)/σ the market price

of risk.
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Remark 7. The equation (2.25) is referred to as the Black-Scholes equation.
�

Example 4. i) When the claim to be priced is a bond, then F = 1.

ii) When the claim is an European call option on a factor7 S with exercise price K,
then

F = max(S −K, 0). (2.27)

iii) In case, when the option is written on a bond maturing at T2, T2 > T1 where T1

is the maturity of the option, then

F = max(P (T1, T2)−K, 0). (2.28)

�

2.3 Deriving the PDE - second version

In some of the references, the starting point of the PDE approach is the representation
of the factors with respect to the equivalent martingale measure Q:

dXi = M̃i(X(t))dt + Σi(X(t))dW̃i(t) (2.29)

with correlation coefficients ρ̃i,j between the increments dW̃i and dW̃j for i, j =
1, . . . , n.

Referring to the claim-pricing formula derived in the first chapter, the value of a
T -claim with a payoff F at time t is given as

CF (t) = EQ

[
F exp

{
−
∫ T

t

r(s)ds

}∣∣∣∣Ft

]
(2.30)

which is equivalent to the following equation

CF (t) exp

{
−
∫ t

0

r(s)ds

}
= EQ

[
F exp

{
−
∫ T

0

r(s)ds

}∣∣∣∣Ft

]
. (2.31)

The increment of the left hand side is derived by the Itô-lemma:

d

(
exp

{
−
∫ t

0

r(s)ds

}
C

)
= (2.32)

exp

{
−
∫ t

0

r(s)ds

}[
−r(t)Cdt +

∂C

∂t
dt +

n∑
i=1

∂C

∂Xi

dXi +
1

2

∑
i,j

∂2C

∂Xi∂Xj

d〈Xi, Xj〉

]
.

(2.33)

7E.g. a share.
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The terms d〈.〉 are derived as in the previous section, but for the representation
(2.29). Expanding the [. . . ] term of the above expression, we get{

−rC +
∂C

∂t
+
∑
i=1

M̃i
∂C

∂Xi

+
1

2

∑
i,j

ρ̃i,jΣiΣj
∂2C

∂Xi∂Xj

}
dt +

n∑
i=1

M̃i
∂C

∂Xi

dW̃i(t) (2.34)

The right hand side of the equation (2.31) is trivially martingale. Hence the left hand
side is also martingale, therefore the drift is zero. The drift term is the expanded dt
term of (2.34).

On the whole, this approach can be summarised in the following proposition.

Proposition 7. Given the representation (2.29) of the market factors with respect to
the equivalent martingale measure Q, the value function of a T -claim with payoff F
satisfies the PDE

0 = −rC +
∂C

∂t
+

n∑
i=1

M̃i
∂C

∂Xi

+
1

2

∑
i,j

ρ̃i,jΣiΣj
∂2C

∂Xi∂Xj

(2.35)

with the terminal condition
C(T ) = F. (2.36)

�

2.4 The relation between the approaches

In the previous sections two PDEs, (2.25) and (2.35) were derived. The first one
requires the market price of risk functions. The second one is derived from the risk-
adjusted representation of the factors, thus this PDE requires the transformation. In
this section, the relation between these representation is presented.

Before stating the relationship, some preparation8 is necessary.
Given the triplet (Ω,F ,P) and the filtration (Ft)t≥0, let L be a continuous martin-

gale, starting from zero. Let (τn)n>0 be a series of bounded stopping times. Suppose
that

exp

{
−L− 1

2
〈L〉
}τn

(2.37)

is a bounded martingale. Let the elements of ∪nFτn be the domain of definition of the
mapping QL, which is given as

QL(A) =

∫
A

exp

{
−L− 1

2
〈L〉
}

τn

dP (2.38)

8The preparation is based on [Prokaj 2004] chapter 5.
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for all A ∈ ∪nFτn , that is

dQL = exp

{
−L− 1

2
〈L〉
}

dP. (2.39)

Theorem 2. (Girsanov theorem)9

Let N and L be continuous martingales such as L(0) = 0. Suppose that QL is
probability measure on σ (∪nFτn). Then

(N + 〈L, N〉,F) (2.40)

is local martingale with respect to QL.
Furthermore,

〈N + 〈L, N〉〉 = 〈N〉 (2.41)

holds.

See [Prokaj 2004] chapter 5 for proof.
�

Let suppose that the market is given by the representation of the form (2.5) with
respect to the objective measure P.

Proposition 8. Let the market X = (X1, . . . , Xk) represented by

dX(t) = M(X)dt + Σ(X)dW (t), (2.42)

where W (t) is an m-dimensional Brownian motion, M(t, ω) ∈ Rk and Σ(t, ω) ∈ Rk×m.
Suppose there exists an m-dimensional local martingale L such that the equivalent
martingale measure is given as Q = QL and conditions of the Girsanov theorem hold.
Then the representation with respect to Q is

dX(t) = M̃(t)dt + Σ(t)dW̃ (t), (2.43)

where

W̃ (t) = W (t) + 〈L, W 〉 (2.44)

M̃(t) = M(t)−
∫ t

0

Σ(t)d〈L, W 〉 (2.45)

and
〈ΣW 〉 = 〈ΣW̃ 〉. (2.46)

9The general version of the theorem is presented in [Medvegyev 2004] and [Revuz-Yor 1999].
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In particular, if u is given as in the Proposition 2 and

L(t) =

∫ t

0

u(s, ω)dW (s) (2.47)

then
M̃ = M − Σu. (2.48)

Proof. The proposition is the simple application of the Girsanov theorem10.
�

Taken the representation (2.5), the previous proposition indicates the followings.
From (2.46) comes

ρi,j = ρ̃i,j (2.49)

for i, j = 1, . . . k.

