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Chapter 1

Preface

A swap is a special contractual agreement between two parties, where they agree to
make periodic payments to each other. Depending on the type of the swap, the agreement
contains speci�cations regarding the currencies to be exchanged, the rate of interest appli-
cable to each or the amount of commodities to be exchanged.

Risky corporate and sovereign bonds are among the most recent securities to bene�t
from the trading of associated derivative contracts. Credit derivatives are �nancial instru-
ments that can be used to transfer credit risk from the investor exposed to the risk (the
protection buyer) to an investor willing to assume that risk (the protection seller). Credit
default swaps are the most liquid of the several credit derivatives currently traded and
form the basic building blocks for more complex structured credit products.

This work provides methodologies for valuing credit default swaps. We explain how
a plain vanilla CDS and basket credit default swap can be valued in di�erent cases.

The paper is structured as follows:
First of all we say some words generally about the swap contracts.
In Chapter 2 we discuss the main risks connected to the swaps.
In the next chapter we write on the credit default swap (CDS), show a simple ex-

ample, introduce the basic concepts and build up a methodology for valuing credit default
swaps when the payo� is contingent on default by a single reference entity and there is no
counterparty default risk.

We extend the analysis in Chapter 4. We focus on the CDS that takes account of
counterparty default risk and allows the payo� to be contingent on default by multiple
reference entities. A model of default correlations between di�erent corporate or sovereign
entities will be presented.

Finally we summarize our work and announce the data and valuation results.
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Chapter 2

About Swap Contracts

2.1 What is a Swap?

A swap is a contractual agreement between two parties, called counterparties, where
the counterparties agree to make periodic payments to each other. Depending on the type
of the swap, the agreement contains speci�cations regarding the currencies to be exchanged
(which may or may not be the same), the rate of interest applicable to each (which may be
�xed or �oating) or the amount of commodities to be exchanged. Moreover, the agreement
contains speci�cations regarding the timetable by which the payments are to be made and
any other provisions bearing on the relationship between the parties.

Since their inception in 1981, swaps have grown to a market of well over $6 trillion.
Interest rate swaps have become common tools for interest rate risk management.

Swaps are by nature a series of forward contracts. This means that every payment
is seen as an individual payment with a present value; this is though solemnly used in the
process of pricing swaps (along the lines of pricing bonds).
The main characteristics of swap are,

• usually tailor-made (standardized in the future) and can be connected to almost any
notional principal,

• brokers (matches the needs of clients) and dealers exist (puts himself 'on the line'),

• cheap and easy to use, versatile and keeps the amounts of money used small,

One can use swaps for hedging, speculation, arbitrage, cash �ow management, trad-
ing and to enter new markets.
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2.2 Risks in Swaps

Fullér [1] has collected the main risks connected to the swaps. The risks discussed
below are mainly types of risk that arise in situations of speculation or by entering into
several swaps in many di�erent markets and thus taking several di�erent type of position
(i.e. holding entire portfolios of swaps). If we consider only one swap through which we �x
our payments over time, the only risk will encounter is the opportunity risk i.e. what we
could have done if we would have invested in another way. The main type of risks are the
followings:

• Interest rate risk as spread risk and market risk

Generally speaking the interest rate risk emerges as a result of the inverse relationship
between the yield and the price of �xed-rate interest bearing debt, which consequently
a�ects the debt management instrument. A change in the interest rate of a certain
maturity will hence a�ect the instruments used to manage that debt; a decrease in
the interest rate on debt might prove disastrous for a dealer whose strategy rests
upon a steady swap spread over the underlying bond (used as the source for risk free
yield in hedging operations). A no-reaction strategy and a reaction-but-not-enough-
fast strategy puts the dealer in a position where he/she loses money as a result of the
�uctuating interest rates. This speci�c interest rate risk resulting from yield curve
movements is referred to as a spread risk.
The interest rate risk referred as market risk is a form of risk that evolves during the
lifetime of the swap. At the start of the swap the market value of the swap is zero;
no-one has yet pro�ted in any way of interest rate movements since and no-one has
been exposed to any kind of risk against the counterparty. But at the instant the
agreement is signed the contract becomes sensitive to interest rate movements. Then
at the end of the time speci�ed in the contract, for instance six months, the interest
rates have moved in some direction or the other. Since the mere existence of a swap
contract is dependent upon the counterparties having opposite views on market and
interest rate movements, the end of the six-month period sees one counterparty owing
the other one the di�erence between the contract speci�c �xed interest rate payment
and the current contract speci�c �oating interest rate index.

• Currency/exchange rate risk

Currency risk is something that is a consequence of di�erences in the nominal cur-
rencies of the underlying interest bearing debt. In such a case the interest rate risk
is accompanied by the currency risk. International transactions might easily concern
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many di�erent counterparties in many di�erent countries whereby the currency risk
becomes even more tangible and relevant to the actors involved. By using interest rate
swaps or similar instruments to create hedges, one might lessen or totally eliminate
the possible impacts of di�erent currencies and di�erent interest rate movements.

• Credit default risk

Credit risk is de�ned as the probability of the counterparty in the swap agreement
ceasing to exist, incorporating all the possible �nancial e�ects of the elimination. The
reason for a counterparty becoming insolvent might be consequences of everything
from bankruptcy to changes in the macroeconomic environment.
When the total credit risk is asserted one has to take the current credit risk as
well as the dynamics of this credit risk into account. This way one can create an
understanding of the probability of default over an extended period of time as well
as a notion of single and combinations of factors in the economic environment that
might give birth to defaults and economic hardship.

• Liquidity risk

This type of risk is characterized by the easiness by which one can transform the
swap into liquid assets like cash. Consequently, this is highly dependent upon the
structure of the secondary market for swaps as well as the structure of the swap itself
and the independence of these two factors; the less developed secondary market, the
harder it is to �nd a new counterparty in need of a contract under these speci�ed
conditions. The more tailor-made the contract is, again, the harder it is to �nd a new
counterparty. This type of risk can be measured as a cost per time i.e.the longer it
takes to �nd a new counterparty or in other ways dispose of the contract, the more
costly the agreement becomes. The liquidity risk is thus consequently concerned with
the di�culties of leaving a position without a price reduction.

• Mismatch risk

Mismatch risk is a type of risk which evolves around di�erences in notional principal,
maturity, the swap coupon, the �oating index, the reset dates for the �oating index
and the payment frequencies between parallel agreements. As the number of agree-
ments increase and they become more and more complex a treasurer faces an ever
increasing risk that he might not be able to hedge every position taken by way of
an identical agreement with opposite interest cash �ows. This type of risk becomes
even more eminent in context with credit risk; if mismatch has occurred as a result of
di�ering payment dates and the treasurer pays a certain sum of money in six-month
intervals while the counterparty pay on a yearly basis and the counterparty defaults,
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the dealer pays without receiving and loses thus the interest rate cash �ow.

• Basis risk

The basis is the di�erence between two prices; in the case of interest rate swaps it is
the di�erence between two di�erent �oating-rate indexes. The basis risk arises in two
di�erent ways: �rst, suppose that a treasurer and a counterparty agree on a �oating-
�oating interest rate swap in which the parties pay �oating interest rate according
to di�erent �oating-rate indexes like LIBOR and BUBOR. Second, in a matching
pair of swaps a treasurer might pay according to one �oating-rate index (for instance
LIBOR) and receive according to another (for instance BUBOR). The risk arises as
a result of the di�erent characters of the two indexes; they �uctuate according to
di�erent economic environments.

• Sovereign risk

The sovereign risk arises in cross-border interest rate swaps, i.e. in swaps that are
concerned with parties in two di�erent countries, and that thus re�ect the countries
�nancial standings in the world community and, to some degree, it is a function
of the countries political stability. In general one could regard the sovereign risk
as another aspect of credit risk with the exception that credit risk is speci�c for
the counterparty while the sovereign risk is speci�c for the country in which the
counterparty is operating. The sovereign risk might also be considered a political
risk; while viewed in this manner the risk is given a more concrete size and shape
in that it is not only international events that a�ect the investment climate but also
national taxes, restrictions and other national policies. All these factors a�ect the
price of the swap in that the higher the risk involved, the higher the price of the
swap.

