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Chapter 1

Ágnes Backhausz: Markov chains:
from random walks to simulations

1.1 Introduction
Imagine the following situation. A tourist is wandering around in a foreign

city. At each corner he chooses a street at random to continue his walk along it. If
he is so absent-minded that he always forgets where he has been before, then his
random walk is a so-called Markov chain. We can ask about the probability that
he returns to the starting place after some time, or the places that are the most
likely to find him after a long time.

Loosely speaking, Markov chains are stochastic processes that forget their past:
it is sufficient to know the actual state of the process to calculate the probabilities
of future events. Since Markov chains have very weak memory, they are easier to
handle from a theoretical point of view (especially when the number of possible
states of the chain is finite); however, they are still flexible enough to have vari-
ous applications both in real life examples (e.g. insurance) and in more complex
problems of probability theory or combinatorics for example.

We start with some toy examples which lead to the concept of a Markov chain
in the finite state case. We continue with asking what happens after a long time,
what is stationary distribution and mixing time. Finally we have a look at the
methods of computer simulations that are based on Markov chains.

1.2 Markov chains with finite state space
Before giving the definition of a Markov chain, let us see some other examples.

Exercise 1.2.1 (Gambler’s ruin). Alice has A pounds, Bob has B. They repeat a
fair game with 1 pound at stake. If one of them loses all his or her money, then
the other one wins, and the game is finished. What is the probability that Alice is
the winner if

a) A = 2, B = 2; b) A = 1, B = 3; c) A = 2, B = 3; d) A = 10, B = 5?

Note that even in the last case, the probability that Alice wins depends always
only on the actual state of the game.
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Exercise 1.2.2 (Simple model for weather forecast). If a day is sunny, then the
next day will be sunny with probability 2/3; otherwise it is raining. Moreover, after
a rainy day, it will rain on the following day with probability 1/4; otherwise it will
be sunny. The sun is shining today. What is the probability that it will rain a)
tomorrow; b) the day after tomorrow; c) on Thursday; d) on the next Monday.

Note again that according to this simple model, the probabilities of rain and
sunshine depend only on the weather of the previous day. This is the basic concept
of a Markov chain. We will use the following definition.

1.2.1 Definition and transition matrix
Definition 1.2.3 (Markov chain). Let (Ω,A, P ) be a probability space and let I
be a finite set: I = {i1, . . . , is}. The sequence of random variables (Xn)∞n=0 with
Xn : Ω→ I is a Markov chain if

P(Xn+1 = in+1|X0 = i0, X1 = i1, . . . , Xn = in) = P(Xn+1 = in+1|Xn = in)

holds for all n = 1, 2, . . . and i0, . . . , in+1 ∈ I for which the conditional probabilities
exist.

Example 1.2.4. In Exercise 1.2.1, I = {0, 1, . . . , 15}, Xn denotes the amount of
money of Alice after n turns. Then X0 = A and (Xn) is a Markov chain.

Example 1.2.5. In Exercise 1.2.2, I = {sun, rain}, Xn represents the weather of
day n, X0 = sun.

Exercise 1.2.6 (Conditional independence). Show that for a Markov chain (Xn)
the following holds:

P(Xn+1 = in+1, . . . , Xn+m = in+m|Xn = in)P(X0 = i0, . . . , Xn−1 = in−1|Xn = in)
= P(Xn+1 = in+1, . . . , Xn+m = in+m, X0 = i0, . . . , Xn−1 = in−1|Xn = in).

That is, the future and the past are conditionally independent with respect to the
present.

We will suppose that the behaviour of the chain is constant in time in terms
of conditional probabilities.

Definition 1.2.7 (Homogenity in time). We say that a Markov chain (Xn) is
time-homogeneous, if for all n ≥ 1 and i, j ∈ I such that P(Xn = i) > 0, the
conditional probability

P(Xn+1 = j|Xn = i)
does not depend on n. That is, P(Xn+1 = j|Xn = i) = pij holds for some pij for
all n.

