
Approximation of the minimum bisection and the
hardware�software partitioning problem

Thesis

András Orbán

Supervisor: András Benczúr Jr.

Department of Operations Research
Eötvös Loránd University

Faculty of Science

2004

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Divide�and�conquer approach . 3
1.3 Organization . 4

2 Problem de�nition 5
2.1 Minimum bisection problem . 5
2.2 Partitioning problem . 6
2.3 NP-hardness results . 6

3 Approximation of the minimum bisection 9
3.1 Simple approximation algorithm . 9
3.2 Polylogarithmic approximation . 11

3.2.1 Overview . 11
3.2.2 Decomposition stage . 12
3.2.3 Labeling stage . 16
3.2.4 Combining stage . 16
3.2.5 Generalizations . 18

3.3 Approximation scheme for dense graphs . 19
3.4 Additive approximation . 21

4 Approximation of the partitioning problem 23
4.1 Polylogarithmic approximation . 24

4.1.1 Reduction . 24
4.1.2 Modi�cation of the algorithm . 26

5 Conclusions 29

1

Chapter 1

Introduction

1.1 Motivation
Today's computer systems typically consist of both hardware and software components. For in-
stance in an embedded signal processing application it is common to use both application�speci�c
hardware accelerator circuits and general�purpose, programmable units with the appropriate soft-
ware [3].
This is bene�cial since application�speci�c hardware is usually much faster than software, and also
more power�e�cient, but it is also signi�cantly more expensive. Software on the other hand is
cheaper to create and to maintain, but slow, and general�purpose processors consume much power.
Hence, performance or power critical components of the system should be realized in hardware,
and non�critical components in software. This way, an optimal trade�o� between cost, power and
performance can be achieved.
One of the most crucial steps in the design of such systems is partitioning, i.e. deciding which
components of the system should be realized in hardware and which ones in software. Clearly,
this is the step in which the above�mentioned optimal trade�o� has to be found. Therefore,
partitioning has dramatic impact on the cost and performance of the whole system [18]. The
complexity of partitioning arises because con�icting requirements on performance, power, cost,
chip size, etc. have to be taken into account.
There are several versions of the partitioning problem, we now deal with the one de�ned in [18]. An
informal de�nition follows. (See Chapter 2 for an exact de�nition.) The system to be partitioned
is modelled by a communication graph, the nodes of which are the components of the system
that have to be mapped to either hardware or software, and the edges represent communication
between the components. Unlike in most previous models for partitioning (a good survey about
partitioning models is [17]), it is not assumed that this graph is acyclic in the directed sense.
The edges are not even directed, because they do not represent data �ow or dependency. Rather,
their role is the following: if two communicating components are mapped to di�erent contexts
(i.e. one to hardware and the other to software, or vice versa), then their communication incurs a
communication penalty, the value of which is given for each edge as an edge cost. This is assumed
to be independent of the direction of the communication (whether from hardware to software or
vice versa). If the communication does not cross the hardware/software boundary, it is neglected.
Besides the edge costs, each vertex is assigned two cost values called hardware cost and software
cost. If a given vertex is decided to be in hardware, then its hardware cost is considered, otherwise
its software cost. We do not impose any explicit restrictions on the semantics of hardware costs and
software costs; they can represent any cost metrics, like execution time, size, or power consumption.
Likewise, no explicit restriction is imposed on the semantics of communication costs. Nor do

2

we impose explicit restrictions on the granularity of partitioning (i.e. whether nodes represent
instructions, basic blocks, or procedures). However, we assume that the total hardware cost with
respect to a partition can be calculated as the sum of the hardware costs of the nodes that are
in hardware, and similarly, the software cost with respect to a partition can be calculated as the
sum of the software costs of the nodes that are in software, just as the communication cost with
respect to a partition, which is the sum of the edge costs of those edges that cross the boundary
between hardware and software.
Several optimization (and decision) problems can be de�ned on this model, most of which are
known to be NP�hard (NP�complete). See Section 2.2 for the exact de�nitions and the proofs.
However, to our best knowledge currently no approximation factor concerning these problems is
known. The aim of this thesis is to develop approximation algorithms for the hardware�software
partitioning problem.

1.2 Divide�and�conquer approach

In the design of approximation algorithms for several hard graph�theoretic optimization problems
the divide�and�conquer approach is bene�cial. Examples include the minimum feedback arc set
problem, the minimum cut linear arrangement problem, the storage�time product problem, perfect
elimination ordering etc. See [13] for a good summary. The main idea of this approach is to
partition the input graph into two ore more roughly equal parts that can be solved independently
and to assemble a solution for the original problem of the solution of the parts.
Divide�and�conquer methods motivate the search for a balanced cut (there is an upper limit on
the size of the parts) or specially an exact bisection (both parts are of equal size) in a graph. The
objective is to minimize the number (or weight) of edges cut. Another formulation of the balanced
cut problem is the so called minimum ratio cut, where there is no restriction on the size of the
parts, rather the objective is to minimize the ratio of the cut and the smaller part. Unfortunately
all of these problems are NP�hard [10].
The hardware�software partitioning problem is closely related to the minimum bisection problem
as will be shown in Chapter 4. This motivates us to examine the approximation algorithms
developed for the minimum bisection problem.
In pioneering works, Leighton and Rao [15, 16] give an O(log n)�approximation algorithm for
the minimum ratio cut, which implies a polylogarithmic approximation ratio on several related
problems. However it does not yield an approximation algorithm for the minimum balanced cut
problem, only a pseudo�approximation factor can be guaranteed. The �rst real approximation
algorithm for the minimum bisection is by Saran and Vazirani [20], who gave an n/2�approximation
algorithm based on Gomory�Hu cuts. This has been radically improved by Feige and Krauthgamer
reaching an approximation factor of O(

√
n log n) in [7]. In [6] they signi�cantly improved their

own result, presenting an O(log2 n)�approximation algorithm based on the minimum ratio cut
approximation of Leighton and Rao. Currently this is the best known approximation factor for
general graphs, although there is no hardness evidence whether a constant approximation factor
could be reached. However, Bui and Jones presented an interesting NP�hardness result. In [5]
they prove that it is NP�hard to approximate the minimum bisection within an n2−ε additive
error. For restricted classes of graphs better approximation ratios can be reached. Arora et al.
gave a polynomial time approximation scheme (PTAS) for the minimum bisection on (everywhere)
dense graphs [4]. Garg et al. on the other hand deals with sparse graphs: they show in [11] that
the 2/3�balanced cut can be approximated within twice the optimal on planar graphs. However
this approach does not extend to bisection. More generally if the graph excludes any given minor,
the minimum ratio cut can be approximated within a constant ratio [14], implying an O(log n)�
approximation on the minimum bisection due to [6].

3

1.3 Organization

This work is organized as follows. In Chapter 2 we formally de�ne the problems we are dealing
with, Chapter 3 introduces the known approximation algorithms for the minimum bisection. Here
we only outline the basic ideas and state the main results, for the proofs we generally refer to
the original article. Based on the known approximation algorithms we present a polylogarithmic
approximation algorithm for (some versions of) the hardware�software partitioning problem in
Chapter 4, while Chapter 5 concludes the thesis.

4

Chapter 2

Problem de�nition

2.1 Minimum bisection problem
Given an undirected, simple graph G(V, E), each S ⊂ V, S 6= ∅, V de�nes the cut (S, V \ S), i.e.
those edges with one endpoint in S and the other in S \ V . The number of crossing edges of this
cut is denoted by e(S, V \ S).
De�nition 2.1. Fixing a parameter 1

2 ≤ α < 1, the minimum α�balanced cut problem is to �nd
a cut (S, V \ S), so that |S| ≤ α|V | and |V \ S| ≤ α|V | and e(S, V \ S) is minimized.
De�nition 2.2. Assuming n to be even, the minimum bisection problem is to �nd a cut where
|S| = n

2 with minimum edges cut. It can be regarded as the special case of De�nition 2.1 with
α = 1

2 . We will often use the notation (W,B) to refer to a (white�black) bisection. The value of
the optimal bisection is denoted by b.

Note that in the basic version of the minimum bisection problem no edge costs or vertex costs are
de�ned. Both the edge�weighted and the vertex�weighted (or combined) problems can be de�ned.
De�nition 2.3. In the edge�weighted version of the bisection problem the edges are assigned an
arbitrary non�negative cost c : E → IR+, and the objective is to minimize the edge�weights cut
over all bisections.
De�nition 2.4. In the vertex�weighted version of the bisection problem the vertices are assigned
non�negative integer weights w : V → IN, bounded by a polynomial of n, nc for some c. S is a
bisection if w(S) =

P
V wi

2 . The objective is again to minimize the number of edges cut.
Remark 2.1. The polynomial bound on the vertex weights is necessarily, otherwise it would be
NP�complete just to decide whether a graph has a bisection or not. (It would be equivalent to the
subset�sum problem.)

Another approach to achieve a balanced cut is to relax the bound on the sizes of the parts and
build it into the objective function. The most famous and well studied formulation of this concept
is the minimal ratio cut.
De�nition 2.5. The ratio of the cut (S, V \ S) is

r(S) :=
e(S, V \ S)

min{|S|, |V \ S|}
The minimum ratio cut problem consists of �nding the cut with minimum ratio among all the cuts.
The ratio of a cut towards S is denoted by r′(S) := e(S,V \S)

|S| .