• Delivery/settlement risk

The delivery risk, also called the settlement risk, exists when payments are made
between counterparties who must e�ect their payments to each other at di�erent
times of the day owing to di�erent settlement hours between the capital markets of the
two parties. This most often occurs when payments are made between counterparties
in two di�erent countries.

• Systematic risk

The systematic risk considers the probability that extensive disturbances that might
a�ect other segments and institutions occur to the extent that the entire �nancial
system crashes. This type of risk has its foundations in panic reactions and extensive

5



loss of con�dence in the current status quo as a consequence of a quickly changing
reality. The construction of a method to comprise this kind of risk into the price of
a swap is only relevant on a theoretical and philosophical level. In reality, if such a
crisis would occur, the pricing strategy is most or less irrelevant to the outcome; this
type of risk is always present in one way or another.
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Chapter 3

Credit Default Swaps

The �nancial markets have recently developed securities that price directly the credit
event called credit default swaps. The �rst such security was issued by Deutsche Bank in
2000. These securities payout only on the occurrence of a credit event, like a bond default
and they have prices quoted in basis points as a percentage of a notional. In the USA
trading in credit default swaps was facilitated by standard documentation produced by
the International Swaps and Derivatives Association. Credit default swaps have become
increasingly popular in recent years. Their purpose is to allow credit risks to be traded and
managed in much the same way as market risks.

A CDS is a contract that provides protection against the risk of a credit event by
a particular company or country. The company is known as the reference entity and a
default by the company is known as a credit event. The buyer of the insurance obtains
the right to sell a particular bond issued by the company for its par value when a credit
event occurs. The bond is known as the reference obligation and the total par value
of the bond that can be sold is known as the swap's notional principal. The buyer of
protection makes periodic payments to the protection seller until the occurrence of a credit
event or the maturity date of the contract, whichever is �rst. If a credit event occurs the
buyer is compensated for the loss (possibly hypothetically) incurred as a result of the credit
event.

A credit event usually requires a �nal accrual payment by the buyer. The swap is
then settled by either physical delivery or in cash. If the terms of the swap require physical
delivery, the swap buyer delivers the bonds to the seller in exchange for their par value.
When there is cash settlement, the calculation agent polls dealers to determine the mid-
market price, Q, of the reference obligation some speci�ed number of days after the credit
event. The cash settlement is then $(100−Q)% of the notional principal.
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An example may help to illustrate how a typical deal is structured. Suppose that
two parties enter into a �ve-year credit default swap on May 1, 2005. Assume that the
notional principal is $10 million and the buyer agrees to pay 90 basis points annually for
protection against default by the reference entity. If the reference entity does not default
(that is, there is no credit event), the buyer receives no payo� and pays $90,000 on May 1
of each of the years 2006, 2007, 2008, 2009, and 2010. If there is a credit event a substantial
payo� is likely. Suppose that the buyer noti�es the seller of a credit event on November
1, 2008 (half way through the fourth year). If the contract speci�es physical settlement,
the buyer has the right to sell $10 million par value of the reference obligation for $10
million. If the contract requires cash settlement, the calculation agent would poll dealers
to determine the mid-market value of the reference obligation a predesignated number of
days after the credit event. If the value of the reference obligation proved to be $35 per
$100 of par value, the cash payo� would be $6.5 million. In the case of either physical or
cash settlement, the buyer would be required to pay to the seller the amount of the annual
payment accrued between May 1, 2008 and November 1, 2008 (approximately $45,000),
but no further payments would be required.

There are a number of variations on the standard credit default swap. In a binary
credit default swap, the payo� in the event of a default is a speci�c dollar amount. In
a basket credit default swap, a group of reference entities are speci�ed and there is a
payo� when the �rst of these reference entities defaults. In a contingent credit default
swap, the payo� requires both a credit event and an additional trigger. The additional
trigger might be a credit event with respect to another reference entity or a speci�ed move-
ment in some market variable. In a dynamic credit default swap, the notional amount
determining the payo� is linked to the mark-to-market value of a portfolio of swaps.

In this chapter we explain how a plain vanilla and binary credit default swap can be
valued assuming no counterparty default risk. Like most other approaches, we assumes that
default probabilities, interest rates, and recovery rates are independent. Unfortunately, it
does not seem to be possible to relax these assumptions without a considerably more com-
plex model. The independence assumption will be discussed at the end of the chapter.

We test the sensitivity of the valuations to assumptions about the amount claimed
in the event of a default and the expected recovery rate. We also test whether approximate
no-arbitrage arguments give accurate valuations. In the next chapter, we will explain how
the analysis can be extended to cover situations where the payo� is contingent on default
by multiple reference entities and situations where there is counterparty default risk.
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3.1 Estimation of Default Probabilities

The valuation of a credit default swap requires estimates of the risk-neutral proba-
bility that the reference entity will default at di�erent future times. The prices of bonds
issued by the reference entity provide the main source of data for the estimation. If we
assume that the only reason a corporate bond sells for less than a similar Treasury bond
is the possibility of default, it follows that:

Value of Treasury Bond - Value of Corporate Bond = Present Value of Cost of Defaults

By using this relationship to calculate the present value of the cost of defaults on a range of
di�erent bonds issued by the reference entity, and making an assumption about recovery
rates, we can estimate the probability of the corporation defaulting at di�erent future
times. If the reference entity has issued relatively few actively traded bonds, we can use
bonds issued by another corporation that is considered to have the same risk of default as
the reference entity. This is likely to be a corporation whose bonds have the same credit
rating as those of the reference entity � and ideally a corporation in the same industry as
the reference entity.

We start with a simple example. Suppose that a �ve-year zero-coupon Treasury
bond with a face value of 100 yields 5% and a similar �ve-year zero-coupon bond issued
by a corporation yields 5.5%. Both rates are expressed with continuous compounding. The
value of the Treasury bond is 100e−0.05×5 = 77.8801 and the value of the corporate bond
is 100e−0.055×5 = 75.9572. The present value of the cost of defaults is, therefore

77.8801− 75.9572 = 1.9229

De�ne the risk-neutral probability of default during the �ve-year life of the bond
as p. If we make the simplifying assumption that there are no recoveries in the event of a
default, the impact of a default is to create a loss of 100 at the end of the �ve years. The
expected loss from defaults in a risk-neutral world is, therefore, 100p and the present value
of the expected loss is

100pe−0.05×5

It follows that:
100pe−0.05×5 = 1.9229

so that p = 0.0247 or 2.47%.
There are two reasons why the calculations for extracting default probabilities from

bond prices are, in practice, usually more complicated than this. First, the recovery rate
is usually non-zero. Second, most corporate bonds are not zero-coupon bonds. When the
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recovery rate is non-zero, it is necessary to make an assumption about the claim made by
bondholders in the event of default. Jarrow and Turnbull [2] and Hull and White [3] assume
that the claim equals the no-default of the bond. Sometimes it is assumed that the claim
is equal to the value of the bond immediately prior to default. These assumptions do not
correspond to the way bankruptcy laws work in most countries [4]. The best assumption
is that the claim made in the event of a default equals the face value of the bond plus
accrued interest.

As mentioned earlier, the payo� from a CDS in the event of a default at time t is
usually the face value of the reference obligation minus its market value just after time t.
Using the best claim amount assumption just mentioned, the market value of the reference
obligation just after default is the recovery rate times the sum of its face value and accrued
interest. This means that the payo� from a typical CDS is

L−RL[1 + A(t)] = L[1−R−A(t)] (3.1)

where L is the notional principal, R is the recovery rate, and A(t) is the accrued interest
on the reference obligation at time t as a percent of its face value.

3.1.1 A General Analysis Assuming Defaults at Discrete Times

We now present a general analysis that can be used in conjunction with alternative
assumptions about the claim amount. We assume that we have chosen a set of N bonds
that are either issued by the reference entity or issued by another corporation that is con-
sidered to have the same risk of default as the reference entity. By the same risk of default
we mean that the probability of default in any future time interval, as seen today, is the
same. It is similar than in [5]. We assume that defaults can happen on any of the bond
maturity dates. Later we will show a generalized analysis that allow defaults to occur on
any date. Suppose that the maturity of the ith bond is ti with t1 < t2 < t3... < tN . De�ne:

Bj : Price of the jth bond today.
Gj : Price of the jth bond today if there were no probability of default (that is, the

price of a Treasury bond promising the same cash �ows as the jth bond).
Fj(t): Forward price of the jth bond for a forward contract maturing at time t assuming

the bond is default-free (t < tj).
v(t): Present value of $1 received at time t with certainty.