Remark 8. Since (2.49) holds, defining λ̂i=̊M̃i, the equation (2.35) indicates (2.17)
and with (2.18) we get that the PDE (2.25) is equivalent to (2.35).

�

The equation (2.45) indicates

λ̂i = M̃i(t) = Mi(t)−
m∑

j=1

∫ t

0

Σi,jd〈L, Wj〉 (2.50)

for i = 1, . . . k.

Example 5. In case when ρi,j = 0 from (2.50) we get

M̃i(t) = Mi(t)−
∫ t

0

Σid〈L, Wi〉 (2.51)

for i = 1, . . . k.
�

2.5 Ensuring the economic relations

Up to the present section, the pricing PDEs were derived in a general framework.
However, there might be conceptual economic relations between the factors, and the
PDE must ensure these relations. In the present section two examples with conceptual
relationship are presented.

10The particular case is directly proved in [Øksendal 2003] Theorem 8.6.6.
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2.5.1 Involvement of the long rate

Suppose there is an n-factor representation of the market where the long rate X2 =
l(t)=̊R(t, t + τ) with fixed τ � 1 is the second factor. Let the instantaneous rate
X1(t) = r(t) and the long rate be denoted by

dr(t) = Mr(X(t))dt + Σr(X(t))dWr(t) (2.52)

dl(t) = Ml(X(t))dt + Σl(X(t))dWl(t)

with respect to the objective measure P and with a correlation coefficient ρ=̊ρr,l be-
tween the terms dWr and dWl.

Since there is one-to-one relation between the yield curve and the bond curve11,
the following holds for all t > 0

P (t, t + τ) = exp {−τR(t, t + τ)} = exp {−τ l(t)} . (2.53)

Proposition 9. Suppose the second factor is the long rate, then the pricing PDE
(2.25) and the equation (2.53) implies

λ̂l = M̃l = − r

τ
+

1

2
τΣ2

l +
1

τP

∂P

∂t
. (2.54)

Proof. From (2.53) the partial differentials of the bond price at time t can be
derived:

∂P

∂l
= −τP (2.55)

∂2P

∂l2
= τ 2P

and
∂P

∂Xi

=
∂2P

∂X2
i

=
∂2P

∂Xi∂Xj

= 0 (2.56)

for all i = 1, 3, . . . n and j = 1, 2, . . . n.
Deriving the PDE (2.25) on the bond P (t, t + τ) with the consideration of the

equations (2.55) and (2.56), we get

0 = −rP − τPM̃l +
1

2
τ 2PΣ2

l +
∂P

∂t
. (2.57)

Since τ is fixed and positive, furthermore P > 0 holds for any l > 0, therefore
(2.54) holds.

�
11See chapter 1.
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2.5.2 Involvement of the spread

Suppose that the second factor is the spread X2(t) = s(t)=̊r(t)−l(t) with the following
representation

dr(t) = Mr(X(t))dt + Σr(X(t))dWr(t) (2.58)

ds(t) = Ms(X(t))dt + Σs(X(t))dWs(t)

and a correlation coefficient ρ = ρr,s.
In that case, the equation (2.53) has the form

P (t, t + τ) = exp {−τ [r(t)− s(t)]} . (2.59)

Proposition 10. Suppose the second factor is the spread, then the pricing PDE (2.25)
and the equation (2.59) implies

λ̂s = M̃s = M̃r +
r

τ
− τ

Σ2
r + Σ2

s − 2ρΣrΣs

2
+

1

τP

∂P

∂t
. (2.60)

From (2.59) the derivatives of P are

∂P

∂s
= −∂P

∂r
= τP (2.61)

∂2P

∂s2
=

∂2P

∂r2
= − ∂2P

∂s∂r
= τ 2P

and
∂P

∂Xi

=
∂2P

∂X2
i

=
∂2P

∂Xi∂Xj

= 0 (2.62)

for i = 3, . . . n and j = 1, . . . n.
Deriving the PDE (2.25) with (2.61) and (2.62) we get

0 = −rP − τPM̃r + τPM̃s +
1

2
τ 2P (Σ2

r + Σ2
s)− ρτ 2PΣrΣs +

∂P

∂t
.

(2.63)

The same argumentation as in the previous subsection indicates (2.60).
�



Chapter 3

Multi-factor term-structure models

In this chapter, the main characteristics of factor term-structure models are presented.
Further on, a three-factor model of the Hungarian market is constructed based on the
slight generalisation of the method described in [Willmott 1998].

3.1 Model formulating considerations

As it was emphasised earlier, when formulating a term-structure model, the necessary
complexity is up to the modelling objectives. Some time homogeneous one-factor
models approximate bond prices with small error. [Hull 1997] emphasises that small
error in bond prices may lead to significant misprizing of bond derivatives. Time-
inhomogeneous extensions of one-factor models usually result in better valuation of
bond derivatives. For risk management purposes the well approximation of dynamics
is needed. That can be handled by capturing as many sources of randomness as
many is reasonable and tractable for explaining the randomness. [Cairns 2004] and
[James-Webber 2004] refer to principal component analysis (PCA) methods on yield
curve data for determining the number of factors reasonable in the model. However,
the examined yield curve series here were estimated by fitting the logarithm of the
discount curve by six base functions. Thus, no more then six factors can be found by
PCA. Therefore I approach the formulation more intuitively.