>From now on we always consider time-homogeneous Markov chains. Then
pij is the probability that from state i we move to state j in one step. In Exercise
1.2.2, we have psun,sun = 2/3 for example. It may be also interesting to look further
and ask what is the probability that from state i we arrive at state j in two steps,
three or seven steps. For a time-homogeneous Markov chain this depends only on
i, j and the number of steps.
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Definition 1.2.8 (Transition matrix). For a time-homogeneous Markov chain
(Xn) the n step transition probabilities are the following:

p
(n)
ij = P(Xn = j|X0 = i) (i, j ∈ I, n ≥ 1).

The n step transition matrix consists of the n step transition probabilities:
P (n) ∈ Rs×s with

P (n)
uv = p

(n)
iu,iv = P(Xn = iv|X0 = iu) (u, v = 1, . . . , s, n ≥ 1).

For n = 0,P (0) is the identity matrix, and for P (1) we write simply P .

Note that P (n) is a so-called stochastic matrix: the sums of elements in each
row is equal to 1, and its entries are nonnegative. Moreover, time-homogenity
implies that

p
(n)
iu,iv = P(Xn+m = iv|Xm = iu)

holds for all m ≥ 0 and u, v = 1, . . . , s.

Exercise 1.2.9. Give the 1, 2 and 3 step transition matrices of the Markov chain
of Exercise 1.2.2, and the (1 step) transition matrix of Exercise 1.2.1.

1.2.2 Chapman–Kolmogorov equations
The following is a consequence of the law of total probability. When going from

state i to j in n+m steps, we ask where the chain is after n steps.

Proposition 1.2.10 (Chapman–Kolmogorov equations). For a time-homogeneous
Markov chain (Xn) we have

p
(n+m)
ij =

∑
k∈I

p
(n)
ik p

(m)
kj (i, j ∈ I, n,m ≥ 0, P(X0 = i) > 0).

This gives a simple way for calculating the n step transition matrix from the
1 step transition probabilities. Namely, the n step transition matrix is the nth
power of the one step transition matrix.

Proposition 1.2.11. For a time-homogeneous Markov chain (Xn) we have P (n) =
P n for every n ≥ 0.

1.3 Stationary distribution
We would like to describe the long-term behaviour of a Markov chain with

finite state space. We ask whether the probability of being at state i is convergent,
and if so, does the limit depend on the initial position of the chain. This will
lead to the concept of the stationary distribution, which may be the limit of the
distibution of Xn under certain conditions.



4 Ágnes Backhausz: Markov chains: from random walks to simulations

1.3.1 Existence and uniqueness
We consider a time-homogeneous Markov chain (Xn). We asked what is the

probability that Xn is in state i after n steps, given X0. As we have seen, the
transition probabilities are easier to handle together. We do the same, and we
build a row vector for each n that contains the probabilities of being at the possible
states. This also allows us to describe the case when the Markov chain starts from
a random position, that is, X0 is a random variable.

Definition 1.3.1. For a time-homogeneous Markov chain (Xn) we use the follow-
ing notation. For each n ≥ 0 we have x(n) ∈ Rs with

x(n)
u = P(Xn = iu).

Exercise 1.3.2. Show that x(n)
u = ∑s

v=1 x
(n−1)
v Pvu, that is, x(n) = x(n−1)P , and

hence x(n) = x(0)P n.

Suppose that the vectors x(n) converge elementwise as n→∞. This may give
a motivation for the following definition.

Definition 1.3.3 (Stationary distribution). π ∈ Rs is a stationary distribution
for a Markov chain with transition matrix P if (i) 0 ≤ πu ≤ 1 for 1 ≤ u ≤ s; (ii)∑s
u=1 πu = 1; (iii) π = πP , that is,

πi =
∑
k∈S

πkPki.

To put it in another way, if the initial distribution of the Markov chain is the
stationary distribution π, then the distribution of Xn is also π for all n.

Note that since the sum of elements in each row of P is equal to 1, we have
P1T = 1T , that is, the column vector with all entries equal to 1 is a right eigenvec-
tor of P with eigenvalue 1. The stationary distribution is a left eigenvector with
eigenvalue 1.

Exercise 1.3.4. Find a stationary distribution for the Markov chain of Exercise
1.2.2.

Exercise 1.3.5 (Random walk on a graph). Let G be a simple connected graph
(no loops and multiple edges) on s vertices. Let us consider the following Markov
chain. The state space is the vertex set of G, and the transition probabilities are

puv =


1

deg(u), if uv is an edge in G;
0; otherwise.

Find a stationary distribution.