Cj(t): Claim made by holders of the jth bond if there is a default at time t (t < tj).
Rj(t): Recovery rate for holders of the jth bond in the event of a default at time t

(t < tj).
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αij : Present value of the loss, relative to the value the bond would have if there were
no possibility of default, from a default on the jth bond at time ti.

pi: The risk-neutral probability of default at time ti.
For ease of exposition, we �rst assume that interest rates are deterministic and that both
recovery rates and claim amounts are known with certainty. We then explain how these
assumptions can be relaxed.

Because interest rates are deterministic, the price at time t of the no-default value
of the jth bond is Fj(t). If there is a default at time t, the bondholder makes a recovery
at rate Rj(t) on a claim of Cj(t). It follows that

αij = v(ti)[Fj(ti)−Rj(ti)Cj(ti)] (3.2)

There is a probability, pi of the loss αij being incurred. The total present value of
the losses on the jth bond is, therefore, given by:

Gj −Bj =
j∑

i=1

piαij (3.3)

This equation allows the p's to be determined inductively:

pj =
Gj −Bj −

∑j−1
i=1 piαij

αjj
(3.4)

3.1.2 Recovery Rate Assumption

These results have been produced on the assumption that interest rates are constant,
recovery rates are known, and claim amounts are known. In what follows we will consider
two assumptions about the claim amount. The �rst is that it equals the no-default value
of the bond at the time of the default; the second is that it equals the face value plus
accrued interest at the time of the default. It can be shown that, for either of these two
assumptions, if a) default events, b) Treasury interest rates, and c) recovery rates are
mutually independent, equations (3.2) and (3.3) are still true for stochastic interest rates,
uncertain recovery rates, and uncertain default probabilities providing the recovery rate is
set equal to its expected value in a risk-neutral world.

It is probably reasonable to assume that there is no systematic risk in recovery rates
so that expected recovery rates observed in the real world are also expected recovery rates
in the risk-neutral world. This allows the expected recovery rate to be estimated from
historical data.

As mentioned earlier, the N bonds used in the analysis are issued either by the
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reference entity or by another company that is considered to have the same risk of default
as the reference entity. This means that the pi should be the same for all bonds. The
recovery rates can in theory vary according to the bond and the default time. We will
assume, for ease of exposition, that all the bonds have the same seniority in the event of
default by the reference obligation and that the expected recovery rate is independent of
time. The expected value of Rj(t) is then independent of both j and t. We will denote this
expected value by R̂.

3.1.3 Extension to Situation Where Defaults Can Happen at Any Time

The analysis used to derive equation (3.4) assumes that default can take place only
on bond maturity dates. We now extend it to allow defaults at any time. De�ne q(t)4t as
the probability of default between times t and t +4t as seen at time zero. The variable
q(t) is not the same as the hazard (default intensity) rate. The hazard rate, h(t), is de�ned
so that h(t)4t is the probability of default between times t and t +4t as seen at time t

assuming no default between time zero and time t. The variables q(t) and h(t) are related
by

q(t) = h(t)e
∫ t
0 h(τ)dτ (3.5)

Some credit risk models (e.g. [2]) are formulated in terms of h(t). However, we will
follow the way of Hull and White [5] to express the results in terms of q(t) rather than
h(t). We will refer to q(t) as the default probability density.

We assume that q(t) is constant and equal to qi for ti−1 < t < ti. Setting

βij =
∫ ti

ti−1

v(t)[Fj(t)− R̂Cj(t)]dt (3.6)

a similar analysis to that used in deriving equation (3.4) gives:

qj =
Gj −Bj −

∑j−1
i=1 qiβij

βjj
(3.7)

The parameters βij can be estimated using standard procedures, such as Simpson's rule,
for evaluating a de�nite integral.

3.1.4 Claim Amounts and Value Additivity

We now present a numerical example and investigate the impact of di�erent assump-
tions about the claim amount. As mentioned earlier, Jarrow and Turnbull [2] and Hull and
White [3] assume that, in the event of a default, the bondholder claims the no-default
value of the bond. This is an attractive assumption. It implies that Cj(t) = Fj(t). The
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parameter, βij , is then proportional to 1−R̂ so that equation (3.7) can be used to estimate
qi(1− R̂) directly from observable market variables. Furthermore, an analysis of equation
(3.7) shows that, in this case, the value of the coupon-bearing bond Bj is the sum of the
values of the underlying zero-coupon bonds. This property is referred to as value addi-
tivity. It implies that it is theoretically correct to calculate zero curves for di�erent rating
categories (AAA, AA, A, BBB, etc) from actively traded bonds and use them for pricing
less actively traded bonds.

As mentioned earlier, the best assumption is that Cj(t) equals the face value of bond
j plus accrued interest at time t. As pointed out by Jarrow and Turnbull [4], value addi-
tivity does not apply when this assumption is made (except in the special case where the
recovery rate is zero). This means that there is no zero-coupon yield curve that can be used
to price corporate bonds exactly for a given set of assumptions about default probabilities
and expected recovery rates.

Table 5.1 provides hypothetical data on six bonds issued by a reference entity. The
bonds have maturities ranging from one to ten years and the spreads of their yields over
Treasury yields are typical of those for BBB-rated bonds. The coupons are assumed to be
paid semiannually, the Treasury zero curve is assumed to be �at at 5% (semiannually com-
pounded), and the expected recovery rate is assumed to be 30%. Table 5.2 calculates the
default probability densities for the two alternative assumptions about the claim amount.
It can be seen that the two assumptions give similar results. This is usually the case. For
the default probability densities to be markedly di�erent, it would be necessary for the
coupons on the bonds to be either very much greater or very much less than the risk-free
rate.

3.1.5 Expected Recovery Rates and Bond Yields

Default probability densities must be greater than zero. From equation (3.7) this
means that

Bj ≤ Gj −
j−1∑
i=1

qiβij (3.8)

It is also true that the cumulative probability of default must be less than 1. This means
that

j∑
i=1

qi(ti − ti−1) ≤ 1

or
qj(tj − tj−1) ≤ 1−

j−1∑
i=1

qi(ti − ti−1)
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so that from equation (3.7)

Bj ≥ Gj −
j−1∑
i=1

qiβij −
βjj

tj − tj−1

[
1−

j−1∑
i=1

qi(ti − ti−1)
]

(3.9)

Equations (3.8) and (3.9) impose both an upper and lower bound on the yield on the
bond maturing at time tj once expected recovery rates and the yields on bonds maturing at
earlier times have been speci�ed. In the example in Table 5.1, when the expected recovery
rate is 30%, a 20-year bond with a coupon of 7% must have a yield between 6.50% and
9.57% when the claim amount equals the face value plus accrued interest.

In general, one can use equations (3.8) and (3.9) to test whether a set of bond yields
are consistent with the recovery rate assumption. Inconsistencies indicate that either the
expected recovery rate assumption is wrong or bonds are mispriced.

3.2 The Valuation

We now move on to consider the valuation of a plain vanilla credit default swap
with a $1 notional principal. We assume that default events, Treasury interest rates, and
recovery rates are mutually independent. We also assume that the claim in the event of
default is the face value plus accrued interest. De�ne

T : Life of credit default swap.
q(t): Risk-neutral default probability density at time t.

R̂: Expected recovery rate on the reference obligation in a risk-neutral world. As
indicated in the previous section, this is assumed to be independent of the time of
the default and the same as the recovery rate on the bonds used to calculate q(t).

u(t): Present value of payments at the rate of $1 per year on payment dates between
time zero and time t.

e(t): Present value of an accrual payment at time t equal to t − t? where t? is the
payment date immediately preceding time t.

v(t): Present value of $1 received at time t.
w: Total payments per year made by credit default swap buyer.
s: Value of w that causes the credit default swap to have a value of zero.
π: The risk-neutral probability of no credit event during the life of the swap.