Beyond the modelling objectives, the specification of the market factors is depend
on the characteristics of the modelled yield curve dynamics as well. From economic
point of view, the following characteristics are common:

i) Instantaneous rates are non-negative.

ii) Instantaneous rates tend to be mean reverting.

iii) The mean reversion level may vary in time.
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iv) The volatility of the interest rates is not constant.

v) The movements in the different points of the yield curve are not perfectly corre-
lated. For example, the changes in the short rate and in the spread, the difference
between the short and the long rate, are weakly related.

Fulfilling these requirements, I have chosen a model, with the following factors
intuitively:

i) mean reverting instantaneous rate,

ii) mean reverting spread,

iii) volatility of instantaneous rate.

The Hungarian market has one further and important speciality rising from the
convergence mechanism to the European Monetary Union. As Hungary is going to
join the EMU sometime in 2010-2012, the level of interest rates is expected to grad-
ually reach the level of EMU rates. There are several solutions for modelling this
convergence.

Firstly, one could let the mean reversion level be non-constant:

• it could be deterministic function of time, or

• the mean reversion level itself could be stochastic.

The former solution requires professional estimates of the deterministic trend and the
latter indicates the introduction of an additional random factor.

Secondly, one could let the mean reversion level be constant and equal to the mean
reversion level of the Euro instantaneous rate and let the speed of reversion be small
enough for the slow long-term convergence. This solution only requires the estimation
of two parameters.

The main difficulty in choosing solution for the convergence phenomenon is the fact
that Hungary is about half way to the destination, only less then the first half of the
process can be observed. Anyway, some kind of economic expectations and intuitions
are necessary.

For tractability reasons, I have chosen the second solution1. The long-term level
of mean reversion with slow reversion speed is applied and calibrated with the use of
historical Euro yield curve data.

The Hungarian government bond yield curve is currently downward sloping con-
trary to the EMU yield curve which is upward sloping. If the mean reversion level
of the spread is chosen to be negative, the long term equilibrium yield curve becomes
upward sloping. Hence the long term equilibrium shape of yield curve can be adjusted
by calibration.

1In the present study, I focus on numerical tractability and only briefly consider calibration issues.
Comparing the model types of mean reversion could be the scope of an other study.
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3.2 Model construction

After detailed analysis of the Hungarian bond yield curve dynamics, a three factor
model, including the instantaneous rate, the volatility coefficient of the short rate and
the spread as factors, proved to be appropriate. Considering the general characteristics
of term structures presented in the previous section, the market is defined as below.

Definition 16. i) Let the instantaneous rate be given by the following SDE

dr(t) = Mr(t, ω)dt + Σr(t, ω)dWr(t) (3.1)

where the drift term assumed to be

Mr(t, ω) = αr(µr − r(t)) (3.2)

and the volatility term has the form

Σr(t, ω) = Σr(r(t), s(t)) = σr(t, ω)fr(r(t), s(t)). (3.3)

ii) Let the spread s(t)=̊r(t)−R(t, t + τ) (with a τ fixed at a high level) be given by

ds(t) = Ms(t, ω)dt + Σs(t, ω)dWs(t) (3.4)

with
Ms(t, ω) = αs(µs − s(t)) (3.5)

and
Σs(t, ω) = Σs(r(s), s(s)) = σsfs(r(s), s(t)). (3.6)

iii) The third factor is the volatility coefficient of the instantaneous rate (further on
the volatility coefficient):

dσr(t) = Mσ(t, ω)dt + ΣσdWσ(t). (3.7)

The parameters αr, αs and σs are time-homogeneous constants. The terms dWr,
dWs and dWσ are increments of Brownian motions with respect to the objective measure
P, and have constant correlation coefficients ρr,s, ρr,σ and ρs,σ respectively.

The functions fr and fs are assumed to be continuous. The non-constant elements
of the drift and volatility of the process σr, namely Mσ(t, ω) and Σσ(t, ω), are assumed
to be adapted to the filtration of the market, so that

P

[∫ t

0

|Mσ(t, ω)| ds < ∞ ∀t ≥ 0

]
= 1

P

[∫ t

0

Σσ(t, ω)2ds < ∞ ∀t ≥ 0

]
= 1

�
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This formulation mainly differs from the Balduzzi, Das, Foresi and Sundaram
(BDFS)2 three factor model in that above the spread is introduced as a factor in-
stead of the stochastic mean reversion level approach.

The specification of the function fr, Σl, Mσ and Σσ is to be done.

3.3 Specification of the coefficients

The slight generalisation of the method introduced in [Willmott 1998] chapter 23 and
38 is applied below.

The factor-specification method of [Willmott 1998] is a two step process. In the first
step the volatility term is specified based on the observation of day-to-day increments in
the factors. In the second step the drift term is calibrated with the use of steady-state
distribution of the factors. Because of the referred convergence phenomenon, up to
the current date only non-stationary path of the instantaneous rate3 can be observed.
Therefore the steady-state distribution cannot be estimated. The same problem holds
for the spread. In this study, it is handled by making assumptions on the drift terms of
the first two factors. The mean reversion levels µr and µs are estimated from the long
term average of the short rate and the spread of EURO yield curve data4 respectively.
The mean reversion speed parameters are calculated to ensure, that the level of factors
reach the level of their correspondings in 6 years in expected value.

In case of the volatility coefficient factor stationarity is assumed, thus the drift-
specification method of [Willmott 1998] is applicable. The difficulty with the appli-
cation is that the method requires the factor to be observable. Below, the volatility
process is estimated based on the information given by the instantaneous rate specifi-
cation.

3.3.1 The instantaneous rate and the spread

Let start the theoretical calibration with the volatility term of the spread process
Σl(t, ω). The process s(t) and its’ day-to-day increments δs are observable.