We will see that the following is a sufficient condition for the existence of the
stationary distribution.

Definition 1.3.6 (Irreducible Markov chain). A Markov chain is irreducible if for
all i, j ∈ I there exists n ≥ 1 such that p(n)

ij > 0.

That is, for two arbitrary states it is possible to go from one to the other one.
The number of necessary steps may depend on the two states by definition.
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Proposition 1.3.7 (Irreducible case, proposition 1.14. in [5]). Let P be the tran-
sition matrix of an irreducible Markov chain. Then there exists a probability dis-
tribution π on I such that π = πP and πi > 0 for all i ∈ I. Moveover,

πi = 1
mii

(i ∈ J),

where mii is the expectation of τi = inf{n > 0 : Xn = i|X0 = i).
To put it in another way, a finite irreducible Markov chain has a unique sta-

tionary distribution. We also see from this proposition that E(τi) is finite. We
remark that the uniqueness also follows from the fact that a harmonic function is
constant in the irreducible case (see Section 1.5.4. of [5] for the details).

1.3.2 Convergence
Now we would like to see that the probability of being in state i after n steps

converges to πi as the number of steps goes to infinity. To state the theorem
giving even the speed of convergence, we need another important definition for the
following reason. Think of a Markov chain with I = {0, 1, . . . , s − 1}, where we
always move one up or down, starting from 0. Then the probability of being at 0
after n steps is clearly 0 for odd n, while the limit of the sequence of probabilities
for even n is positive. We exclude this kind of periodicity.
Definition 1.3.8 (Aperiodic Markov chain). The period of state i is defined by

d(i) = gcd{n ≥ 1 : p(n)
ii > 0}.

A Markov chain is aperiodic if d(i) = 1 for all i ∈ I.
Theorem 1.3.9 (Theorem 4.9. in [5]). Let Xn be a time-homogeneous, irreducible,
aperiodic Markov chain with finite state space with transition matrix P and sta-
tionary distribution π. There exist constants α ∈ (0, 1) and C > 0 such that

max
i∈I

∣∣∣∣∣∣∣∣p(n)
i· − π

∣∣∣∣∣∣∣∣
TV

= max
i∈I

1
2
∑
j∈I

∣∣∣∣p(n)
ij − πj

∣∣∣∣ ≤ Cαn.

Loosely speaking, this theorem states that the distribution after n steps con-
verges exponentially fast in the total variation distance to the stationary distribu-
tion. This also means that a Markov chain "forgets" its initial distribution fast.
Exercise 1.3.10. Consider a chess board consisting of 64 squares. A king is placed
in one of the corners. Then at each step it moves one in a random direction. All
possible directions are equally likely to be chosen. Let qn be the probability that the
king is a) in the same corner b) in an arbitrary corner after n steps. What is the
limit of qn as n tends to infinity?

1.3.3 Mixing time
Theorem 1.3.9 states the existence of an upper bound on the distance of the

distribution after n steps and the stationary distribution in terms of the number
of steps. Now we consider the reverse problem. We fix the distance from the
stationary distribution, and ask how many steps do we need to reach this. It will
turn out that this is in connection with the second largest eigenvalue (in absolute
value), or more precisely the spectral gap of the transition matrix.
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Definition 1.3.11 (Mixing time). Consider a Markov chain with finite state space
I, transition matrix P and stationary distribution π. Let Q be the set of probability
distributions on I. Then we define

D(n) = sup
{
µ ∈ Q :

∣∣∣∣∣∣∣∣µP (n) − π
∣∣∣∣∣∣∣∣
TV

}
,

and for all ε > 0 the mixing time for ε is as follows.

tmix(ε) = min{n ≥ 1 : D(n) ≤ ε}.

In a special case we can give an upper bound on the mixing time.

Definition 1.3.12 (Reversibility). Consider a Markov chain with transition ma-
trix P and stationary distribution π. We say that the chain is reversible with
respect to the stationary distribution if

πiPij = πjPji

holds for all i, j ∈ I.

Exercise 1.3.13. Find a Markov chain defined in one of the previous exercises
that is reversible with respect to its stationary distribution.

First we define the relaxation time which is based on the second largest eigen-
value of P , and then we give an upper bound on the mixing time using this
quantity.