5

Throughout this thesis if we use the notation f(X) where X = {x1, . . . , xl} is a set of l elements and
f is a function on the elements of X, then f(X) means

∑l
i=1 f(xi). For example, c(B), B ⊆ E or

c(S, V \S) denotes the total weight of edges in B or in the cut (S, V \S), respectively; w(S), S ⊆ V
denotes the sum of vertex weights in S.

2.2 Partitioning problem
An undirected simple graph G = (V, E), V = {v1, . . . , vn}, s, h : V → IR+ and c : E → IR+ are
given. s(vi) (or si) and h(vi) (or hi) denote the software and hardware cost of node vi, respectively,
while c(vi, vj) denotes the communication cost between vi and vj that occurs only if this edge is
cut, i.e. if vi and vj are in di�erent contexts (HW or SW). We denote the number of nodes by n,
the number of edges by m.
P is called a (hardware�software, HW�SW) partition of G if it is a bipartition of V into V =
VH] VS . The hardware cost of P is: HP := h(VH); the software cost of P is: SP := s(VS); the
communication cost is CP := c(VH , VS). Often the software cost denotes the execution time of
the software unit (since this is the most critical factor), and the communication cost denotes the
communication delay induced on the edges. As a consequence, sometimes it makes sense to add
them to get the overall system execution time, RP := SP +CP (the hardware is much faster, thus
its execution time can be neglected.) The following optimization and decision problems can be
de�ned (G, h, s, c are given in all problems):

De�nition 2.6. In the Part1 problem α, β, γ non�negative constants are given. The goal is to
minimize αSP + βHP + γCP over the choice of P .

De�nition 2.7. In the Part2 problem H0, R0 ∈ IR+ are given. It should be decided whether
there is a P HW�SW partition so that HP ≤ H0 and RP ≤ R0?

De�nition 2.8. In the Part3 problem H0 ∈ IR+ is given. The goal is to �nd a P HW�SW
partition so that HP ≤ H0 and RP is minimal.

De�nition 2.9. In the Part4 problem R0 ∈ IR+ is given. The goal is to �nd a P HW-SW
partition so that RP ≤ R0 and HP is minimal.

2.3 NP-hardness results
Theorem 2.1. All versions of the balanced cut problem and the graph bisection problem are NP�
hard.

Proof. The proof can be found in [10].

Theorem 2.2. The min ratio cut problem is NP�hard.

Proof. The proof can be found in [21].

The best approximation algorithm is published by Leighton and Rao in their famous articles
[15, 16].

Theorem 2.3 (Leighton and Rao, 1988). The minimum ratio cut problem can be approximated
within a factor of O(log n).

The hardness of the partitioning problems is characterized by the following theorems, which are
our own results.

6

Theorem 2.4. Part1 can be solved in polynomial time.

Proof. It can be reduced to the minimum weighted s−t cut problem in an undirected graph, which
can be solved using the max��ow�min�cut theorem of Ford�Fulkerson [8]. For the construction
and the detailed proof see [2, 22]

Theorem 2.5. Part2 is NP-complete even if no edges are present.

Proof. Part2∈ NP, since P is a good proof for that.
To prove the NP-hardness, we reduce the Knapsack problem [19] to Part2. Let an instance of
the Knapsack problem be given. (There are n objects, the weights of the objects are denoted
by wi, the price of the objects by pi, the weight limit by L and the price limit by K. The task is
to decide, whether there is a subset X of objects, so that w(X) ≤ L and p(X) ≥ K.) We de�ne
a graph to that as follows: V = {v1, . . . , vn}, E = {}. Let hi = pi, si = wi. (Since E is empty,
there is no need to de�ne c.) Introducing A := p(V), let R0 = L, H0 = A−K.
Now we solve Part2 with these parameters. We state that it has a solution i� the givenKnapsack
problem has a solution.
Assuming that Part2 has a solution: V = VH] VS . It means that

w(VS) ≤ L (2.1)

and
p(VH) ≤ A−K = p(V)−K

the last one can also be formulated as:

K ≤ p(V)− p(VH) = p(VS) (2.2)

(2.1) and (2.2) proves that X = VS is a solution of the original Knapsack problem.
Let now assume that X solves the Knapsack problem. Therefore:

s(X) = w(X) ≤ L = R0 (2.3)

and
p(X) ≥ K = A−H0 = p(V)−H0

that is
H0 ≥ p(V)− p(X) = p(V \X) = h(V \X) (2.4)

(2.3) and (2.4) veri�es that V = (V \X)]X solves Part2.

The previous theorem proves the NP�completeness only in the weak sense. However, Part2 is
NP�hard in the strong sense as well, i.e. if the weights of the nodes must be polynomial in n.

Theorem 2.6. Part2 is NP-complete even if the vertex and edge weights are polynomial in n.

Proof. We reduce the decision version of the minimum bisection problem as de�ned in De�ni-
tion 2.2, which is known to be NP�complete [10], to Part2.
Given an instance of the minimum bisection problem on G(V, E) with n vertices, where n is even,
m edges and a limit K, our goal is to �nd a cut (W,B), for which |W | = |B| = n

2 and the cutsize
is at most K (K ≤ m).
Now associate to it the following instance of the Part2 problem. Let h(vi) = s(vi) = 1 for each
vi ∈ V and let c(vi, vj) = 1

m+1 for each (i, j) ∈ E. De�ne H0 := n
2 and R0 := n

2 + K
m+1 . Clearly

this instance has polynomial weights in n.

7

We claim that the two problems have identical solution sets. Indeed, if (W,B) is a solution for
the bisection problem (|W | = |B| = n

2 and e(W,B) ≤ K), then the same (W,B) solves Part2 as
well, since h(W) = |W | ≤ H0 and s(B) + c(W,B) = |B|+ 1

m+1e(W,B) ≤ n
2 + K

m+1 = R0.
Vice versa, if the partition (VH , VS) is a feasible solution of Part2, then h(VH) = |VH | ≤ n

2 and
s(VS)+ c(VH , VS) ≤ n

2 + K
m+1 < n

2 +1, thus s(VS) = |VS | ≤ n
2 , as it is an integer. As both sides of

the partition (VH , VS) are not larger than n
2 , |VH | = |VS | = n

2 must hold. This also implies�using
again the condition for the overall execution time�that c(VH , VS) ≤ K

m+1 , hence e(VH , VS) ≤ K.
So (VH , VS) is indeed a solution for the bisection problem as well.

Similar proofs can be established for part3 and part4.

Theorem 2.7. Part3 and Part4 are NP-hard in the strong sense.

8

Chapter 3

Approximation of the minimum
bisection

In this chapter known approximation algorithms for the minimum bisection problem are presented.
These algorithms are of independent interest, while some of them can also be used to develop
approximation algorithms for the hardware�software partitioning problem. Section 3.1 introduces
the �rst known approximation algorithm to the problem based on [20]. The most advanced works
of Feige and Krauthgamer [7, 6] are shown in Section 3.2. For dense instances of the bisection
problem a polynomial time approximation scheme is given in Section 3.3 based on [4], while an
interesting theorem of additive approximation published in [5] is presented in Section 3.4.

3.1 Simple approximation algorithm

In this section we give an n
2 �approximation algorithm to the vertex�weighted version (see De�ni-

tion 2.4) of the minimum bisection.
The steps of the algorithm can be seen in Algorithm 1. In Step 1 we use the classical result of
Gomory and Hu [12], namely that there is a set of n − 1 cuts in G such that for each pair of
vertices u, v ∈ V the set contains a minimum weight separating cut between u and v and these
cuts can be calculated using only n− 1 �ow computations.

Algorithm 1 Simple approximation algorithm for the minimum bisection problem
1. Find a set of Gomory�Hu cuts in G.

2. Sort these cuts by increasing weights, obtaining g1, . . . , gn−1.

3. Find the minimum i such that the connected components of G′ := (V,E \ (g1 ∪ . . .∪ gi)) can
be partitioned into two sets of size n

2 .

It is known that there is a pseudo�polynomial time algorithm for the problem of dividing n into
equal parts [9], captured by the following lemma.

Lemma 3.1. Given the numbers a1, . . . , an with
∑n

i=1 ai = K there is a pseudo�polynomial
algorithm, which can decide in O(nK) time whether there is a set of indexes I ⊆ {1, . . . , n} so
that

∑
I ai = K

2 .

9

Since the sum of the sizes of the components in Step 3 of Algorithm 1 is n, according to Lemma 3.1
this step takes O(n2) time for each i ∈ {1, . . . , n−1}, thus all together it takes O(n3) time. Hence
Algorithm 1 is indeed polynomial and its running time is dominated by Step 1.
Before proving the approximation factor of the algorithm some preparation is needed. Let B :=
g1 ∪ . . . ∪ gi be the set of edges found by the algorithm. Among the cuts g1, . . . , gi, pick gj , j ≤ i
if it is not contained in g1 ∪ . . . ∪ gj−1. Let b1, . . . , bl be the cuts picked in this manner. Clearly
B = b1 ∪ . . . ∪ bl. Let d1, d2, . . . be an enumeration of all cuts in G ordered by increasing weight.
For any cut d in G denote by index(d) its index in this enumeration.