[Willmott 1998] approximates the square of the increment as follows:

(δs)2 ≈ Σ2
s(s, r)φ

2
sδt, (3.8)

2[James-Webber 2004] chapter 7.5.2
3In this study the calibration is based on the Hungarian government bond data of the period

01/01/2004-01/05/2005 provided by the Government Debt Management Agency Ltd. (ÁKK).
4The EURO yield curve data were provided by Reuters. The short end, up to one year, is estimated

using EURO zeros, the long end is estimated based on swap yields. The data of the period between
01/01/1999-01/05/2005 were included.
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where φs

√
δt = Ws(t + δ) − W (t) ∼ N(0,

√
δt). Using the information given by the

drift term of definition 16, better approximation can be derived:

∆s(t)=̊(δs− αs(µs − s(t))δt)2 ≈ Σ2
s(s, r)φ

2
sδt. (3.9)

The expected value of φs is 1, thus

E [∆s|r, s] = E
[
Σ2

s(r, s)φ
2
sδt|r, s

]
= Σ2

s(r, s)δt. (3.10)

Our aim is to specify the function Σs(r, s) from (3.10), that is the relationship between
the drift eliminated increments of s and the level of r and s.

In [Willmott 1998] only one-dimensional relationship is analysed by approximating
the left hand side of (3.10) by splitting the factor into k buckets and calculating the
bucket averages of the argument of the expectation for each bucket. [Willmott 1998]
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Figure 3.1: The instantaneous rate and the long rate
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plotted the logarithm of the estimated conditional averages against the logarithmic
level of the factor in each bucket and found linear relationship. Repeating similar
analysis on the spread of the Hungarian bond market, no clear relationship was found.
This experience and some technical considerations indicated the introduction of the
instantaneous factor into the calculations.

I split l = r − s into k = 10 buckets and approximated E [∆s|li] by calculating the
average of ∆s for all i = 1, . . . , k. The following linear relationship was found:

log (E [∆s|l]) = 2 log (Σs(r − s)) + log(δt) ≈ As + Bs log(r − s), (3.11)

which indicates the following function form

Σs(r − s)=̊σs(r − s)γ (3.12)

where the parameters σs and γ are estimated from (3.11).
I also examined if the increments of the spread better explained by the combinations

of r and s, but statistically that solution was much less significant. Therefore the spread
is described by the following SDE

ds(t) = αs(µs − s(t))dt + σs(r(t)− s(t))γdWs(t). (3.13)

Assuming the volatility coefficient σr to be stationary and independent from both
the instantaneous rate and the spread, the modification of (3.10) for the instantaneous
rate has the form

E [∆r|r, s] = E
[
Σ2

r(r, s)φ
2
rδt|r, s

]
= E

[
σ2

rf
2
r (r, s)φ2

rδt|r, s
]

= E
[
σ2

r

]
f 2

r (r, s)δt. (3.14)

Therefore in the case of the instantaneous rate, the same analysis can be done as above
and fr(r, s) = fr(r) = rκ type function is found to be significant.

Hence, the instantaneous rate factor is specified as

dr(t) = αr(µr − r(t))dt + σr(t, ω)rκdWr(t). (3.15)

3.3.2 The volatility process of the instantaneous rate

After specifying the structure of the instantaneous rate process, the σr process can be
estimated from the increments of r(t). In this study, the process σr was estimated by
calculating the exponentially weighted variance of the drift eliminated and rγ stan-
dardised increments of the instantaneous rate. Providing the observations of the daily
σr, the method of [Willmott 1998] can be applied to specify the Σσ(t, ω) = Σσ(σr)
coefficient.
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Analogously, the square of the day-to-day changes in the volatility factor is given
as5:

(δσr)
2 ≈ Σ2

σφ
2
σδt (3.16)

where φσ also denotes a standardised Normal variable. Similarly

E
[
(δσr)

2|σr

]
= E

[
Σσ(σr)

2φ2δt|σr

]
= Σσ(σr)

2δt (3.17)

holds. And the functional form estimation is based on

log(E
[
(δσr)

2|σr

]
) = 2 log(Σσ(σr)) + log(δt) ≈ Aσ + Bσ log(σr), (3.18)

5Since there are no assumption on the drift term of dσr, the drift is not eliminated form the
increments as in [Willmott 1998]. The approximation is reasonable as the order of neglected terms is
O((δt)2) or O((δt)

3
2 ).
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which indicates
Σσ(σr) =̊ νση

r , (3.19)

where the ν and η parameters can be estimated from (3.18).
Finally, we have

dσr = Mσ(σr)dt + νση
r dWσ(t). (3.20)

For the estimation of the drift term Mσ(σr) [Willmott 1998] assumes the existence
of the steady-state probability density function for σr. To apply this approach to the
Hungarian market we further assume that the distribution of σr is independent of
the convergence, that is we can estimate the steady-state distribution based on the
available data.

The referred approach applies the Fokker-Planck equation:

Proposition 11. (Fokker-Planck or forward Kolmogorov equation)
Consider a process governed by the SDE

dX(t) = a(X(t))dt + b(X(t))dW (t). (3.21)

Let the random density function of X(t) denoted by

p(t, y)=̊P{X(t) = y|X(0) = x}.