A(t): Accrued interest on the reference obligation at time t as a percent of face value.
The value of π is one minus the probability that a credit event will occur by time T . It
can be calculated from q(t):

π = 1−
∫ T

0
q(t)dt
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The payments last until a credit event or until time T , whichever is sooner. If a default
occurs at time t (t < T ), the present value of the payments is w[u(t) + e(t)]. If there is no
default prior to time T , the present value of the payments is wu(T ). The expected present
value of the payments is, therefore:

w

∫ T

0
q(t)[u(t) + e(t)]dt + wπu(T )

Given our assumption about the claim amount, the risk-neutral expected payo� from the
CDS is

1− [1 + A(t)]R̂ = 1− R̂−A(t)R̂

The present value of the expected payo� from the CDS is∫ T

0
[1− R̂−A(t)R̂]q(t)v(t)dt

and the value of the credit default swap to the buyer is the present value of the expected
payo� minus the present value of the payments made by the buyer or∫ T

0
[1− R̂−A(t)R̂]q(t)v(t)dt− w

∫ T

0
q(t)[u(t) + e(t)]dt− wπu(T )

The CDS spread, s, is the value of w that makes this expression zero:

s =

∫ T
0 [1− R̂−A(t)R̂]q(t)v(t)dt∫ T
0 q(t)[u(t) + e(t)]dt + πu(T )

(3.10)

The variable s is referred to as the credit default swap spread or CDS spread.
It is the total of the payments per year, as a percent of the notional principal, for a
newly issued credit default swap. Consider the data in Table 5.1 and suppose that the
reference obligation is a �ve-year bond paying a semiannual coupon of 10% per annum
with R̂ = 0.3. Equation (3.10) gives the value of s for a �ve-year credit default swap with
semiannual payments to be 1.944%. This is an annualized spread because of the way w is
de�ned. Payments equal to 0.972% of the CDS notional principal would be required every
six months.

3.2.1 Approximate No-Arbitrage Arguments

There is an approximate no-arbitrage argument that can be used to understand the
determinants of s. If an investor forms a portfolio of a T -year par yield bond issued by
the reference entity and the credit default swap, the investor has eliminated most of the
risks associated with default on the bond. If y is the yield to maturity on the bond, the
investor's net annual return is (at least, approximately) y − s. In the absence of arbitrage
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opportunities this should be (again, approximately) the T -year Treasury par yield, which
we will denote by x. If y − s is signi�cantly higher than x, an arbitrageur will �nd it prof-
itable to buy a T -year par yield bond issued by the reference entity, buy the credit default
swap, and short a T -year par yield Treasury bond. If y − s is signi�cantly less than x, an
arbitrageur will �nd it pro�table to short a T -year par yield bond issued by the reference
entity, sell the credit default swap, and buy a T -year Treasury par yield bond.

The argument just given suggests that s should equal y−x. However, a close analysis
of it shows that the arbitrage is less than perfect. De�ne:

s?: y − x

L: CDS notional principal.
A?(t): The accrued interest as a percent of the face value at time t on a T -year par yield

bond that is issued at time zero by the reference entity with the same payment
dates as the swap. We will refer to this bond as the underlying par yield
corporate bond.

R: Realized recovery rate when a default happens.
We �rst consider the situation where the Treasury curve is �at and interest rates

are constant. In this case the CDS spread is exactly s? for a credit default swap where the
payo� in the event of a credit event at time t is L[1 + A?(t)](1−R). To see this, consider
the position of an investor who buys both the credit default swap and an amount of the
underlying corporate par yield bond with a face value of L when the spread is s?. Using the
notation above, s? is the corporate par yield, y, minus the Treasury rate, x. The investor
receives exactly the same cash �ows as those from a Treasury par yield bond until either
time T or a credit event, whichever is earlier. If a credit event occurs at time t (0 < t < T ),
the investor has to make an accrual payment at time t so that the net payo� from the CDS
is

L[1 + A?(t)](1−R)− L(y − x)(t− t?)

where as before t? is the payment date immediately prior to time t. Because A?(t) =

y(t− t?), this reduces to

L[1 + x(t− t?)]− LR[1 + A?(t)]

The corporate bond holding is worth LR[1 + A?(t)] so that the net value of the holding is

L[1 + x(t− t?)].

This is exactly what is required to buy a par yield Treasury bond with a face value of L

at time t. It follows that in all circumstances, the investor's portfolio exactly replicates
the cash �ows from the par yield Treasury bond showing that s? must be the correct CDS
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spread. A spread greater than or less than s? would give rise to an arbitrage opportunity.
We will refer to a CDS that provides a payo� of [1 + A?(t)](1−R) as an idealized

credit default swap. Our analysis shows that the spread on such a CDS is exactly s?.
In practice [5], the payo� from a credit default swap is usually 1−R−A(t)R rather than
[1 + A?(t)](1−R). This leads to s? overestimating the true spread, s.

Continuing for a moment with the assumption that the Treasury curve is �at and
interest rates are constant, we can correct for the di�erence between the payo� on the
idealized CDS and the actual CDS. An analysis similar to that leading up to equation
(3.10) shows that the spread for an idealized credit default swap is given by

s? =
(1− R̂)

∫ T
0 [1 + A?(t)]q(t)v(t)dt∫ T

0 q(t)[u(t) + e(t)]dt + πu(T )

An approximation to this is

s? =
(1− R̂)(1 + a?)

∫ T
0 q(t)v(t)dt∫ T

0 q(t)[u(t) + e(t)]dt + πu(T )
(3.11)

where a? is the average value of A?(t) for 0 ≤ t ≤ T . Similarly, from equation (3.10), an
approximation to the actual CDS spread is

s =
(1− R̂− aR̂)

∫ T
0 q(t)v(t)dt∫ T

0 q(t)[u(t) + e(t)]dt + πu(T )
(3.12)

where a is the average value of A(t) for 0 ≤ t ≤ T .
From equations (3.10) and (3.11)

s =
s?(1− R̂− aR̂)
(1− R̂)(1 + a?)

(3.13)

As an illustration of equation (3.13), consider the data in Table 5.1 and assume, as
before, that the coupon on the reference obligation is 10%. (We will refer to this as Case
A; see Table 5.3.) Suppose coupons are paid semiannually and all rates and yields are
expressed with semiannual compounding in the whole Table 5.3. The �ve-year par yield
for bonds issued by the reference entity is 7%. The �ve-year Treasury par yield is 5%. It
follows that, for a �ve-year credit default swap with semiannual payments, s? is 2.00%.
The coupon paid every six months on a par yield bond issued by the reference entity is
3.5 per 100 of principal so that a? = 0.0175. Also a = 0.025 and R̂ = 0.3 so that equation
(3.13) gives s = 1.945%. This is very close to the 1.944% estimate reported earlier from
using equation (3.10).

Equation (3.13) assumes a �at Treasury yield curve and constant interest rates.
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Stochastic interest rates [6] make the no-arbitrage argument for the idealized CDS less
than perfect, but do not a�ect valuations given our assumption that interest rates, default
probabilities, and recovery rates are independent. However, the no-arbitrage argument for
the idealized CDS swap requires a �at yield curve so that a par yield Treasury bond is
always worth its face value plus accrued interest at the time of a default. An upward sloping
yield curve will lead to the par yield Treasury bond being worth less than the face value
plus accrued interest on average. As a result s? underestimates the spread for the idealized
CDS. Similarly a downward sloping yield curve leads to s? overestimating the spread on
the idealized CDS.

As pointed out by Du�e [7], we can deal with non-�at Treasury curves by considering
par yield �oating-rate bonds rather than par yield �xed-rate bonds. De�ne a Treasury par
�oater as a �oating-rate bond where the interest rate is reset on each payment date of the
credit default swap, and a par �oater issued by the reference entity as a similar �oating-rate
bond that promises a prespeci�ed spread above the Treasury par �oater for the life of the
credit default swap. If the payo� from the credit default swap is [1 + A?(t)](1−R) where
A?(t) is here de�ned as the accrual on the par �oater issued by the reference entity, the
arbitrage arguments are watertight and the CDS spread should exactly equal the spread
of the reference entity �oater over the Treasury �oater.