De�nition 3.1. The cuts b1, . . . , bl are said to be consistent with such an enumeration d1, d2, . . .
if they appear in this order in the enumeration.

We will use the following important property.

De�nition 3.2. Let b1, . . . , bp be a set of cuts in G, sorted by increasing weight. Pick any enu-
meration of all cuts in G, d1, d2, . . . that is consistent with b1, . . . , bp. The cuts b1, . . . , bp satisfy
the union property if the union of the cuts in any initial segment of d1, d2, . . . is equal to the union
of all cuts bj contained in this initial segment. More formally, pick any consistent enumeration of
all cuts in G, let j be any index, 1 ≤ j ≤ index(bp), and let bq be the last cut in the sorted order
having index at most j. Then, d1 ∪ . . . ∪ dj = b1 ∪ . . . ∪ bq.

Lemma 3.2. The cuts b1, . . . , bl satisfy the union property.

The following rather technical lemma says that from n
2 + 1 components the bisection can surely

be assembled, i.e. no more than n
2 cuts are needed.

Lemma 3.3. Let n be an even integer, and let a1, . . . , an
2 +1 be positive integers such that

n
2 +1∑

i=1

ai = n

Then there is a set of indexes I ⊆ {1, . . . , n
2 + 1} so that

∑
I ai = n

2 .

Let dk be the �rst (in the enumeration d1, d2, . . .) optimal bisection.

Proposition 3.1. index(bl) ≤ k

Proof. Assuming to the contrary that index(bl) > k then choosing j = k in the De�nition 3.2 and
using that according to Lemma 3.2 the cuts b1, . . . , bl satisfy the union property yield that

d1 ∪ . . . ∪ dk = b1 ∪ . . . ∪ bq (3.1)

for a certain q < l. Since the components of G∗ = (V,E \ C) can certainly be partitioned into
equal sized sets, for any set C containing dk imply that the left�hand side of Equation (3.1) can
be partitioned into equal sized sets, hence so is the right�hand size. However, according to the
selection of the cuts b1, . . . , bl this would imply that q = l, which is a contradiction.

Theorem 3.1 (Saran and Vazirani, 1995). B approximates the minimum bisection by a factor
of n

2 , i.e. c(B) ≤ n
2 c(dk)

Proof. It follows from Proposition 3.1 that c(bj) ≤ c(dk) for each 1 ≤ j ≤ l. To prove the desired
approximation factor, l must be constrained. Lemma 3.3 implies that l ≤ n

2 �nishing the proof.

10

3.2 Polylogarithmic approximation
In this section the O(log2 n)�approximation algorithm for the basic bisection problem (recall
De�nition 2.2) from Fiege and Krauthgamer [6] is presented. To our knowledge this is currently
the best known approximation algorithm to the problem. The basic algorithm can be extended
in several ways as shown in Section 3.2.5. Both the basic algorithm and the extensions are of
special importance to us, because they can be used to develop an approximation algorithm for
the partitioning problem. It is essential therefore to understand the main ideas and motivations
behind this approach. For that reason this algorithm is presented in more detail.

Theorem 3.2 (Feige and Krauthgamer, 2001). A bisection of cost within an O(log2 n) factor
of the minimum can be found in polynomial time.

Throughout this section the two sides of a (not necessarily optimal) bisection will be denoted as
white W and black B. For the analysis, let us �x one of the optimal bisections (arbitrarily) and
call it the �xed optimal bisection (W ∗, B∗).

3.2.1 Overview

On a high level, the algorithm follows a divide�and�conquer approach. The input graph is re-
cursively divided into parts, using a new cut notion which is called an amortized cut (see De�ni-
tion 3.5), and then the parts are combined into a bisection using dynamic programming.
The algorithm for approximating bisection is based on a subroutine for �nding an approximate
amortized cut. If the subroutine is guaranteed to �nd a ρ-amortized cut in a graph, the algorithm
computes a bisection whose cost is within ratio of 1 +O(ρ log n) of the minimum.
In Section 3.2.2 an algorithm for �nding a ρ = O(log n)�amortized cut in a general graph is devised.
This yields the desired O(log2 n)�approximation factor. The subroutine uses a τ -approximate
min-ratio cut in order to �nd an O(τ)-amortized cut. The best known approximation algorithms
for min-ratio cut in general graphs, due to Leighton and Rao [15, 16] have approximation ratio
τ = O(log n).
In certain graph families, there is a better approximation ratio τ for the min-ratio cut problem.
If these graph families are closed under taking induced subgraphs, then bisection can be approx-
imated within an improved ratio of O(τ log n). For example, it is shown in [14] that in graphs
excluding any �xed graph as a minor (e.g. planar graphs) min-ratio cut can be approximated
within a constant ratio, i.e. τ = O(1), thus the minimum bisection can be approximated within a
factor O(log n).
The algorithm consists of three stages as follows.

1. Decomposition. The graph G is recursively divided into parts by a sequence of divide steps
until it is decomposed into individual vertices. The decomposition can be visualized by a
decomposition tree T . The root of the tree contains the input graph G, the leaves of the
tree contain individual vertices of G, and the two direct descendants of a node i are the
two subparts VL(i), VR(i) obtained in the divide step of its part Vi. The divide step uses an
algorithm for �nding amortized cuts in a graph (see Section 3.2.2).

2. Labeling. The desired outcome of the labeling stage is a labeling of the nodes of T to either
black or white which is α�consistent with the �xed optimal bisection (W ∗, B∗), called in
short an opt�consistent labeling.

De�nition 3.3. For a �xed 1
2 < α < 1, the labeling is said to be α�consistent with respect to

a white�black bisection (W,B) of the input graph if every part Vi satis�es that |W∩Vi| ≤ α|Vi|
if the label of node i is white, and that |B ∩ Vi| ≤ α|Vi| if the label of node i is black.

11

U1 C1

C2 F2

F1

C

U2

U

F

Figure 3.1: A divide step

To be exact, instead of �nding an opt-consistent labeling, this stage produces a family of
labelings, such that at least one member of the family is opt�consistent.

3. Combining. Given a decomposition tree T and a labeling of it, this stage assigns to each
vertex v of the graph G a vertex charge and the charge of a bisection (W,B) of G is de-
�ned as the sum of the charge of the vertices. The notion of charge ensures that for every
bisection charge is an upper bound on cost. The charge of a vertex�and thus the charge
of a bisection as well�depends on the labeling of the decomposition tree. If the charge is
de�ned with respect to an opt�consistent labeling of T then the amortized cuts used in the
decomposition stage guarantee that the charge of the �xed optimal bisection (W ∗, B∗) is
within a polylogarithmic factor of its cost b. Therefore the bisection with minimum charge
(W̃ , B̃) (which can be computed using dynamic programming easily) has cost also within a
polylogarithmic ratio of b. To sum up

O(log2 n) · b = O(log2 n) · e(W ∗, B∗) ≥ charge(W ∗, B∗) ≥ charge(W̃ , B̃) ≥ cost(W̃ , B̃)

3.2.2 Decomposition stage

The decomposition stage of the algorithm uses a divide�and�conquer approach. It is desirable
that (i) each of the two subproblems can be solved separately; and (ii) the solutions of the two
subproblems can be combined while incurring a relatively small additional cost.
Consider a more general cut problem: our aim is to cut o� k vertices from the part U . The
divide step of part U breaks it into U1 and U2, from which k1 and k2 vertices have to be cut o�,
respectively, for certain k1 + k2 = k. Let us assume that the subproblem associated with each
subpart Ui is solved separately (by recursion) and the solution obtained for it is a cut (Ci, Fi) (see
also Figure 3.1). The two solution cuts are then combined into a cut (C, F) := (C1 ∪C2, F1 ∪ F2)
of U . The cost of the combined cut is given by

Cut(U, k) = Cut(U1, k1) + Cut(U2, k2) + e(C1, F2) + e(C2, F1) (3.2)

where Cut(X, k) denotes the cost of the (solution) cut on X.
However, the formula of the actual cost of the combined cut cannot be used directly in a divide�
and�conquer approach, because the cut within each Ui are calculated separately, but the cost

12

depends on both cuts. Therefore the cost of the cut should be estimated. Previous approaches
e.g. in [7] establish an upper bound on the cost of Equation (3.2) using the total number of edges
cut in the divide step

Cut(U, k) ≤ Cut(U1, k1) + Cut(U2, k2) + e(U1, U2) (3.3)

The problem with this approach is that due to the separate calculation of the cuts within each Ui

it might happen that only a few edges between the parts U1 and U2 end up in the combined cut,
yielding a poor upper bound.
The proposed upper bound is the following.

Cut(U, k) ≤ Cut(U1, k1) + Cut(U2, k2) + e(C1, U2) + e(C2, U1) (3.4)

The additional term e(C1, U2) only depends on the cut in U1, while e(C2, U1) only depends on the
cut in U2, thus completely separating the two problems, allowing a proper divide�and�conquer
approach.
We will introduce the notion of charge here, for a more formal de�nition see De�nition 3.6.

De�nition 3.4. The charge of a divide step is de�ned as e(C1, U2) + e(C2, U1). The charge of a
bisection is the sum of the charges of all the divide steps, i.e. applying the bound (3.4) recursively.