Definition 1.3.14 (Relaxation time). For a reversible transition matrix P , the
relaxation time is defined by

trel = 1
1−max{|λ| : λ is an eigenvalue of P, λ 6= 1} .

Theorem 1.3.15 (Mixing time and relaxation time, Theorem 12.3. in [5]). For a
reversible, irreducible Markov chain let πmin = mini∈I πi. Then we have

tmix(ε) ≤ log
( 1
πminε

)
trel.

1.4 Algorithms based on Markov chains
It may happen that we would like to sample from a well-defined distribution

but the system is too large or complicated to do this directly. For example, we
would like to pick a web page at random such that each of them has the same
probability to be chosen. Note that there are more than 13 billion of web pages.
Typically we can start from a given one and then we can follow the links between
them. Suppose that we also know who is linking to a given web page. Then we can
forget about the direction of links, and we are in the situation given by Exercise
1.3.5. We could calculate the stationary distribution of the Markov chain given
there, but it is clearly not uniform (unless the graph is regular).

The idea is that we define another Markov chain on the vertex set of G whose
stationary distribution is uniform on the vertices. Then, starting from an arbi-
trary vertex or initial distribution, according to Theorem 1.3.9, we get close to
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the uniform distribution quite fast. There are several ways to do this in various
settings, see Chapter 3 of [5].

For example, the so-called Metropolis–Hastings algorithms follow a kind of a
random walk but the suggested moves are accepted with a certain probability; if a
move is not accepted, then they stay at the actual state. Usually it is not preferred
to move to states that have larger weight in the stationary distibution than the
actual state. It is not hard to calculate the appropriate probability that a move
accepted in certain situation. For example, in the case of simple graphs we use the
following transition probabilities to choose a vertex uniformly at random.

qij =

pijαij i 6= j;
pii+∑

j 6=i pij(1− αij) otherwise.

with
αij = min

(
|N(i)|
|N(j)| , 1

)
,

where N(i) is the number of neighbours (the degree) of i in the graph.
Another possibility is setting

αij = 1
2

1
|N(j)| .

We may also want to choose a permutation of n elements uniformly at random
by transpositions. Some kinds of Metropolis–Hastings algorithms may also be used
here.

Markov chains may also be used to generate a uniform spanning tree or proper
coloring of a graph. The idea is again that we define a Markov chain whose
stationary distribution is the uniform distribution. So called Glauber dynamics
are used in the latter case.

We mention that there are also methods based on Markov chains to sample
from continuous or high dimensional distributions (see Appendix B of [5]).

1.5 Exercises
1. Alice and Bob are rolling two fair dices several times. If the sum is at most

3, then Alice wins. If the sum is 7, then Bob wins. Otherwise they throw the
dices again. This is repeated until one of them wins. What is the probability
that Alice wins the game?

2. A basketball player is practicing shots. If two consecutive shots are succes-
ful, then the following one is succesful with probability 2/3. If only one of
two consecutive shots is succesful, the the following one is succesful with
probabiliy 1/2. If none of two consecutive shots are succesful, then his next
attempt is succesful only with probability 1/4.
Define a Markov chain describing the attempts of the player, and determine
its transition matrix. Try guessing the ratio of succesful shots on a long term
average.



8 Ágnes Backhausz: Markov chains: from random walks to simulations

3. Alice and Bob toss a fair coin several times. If the sequence HHHT comes
before the sequence sequence HTHT, then Alice wins, otherwise Bob wins.
What is the probability that Alice wins? What is the expected number of
coin tosses in this game? (The game is finished when somebody wins.)

4. Alice, Bob and Charles play tennis. First Alice plays against Bob. They do
the following. After each match, the winner plays with the one who did not
participate in the last match. If somebody wins two times in a row, then the
game is finished and he or she is the final winner. What is the probability
that Alice is the final winner? What is the expected number of matches?

5. [Non backtracking random walk] We have a finite simple graph on s vertices.
We start from an arbitrary vertex. At each step we go to a neighbouring
vertex; we choose one of them uniformly at random, but the one where we
have been in the previous step can not be chosen. Is the sequence of visited
vertices is a Markov chain? Can we define a Markov chain that describes
this process?