In practice we rarely get the opportunity to observe the spreads on corporate par
yield �oaters. Credit default swaps must be evaluated from the yields on �xed rate bonds
issued by the reference entity. The di�erence between the spread on par yield �oaters and
par yield �xed rate instruments is very small for �at term structures, but noticeable for
non-�at term structures. As an extreme test of the e�ect of a non-�at term structure we
changed the �at Treasury curve in Case A to a Treasury curve where the 1-, 2-, 3-, 4-,
and 5-year par yields were 1%, 2%, 3%, 4%, and 5%, respectively. (We will refer to this
as Case B; see Table 5.3.) Everything else, including the spreads between par yields on
Treasuries and yields on bonds issued by the reference entity was maintained as in Case
A. As a result, the �ve-year par yield for bonds issued by the reference was still 7% and
s? was still 2.00%. However, the value of s given by equation (3.10) increased from 1.944%
to 2.071%.

We also rarely get the chance to observe corporate bonds that are selling for exactly
their par value. Assuming that the yield on a non-par-yield bond is the same as the yield
on a par yield bond introduces some error. We tested this by changing the coupons on
all bonds used to calculate default probabilities in Case A from 7% to 4% while keeping
everything else (including the yield on the bonds) the same as in Case A. (We will refer to
this as Case C; see Table 5.3.) The value of s increased from 1.944 to 1.990. This change
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results entirely from the correct �ve year par yield being 7.048% rather than 7%. 1 For less
creditworthy reference entities, the error from basing calculations on non-par-yield bonds
can be much greater. Suppose Case A is changed so that the recovery rate is zero and the
1-, 2-, 3-, 4-, and 5-year yields on bonds issued by the reference entity are 10%, 20% 30%,
40% and 50%, respectively. (We will refer to this as Case D; see Table 5.3.) Assuming that
the par yield is 50% and using equation (3.13) leads to an estimate of 40% for the value
of s (s? = 45, a? = 0.125, a = 0.025 and R̂ = 0). The correct value of s given by equation
(3.10) is 29.98%. This di�erence largely results from the correct par yield being about 38%
rather than 50%.

3.2.2 Binary Credit Default Swaps

A binary credit default swap is structured similarly to a regular credit default swap
except that the payo� is a �xed dollar amount. A similar analysis to that given earlier
shows that the value a binary CDS spread that provides a payo� of $1 in the event of a
default is ∫ T

0 q(t)v(t)dt∫ T
0 q(t)[u(t) + e(t)]dt + πu(T )

3.2.3 The Independence Assumptions

The valuation approaches we have presented are based on the assumption that inter-
est rates, default probabilities, and recovery rates are independent. These assumptions are
unlikely to be perfectly true in practice. For example, it can be argued that high interest
rates cause companies to experience �nancial di�culties and, as a result, default proba-
bilities increase. Such a positive relation between interest rates and default probabilities
has two e�ects. First, high default probabilities tend to be associated with high discount
rates for the payo�s. This reduces the CDS spread. Second high default probabilities tend
to be associated with relatively low market values for bonds issued by the reference entity.
This increases the CDS spread (because it increases the value of the buyer's right to sell
the reference bond for its face value). It is reassuring that these e�ects act in opposite
directions so there is a partial o�set. Note that the relevant correlation for the �rst e�ect
is between default rates at time t and the average short term interest rates between time
zero and time t; the relevant correlation for the second e�ect is between interest rates at
time t and medium to long rates at time t. As far as the second e�ect is concerned, the

1Equation (3.13) provides an accurate estimate of s when the correct par yield is used so that s? = 2.048,

a? = 0.01762, a = 0.025 and R̂ = 0.3.
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correlation is less than might be supposed because there are often signi�cant time lags
between the occurrence of high interest rates and the resultant defaults.

Moody's Investor's Service provides some statistics (see in [5]) which suggest that the
correlations are small and provides a reasonable comfort level for the independence assump-
tions. These studies show that default rates are only weakly correlated with macroeconomic
variables so we can reasonably hypothesize that the e�ect is small.
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Chapter 4

Modelling Default Correlations

Now we will extend the model that was built up and explained in the previous
chapter. The equation (3.10) is ofter used in reverse. Instead of CDS spreads being es-
timated from risk-neutral default probabilities and expected recovery rates, risk-neutral
default probabilities are estimated from CDS spreads and expected recovery rates. These
risk neutral probabilities are then used to value non-standard instruments.

In this chapter we will show the approach of Hull and White [8] for modelling default
correlations. This allows us to re�ect counterparty default risk in credit default swap val-
uations. It also allows us to handle instruments where the payo� is dependent on defaults
by multiple reference entities.

There are two types of models of default risk in the literature: structural models and
reduced form models.

The inspiration for structural models is provided by Merton [9]. He shows that the
company's equity can be regarded as a European call option on its assets with a strike price
of D and maturity T . A default occurs at time T if the option is not exercised. Merton's
model has been extended later. The main drawback of traditional structural models is
that they are not consistent with the risk-neutral probabilities of default backed out from
corporate bond prices or CDS spreads.

Reduced form models focus on the risk-neutral hazard rate, h(t), de�ned in the
previous chapter. These models can incorporate correlations between defaults by allowing
hazard rates to be stochastic and correlated with macroeconomic variables (see Du�e and
Singleton [10]). Reduced form models are mathematically attractive. They can be made
consistent with the risk-neutral probabilities of default backed out from corporate bond
prices or CDS spreads. Their main disadvantage is that the range of default correlations
that can be achieved is limited. Even when there is a perfect correlation between two haz-
ard rates, the corresponding correlation between defaults in any chosen period of time is
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usually very low. This is liable to be a problem in some circumstances. For example, when
two companies operate in the same industry and the same country or when the �nancial
health of one company is for some reason heavily dependent on the �nancial health of
another company, a relatively high default correlation may be warranted.

Hull and White's alternative approach is a natural development of the structural
models of Merton. The model is exactly consistent with the risk-neutral default probabili-
ties backed out from bond prices or CDS spreads. The default experience of large numbers
of companies can be jointly simulated by sampling from multivariate normal distributions.

We �rst describe the model and then provide two applications. The �rst application
is to vanilla swaps when there is counterparty default risk. The second is to basket credit
default swaps.

4.1 The Model

We use the de�nitions of the default probability density, q(t), and the hazard
default intensity rate, h(t) from the previous chapter. The two measures related by
equation (3.5). They provide the same information about the default probability environ-
ment.

We assume that the risk-neutral default probability densities for N companies have
been estimated either from bond prices or CDS spreads. The key feature of this model
is that there is a variable Xj(t) describing the creditworthiness of company j at time t

(1 ≤ j ≤ N). We will refer to this variable as the credit index for company j. We can
think of Xj(t) in a number of ways. In the context of structural models, it can be regarded
as some function of the value of the assets of the company j. Alternatively, we can imagine
that the usual discrete credit ratings, produced by rating agencies, are replaced by contin-
uous measures and that Xj is some function of the measure for bonds issued by company
j.

The objective is to select correlated di�usion processes for the credit indices of the
N companies and to determine a default barrier for each company such that the company
defaults at time t if its credit index �rst hits the default barrier at this time. We assume
that Xj(0) = 0 and that the risk-neutral process for Xj(t) is a Wiener process with zero
drift and a variance rate of 1.0 per year. The usual measures of a �rm's �credit quality� are
of course conditionally non-normal. However, there is always some function of these mea-
sures that follows a Wiener process. The assumption that the credit indices follow Wiener
processes can therefore be made without loss of generality.