Then the following holds

∂p(t, y)

∂t
=

1

2

∂2

∂y2

(
b2(y)p(t, y)

)
− ∂

∂y
(a(y)p(t, y)) . (3.22)

If the process X(t) has an equilibrium density, it will be

p(y) = lim
t→∞

p(t, y). (3.23)

For p(y) the equilibrium equation holds:

1

2

∂2

∂y2

(
b2(y)p(y)

)
− ∂

∂y
(a(y)p(y)) = 0. (3.24)

See [Shreve 1998] chapter 31.2 for proof.
�

In case of the volatility process σr(t) the equilibrium Fokker-Planck equation has
the form

1

2

∂2

∂σ2
r

(
Σ2

σ(σr)p(σr)
)
− ∂

∂σr

(Mσ(σr)p(σr)) = 0. (3.25)

thus the drift process is given as

Mσ(σr) =
1

2p(σr)

∂

∂σr

(
Σ2

σ(σr)p(σr)
)
. (3.26)
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Remark 9. This specification of the drift term assumes that the steady-state distribu-
tion is observable. From an economic point of view one can assume that the process
σr is stationary. It was emphasised earlier that due to the convergence phenomenon
the steady-state density of the instantaneous rate and the spread processes are not ob-
servable, thus the above method cannot be applied for them. That is why we rely on
intuitions in their case.

�

Since Σσ(σr) is given in (3.19), with the estimation of the steady-state density
p(σr) of σr the function form of Mσ(σr) can be approximated. Calibrating the volatility
process of Dow Jones Industrial Average based on thirty day volatility of daily returns,
[Willmott 1998] could fit a lognormal curve to the empirical distribution.

In our case, the figure 3.3.2 suggests the lognormal distribution to be suitable,
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Figure 3.3: Fitting the empirical steady-state distribution of σr
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hence

p(σr) =
1

aσr

√
2π

exp

{
− 1

2a2
(log(σr)− log(σ∗))2

}
, (3.27)

and therefore Mσ has the form

Mσ(σr) = ν2σ2η−1
r

([
η − 1

2
+

1

2a2
log(σ∗)

]
− 1

2a2
log(σr)

)
. (3.28)

After all, for the increment of the volatility factor is given:

dσr(t) = ν2σ2η−1
r

(
M∗

σ −
1

2a2
log(σr(t))

)
dt + νση

r (t)dWσ(t). (3.29)

Where

M∗
σ=̊

[
η − 1

2
+

1

2a2
log(σ∗)

]
.

The dt term of the above SDE indicates the σr to be mean reverting to the level
exp M∗

σ .

3.3.3 Statistical computations

The process and results of the statistical analysis of the Hungarian bond market can
be summarised as follows.

The parameters of the drift terms:

r s σr

αr = 0.7755 αs = 0.6904 a = 36.64%
µr = 2.504% µs = −1.9709% σ∗ = 0.754%

and of the volatility terms, including the R2 statistics of the linear regression:

s r σr

σs = 2.6919 ν = 3.2267
γ = 2.6949 κ = 0.92145 η = 1.3593
R2 = 0.7141 R2 = 0.8764 R2 = 0.8755

The correlation coefficients are

ρr,s = 0.8044
ρr,σ = 0.0427
ρs,σ = 0.005

Remark 10. Since the coefficients ρr,σ and ρs,σ statistically do not differ from zero,
further on these coefficients assumed to be zero.

�
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The calibration process is summarised as below.

Process of calibration

Daily observations of P (t, T )
↓

Fitting the daily yield curves
↓ Euro yield data observations

Estimates of R(t, T )
↓

Daily observations of r(t) and s(t)

︸ ︷︷ ︸
↓

Estimation of the parameters αr, µr, αs, µs −→ Mr and Ms

↓
Calculation of the series ∆r and ∆s

↓
Estimation of the parameters κ, γ and σs −→ Σr and Σs

↓
Implied estimation of the process σr

↓
Calibrating the parameters ν and η −→ Σσ

↓
Calibrating the drift term of σr −→ Mσ

3.4 Remarks on model-construction

The spread s(t) = r(t) − R(t, t + τ) as a factor is introduced into to the model to
ensure the stochastic relation between the short and long end of the yield curve. The
choice of τ depends on the modelling purposes. If the purpose is the valuation of a
group of interest rate derivatives or the risk management of an interest rate dependent
portfolio, then the most typical maturity or the longest maturity could be a reasonable
choice.

If the maturities of the portfolio elements disperse around two typical levels, then
other spread factors could be introduced. When increasing the number of factors
tractability issues should be considered.
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[Willmott 1998] refers to some models with different structures:

i) In the Hull-White volatility model:

d(σ)2 = a(b− σ2)dt + cσ2dWσ. (3.30)

ii) The Heston model describes the volatility as

dσ = −aσdt + bdWσ. (3.31)



Chapter 4

Numerical analysis of the
three-factor model

So far, the PDE for pricing derivative products of the market factors has been derived.

Corollary 3. In the special case of the introduced three-factor model, the PDE for a
T -claim CF is given as

0 = −rC +
∂C

∂t
+ λ̂r(r, s, σr)

∂C

∂r
+ λ̂s(r, s, σr)

∂C

∂s
+ λ̂σ(r, s, σr)

∂C

∂σr

+ Lr,s + Lσ, (4.1)

where

Lr,s =
1

2
Σ2

r(r, σ)
∂2C

∂r2
+

1

2
Σ2

s(r − s)
∂2C

∂s2
+ ρΣr(r, σ)Σs(r − s)

∂2C

∂r∂s
(4.2)

Lσ =
1

2
Σσ(σ)

∂2C

∂σ2
r

.

for r ≥ 0, s ≥ r and σr ≥ 0 with the terminal condition

C(T ) = F, (4.3)

and coefficients λ̂r, λ̂s, λ̂σ, Σr, Σs and Σσ specified in the previous chapter.
�

Later in this chapter we will show how the information provided by the historical
bond prices, and thus the information of the historical yield curves, can be applied to
estimate the functions λ̂r, λ̂s, and λ̂σ. Knowing these coefficient functions, the current
prices of interest rate derivatives or the future values of bonds and derivatives under
different scenarios of the factors can be established. Also knowing the (empirical)
distribution of the factor’s future value, the distribution of the derivative’s price can
be estimated. This latter possibility has useful applications in risk management.