Remark 3.1. Note that the new accounting method makes a distinction between the two sides C
and F of the combined cut. Since we wish to minimize the charge, it makes sense to choose the
smaller of the two sides to be C. In our analysis we have a somewhat relaxed condition, requiring
that |C| ≤ α|U |, for a �xed 1

2 < α < 1. The labeling of the decomposition tree corresponds to the
identi�cation of side C (see Section 3.2.3).

We call the vertices of C = C1 ∪ C2 charged and the vertices of F = F1 ∪ F2 free. The edges in
the part U can then be classi�ed as charged�charged, charged�free or free�free, according to their
two endpoints.
Instead of �nding a bisection of minimum cost, we look for a bisection of minimum charge. Consider
the charge of the �xed optimal bisection. The charge of a divide step of a part U is e(C1, U2) +
e(C2, U1) and can be written also as e(C1, F2) + e(C2, F1) + 2e(C1, C2). Observe that a charged�
free edge is always an edge of the �xed optimal bisection (and vice versa) and that each edge is
cut exactly once in the decomposition stage. So for the �xed optimal bisection, the di�erence
between charge and cost is twice the cost of all the charged�charged edges cut in all the divide
steps, therefore the divide step aims at cutting relatively few charged�charged edges. We seek an
amortization scheme that amortizes the total cost of all charged�charged edges cut against the
total cost of all charged�free edges cut (which is exactly b).

Remark 3.2. The partition of vertices to charged and free is not known to the divide step, we
therefore require that the amortization scheme holds for every possible partition of vertices to
charged and free.

The easiest amortization scheme might consider each divide step separately and require that in
every divide step the amortized cost is at most ρ, i.e. at every part we have that e(C1, C2) ≤
ρ[e(C1, F2)+e(C2, F1)]. Then the charge of the �xed optimal bisection is clearly at most (1+2ρ)b.
Unfortunately to respect Remark 3.2 only ρ = Ω(n) can be guaranteed (see [6] for an example).

New amortization scheme. In the divide step of a part U we amortize e(C1, C2) against
e(C, F). Since not all the edges in e(C,F) are cut in the divide step, an edge may receive an
amortized cost in many divide steps. Our goal is to de�ne the amortization scheme that ful�lls
the following property.

13

The total cost amortized against a single edge is at most O(ρ log n), for a suitable ρ. (†)

Corollary 3.1. It follows that the total cost of the charged�charged edges cut in all the divide
steps is at most O(ρ log n) · b, and so the charge of the �xed optimal bisection is (1+O(ρ log n)) · b.

If each divide step were balanced, the depth of the decomposition tree would be O(log n), thus
an edge can receive amortized cost in at most O(log n) times. Assuming that for each divide
step e(C1, C2) ≤ ρ · e(C, F) holds, then the total cost amortized against a single edge is at most
O(ρ log n).
However, we do not require that each divide step is balanced, but rather scale the amortization
cost according to the imbalance of its divide step. Two di�erent scaling factors are used, and at
each step the better will be selected. (W. l. o. g. we assume, that |U1| ≤ |U2|). The �rst scaling
factor is e(C1, F1)/e(C, F), and its corresponding amortization method requires that

e(C1, C2) ≤ ρ · e(C1, F1)
e(C,F)

· e(C,F) = ρ · e(C1, F1) (3.5)

The second scaling factor is |C1|/|C|, and its corresponding amortization method requires that

e(C1, C2) ≤ ρ · |C1|
|C| · e(C, F) = ρ · r′(C) · |C1| (3.6)

To prove that property (†) holds for the �rst amortization method (3.5), one should note that an
edge can be inside the smaller side U1 in at most log n divide steps. The prove for the second
amortization method can be found in [6].
Finally we are able to formally de�ne the desired divide step of the decomposition stage.

De�nition 3.5 (Amortized cut). Let (U1, U2) be a cut with |U1| ≤ |U2| in a graph G′(U,E′),
and let U = C ∪ F be a partition of the vertices to charged vertices C and free vertices F . Let us
denote Ci = Ui ∩ C and Fi = Ui ∩ F for i = 1, 2, as in Figure 3.1. Let

ρe =
e(C1, C2)
e(C1, F1)

and ρv =
e(C1, C2)
|C1| · r′(C)

(3.7)

We call ρe the amortized cost for the edges, and ρv the amortized cost for the vertices (note that
ρe, ρv depend on C,F).
The amortized cost of the cut (U1, U2) is the maximum of min{ρe, ρv}, where the maximum is
taken over all partitions U = C ∪ F with 0 < |C| ≤ α|U | for a �xed 1

2 < α < 1. We say that the
cut (U1, U2) is ρ�amortized if its amortized cost is at most ρ.

Note that in the de�nition of the amortized cut the condition

|C| ≤ α|U | (3.8)

must hold for the cut. In order to achieve the desired charge value of Corollary 3.1, we need to
guarantee this condition in every divide step. The only freedom we have is to select which side
will be C and which one will be F in the partition of U . This corresponds to a labeling of the
decomposition tree.
First an algorithm for �nding a good amortized cut (provided (3.8) holds) will be presented and
then the labeling stage in Section 3.2.3 produces a labeling to ful�ll (3.8).

14

Finding a good amortized cut

The aim of this section is to �nd a ρ = O(log n)�amortized cut in general graphs. The algorithm
is based on �nding an approximate min�ratio cut (see De�nition 2.5). First we state that an
optimal min�ratio cut is an O(1)�amortized cut. As a consequence of that there always exists
an O(1)�amortized cut in a graph. Unfortunately, the optimal min�ratio cut is NP�hard to
�nd (Theorem 2.2). Next an algorithm follows which uses a τ�approximate min�ratio cut in
order to �nd an O(τ)�amortized cut. Best known algorithms (e.g. [15]) provide an O(log n)�
approximate min�ratio cut in general graphs and O(1)�approximate ones in graphs excluding any
�xed minor [14].

Lemma 3.4. An optimal min�ratio cut in a graph is O(1)�amortized.

Unfortunately, the result of Lemma 3.4 does not extend to an approximate min�ratio cut in
straightforward way, but with an additional constraint, as follows.

Lemma 3.5. Let (V1, V2) be a τ�approximate min�ratio cut in a graph, with |V1| ≤ |V2|. If
r(V1) ≤ r(F1) for every F1 ⊆ V1 then (V1, V2) is an O(τ)�amortized cut.

Algorithm 2 Algorithm for �nding an O(τ)�amortized cut
1. Find in the input graph G = (V, E) a τ�approximate min�ratio cut (V1, V2) with |V1| ≤ |V2|.
2. Create a related graph G′

• Merge all vertices of V2 into a single vertex t, removing self loops at t, and keeping all
edges to V1, including parallel edges.

• Add a new vertex s which is connected to each vertex of V1 by an edge whose capacity
(weight) is a parameter p > 0.

3. Let S denote the vertices of V1 which are on the same side with s in a minimum (s, t)�cut
of G′. Find (e.g. by binary search) the minimum p > 0 for which S 6= ∅. (Possibly, S = V1).
Denote this set by S∗.

4. Output the cut (S∗, V \ S∗) of the input graph.

Lemma 3.6. The cut (S∗, V \ S∗) found by Algorithm 2 is a τ�approximate min�ratio cut. Fur-
thermore r(S∗) = min{r(S′) : ∅ 6= S′ ⊆ V1}.

Proof. It is easy to see that an arbitrary (S, V \ S) (s, t)�cut in the related graph has capacity
cap(S) = p|V1 \ S|+ e(S, V \ S). Specially for S = ∅ this means cap(∅) = p|V1|. Comparing these
two values, the empty set yields a smaller value i� p < e(S,V \S)

|S| = r(S). We claim, that the value
of p found at Step 3 of Algortihm 2 is p∗ = min{r(S) : ∅ 6= S ⊆ V1}. Indeed, if p < p∗, the empty
set is better, if p = p∗ + ε for a small positive ε, only a set S∗ 6= ∅ with r(S∗) = p∗ will give
smaller capacity than the empty set. Therefore r(S∗) = min{r(S′) : ∅ 6= S′ ⊆ V1}, as claimed.
Furthermore, since S = V1 is also allowed, we get that r(S∗) ≤ r(V1), thus the cut (S∗, V \ S∗)
is also a τ�approximate min�ratio cut. From Lemma 3.5 it follows that (S∗, V \ S∗) is indeed an
O(τ)�amortized cut.

Theorem 3.3. Given a subroutine for computing a τ�approximate min-ratio cut, Algorithm 2
�nds an O(τ)�amortized cut.

Proof. Lemma 3.6 guarantees that the cut found by the algorithm satis�es the requirements of
Lemma 3.5, from which it follows that the cut is O(τ)�amortized.