The barrier must be chosen so that the �rst passage time probability distribution
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is the same as the default probability density, q(t). As a �rst step, we discretise the de-
fault probability density so that defaults can happen only at times ti (1 ≤ i ≤ n). We de�ne

t0 = 0

δi = ti − ti−1 (1 ≤ i ≤ n)
qij : The risk-neutral probability of default by company j at time ti (1 ≤ i ≤ n;

1 ≤ j ≤ N).
Kij : The value of the default barrier for company j at time ti (1 ≤ i ≤ n;

1 ≤ j ≤ N).
fij(x)4x: The probability that Xj(ti) lies between x and x+4x and there has been

no default prior to time ti (1 ≤ i ≤ n; 1 ≤ j ≤ N).
These de�nitions imply that the cumulative probability of company j defaulting by time
ti is

1−
∫ ∞

Kij

fij(x)dx

Both Kij and fij(x) can be determined inductively from the risk-neutral default
probabilities, qij . Based on the process for Xj , Xj(t1) is normally distributed with a mean
of zero and a variance of δ1. As a result

f1j(x) =
1√
2πδ1

exp
[
− x2

2δ1

]
(4.1)

and
qij = N

(K1j√
δ1

)
(4.2)

where N is the cumulative standard normal distribution function. This implies

K1j =
√

δ1N
−1(q1j)

For 2 ≤ i ≤ n, we �rst calculate Kij . The relationship between qij and Kij is

qij =
∫ ∞

Ki−1,j

fi−1,j(u)N
(Kij − u√

δi

)
du (4.3)

Standard numerical methods can be used to set up a procedure for evaluating this equation
for a given value of Kij . An iterative procedure can then be used to �nd the value of Kij

that solves the equation.
The value of fij(x) for x > Kij is

fij(x) =
∫ ∞

Ki−1,j

fi−1,j(u)
1√
2πδi

exp
[
− (x− u2)

2δi

]
du (4.4)

We solve equations (4.3) and (4.4) numerically. For each i we consider M values of
Xj(ti) between Kij and 5

√
ti (where M is several hundred). We de�ne xijm as the mth
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value of Xj(ti) (1 ≤ m ≤ M) and πijm as the probability that Xj(ti) = xijm with no
earlier default. The discrete versions of equations (4.3) and (4.4) are

qij =
M∑

m=1

(πi−1,j,mN
(Kij − xi−1,j,m√

δi

)
and

πi,j,n =
M∑

m=1

πi−1,j,mpijmn

where pijmn is the probability that Xj moves from xi−1,j,m at time ti−1 to xijn at time ti.
We set

pijmn = N

[
0.5(xi,j,n + xi,j,n+1)− xi−1,j,m√

δi

]
−N

[
0.5(xi,j,n + xi,j,n−1)− xi−1,j,m√

δi

]
when 1 < n < M . When n = M we use the same equation with the �rst term on the right
hand side equal to 1. When n = 1 we use the same equation with 0.5(xijn + xi,j,n−1) set
equal to Kij .

By increasing the number of default times, this model can be made arbitrarily close
to a model where defaults can happen at any time. The default barrier is in general nonhori-
zontal; that is, in general, Kij is not the same for all i. This introduces some nonstationarity
into the default process and is a price that must be paid to make the model consistent
with the risk-neutral default probabilities backed out from bond prices or CDS spreads.

4.1.1 Data

The results in the rest of this chapter are based on the data in Table 5.4. This data
shows credit spreads for AAA-, AA-, A-, and BBB-rated bonds. We assume that the re-
covery rates on all bonds is 30%, the risk-free zero curve is �at at 5% (with semiannual
compounding), and that all the bonds pay a 7% coupon semiannually. Although credit
ratings are attributes of bonds rather than companies, it will be convenient to refer to the
companies issuing the bonds as AAA-, AA-, A-, and BBB-rated companies, respectively.
Credit spreads vary through time. The spreads in Table 5.4 are designed to be represen-
tative of those encountered in practice. A few studies (e.g. [8]) in the literature are based
on the same data.

The BBB data is the same as that we used in the previous chapter and leads to the
default probability density in Table 5.5.

4.1.2 Default Correlations

De�ne ρjk as the instantaneous correlation between the credit indices for companies
j and k. When j and k are public companies, we can assume that ρjk is the correlation
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between their equity returns. When this is not the case, we can use other proxies. For
example, when j is a private company we can replace it by a public company that is in
the same industry and geographical region for the purposes of calculating ρjk. When j is
a sovereign entity, we can use the exchange rate for the currency issued by the sovereign
entity as a substitute for equity price when the ρjk's are calculated. These proxies are less
than ideal, but are used in practice. If reliable empirical estimates of default correlations
were available the model could be calibrated to them with the correlation being perhaps
a function of time. Alternatively, when the market for credit default swaps becomes su�-
ciently liquid, the correlations could be implied from the prices of the credit default swaps.

The default correlation between company j and k for the period between times T1

and T2 is usually de�ned as the correlation between the following two variables:

� A variable that equals 1 if company j defaults between times T1 and T2 and zero
otherwise;

� A variable that equals 1 if company k defaults between times T1 and T2 and zero
otherwise.

De�ne
Qj(T ): The cumulative probability of a default by company j between times 0 and T .
Pjk(T ): The probability that both company j and k will default between times 0 and

T .
βjk(T ): The default correlation between company j and company k for the period

between times 0 and T .
It follows that

βjk(T ) =
Pjk(T )−Qj(T )Qk(T )√

[Qj(T )−Q2
j (T )][Qk(T )−Q2

k(T )]
(4.5)

To calculate the default correlation, βjk(T ), from the credit index correlation, ρjk,
we can simulate the credit indices for companies j and k to calculate Pjk(T ) and equation
(4.5) can then be used to obtain βjk(T ). Table 5.6 shows the results of doing this for AAA,
AA, A, and BBB companies. It illustrates that βjk(T ) depends on T and is less than ρjk.
For a given value of ρjk, βjk increases as the credit quality of j and k decrease.

4.2 Calculation of CDS Spreads with Counterparty Credit
Risk

In Chapter 3 we explained a method of Hull and White [5] how to value a CDS with
a notional principal of $1 when there is no counterparty default risk. Now we will show
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the method of [8] and we will explain the analysis that takes the possibility of a counter-
party default into consideration. As before, we assume that default events, risk-free interest
rates, and recovery rates are mutually independent. We also assume that a bondholder's
claim in the event of a default equals the face value of the bond plus accrued interest. De�ne

T : Life of credit default swap.
R̂: Expected recovery rate on reference obligation in the event of a default.

θ(t)4t: Risk-neutral probability of default by reference entity between times t and
t +4t and no earlier default by counterparty.

φ(t)4t: Risk-neutral probability of default by counterparty between times t and t+4t

and no earlier default by reference entity.
u(t): Present value of payments at the rate of $1 per year on the CDS payment dates

between time zero and time t.
e(t): Present value of an accrual payment on the CDS at time t equal to t−t? dollars

where t? is the CDS payment date immediately preceding time t.
v(t): Present value of $1 received at time t.

w: Total payments per year made by CDS buyer per $1 of notional principal.
s: Value of w that causes the credit default swap to have a value of zero. This is

referred to as the CDS spread.
π: The risk-neutral probability of no default by either counterparty or reference

entity during the life of the credit default swap.
A(t): Accrued interest on the reference obligation at time t as a percent of face value.

The CDS payments cease if there is a default by the reference entity or a default
by the counterparty. If the reference entity defaults at time t with no earlier default by
the counterparty, there is a �nal accrual payment on the CDS so that the present value of
all payments made is w[u(t) + e(t)]. If the counterparty defaults at time t with no earlier
default by the reference entity, we assume there is no �nal accrual payment so that the
present value of all the payments made is wu(t). If there is no default prior to time T by
either the counterparty or the reference entity, the present value of the payments is wu(T ).
The expected present value of the payments is therefore

w

∫ T

0
[θ(t)u(t) + θ(t)e(t) + φ(t)u(t)]dt + wπu(T )

If a credit event occurs at time t, the expected value of the reference obligation as a percent
of its face value is [1 + A(t)]R̂. The expected payo� from the CDS is therefore

1− [1 + A(t)]R̂ = 1− R̂−A(t)R̂
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The present value of the expected payo� is∫ T

0
[1− R̂−A(t)R̂]θ(t)v(t)dt

and the value of the credit default swap to the buyer is the present value of the expected
payo�s minus the present value of the payments the buyer will make, or∫ T

0
[1− R̂−A(t)R̂]θ(t)v(t)dt− w

∫ T

0

[
θ(t)u(t) + θ(t)e(t) + φ(t)u(t)

]
dt + wπu(T ) (4.6)

The CDS spread, s, is the value of w that makes the expression (4.6) zero:

s =

∫ T
0 [1− R̂−A(t)R̂]θ(t)v(t)dt∫ T

0 [θ(t)u(t) + θ(t)e(t) + φ(t)u(t)]dt + wπu(T )
(4.7)

The CDS spread can be calculated by evaluating both the numerator and denomi-
nator in equation (4.7) using simulation.