6. A driver can be in one of three classes with respect to the liability insurance:
M,A, and B. M is the worst and B is the best. At each year the number
of accidents he caused a) is 0 with probability 0, 98, and 1 or 2 both with
probability 0,01; b) has Poisson distribution with expected value 0,01.
If he does not cause any accident, then for the next year he moves one class
upwards, or stays in B if he was there. If he causes an accident, then he
moves one class downwards. But if he causes at least to accidents in a year,
then he goes to M even from B.
Determine the 1, 2, 3 step transition matrices of the Markov chain described
above, and find the stationary distribution. What is the limit of probability
of being in B as the number of years tends to infinity?

7. Are the following Markov chains irreducible? Determine the period d(i) for
i ∈ I and a stationary distribution if possible.
a) I = {0, 1, . . . , 100}. We start from 0. From 0 we go always to 1, from 100
we go always to 99. Otherwise we toss a fair coin, and if it is heads, we move
one to the right, otherwise one to the left.
b) I = {0, 1, . . . , 100}. We start from 0. From 0 we go always to 0, from 100
we go always to 99. Otherwise we toss a fair coin, and if it is heads, we move
one to the right, otherwise one to the left.

8. Consider the following Markov chain with I = {0, 1}. The probability of
staying at the actual state is p for all steps; these choices are independent.
What is the transition matrix for 1, 2, 4, 64 steps? Is this Markov chain
reversible? What is its relaxation time?
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Chapter 2

Péter Csikvári and Tamás Héger:
Strongly regular graphs –
combinatorics and eigenvalues

2.1 Combinatorics. . .
Throughout this lecture G = (V,E) denotes a simple, undirected graph (so

there are no multiple edges or loops in G) with vertex set V and edge set E.
The complete graph (where every pair of vertices are connected by an edge) on n
vertices is denoted by Kn. A graph is empty if it has no edges. If two vertices, u
and v are connected by an edge, we call them adjacent or neighbors, and we may
write u ∼ v. A graph G is called k-regular, if every vertex of G has precisely k
neighbors.

Figure 2.1: This is the famous Petersen-graph. It is 3-regular on 10 vertices.
Moreover, if two vertices are adjacent, then they have no common neighbors; if
two vertices are not adjacent, then they have exactly one common neighbor.

Definition 2.1.1. A graph G is called a strongly regular graph with parameters
(n, k, λ, µ) (in notation: SRG(n, k, λ, µ)) if the following properties hold:

1. G has n vertices and G is k-regular;

2. if two distinct vertices are adjacent, then they have λ common neighbors;
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3. if two distinct vertices are nonadjacent, then they have µ common neighbors;

4. G is not complete, nor empty (that is, 1 ≤ k ≤ n− 2).

For example, the Petersen-graph is an SRG(10, 3, 0, 1). Sometimes the 4th point
is omitted from the definition. Note that if we did not require this property, the
parameters λ and µ would not be well defined; for example, the complete graph Kn

would be an SRG(n, n−1, n−2, µ) for arbitrary µ, since there are no non-adjacent
vertices in Kn.

Exercise 2.1.2. Determine which cycles are strongly regular, and determine their
parameters.

Exercise 2.1.3. Show that if a k-regular bipartite graph is strongly regular, then
either k = 1 (so the graph consists of independent edges) or it is isomorphic to
Kk,k. (Kk,k is the complete bipartite graph on k + k vertices; that is, both vertex
classes have k vertices and any two vertices from different classes are adjacent.)

Exercise 2.1.4. Show that the Petersen-graph is the unique SRG(10, 3, 0, 1).

Exercise 2.1.5. Construct an SRG(16, 5, 0, 2) and show that it is unique. (This
graph is called the Clebsch-graph. Hint: the Petersen-graph is a subgraph of it.)

Exercise 2.1.6. Construct an SRG(16, 6, 2, 2).

Clearly there are some restrictions on the parameters of a strongly regular
graph; for example, one must have λ ≤ k − 1 and µ ≤ k. Next we establish a
connection among the parameters, which shows that any three of them determines
the fourth.

Theorem 2.1.7. Suppose that an SRG(n, k, λ, µ) exists. Then

k(k − 1− λ) = (n− 1− k)µ.