15

3.2.3 Labeling stage

The aim of the labeling stage is to provide an opt�consistent labeling for some �xed 1
2 < α < 1

(recall the De�nition 3.3). Unfortunately an opt�consistent labeling is hard to �nd, so instead this
stage produces a family F of labelings containing at least one opt�consistent one.
The labeling stage �rst marks some of the nodes. The label of these nodes can be arbitrarily
chosen (black or white), but it then determines the label of all the other nodes. The marking of
T goes from the root of T towards its leaves, as follows. The root of T is always marked, and any
other node i in the tree is marked if its closest marked ancestor j satis�es |Vi| ≤ 1

2α |Vj |. Note
that 1

2 < 1
2α < 1. A labeling is derived from the labeling of the marked nodes if the label of an

unmarked node is equal to the label of its closed marked ancestor. F consists the derived labeling
of all the possible labelings of the marked nodes. Note that the cardinality of F can exponential,
hence it is not listed explicitly but represented by the marked nodes only.

Lemma 3.7. Fcontains an opt�consistent labeling.

Proof. Consider a �xed optimal bisection (W ∗, B∗). Label the marked nodes in such a way,
that each node i receives the label of the color in minority among the vertices of Vi and regard
the derived labeling `. We claim that ` is opt�consistent. The α�consistency condition clearly
holds for the marked nodes (since α > 1

2). The label of an unmarked node i is the same as
the label of its closest marked ancestor j. Suppose w. l. o. g. that this label is white. Then
|W ∗ ∩ Vi| ≤ |W ∗ ∩ Vj | ≤ 1

2 |Vj | < 1
22α|Vi|. Hence, ` is indeed opt-consistent.

We can think of a 'good' labeling with respect to a white�black bisection as it labels each node of
the tree with the minority color. (Not the exact minority, but α�minority.) To be able to use the
amortization scheme of Section 3.2.2 we need the 'smaller' side of each cut to be the charged size.
So given a labeling of T we can identify the sets C and F in the following way (see Figure 3.2).

De�nition 3.6 (Charge). Let (W,B) be a bisection of the input graph, and assume we are given
a decomposition tree T and a labeling of it. For each (nonleaf) node i of T , if i is labeled white
then we let Ci = W ∩ Vi and Fi = B ∩ Vi, and if i is labeled black then we let Ci = B ∩ Vi and
Fi = W ∩ Vi. The charge of the divide step of a (nonleaf) node i is de�ned as

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i))

The charge of the bisection (W,B) is de�ned as the sum of all the divide steps charges, i.e.
∑

i∈T

e(Ci ∩ VL(i), VR(i)) + e(Ci ∩ VR(i), VL(i))

Clearly, the charge of the bisection is always an upper bound on its cost, regardless of the labeling.
However, if the charge is taken with respect to an α�consistent labeling, it is not much larger than
the cost.

Lemma 3.8. The charge of the bisection (W,B) with respect to an α�consistent labeling is at
most e(W,B) ·(1+O(ρ log n)). Speci�cally, the charge of the �xed optimal bisection (W ∗, B∗) with
respect to an opt�consistent labeling is at most b · (1 +O(ρ log n)).

3.2.4 Combining stage

The combining stage �nds a bisection (W̃ , B̃) of G and a labeling ` from F , such that the charge
of the bisection with respect to the labeling is minimal over all such bisection�labeling pairs.
Lemma 3.7 guarantees that at least one of these labelings is opt�consistent, thus Lemma 3.8 applies.
` has minimum charge, which is therefore at most b · (1+O(ρ log n)). Using that ρ = O(log n) can

16

VL(R(i))

VL(i)

VL(L(i))

CL(i) = B ∩ VL(i)FL(i) = W ∩ VL(i)

black

VR(R(i))

VR(i)

VR(L(i))

FR(i) = B ∩ VR(i)CR(i) = W ∩ VR(i)

white

VL(i)

VR(i)

Ci = W ∩ Vi Fi = B ∩ Vi

Vi

white

divide step

divide step

divide stepdivide step

. . .

.

. . .

Figure 3.2:
Identifying the charged and free sides of a part in the decomposition tree according to the given

labeling

be achieved as was shown in Section 3.2.2 and since charge is an upper bound on cost, the cost of
(W̃ , B̃) is at most b · (1 +O(log2 n)), �nishing the proof of Theorem 3.2.
The �rst observation is that the charge of a bisection can be distributed to the vertices so that
the vertex charges will sum up to the bisection charge.

De�nition 3.7 (Vertex charge). For each vertex v ∈ Vi let the cross�degree of v at node i,
denoted by crossi(v), be the cost of the edges that are incident at v and are cut in divide step i.
The charge of a vertex v ∈ V is de�ned as the sum of the cross-degree of v at all nodes i for which
v belongs to the charged side, i.e.

∑
i:v∈Ci

crossi(v).

It is easy to see that the charge of a bisection is the sum of the vertex charges. The charge of a
vertex depends on (and can be easily computed from) the side of this vertex in the bisection (W,B),
but it does not depend on the side of other vertices in the cut. This means that the charge of a
bisection depends linearly on the placement of the vertices to W or B provided a decomposition
tree and a labeling of it is given. On the other hand the cost of a bisection depends quadratically on
the placement of the vertices. (The bisection can be expressed as a quadratic integer program, [1]).
So charge can be regarded as a linearization of cost within a polylogarithmic approximation factor.
It is very important algorithmically, and can be exploited in a dynamic programming scheme. A
direct dynamic programming approach�even a pseudo�polynomial one�is not possible because
of the quadratic dependence.

17

Dynamic programming. The dynamic programming table Q has entries of the form Q(i, k, g),
where i is a node of the decomposition tree T , k is an integer between 0 and |Vi|, and g is a guess
list that contains the labels of the marked ancestors of node i.
An entry Q(i, k, g) in the table contains the optimal solution to the following problem: Choose k
vertices of Vi and a labeling from F that agrees with g, so that when these k vertices are placed
in the side W and the remaining vertices of Vi are placed in the side B, the sum of the charges of
all the vertices of Vi with respect to the chosen labeling, is minimal over all such choices.
Clearly, the size of Q is polynomial in n: i and k have O(n) values, and at each node g may
contain the labels of at most O(log n) marked ancestors.

Lemma 3.9. Each cell of Q can be �lled out using the table entries of its children in O(n) time.
The whole table can be computed in a bottom�up way in polynomial time.

Sketch of the proof. For a leaf node i, the table entry Q(i, k, g) can be computed directly, as
follows. For the part Vi = {v} k can be either 0 or 1. If k = 0 then v is necessarily in B, and if
k = 1 then v is necessarily in W . The guess list g gives the labels of all the nodes on the path
from the leaf i to the root, and hence all the labels that can possibly a�ect the charge of v. So
k and g uniquely de�ne all the data that the charge of v depends on, and Q(i, k, g) is just the
charge of v. The charge of v is the sum of cross�degrees at ancestor nodes j, where v is in Cj .
This happens�recall De�nition 3.6 and Figure 3.2�if the label of j according to g agrees with
the side of v (which follows from k).
For a nonleaf node i, the table entry Q(i, k, g) can be e�ciently computed from table entries of
its children nodes L(i), R(i). It is easy to see that

Q(i, k, g) = min
0≤j≤k

min
gL,gR

{Q(L(i), j, gL) + Q(R(i), k − j, gR)}, (3.9)

where gL and gR ranges over all possible extensions of g (there are two extensions if the child node
is marked and only one, if not).

The entry Q(root, n
2 , g) contains the minimum charge of all bisections of the input graph with

respect to any labelings from F , as desired. Since the only ancestor of root is itself, g has only
two possible values, and Q(root, n

2 , gi), i = 1, 2 must be the same due to symmetry.

3.2.5 Generalizations

Previous sections have introduced an O(log2 n)�approximation algorithm for the basic version of
the minimal bisection problem. However, the algorithm can easily be extended to solve other
versions of bisection formulations.

1. Edge�weighted. The edge�weighted version as de�ned in De�nition 2.3 can be solved
with the same algorithm but simply using c(X, Y), i.e. the cost of edges between to sets
X, Y ⊆ V , instead of e(X, Y). The corresponding changes in the algorithm and analysis are
straightforward. Note that Algorithm 2 for �nding the amortized cut requires a subroutine
that computes an approximate min-ratio cut with respect to the edge costs, but known
algorithms (e.g. due to [16]) provide this subroutine. The resulting approximation ratio is
the same as for the basic problem, i.e. O(log2 n).

2. Vertex�weighted. The vertex�weighted version as de�ned in De�nition 2.4 can be solved
with the same algorithm but rather than considering the number of vertices in a part,
we always count its weight. r(S) should now denote e(S,V \S)

min{w(S),w(V \S)} . In the dynamic
programming phase k ranges from 0 until w(Vi), but it is still polynomial. The corresponding

18

changes in the algorithm and analysis are straightforward. Note that Algorithm 2 for �nding
the amortized cut requires a subroutine that computes an approximate min-ratio cut with
respect to the vertex weights, but known algorithms (e.g. due to [16]) provide this subroutine.
The resulting approximation ratio is the same as for the basic problem, i.e. O(log2 n).

3. s− t cut. In this extension our aim is to �nd a bisection which separates two special vertices
s and t. The dynamic programming table Q should be modi�ed, so that every entry Q(i, k, g)
contains two solutions (if they exist); one solution with the k chosen vertices containing s
but not t, and vice versa. The corresponding changes in the algorithm and analysis are
straightforward. The resulting approximation ratio is the same as for the basic problem, i.e.
O(log2 n).