The coefficients might be so complex that no closed form solution of the pricing
PDE can be derived. In such cases numerical methods are required. In this chapter
the pricing PDE is analysed from a numerical point of view.

42
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4.1 Boundary conditions

When using finite difference methods the domain of definition must be bounded. There
are two ways to make the domain bounded. The first one is the transformation of
variables. The second one is cutting the edge of the domain. In the present study, the
latter version is examined.

Before cutting, the behaviour of the PDE on the edge is to be analysed. This
behaviour might depend on the specification of the derivative product to be valued.
Some special cases are discussed below.

Proposition 12. Suppose that C is bounded around r = 0. Then in case, when r → 0
the PDE (4.1) has the form

0 =
∂C

∂t
+ λ̂r

∂C

∂r
+ λ̂s

∂C

∂s
+ λ̂σ

∂C

∂σr

+
1

2
Σs

∂2C

∂s2
+ Lσ (4.4)

Proof. As in [Seydel 2003], due to the boundedness around r = 0, the term

Σ2
r

∂2C

∂r2
= σ2

rr
2κ ∂2C

∂r2
(4.5)

vanishes for r → 0. By contradiction, assuming a nonzero value leads to∣∣∣∣∂2C

∂r2

∣∣∣∣ ≥ O

(
1

r2κ

)
. (4.6)

Integrating twice the term (4.6), we get

|C| ≥ O

(
1

r2κ−2

)
+ O

(
1

r2κ−1

)
+ c1 (4.7)

which contradicts the boundedness for 0 < γ < 2 and r → 0.
The same argumentation as above indicates that the other the terms

ΣrΣs
∂2C

∂r∂s
(4.8)

vanish for r → 0.
�

Proposition 13. Suppose that C is bounded around each point of the subspace r = s.
Then in case when s → r, the PDE (4.1) has the form

0 = −rC +
∂C

∂t
+ λ̂r

∂C

∂r
+ λ̂s

∂C

∂s
+ λ̂σ

∂C

∂σr

+
1

2
Σr

∂2C

∂r2
+

1

2
Σσ

∂2C

∂σ2
r

. (4.9)
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Proof. The vanishing of the term

Σs
∂2C

∂s2
= σs(r − s)γ ∂2C

∂σ2
r

(4.10)

can be proved analogously to the previous proposition.

Proposition 14. Suppose C is bounded around σr = 0. Then in case when σr → 0
the PDE (4.1) has the form

0 = −rC +
∂C

∂t
+ λ̂r

∂C

∂r
+ λ̂s

∂C

∂s
+ λ̂σ

∂P

∂σr

+
1

2
Σ2

s

∂2C

∂s2
. (4.11)

Proof.

i) The equation
Σr = σrr

γ = 0 (4.12)

is indicated by σr = 0.

ii) The vanishing of the term

Σ2
σ

∂2C

∂σ2
r

= νση
r

∂2C

∂σ2
r

(4.13)

can be proved analogously to the proposition (12) for 0 < η < 2 and σr → 0.

�

Remark 11. The key point in the above propositions is the assumption on the bound-
edness of C around r = 0 and around σr = 0. The proof of the boundedness depends
on the type of derivative.

i) When the derivative is a simple bond maturing at T , the equation

P (t, T ) = EQ

[
exp

{
−
∫ T

t

r(s)ds

}∣∣∣∣Ft

]
(4.14)

and r ≥ 0 indicates P ∈ [0, 1].

ii) In case of a T -claim C with a payoff F at time T , if there exist K > 0 and ε > 0,
such as

EQ

[
|F |
∣∣∣Ft

]
< K (4.15)
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(a.s.) for 0 ≤ r ≤ ε, then the following (a.s.) holds

|C(t)| =

∣∣∣∣EQ

[
exp

{
−
∫ T

t

r(s)ds

}
F

∣∣∣∣Ft

]∣∣∣∣ (4.16)

≤ EQ

[
exp

{
−
∫ t

t

r(s)ds

}
|F |
∣∣∣∣Ft

]
≤ EQ

[
|F |
∣∣∣Ft

]
< K

thus the boundedness (a.s.) holds.

�

Proposition 15. In case when s(0) = r(0), the bond price for all maturities T ∈ [0, τ ]
equals to 1:

P (0, T ) = 1, for all T ∈ [0, τ ]. (4.17)

Proof. If s(0) = r(0) then R(0, τ) = r(0)− s(0) = 0 and therefore

P (0, τ) = exp {−τR(0, τ)} = 1. (4.18)

Since

P (0, τ) = EQ

[
exp

{
−
∫ τ

0

r(u)du

}∣∣∣∣F0

]
= E

[
exp

{
−
∫ τ

0

r(s)ds

}]
= 1 (4.19)

also holds, and r ≥ 0

exp

{
−
∫ τ

0

r(u)du

}
≤ 1 (4.20)

for almost all ω ∈ Ω, therefore (4.19) only holds if r(u, ω) = 0 for almost all (u, ω) ∈
[0, τ ]× Ω.