Proof. Let u be an arbitrary vertex, and count the triplets {(u, v, w) : uv ∈ E, vw ∈
E, uw /∈ E, u 6= w}. We may choose v in k different ways, and after that there
are k− 1− λ suitable neighbors of v for the choice of w. Thus the number of such
triplets is k(k − 1− λ). On the other hand, if we choose w first, then in a similar
way we find that the number of such triplets is (n− 1− k)µ.

Recall that the complement of a graph G has the same vertex set as G, and
two vertices are adjacent in it if and only if they are not adjacent in G.

Theorem 2.1.8. If G is an SRG(n, k, λ, µ), then its complement, denoted by G,
is an SRG(n, k̄, λ̄, µ̄), where k̄ = n− k − 1, λ̄ = n− 2k + µ− 2, µ̄ = n− 2k + λ.

Proof. It is clear that G is (n − k − 1)-regular. Let u and v be two adjacent
vertices in G. Then the number of vertices not adjacent to both u and v in G
is n − 2k + µ − 2, which is just the number of common neighbors of u and v in
G. Now suppose that u and v are non-adjacent in G. Then, similarly, they have
n− 2k + λ common neighbors in G.

Note that the above theorem yields further restrictions on the parameters: by
λ̄ ≥ 0 and µ̄ ≥ 0 we obtain µ ≥ 2k − n + 2 and λ ≥ 2k − n. Next we show that
disconnected strongly regular graphs are not too interesting.
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Theorem 2.1.9. Suppose that G is a disconnected strongly regular graph. Then
it is the union of some complete graphs of the same size.

Proof. Let G be an SRG(n, k, λ, µ) that is disconnected. Take two vertices from
two distinct components. Then they cannot have a common neighbor, thus µ = 0.
Consider a connected component. If there were two vertices in it at distance at
least two, then there were two vertices at distance exactly two, in contradiction
with µ = 0. Hence every component is a complete graph, namely Kk+1. We
remark that n = c · (k + 1) for some integer c ≥ 2, and λ = k − 1.

Example 2.1.10. Consider the graph on 2n vertices that consists of n independent
edges (that is, the graph is the union of n disjoint K2-s). This is called the ladder
graph. Its complement (also strongly regular) is called the cocktail party graph.

By Theorem 2.1.9, we see that it is enough to treat connected strongly regular
graphs whose complement is also connected.

Exercise 2.1.11. Consider the two element subsets of {1; 2; 3; 4; 5} as vertices,
and join two of them if and only if they are disjoint. Do you know this graph?
(You do.)

Example 2.1.12. The lattice-graph L(m) is defined as follows. Consider an m×m
grid, whose m2 points are the vertices of L(m), and two vertices are adjacent if
and only if they are in the same row or column. Formally, let V = {1, 2, . . . ,m}×
{1, 2, . . . ,m}, and (i, j) is adjacent to (i′, j′) if and only if i = i′ or j = j′. L(m)
is an SRG(m2, 2(m− 1),m− 2, 2).

As we have seen in the case of the Petersen-graph, sometimes the parameters
of a strongly regular graph uniquely determine the graph, but this is not true in
general.

Theorem 2.1.13. For every 4 6= m ≥ 2 the lattice graph L(m) is the unique
SRG(m2, 2(m− 1),m− 2, 2).

Proof. We prove the theorem for m > 4 only; see Exercise 2.1.15. Let v be a
vertex of L(4), and let G(v) be the graph induced by the neighbors of v. It is
clear that G(v) has 2m− 2 vertices and it is (m− 2)-regular. Let u and z be two
nonadjacent vertices of G(v), and denote the number of their common neighbors
by c. Clearly c ≤ 1. The number of vertices not adjacent to u nor z in G(v))
is precisely c. Assume first that c = 1, then let w be the unique point of G(v)
that is not incident to u nor z. Again, w and u, and also w and z may have
at most one common neighbor, so there are at least m − 4 ≥ 1 neighbors of w
that are not adjacent to u nor z. However, the only such vertex is w itself, thus
c = 0 must hold. This means that G(v) does not contain a triangle. As G(v) is
(m − 1)-regular on 2(m − 1) vertices, this implies G(v) ≈ Km−1,m−1, so G(v) is
the union of two disjoint Km−1s. Thus to every vertex v of L(m) belong two Km

subgraphs, altogether 2m distinct copies. Two distinct Km subgraphs may share
at most one vertex, otherwise two of their common points would have more than
m− 2 common neighbors. It is enough to show that the Kms can be divided into
two classes so that elements of each class partition the vertices of L(4) (so the two
classes correspond to the rows and columns). Let H be the graph whose vertices
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are the Km subgraphs, and two of them are adjacent if and only if they intersect in
one vertex. Then H is triangle-free (otherwise we could find two adjacent vertices
in L(4) with more thanm−2 common neighbors) and every vertex of H has degree
at least m; thus H is isomorphic to Km,m, whence the assertion follows.