4. Fix number of vertices. In this extension we wish to cut a �xed number of k vertices
from G with minimum edges cut. The dynamic programming stage outputs instead of
Q(root, n

2 , g) the solution in Q(root, k, g). The corresponding changes in the algorithm and
analysis are straightforward. The resulting approximation ratio is the same as for the basic
problem, i.e. O(log2 n).

Remark 3.3. Note that most of these extensions can also be combined with each other, for example
both edge and vertex costs can be allowed, as the corresponding modi�cations of the algorithm does
not exclude each other.

3.3 Approximation scheme for dense graphs
In this section a polynomial time approximation scheme (PTAS) will be presented for the minimum
bisection problem on everywhere dense graphs. This problem is still NP�hard [4].

De�nition 3.8. A graph is said to be δ�dense, if the average degree of the vertices is at least δn
(or equivalently it has at least δn2/2 edges). It is everywhere δ�dense if every vertex has degree
at least δn. If δ = Ω(1), we will simply use the notion dense and everywhere dense.

Remark 3.4. Note that we give a PTAS for minimum bisection on the smaller class of everywhere
dense graphs and not on dense graphs. The latter is not easier than a PTAS for minimum bisection
on general graphs, as the following reduction shows. Given a general instance with n vertices of
the minimum bisection problem, add two disjoint cliques of size 2n to it. The resulting graph will
be 2/5�dense, but the value of the minimum bisection remains unchanged.

The approach relies on a more general theorem of approximating polynomial integer programs
(see Theorem 3.4). We need some preparation before this theorem.

De�nition 3.9. A polynomial integer program (PIP) is of the form

max/min p0(x)
subject to li ≤ pi(x) ≤ ui {i = 1, . . . ,m}

x ∈ {0, 1}n

where pi is a polynomial. When all pi have degree at most d, the PIP is called degree d PIP.

Since they subsume integer programs, solving PIPs is NP-hard. However, a subclass of PIPs can
be approximated in polynomial time.

De�nition 3.10. A degree d polynomial with n variables has smoothness c if the value of each
coe�cient of each degree i term is at most c · nd−i.
A PIP in which all pi polynomials are c�smooth with degree at most d is called a c�smooth degree
d PIP.

19

De�nition 3.11. A solution a ∈ {0, 1}n is said to satisfy a constraint li ≤ pi(x) ≤ ui within an
additive error δ if li − δ ≤ pi(a) ≤ ui + δ

Now we are ready to state the general theorem of approximating smooth PIPs. We use the
formulation where the objective of the PIP has to be maximized.

Theorem 3.4 (Arora, Karger and Karpinski, 1998). There is a randomized polynomial�time
approximation algorithm that approximately solves smooth PIPs in the following sense. Given a
feasible c�smooth degree d PIP with n variables, objective function p0, the algorithm �nds a 0�1
solution z satisfying

p0(z) ≥ OPT − εnd

where OPT is the optimum of the PIP. This solution z also satis�es each degree d′ constraint
within an additive factor of εnd′ for d′ > 1, and satis�es each linear constraint within an additive
factor of O(ε

√
n log n). The running time of the algorithm is O(1/ε2). The algorithm can be

derandomized while increasing the running time by only a polynomial factor.

Proof. The proof can be found in [4].

The theorem guarantees a certain additive approximation factor. However, it follows that every
problem that can be formulated as a smooth PIP and has OPT at least O(nd) can be approximated
within an ε multiplicative factor. Dense graphs have such a property in several optimization
problems as was shown in [4]. We now only focus on the bisection problem. Speci�cally with
bisection it is not straightforward to use this theorem and further ideas are needed.
De�ne to each node vi a binary variable xi, which identify the cut. The formulation of the
minimum bisection as quadratic PIP is straightforward.

min
∑

(i,j)∈E

(xi(1− xj) + xj(1− xi)) (3.10)

subject to
n∑

i=1

xi =
n

2
(3.11)

xi ∈ {0, 1}

Note that an edge (i, j) contributes 1 to (3.10) i� xi 6= xj and 0 otherwise. The bisection criteria
is expressed by (3.11).

Large bisection. If the minimum bisection is large enough, i.e. b ≥ βn2 for a certain β, then
Theorem 3.4 gives an assignment z with an objective less than b + εn2 ≤ b(1 + ε/β), yielding in a
multiplicative ε/β�approximation algorithm. The only problem with this is that z ful�lls (3.11)
only approximately, hence not an exact bisection has been found. But Theorem 3.4 ensures that
on both sides of the cut n

2 ± (
√

n log n) vertices will be found. To balance this cut to a bisection
one should move only

√
n log n vertices a�ecting the cut value by at most O(n1.5 log n) = o(n2).

Small bisection. If the minimum bisection is less than βn2 the previous PIP�based approach
does not work, therefore a speci�c algorithm is needed. Algorithm 3 shows the structure of this
method. Although this is a random algorithm, it can be easily derandomized.
The main idea behind the algorithm is the so called exhaustive sampling. In a good bisection
most of the vertices have the majority of their neighbors on their side. So if we knew on which
side the majority of neighbors of a vertex v resides, we could place v on this side. Of course the
placement of the neighbors is not known. Instead, take a relative small (random) sample set S of
vertices, partition it into two sets and judge by this sample. If the great majority of neighbors in

20

Algorithm 3 Bisection algorithm for δ�everywhere dense graphs with small bisection size

1. Pick a set S of O(log n
δ) vertices at random.

2. For each possible partition of S into (SW , SB) construct a partition (W,B) as follows.

(a) Let T be the set of vertices that have more than 5/8 of their neighbors of S in SB . Put
T in B.

(b) For each vertex v 6∈ T de�ne bias(v) as

#(neighbors of v not in T)−#(neighbors of v in T).

Put the n
2 − |T | vertices with smallest bias into B.

3. Output the best bisection found in the previous step.

the sample is on one side, then probably the great majority of all the neighbors will be on that
side in the optimal bisection, since the graph is everywhere dense. The size of S should be that
small that all the possible partitions can be tried�thus the placement according to the optimal
bisection (W ∗, B∗) is also among them.
It can be proven that with high probability the set T constructed in Step 2a contains every vertex,
which 'radically' belongs e.g. to the B side, i.e. at least 3/4 of its neighbors are in B∗. Moreover
with high probability T ⊂ B∗ and its size is relative large, close to n

2 . So T should belong to B
and it should be extended with a small number of vertices to get an exact bisection. In Step 2b we
choose the vertices that are the most strongly connected to T . With the aid of these observations
the following theorem can be proved.

Theorem 3.5. Assuming b < βn2, with high probability (over the choice of S in Step 1 of
Algorithm 3) the bisection by Algorithm 3 has value at most b · (1 + ε), where ε = 16β2/δ2.

3.4 Additive approximation
Finally, we mention the result of Bui and Jones [5], which claims that it isNP�hard to approximate
the minimum balanced cut problem within a certain additive factor.

Theorem 3.6 (Bui and Jones, 1992). Unless P=NP there cannot be a polynomial time algo-
rithm that, given an n�vertex general graph, can �nd an α�balanced cut with cutsize smaller than
OPT + n2−ε, where OPT is the optimum cutsize value, ε > 0 and 1

2 ≤ α < 1 are �xed constants.
The case α = 1

2 consists of �nding the minimum bisection.

Note that this theorem does not exclude any multiplicative approximation factor ρ. To see this,
let us �x an ε > 0 in the additive term of Theorem 3.6 and α = 1

2 . In order not to confront with
the theorem, for a ρ�approximation algorithm it must hold that

b(1 + ρ) ≥ b + n2−ε,

which implies the following on ρ

ρ ≥ n2−ε

b
.

If b = O(n2) (which is easily possible) then

n2−ε

b

n→∞−→ 0

21

thus ρ can be arbitrary small.
There is no theoretical hardness evidence that a PTAS to the general minimal bisection problem
cannot exist, although the best known approximation algorithm is the one presented in Section 3.2
and has 'only' polylogarithmic approximation ratio. It remains an open problem to close this gap.

22

Chapter 4

Approximation of the partitioning
problem

In this chapter we will use the techniques for approximating the minimum bisection presented
in the previous chapter to develop approximation algorithms for (some versions of) the Part3
partitioning problem (recall De�nition 2.8).
At �rst glance the two problems seem to be rather di�erent.

1. The symmetry of the two sides of the partition is broken: we now distinguish between
hardware and software side.

2. Instead of just minimizing the weight of crossing edges, we aim at minimizing the weight of
crossing edges plus the weight of the software side.

3. Only the size of one side of the cut is constrained and the constraint is not strict, but an
upper bound is given.

We should go through these di�erences and reason why the bisection problem and especially the
algorithm of Feige and Krauthgamer (hereinafter F&K) despite the di�erences is a good candidate
to consider in developing approximation algorithms for the partitioning problem.
Concerning the �rst di�erence, in the approach of Section 3.2 the two sides of the bisection are
indeed distinguished (see Remark 3.1)�although it is not in the nature of the bisection problem.
Remember how the cost of the sub�solutions were assembled in the divide step of the F&K
bisection algorithm to result in an overall solution. As the additional cost of software weights
can be minimized independently in the subproblems, a similar decomposition approach could be
bene�cial in the partitioning problem as well, neutralizing the second di�erence.
As for the third di�erence, the dynamic programming stage of F&K is general enough to be used
for other purposes as well. It computes the optimal solution for several subproblems that could
be assembled to the optimum of other problem formulations. On the other hand, a reduction
of the partitioning problem to the bisection by balancing the hardware and software sides with
additional vertices also seems to be possible.
This chapter is organized as follows. Based on the algorithm of F&K, we achieve the same
approximation factor for the Part3 problem in Section 4.1 in two di�erent ways: �rst, we reduce
the Part3 problem to an extension of the minimum bisection (as outlined in Section 3.2.5) in
Section 4.1.1. Second, we adapt the algorithm of F&K to the Part3 problem in Section 4.1.2.