The credit index for both the reference entity and the counterparty must be simu-
lated. If the reference entity defaults �rst (that is, the credit index for the reference entity
falls below its default barrier before the credit index for the counterparty does so), pay-
ments continue up to the time of default with a �nal accrual payment and there is a payo�.
If the counterparty defaults �rst (that is, the credit index for the counterparty falls below
its default barrier before the credit index for the reference entity does so), payments con-
tinue up to the time of the default with no �nal accrual payment and no payo�. If neither
the counterparty nor the reference entity default (that is, neither credit index reaches its
barrier), payments continue for the life of the credit default swap and there is no payo�.
If both sides default during the ith time period, we assume a 50% probability that the
counterparty defaults �rst and a 50% probability that the reference entity defaults �rst.

In Chapter 3 we considered a CDS swap where
a) The life of the contract is �ve years
b) The buyer makers semiannual payments
c) The reference entity is rated BBB, as de�ned by Tables 5.4 and 5.5
d) The reference obligation lasts �ve years, pays a 10% coupon, and has a 30% recovery
rate.

We showed that in the absence of counterparty default risk the CDS spread is 1.944%.
Table 5.7 shows the spread for the same CDS when entered into with AAA, AA, A, and
BBB counterparties. When the credit index correlation between the counterparty and the
reference entity is zero, the impact of counterparty default risk is very small. But as the
correlation increases and the credit quality of the counterparty declines, counterparty de-
fault risk has a bigger e�ect.
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When the counterparty defaults, one option open to the purchaser of the CDS is
to enter into new contract with a new counterparty to reinstate the default protection for
the rest of the life of the original contract. If there is no correlation between the reference
entity and the counterparty, the expected value of the reference entity credit index at the
time of the counterparty default is its current value. If forward credit spreads are similar
to spot credit spreads, the previous analysis shows that the CDS spread for the new con-
tract should be similar to that for the original contract. This explains why the impact of
counterparty default is small in the zero correlation case in Table 5.7.

4.2.1 Analytic Approximation When Default Correlations Are Known

Counterparty default risk reduces both the present value of the expected payo�s
from a CDS and the present value of the purchaser's expected payments. To provide some
insights into this, we now present a very simple analytic approximation for the change in
the CDS spread when there is counterparty default risk. The approximation can be used
when the default correlation between the reference entity and the counterparty has already
been estimated � either directly from default data or in some other way. De�ne:

Qr: The probability of default by the reference entity between time 0 and T .
Qc: The probability of default by the counterparty between time 0 and T .
Prc: The joint probability of default by the counterparty and the reference entity be-

tween time 0 and T . (This can be calculated from Qr, Qc, and the default correla-
tion using equation (4.5).)

g: The proportional reduction in the present value of the expected payo� on the CDS
arising from counterparty defaults.

h: The proportional reduction in the present value of expected payments on the CDS
arising from counterparty defaults.

ŝ: The CDS spread assuming no counterparty default risk.
Counterparty default risk changes the CDS spread from ŝ to s where

s = ŝ
1− g

1− h
(4.8)

The probability of a counterparty default during the life of the CDS conditional on
the reference entity defaulting during the life of the CDS is Prc/Qr. We assume that there
is a 0.5 chance that the counterparty default occurs before the reference entity defaults and
a 0.5 chance that it occurs after the reference entity defaults. Ignoring discounting e�ects
this implies

g = 0.5
Prc

Qr
(4.9)
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When the counterparty defaults, the payments made by the purchaser of the CDS
may be less than they would be in the no-counterparty-default case. There is a probability
of Qc−Prc that the counterparty defaults and the reference entity does not default. Assume
that, when this happens, the payments made by the CDS purchaser are half the average
payments in the no-counterparty-default case. There is a probability of Prc that both the
counterparty and the reference entity will default. As before we assume that there is a 50%
chance that the counterparty default occurs �rst. We also assume that, when both default
with the counterparty defaulting �rst, the payments made by the purchaser are one third
less than in the no-counterparty-default case.1 This leads to

h =
Qc − Prc

2
− Prc

6
=

Qc

2
− Prc

3
(4.10)

Equations (4.8), (4.9), and (4.10) suggest the following analytic approximation for
the CDS spread is

s = ŝ
1− 0.5Prc/Qr

1−Qc/2 + Prc/3
(4.11)

This result incorporates many courageous assumptions and approximations. It as-
sumes that the probability of default by the reference entity is constant through the life
of the CDS; it assumes that the probability of default by the counterparty is constant
throughout the life of the CDS; it does not consider the impact of discounting e�ects on g

and h; it does not consider the impact of correlation on the relative timing of defaults by
the reference entity and the counterparty; it ignores payment accrual issues; and so on. A
much more complex analytic approximation would be required to deal with some of these
points.

As a test of equation (4.11) we used the default correlations in Table 5.6 to estimate
the numbers in Table 5.7. We considered situations where the company is BBB-rated. We
tested the e�ect of the credit index correlation, the second company's credit rating and the
length of the time period on the default correlation between the companies. The results are
shown in Table 5.8. For the range of situations considered, the approximation appears to
work reasonably well when the correlation is not too large. For example, when the credit
index correlation is 0.4 or less, the analytic approximation is accurate to within 1.5 basis
points. However, we stress that equation (4.11), and similar more complicated analytic
approximations, can be used only when default correlations have already been estimated
in some way.

1This assumption comes from the observation that, when defaults are equally likely at all times for both

the counterparty and the reference entity and there is no default correlation, the average time between the

two defaults is one third of the life of the CDS.
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4.3 Basket Credit Default Swaps

In a basket credit default swap (sometimes called a �rst to default swap) a number
of di�erent reference entities and reference obligations are speci�ed. The buyer makes
payments in the usual way. The �rst reference entity to default triggers a payo�, either in
cash or by physical delivery. As in the case of a regular CDS, the payo� typically equals
1 − R − A(t)R per dollar of principal where R and A(t) are the recovery rate and the
accrued interest on the reference obligation for the defaulting reference entity. There are
then no further payments or payo�s. As in the case of a vanilla credit default swap, a �nal
accrual payment is usually required when there is a default.

When there is zero correlation between the reference entities and no counterparty
default risk, a similar approach to [5] can be used to value a CDS or calculate the CDS
spread. If Qr,j(t) (1 ≤ j ≤ N) is the cumulative probability of the jth reference entity
defaulting by time t, the probability of the �rst default happening between times t1 and
t2 is

N∏
j=1

[1−Qr,j(t1)]−
N∏

j=1

[1−Qr,j(t2)]

When the correlation between reference entities is non-zero, it is necessary to use a
model such as the one we have explained in this chapter to value a basket credit default
swap. Let us rede�ne variables as follows:
θ(t)4t: Risk-neutral probability of the �rst default by a reference entity happening

between t and t +4t and no earlier default by the counterparty.
φ(t)4t: Risk-neutral probability of the counterparty defaulting between times t and

t +4t and no earlier default by any of the reference entities.
π: The risk-neutral probability of no default by the counterparty or any of the

reference entities during the life of the CDS swap.
R̂: The expected recovery rate on the relevant reference obligation after �rst de-

fault.
A(t): Expected accrued interest as a percent of notional principal on the relevant

reference obligation, conditional on the �rst default happening at time t.
Equations (4.6) and (4.7) then apply.

A basket CDS spread is calculated by evaluating both the numerator and denomi-
nator in equation (4.7) using simulation. The credit index for all reference entities and the
counterparty must be simulated. If a reference entity defaults �rst (that is, the credit index
for a reference entity reaches its default barrier before the credit index for the counterparty
does), CDS payments continue up to the time of default with a �nal accrual payment and
there is a payo�. If the counterparty defaults �rst (that is, the credit index for the counter-
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party falls below its default barrier before the credit index of any of the reference entities
does), payments continue up to the time of the default with no �nal accrual payment and
no payo�. If the credit indices for the counterparty and all reference entities stay above
their respective default boundaries, payments continue for the life of the basket credit de-
fault swap and there is no payo�.