Consequently

exp

{
−
∫ T

0

r(u)du

}
= 1, (4.21)

for almost all and ω ∈ Ω, and therefore

P (0, T ) = 1 (4.22)

for almost all T ∈ [t, t + τ ].
�

Remark 12. The extension of the above proposition for the case r(t) = s(t) can be
proved analogously.

�
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Corollary 4. When applying the pricing PDE on a bond maturing at time T , on the
bound where s = r the boundary condition is

P (t, T ) = 1. (4.23)

�

Remark 13. Deriving accurate boundary conditions for a given interest rate deriva-
tive, there are different PDE numerical methods available for approximating the so-
lution. The main classes of method are the finite difference method and the finite
element method. See [Stoyan 1997] and [Seydel 2003] for details.

�

4.2 Application of the pricing PDE

As it was derived in the chapter 1, the price of an interest rate derivative C at time t
is given by the formula

C = EQ

[
F exp

{
−
∫ T

t

r(u)du

}∣∣∣∣Ft

]
(4.24)

where the expectation is calculated with respect to the equivalent martingale measure
Q. The expectation can be estimated by simulation of the factors1. The representation
of the factors with respect to Q is applied for the simulation, therefore the estimation
M̃i terms are required. In this section, a method for the approximation of the risk-
adjusted drift terms based on historical bond prices is presented in the special case
of two-factor r, l term structure model, where r denotes the instantaneous rate and
l=̊R(t, t + τ) denotes the long spot rate.

4.2.1 Pointwise estimation of the risk-adjusted drift

The representation to be applied is given as below

dr = M̃r(r, l)dt + Σr(r, l)dW̃r(t) (4.25)

dl = M̃l(r, l)dt + Σl(r, l)dW̃l(t) (4.26)

with a correlation coefficient ρ between dW̃r and dW̃l. Suppose the functions Σr and
Σl to be known (calibrated after observed market data).

The pricing PDE written on a bond price P in the two factor case is given as:

0 = −rP +
∂P

∂t
+ M̃r

∂P

∂r
+ M̃l

∂P

∂l
+

1

2
Σ2

r

∂2P

∂r2
+

1

2
Σ2

l

∂2P

∂l2
+ ρΣrΣl

∂2P

∂r∂l
. (4.27)

The above PDE is an important equation for calibrating the risk-adjusted drift.

1See [Kloeden-Platen 1999] for details.
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Remark 14. As the pricing PDE for bonds does not depend directly on t and T , but
depends on t̂=̊T − t, r and l the model is called time homogeneous. Hereafter the
notation

P ∗(t̂)=̊P (t, t + t̂) (4.28)

is also applied. This also indicates the following

P (t + ∆t, T, r, l) = P (t, T −∆t, r, l) = P ∗(t̂−∆t, r, l). (4.29)

�

The other important equation for the calibration of M̃r derived from the economic
relation used for bonds2:

M̃l = − r

τ
+

1

2
τΣ2

l +
1

τP ∗(τ)

∂P ∗(τ)

∂t
. (4.30)

Considering the equation (4.27) applied on P =̊P ∗(t̂) for an arbitrary chosen t̂ ∈
(0, τ), the coefficients M̃r for a given pair (r, l) can be estimated if all the other terms
of the PDE (4.27) are known at least approximately. Suppose the price of the bond

is observable. Since the coefficient M̃l is given by (4.30) and the coefficients of the

second order derivatives are known, for the estimation of M̃r only the approximation
of the partial derivative terms are required. A method for this purpose is presented
below.

Applying the Taylor expansion, the following holds3:

∂P ∗(τ)

∂t
=
−P ∗(τ − 2∆t) + 4P ∗(τ −∆t)− 3P ∗(τ)

2∆t

+ O(∆2
t ). (4.31)

Corollary 5. i) Given a pair r, l and the bond curve P ∗(t̂, r, l) for all t̂ ∈ [0, τ ], the
term

∂P ∗(τ)

∂t

is approximated by the formula (4.31) in order O(∆2
t ).

ii) The order of approximation also holds for M̃l.
�

Remark 15. If the bond curve is given analytically, then the partial derivative of P
with respect to t can be derived without approximation.

�
2See chapter 2 for derivation.
3The bond curve P ∗(t̂) at time t is defined on the interval [0, τ ] that is why the difference scheme

is given in the asymmetrical form.
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Suppose there are six pairs of (r + ∆i,r, l + ∆i,l) observed for i = 0, 1, . . . , 5, where
∆0,r = ∆0,l = 0. Hence the bond prices Pi(t̂, r + ∆i,r, l + ∆i,l) are also known for all
t̂ ∈ [0, τ ]. Expanding Pi for i = 1, . . . , 5 into Taylor series around P0, the following is
implied

Pi = P0+∆i,r
∂P0

∂r
+∆i,l

∂P0

∂l
+

1

2
∆2

i,r

∂2P0

∂r2
+

1

2
∆2

i,l

∂2P0

∂l2
+∆i,r∆i,l

∂2P0

∂r∂l
+O(|∆3

i,r|+|∆3
i,l|).

(4.32)
introducing the following notation:

A=̊

∆1,r ∆1,l ∆2
1,r ∆2

1,l ∆1,r∆1,l

...
...

...
...

...
∆5,r ∆5,l ∆2

5,r ∆2
5,l ∆5,r∆5,l

 , (4.33)

b=̊

P1 − P0
...

P5 − P0

 (4.34)

δb=̊

O(|∆3
1,r|+ |∆3

1,l|)
...