23

4.1 Polylogarithmic approximation

Since basically we want to use a bisection algorithm for our Part3 problem, there is no hope
to handle arbitrary vertex weights, but polynomial vertex weights only (remember Remark 2.1).
Note that Part3 is NP�hard in the strong sense as well (see Theorem 2.6). Our aim is now to
prove the following theorem in two di�erent ways.

Theorem 4.1. The Part3 problem with polynomial integer hardware weights, and arbitrary non�
negative software and communication weights can be approximated within an O(log2 n) factor.

4.1.1 Reduction

Recall the de�nition of the Part3 problem. Given a graph G(V, E) of n vertices with two vertex
costs s, h : V → IR+ and edge costs c : E → IR+, furthermore a hardware limit H0 our aim is to
solve the following (not linear) program.

min s(VS) + c(VH , VS) (4.1a)
subject to h(VH) ≤ H0 (4.1b)

over all (HW�SW) partitions of G, V = VH] VS .
Our aim is to prove Theorem 4.1 through a reduction of (a relaxed version of) the Part3 problem
to the minimal bisection problem.
In the �rst step of the reduction we de�ne an (almost) equivalent Part3 problem instance with
software costs everywhere zero. Let G′(V ′, E′) de�ned as follows (see Figure 4.1).

V ′ := V ∪ {x} and E′ := E ∪ {(v, x) : ∀v ∈ V }.

and let H ′
0 := H0. The cost functions s′, h′ and c′ are also modi�ed.

s′ :≡ 0,

while
h′(v) :=

{
h(v), ∀v ∈ V
0, if v = x

and
c′(u, v) :=

{
c(u, v), ∀u, v ∈ V
s(u), if v = x

Proposition 4.1. The Part3 problem as de�ned in (4.1a)�(4.1b) is equivalent with the following
optimization problem.

minx∈V ′H c′(V ′
H , V ′

S) (4.2a)
subject to h′(V ′

H) ≤ H ′
0 (4.2b)

over all (HW�SW) partitions of G′, V ′ = V ′
H] V ′

S.

Proof. Consider a partition (V ′
H , V ′

S) of G′. It also induces a cut (VH , VS) on G with VH = V ′
H \{x}

and VS = V ′
S . Since the new node x is �xed to hardware, the cost of this cut is c(V ′

H , V ′
S) =

c(VH , VS)+ c′(x, VS) = c(VH , VS)+ s(VS), as desired. The set of feasible solutions is obviously the
same, as the hardware cost of x is de�ned as zero.

24

x
vi vj

cij

G
si

sj

VS VH

Figure 4.1: The reduced problem instance

It follows from Proposition 4.1 that it is enough to deal with the (4.2a)�(4.2b) formulation, that is
to solve the Part3 problem without software costs present and with the small additional constraint
that one special vertex should be �xed to hardware.
We have restricted the general Part3 problem to the class with polynomial hardware costs, i.e.
h(vi) ≤ nt, ∀vi ∈ V for an appropriate constant t. It also implies that H0 should also be polynomial
in n, since H0 ≥ h(V) would be a meaningless constraint. As a consequence of this we have enough
time to exhaustively search for the best hardware cost value H∗ and solve at most H0 instances
of the following problem.

min
x∈VH

c(VH , VS) (4.3a)

subject to h(VH) = H (4.3b)

over all (HW�SW) partitions of G, V = VH] VS .
Our aim is now to reduce this problem to the edge� and vertex�weighted minimal bisection prob-
lem. Now let us add two special vertices yh and ys to the graph with vertex weight h(yh) := h(V)
and h(ys) := 2H, and �nd a bisection in this graph. The total vertex weight in the resulting
graph is h(V ∪ {yh, ys}) = 2h(V) + 2H, thus a bisection of the extended graph has vertex weight
w := h(V) + H on each side. Since h(yh) + h(ys) = h(V) + 2H > w, yh and ys are on di�erent
sides of the bisection. Such a bisection induces a cut (VH , VS) in G: the side containing yh has
vertex weight w − h(yh) = H in G and the other has vertex weight w − h(ys) = h(V)−H in G.
The side of the bisection containing yh will be identi�ed as hardware, thus it should contain x as
well. So it must further be guaranteed, that x and yh belong to the same side. To achieve this,
add a new edge (x, y) with cost c(x, y) := ∞ to the graph�a very large edge cost e.g. c(E) is
su�cient. This results in the following proposition.

Proposition 4.2. The problem of (4.3a)�(4.3b) is equivalent with the following optimization
problem. Find the vertex�weighted bisection with minimum edge weight in G′′(V ′′, E′′), where
V ′′ := G ∪ {yh, ys}, E′′ := E ∪ {(x, y)}, h(yh) := h(V), h(ys) := 2H and c(x, y) := c(E).

The resulting problem is an edge� and (polynomially bounded) vertex�weighted minimum bisec-
tion problem in a graph. This�according to extension 1 and 2 of Section 3.2.5 and Remark 3.3�
can be approximated within an O(log2 n) factor, yielding the same approximation for our initial
problem, that is the Part3 problem with polynomial hardware weights. This completes the proof
of Theorem 4.1.

25

Remark 4.1. If H ≤ h(V)
2 , then it is enough to add one vertex yh with vertex weight h(yh) :=

h(V) − 2H ≥ 0 to the graph in the last step of the reduction, and �nd the minimum bisection in
this graph. If H > h(V)

2 then this construction would yield an undesired negative vertex weight.

Remark 4.2. Instead of solving the problem (4.2a)�(4.2b) we solve H0 instances of the problem
(4.3a)�(4.3b), which is not a very elegant solution. An obvious way to attack (4.2a)�(4.2b) directly
would be to establish a similar reduction to the (weighted) minimal α�balanced cut problem, as
follows.

We again add two vertices yh, ys to the graph with appropriate weights wh and ws. Denoting
by W := h(V (G′′)) = h(V) + wh + ws the total (hardware) weight of the extended graph, the
reduction works if wh, ws ful�ll the following properties.

wh + ws > αW (4.4)
wh + H0 = αW (4.5)

wh ≥ (1− α)W (4.6)

(4.4) guarantees that wh and ws are on di�erent sides of an α�balanced cut of G′′, while (4.5) and
(4.6) ensure that an α�balanced cut of G′′ will cut o� at most H0 vertex weight of G and every
cut with at most H0 vertex weight in G corresponds to an α�balanced cut of G′′ when extended
with yh. It is easy to see that appropriate wh, ws exist for any 1

2 ≤ α < 1 and they are polynomial
in n. As before it should be ensured with an additional edge that both yh and x reside on the
hardware side, completing the reduction.
Unfortunately to our best knowledge there is no approximation algorithm known to the vertex�
weighted α�balanced cut problem. Any such approximation factor would immediately yield the
same factor for the Part3 problem.
There are so�called pseudo�approximation algorithms for the α�balanced cut problem. This means
that the algorithm guarantees a certain approximation factor not with respect to the optimum
α�balanced cut, but with respect to the optimum α′�balanced cut for some α′ > α. For instance
the following theorem holds.

Theorem 4.2. There is a polynomial time algorithm that �nds an α�balanced cut for 1
2 < α < 1

with cost at most O(b log n), where b is the cost of the optimal bisection.

Note that the case α = 1
2 is excluded in the above theorem. However, such a theorem does

not imply any real approximation ratio for the balanced cut problem, which justi�es our original
approach of reducing to the bisection problem instead of the α�balanced cut problem.

4.1.2 Modi�cation of the algorithm

In this section we follow the approach of F&K and adapt their algorithm to the Part3 problem
by slightly modifying its steps and de�nitions. Our aim is again to guarantee a polylogarithmic
approximation ratio as stated in Theorem 4.1. Instead of their basic algorithm we use the vertex�
weighted version as reference. The hardware costs in Part3 play the role of the vertex weights.
For the sake of comparability we will indicate a HW�SW partition with (W,B), where B means
the software side.
In the decomposition stage the problem was recursively cut into subproblems and the solution of
the subproblems were assembled to an overall solution. The cost of the assembled solution was
estimated using the cost of the subproblems as given in (3.4). Fortunately the same estimation can
be used for the partitioning problem as well, since the additive cost factor of the software costs sum
up directly for the subproblems�and thus it should not be estimated at all. If Cut(U,H) denote

26

the cost of the partitioning problem on part U with hardware limit H, the following inequality
holds.