Table 5.9 shows results for a �ve-year basket credit default swap with semiannual
payments where the counterparty is default-free. All reference entities are BBB-rated com-
panies and the correlations between all pairs of reference entities are assumed to be the
same. All reference obligations are assumed to be �ve-year bonds with 10% coupons and
a 30% expected recovery rate. The table shows that the basket CDS spread increases as
the number of reference entities increases and decreases as the correlation increases. The
spread also decreases slightly as the expected recovery rate decreases.
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Chapter 5

Tables, Figures

Table 5.1: Hypothetical Example of Bonds Issued by Reference Entity
Bond Life Coupon Bond Yield
(years) (%) (Spread Over Treasury Par Yield in bps)

1 7.0 160
2 7.0 170
3 7.0 180
4 7.0 190
5 7.0 200
10 7.0 220

Table 5.2: Implied Probabilities of Default for Data in Table 5.1
Time Default Probability Density Default Probability Density
(years) (Claim = No-default Value) (Claim = Face Value + Accured Interest)
0-1 0.0220 0.0219
1-2 0.0245 0.0242
2-3 0.0269 0.0264
3-4 0.0292 0.0285
4-5 0.0315 0.0305
5-10 0.0295 0.0279
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Table 5.3: Cases Considered
Data Used CDS Spread CDS Spread

equation (3.10) equation (3.13)
Case A All Treasury rates are 5%; spreads 1.944 1.945

and coupons on corporate bonds are
as in Table 2; recovery rate is 30%

Case B 1-, 2-, 3-, 4-, and 5-year Treasury 2.071 1.945
par yields are 1%, 2%, 3%, 4%, and 5%
respectively; spreads on corporate bonds
are as in Table 5.1; recovery rate is 30%

Case C All Treasury rates are 5%; spreads 1.990 1.945
on corporate bonds are as in Table 5.1;
coupons on corporate bonds are 4%;
recovery rate is 30%

Case D All Treasury rates are 5%; coupons 29.98 40.00
on corporate bonds are as in Table 5.1;
yields on 1-, 2-, 3-, 4-, and 5-year
corporate bonds are 10%, 20%, 30%, 40%,
and 50%; recovery rate is 0%

Table 5.4: Spreads in Basis Points Between
Corporate Bond Yields and Risk-free Bond Yields

Credit Rating
Maturity AAA AA A BBB

1 50 70 100 160
2 52 72 105 170
3 54 74 110 180
4 56 76 115 190
5 58 78 120 200
10 62 82 130 220
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Table 5.5: Default Probability Density for a BBB-rated Company
Time of Defalut (yrs) Default Probability Density

0-1 0.0219
1-2 0.0242
2-3 0.0264
3-4 0.0285
4-5 0.0305
5-10 0.0279

Table 5.6: Default Correlation of a BBB-Rated Company with a Second Company
Time Credit Index Second Company's Credit Rating

Period (yrs) Correlation AAA AA A BBB
2 0.0 0.00 0.00 0.00 0.00

0.2 0.03 0.04 0.04 0.05
0.4 0.09 0.10 0.11 0.12
0.6 0.19 0.21 0.22 0.24
0.8 0.35 0.37 0.40 0.43

5 0.0 0.00 0.00 0.00 0.00
0.2 0.06 0.06 0.07 0.08
0.4 0.14 0.15 0.16 0.18
0.6 0.24 0.26 0.29 0.31
0.8 0.39 0.42 0.47 0.50

10 0.0 0.00 0.00 0.00 0.00
0.2 0.08 0.08 0.10 0.10
0.4 0.17 0.18 0.21 0.22
0.6 0.28 0.30 0.34 0.36
0.8 0.41 0.45 0.51 0.55
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Table 5.7: CDS Spreads in Basis Points for Di�erent Counterparties
and Di�erent Correlations Between the Credit Indexes
Credit Index Counterparty Credit Rating
Correlation AAA AA A BBB

0.0 194.4 194.4 194.4 194.4
0.2 191.6 190.7 189.3 186.6
0.4 188.1 186.2 182.7 176.7
0.6 184.2 180.8 174.5 163.5
0.8 181.3 176.0 164.7 145.2

Table 5.8: Estimates of the CDS Spreads Using Equation 4.11
Credit Index Counterparty Credit Rating
Correlation AAA AA A BBB

0.0 194.0 193.9 193.7 193.2
0.2 191.0 190.2 190.2 185.6
0.4 186.7 184.8 184.8 175.8
0.6 181.0 177.7 171.7 163.2
0.8 173.5 168.1 158.5 145.3
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Table 5.9: Basket CDS Spreads When Reference Entities ar all BBBs
Expected Credit Index Number of Reference Entities
Rec.Rate Correlation 1 2 5 10

0.1 0.0 196 390 959 1877
0.2 196 376 848 1492
0.4 196 357 730 1174
0.6 196 332 604 888
0.8 196 296 460 608

0.3 0.0 194 386 946 1842
0.2 194 371 826 1441
0.4 194 351 707 1122
0.6 194 325 582 844
0.8 194 289 444 580

0.5 0.0 192 380 925 1779
0.2 192 363 794 1366
0.4 192 342 672 1050
0.6 192 315 551 786
0.8 192 280 420 542
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Chapter 6

Summary

Our aim was to give methodology for valuing credit default swaps and test the re-
sults on data. First we tried to show swaps. We wrote on the general properties of them
and the most common risks connected to these contracts.

We explained the the function of credit default swap, introduce the basic concepts
and build up a methodology for valuing credit default swaps when the payo� is contingent
on default by a single reference entity and there is no counterparty default risk.

Then we extend the analysis. We focused on the CDS that takes account of counter-
party default risk and allows the payo� to be contingent on default by multiple reference
entities. A model of default correlations between di�erent entities was presented.

We applied the mathematical formulas for valuing to hypothetical data and com-
pared the results. Since it is hard to get real world data from the market directly we tried
to use hypothetical data typical for data of real companies.

In our work we present di�erent sources of literature. Since the CDS market is in
dynamic growth the literature is growing as well. Later the analysis can be extended con-
sidering newly issued articles.

37



Bibliography

[1] Robert Fullér, �An introduction to Financial Management�, Eötvös Loránd University,
Budapest, 1997.

[2] Jarrow, R. A. and S. Turnbull, �Pricing Options on Derivative Securities Subject to
Credit Risk�, Journal of Finance, 50, 1, (1995), 53-85.

[3] Hull, J. C. and A. White, �The Impact of Default Risk on Options and Other Derivative
Securities�, Journal of Banking and Finance, 19,2 (1995), 299-322.

[4] Jarrow, R. A. and S. Turnbull, �The Intersection of Market and Credit Risk�, Journal
of Banking and Finance, 24 (2000), 271-299.

[5] Hull, J. and A. White, �Valuing Credit Default Swaps I: No Counterparty Default Risk�,
Journal of Derivatives, 8, No.1 (2000) 29-40.

[6] Brigo, D. and Alfonsi, A. �Credit Default Swaps Calibration and Option Pric-
ing with the SSRD Stochastic Intensity and Interest-Rate Model�, (2004).
http://www.damianobrigo.it

Reduced version in Proceedings of the 6-th Columbia=JAFEE Conference Tokyo, March
15-16, 2003, pp563-585.

[7] Du�e, D., �Credit Swap Valuation�, Financial Analysts Journal, (January/February
1999), 73-87.

[8] Hull, J. and A. White, �Valuing Credit Default Swaps II: Modeling Default Correla-
tions�, Journal of Derivatives, 8, No.3 (2001) 12-22.

[9] Merton, R. C., �On the Pricing of Corporate Debt: The Risk Structure of Interest
Rates�, Journal of Finance, 2 (1974), 449-470.

[10] Du�e, D. and K. Singleton, �Modeling Term Structures of Defaultable Bonds�, Review
of Financial Studies, 12 (1999), 687-720.

38