O(|∆3
5,r|+ |∆3

5,l|)

 , (4.35)

and
x=̊
[

∂P0

∂r
∂P0

∂l
∂2Po

∂r2
∂2P0

∂l2
∂2P0

∂r∂l

]T
. (4.36)

Assuming non-singularity of A, the problem is reformulated into a linear system

Ax = b + δb. (4.37)

Since δb is not known, the vector x is approximated by the solution x̂ of the following
system:

Ax̂ = b, (4.38)

and the error ‖x− x̂‖ in an arbitrary norm ‖.‖ is given by

‖x− x̂‖ =
∥∥A−1δb

∥∥ ≤ ∥∥A−1
∥∥ ‖δb‖ . (4.39)

Thus the order of the error depends on the placement of the six pairs. The order
relative error equals to

‖x− x̂‖
‖x‖

= cond(A)O(max(|∆3
i,r|) + |max(|∆3

i,l|)) (4.40)

where cond(A) denotes the conditional number of A with respect to the chosen norm
‖.‖.

The method introduced above is summarised as follows.
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Proposition 16. Suppose that there exist five observable pairs (r + ∆i,r, l + ∆i,l) for
i = 1, . . . , 5 close around (r, l) such that the matrix A defined as in (4.33) is non-
singular and the relative error (4.40) is small enough. Then by solving the equation
(4.37), and substituting the estimates of the partial derivatives into (4.27), the value

of the function M̃r in the point (r, l) is well approximated.
�

Remark 16. The accurate approximation feature of the method derived above depends
on the choice of points around the base point (r, l) to be involved in the calculations. In
practice, one can assume, that there are great number of observations of market states
(ri, li) around the base point, and therefore the accuracy of approximation is ensured.

�

Remark 17. If the market is represented by n factors, and hence there are n risk-
adjusted terms to be approximated, similar method can be constructed.

The method. Suppose there are k economic relation type equations defined, given
by k independent linear equations (k ≥ 0). Choosing five different points X1, . . . , X5

close around a base point X such the corresponding relative error defined by (4.40) is
small enough4, and choosing n− k different time values t̂i for i = 1, 2, . . . , n− k, then
the first and second order partial derivatives of the functions P (t̂i) in the base point
X is approximated by solving (4.37) type equations for all P (t̂i).

Writing the pricing PDE on P (t̂i) for i = 1, 2, . . . , n − k, and substituting the
approximation of the partial derivatives, we get n−k linear equations. The k equations
on the economic relations and the recently derived n−k equations all together gives n
linear equations on the n risk-adjusted drift terms. If the linear system has solution,
then an approximation of the risk-adjusted drift term is the base point X is implied.

�

4.2.2 Interpolation of the pointwise risk-adjusted drift

Suppose that the error of the approximation method introduced above is kept under
a common small limit in the points (ri, li) for i = 1, 2, . . . , n. Thus the risk-adjusted
drift is well estimated in the specified points. The following methods are available for
extension:

• linear interpolation (e.g. by the triangularisation of the domain),

• polynomial interpolation,

• spline interpolation.

4Without any specification of the economic relation type equations and the replacement of the
chosen points, no precise order of error can be derived.



CHAPTER 4. NUMERICAL ANALYSIS OF THE THREE-FACTOR MODEL 50

The method is summarised as below.

Process of estimating the risk-adjusted drift terms

Daily observation of P ∗(t̂) for all t̂ ∈ [0, τ ].
in points (ri, li) for i = 0, 1, . . . , 5.

︸ ︷︷ ︸ ︸ ︷︷ ︸
↓ ↓

Calculating/ Estimating Calibrating the factor processes

the partial derivatives ∂P ∗(τ)
∂t

r and l

︸ ︷︷ ︸
↙ ↘

The economic type relation implies Given the Taylor expansion

a linear equation on M̃l(r0, l0) in (ri, li) (i = 1, . . . , 5), around (r0, l0)
for P ∗(t̂) for a fixed t̂ ∈ [0, τ ]

↓
Five linear equations implied

on the partial derivatives
∂P ∗

∂r
, ∂P ∗

∂l
,

∂2P ∗

∂r2 , ∂2P ∗

∂l2
and ∂2P ∗

∂r∂l

↓
Writing the estimates of the partial de-
rivatives into the pricing PDEs of P ∗(t̂j)

↓
We get a linear equation

on M̃r(r0, l0) and M̃l(r0, l0)

︸ ︷︷ ︸
↓

Estimation of M̃r(r0, l0) for all observed (r0, l0)
↓

Extending M̃(r, l)



Chapter 5

Closing thoughts and conclusions

In the first two chapters the mathematical introduction of financial markets and a gen-
eral summary of the theory for pricing derivative products were presented. I discussed
the relation between the pricing PDEs derived from two different argumentations. Ad-
ditionally, the necessary conditions were given for the economic relation between the
factors in special cases.

In the third chapter the slight generalisation of the calibration method presented
by [Willmott 1998] was applied on a three-factor model of the Hungarian government
bond market. The numerical calculations were based on economic considerations about
the referred convergence phenomenon and on the historical daily yield curves estimated
by the Raiffeisen Bank Rt.

In the last chapter, some practical applications of the pricing PDE were sketched.
Firstly, in the case of an accurate definition of boundary conditions, the interest rate
derivatives can be valued using PDE numerical methods, Secondly, a method for the
pointwise calibration of the risk-adjusted drift terms based on the pricing PDE was
introduced.

In spite of my original intentions, some unsolved problems, such as giving sufficient
conditions for the economic relations in case of the pricing PDE, the general derivation
of accurate boundary conditions for the interest rate derivatives pricing PDE, and
precise development of extension of the pointwise estimation of the risk-adjusted drift
terms remained. These might be the topic of a following study.
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