Cut(U,H0) = Cut(U1,H1) + Cut(U2,H2) + c(C1, U2) + c(C2, U1) (4.7)
for a certain H1 +H2 = H0. Our goal is to do the decomposition stage in exactly the same way as
before. Therefore the notion of charge (as the upper bound on cost) should be rede�ned to handle
the modi�ed cost metric: it should incorporate the software cost of the vertices as well. So the
new charge should contain both the sum of the divide steps as implied by (4.7) and the software
costs of the vertices put into software. The following is a modi�cation of De�nition 3.6.

De�nition 4.1 (Modi�ed charge). Let (W,B) be a HW�SW partitioning of the input graph,
and assume we are given a decomposition tree T and a labeling of it. For each (nonleaf) node i of
T , if i is labeled white then we let Ci = W ∩ Vi and Fi = B ∩ Vi, and if i is labeled black then we
let Ci = B ∩Vi and Fi = W ∩Vi. The charge of the divide step of a (nonleaf) node i is de�ned as

c(Ci ∩ VL(i), VR(i)) + c(Ci ∩ VR(i), VL(i))

The charge of the HW�SW partition (W,B) is de�ned as the sum of all the divide steps charges
and the software costs of the vertices in B, i.e.

s(B) +
∑

i∈T

c(Ci ∩ VL(i), VR(i)) + c(Ci ∩ VR(i), VL(i))

It might be strange at �rst that now we de�ne the charge with respect to a HW�SW partition
instead of a bisection. Note that the approach of F&K serves more general purposes. As was shown
in Section 3.2.5 it can handle the problem of cutting away an arbitrary k number of vertices without
modifying the algorithm. So the propositions of the algorithm remain true even if (W,B) denotes
any (k, n− k) partition of the graph.
So our proposed modi�cation of the charge notion does not a�ect its properties. It is still an
upper bound of cost and a similar statement as Lemma 3.8 can be claimed, i.e. for an optimal
HW�SW partition the modi�ed charge�if de�ned with respect to an opt�consistent labeling�will
be within a logarithmic factor of its cost (since the new additive factor in the charge equals the
new additive factor in the cost). The de�nition of an amortized cut remains the same and the rest
of the decomposition and the labeling stage is unmodi�ed.
However, the combining stage has to be modi�ed according to the modi�ed charge notion. Re-
member, that the aim of the combining stage was to �nd the best bisection�labeling pair that
minimizes charge provided a decomposition tree and a family F of labelings is given. The dy-
namic programming approach relied on the fact that the charge can be distributed among the
vertices so that the vertex charges (recall De�nition 3.7) sum up to the overall charge. We should
modify the de�nition of vertex charge by adding the software cost to the charge of vertices put in
B.

De�nition 4.2 (Modi�ed vertex charge). For each vertex v ∈ Vi let the cross-degree of v at
node i, denoted by crossi(v), be the cost of the edges that are incident at v and are cut in divide
step i. The charge of a vertex v ∈ V is de�ned as the sum of the cross-degree of v at all nodes i
for which v belongs to the charged side plus the software cost of the vertex if it belongs to B, i.e.
s(v)χB(v) +

∑
i:v∈Ci

crossi(v), where χB denotes the characteristic function of the set B.

At �rst glance the condition whether v is in B or not might be surprising in the de�nition, but note
that the vertex charge depends on the side of the vertex in the bisection in the original de�nition
as well, as the cross degrees are summed up only if the vertex is in the charged size.
The properties of vertex charge remain the same after this modi�cation. Clearly the vertex charges
sum up to the charge of the bisection as before. The charge of a vertex further on depends only
on its side and is independent of the side of other vertices.

27

Therefore the dynamic programming stage of the algorithm mainly remains the same and a similar
statement as of Lemma 3.9 can be proved (recall this proof). The de�nition of Q(i, k, g) is the same,
but k goes now only until max{H0, h(Vi)}, since we are only interested in partitions satisfying the
hardware constraint. The recursion of Equation (3.9) can further on be used. However, the initial
step of the dynamic programming should slightly be modi�ed according to the new vertex charge
notion: when i is a leaf node, Vi = {v}, and k = 0, i.e. v ∈ B, then s(v) should be added to the
(old) vertex charge value, thus also to Q(i, k, g).
With this modi�cation, the entries Q(root, k, g) will contain the minimal (new) charge value for
cutting the graph into two parts of size k and n− k. According to the de�nition of Q this side is
the the hardware side W , and since k ≤ H0, these are feasible solutions for the Part3 problem.
The output of the algorithm is the smallest value among Q(root, k, g), where 0 < k ≤ H0. As our
modi�ed charge still has the property of approximating the cost, the output HW�SW partitioning
is again within a polylogarithmic factor of the optimum, completing the proof of Theorem 4.1.

28

Chapter 5

Conclusions

This work presents a novel hardware�software partitioning model and several problem formulations
on this model. First the hardness of the de�ned partitioning problems has been clari�ed. It turned
out that some versions are polynomially solvable, while others are NP�hard. The main goal of
the thesis was to develop approximation algorithms for the hard versions of the hardware�software
partitioning problem.
Many approximation algorithms for graph problems use the divide�and�conquer approach to break
the original problem into loosely coupled smaller ones that are easier to solve. This motivates the
search for balanced cuts or bisections.
In the �rst part of this thesis we give an overview of existing bisection approximation algo-
rithms, which are of independent interest. In the second part we use the approach of Feige and
Krauthgamer, that gives the best known approximation ratio currently to the minimal bisection
problem, to develop approximation algorithms to the hardware�software partitioning problem.
The partitioning model, the partitioning problem formulations, the NP�hardness proofs and the
two derived approximation algorithms are my own results.

Acknowledgements

I would like to thank to my supervisor András Benczúr and to my colleague Zoltán Mann for their
useful comments, which helped improve the quality of this work signi�cantly.

29

Bibliography

[1] C. J. Alpert and A. B. Kahng. Recent developments in netlist partitioning: A survey. VLSI
Journal, 19(1-2):1�81, 1995.

[2] P. Arató, Z. Á. Mann, and A. Orbán. Algorithmic aspects of hardware/software partitioning.
Submitted to ACM TODAES.

[3] P. Arató, Z. Á. Mann, and A. Orbán. Hardware-software co-design for Kohonen's self-
organizing map. In Proceedings of the IEEE 7th International Conference on Intelligent
Engineering Systems, 2003.

[4] Sanjeev Arora, David Karger, and Marek Karpinski. Polynomial time approximation schemes
for dense instances of NP-hard problems. Journal of Computer and System Sciences (JCSS),
58(1):193�210, 1999.

[5] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is np-hard.
Information Processing Letters, 42:153�159, May 1992.

[6] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum bisection.
SIAM Journal of Computing, 31(4):1090�1118, 2002.

[7] U. Feige, R. Krauthgamer, and N. Nissim. Approximating the minimum bisection size. In
Symposium on the Theory of Computing (STOC), pages 530�536, 2000.

[8] L. R. Ford and D. R. Fulkerson. Maximal �ow through a network. Canadian Journal of
Mathematics, 8:399�404, 1956.

[9] M. R. Garey and D. S. Johnson. A guide to the theory of NP�completeness. Freeman, San
Francisco, 1979.

[10] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou. The complexity of coloring
circular arcs and chords. SIAM Journal on Algebraic and Discrete Methods, 2(1):216�227,
1980.

[11] Naveen Garg, Huzur Saran, and Vijay V. Vazirani. Finding separator cuts in planar graphs
within twice the optimal. SIAM Journal of Computing, 29(1):159�179, 1999.

[12] R. Gomory and T. C. Hu. Multi�terminal netwotk �ows. SIAM Journal of Applied Mathe-
matic, 9:551�570, 1961.

[13] D. S. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS Publishing,
Boston, MA, 1997.

[14] Philip N. Klein, Serge A. Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity �ow. In Symposium on the Theory of Computing (STOC), pages 682�
690, 1993.

30

[15] T. Leighton and S. Rao. An approximate max-�ow min-cut theorem for uniform multicom-
modity �ow problems with applications to approximation algorithms. In IEEE Symposium
on Foundations of Computer Science, pages 422�431, 1988.

[16] T. Leighton and S. Rao. Multicommodity max-�ow min-cut theorems and their use in de-
signing approximation algorithms. Journal of the ACM, 46(6):787�832, 1999.

[17] M. Lopez-Vallejo and J. C. Lopez. On the hardware-software partitioning problem: system
modeling and partitioning techniques. ACM Transactions on Design Automation of Electronic
Systems, 8(3):269�297, July 2003.

[18] Z. Á. Mann and A. Orbán. Optimization problems in system-level synthesis. In Proceedings
of the 3rd Hungarian-Japanese Symposium on Discrete Mathematics and Its Applications,
2003.

[19] C. H. Papadimitriou. Computational complexity. Addison Wesley, 1994.

[20] Huzur Saran and Vijay V. Vazirani. Finding the minimum cut within twice the optimum.
SIAM Journal of Computing, 24(1):101�108, 1995.

[21] F. Shahrokhi and D. W. Matula. The maximum concurrent �ow problem. Journal of the
ACM, 37(2):318�334, April 1990.

[22] H. Stone. Multiprocessor scheduling with the aid of network �ow algorithms. IEEE Trans-
actions on Software Engineering, 3(1):85�93, Jan 1977.

31