The next exercise shows that the above result does not hold if m = 4.

Exercise 2.1.14. Let V be the vertex set of the lattice graph L(4), and let S be the
set of the four diagonal vertices. We define a new graph G (the Shrikhande-graph)
on the set V . Let u, v be two distinct vertices of V . If u /∈ S and v /∈ S, then uv
is an edge in G if and only if uv is an edge in L(4). If u ∈ S and v /∈ S, then uv
is an edge in G if and only if uv is not an edge in L(4). No two vertices of S are
adjacent. Show that G is a strongly regular graph with the same parameter set as
L(4), but G is not isomorphic to L(4).

Exercise 2.1.15. Verify Theorem 2.1.13 for m = 2, 3.

Example 2.1.16. The triangular graph T (m) is defined as follows. Let the vertex
set V of T (m) be the set of two-element subsets of {1, 2, . . . ,m}, and let two of them
be adjacent if their intersection is of size one. Then T (m) is an SRG(m(m−1)

2 , 2(m−
2),m− 2, 4).

Note that by Exercise 2.1.11 we have that T (5) is the complement of the
Petersen-graph.

Exercise 2.1.17. Consider the even element subsets of {1, 2, 3, 4, 5} (including the
empty set) and let two be adjacent if their symmetric difference has four elements.
Prove that the arising graph is strongly regular. Do you know this graph?

Exercise 2.1.18. Construct an SRG(35, 18, 9, 9).

Exercise 2.1.19. Construct an SRG(120, 56, 32, 28).

Exercise 2.1.20. Let p be a prime such that p ≡ 1 (mod 4). The Paley-graph P (p)
is defined in the following way: its vertex set is {0, 1, . . . , p− 1}, and two distinct
vertices u and v are connected if and only if u− v is a quadratic residue modulo p.
(A number n is a quadratic residue modulo p if n ≡ x2 (mod p) for some integer x.)
Prove that P (p) is an SRG(p, p−1

2 , p−5
4 , p−1

4 ). (Hint: use automorphisms; consider
also P (p).)

Exercise 2.1.21. Is it possible to color the edges of K10 with three colors so that
the edges of each color form a Petersen-graph?

2.2 . . . and eigenvalues
Next we associate a matrix to a graph, which allows us to use linear alge-

braic techniques and results. Throughout 1 denotes the all-one vector (of suitable
dimension), I is the identity matrix, J is the all-one matrix.

Definition 2.2.1. Let G = (V,E) be a graph, and suppose that V has some
ordering, V = {v1, v2, . . . , vn}. The adjacency matrix of G is the matrix A ∈ Rn×n,
where Aij = 1 if vi and vj are adjacent, and zero otherwise.
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Note that the adjacency matrix of a graph is symmetric, and it has zeros in
the diagonal.

Example 2.2.2. 

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0



1

2

34

5

6

7

89

10

The Petersen-graph and its adjacency matrix.

A graph is completely described by its adjacency matrix, so information on
one of them gives information on the other one. We will examine the adjacency
matrix of graphs, in particular the eigenvalues and the eigenvectors of it. First we
consider some facts from linear algebra. Recall that the trace of a (square) matrix
A is the sum of the entries on its diagonal.

Theorem 2.2.3. Let A ∈ Rn×n with eigenvalues λ1, . . . , λn. Then ∏n
i=1 λi =

det(A) and ∑n
i=1 λi = trace(A).

We remark that the trace of the adjacency matrix of a (loopless) graph is zero.

Theorem 2.2.4. Let A ∈ Rn×n be a symmetric matrix. Then there is an or-
thonormal eigenbasis v1, . . . , vn of Rn with respect to A; that is,

• v1, . . . , vn is a basis of Rn;

• Avi = λivi for some λi ∈ R (1 ≤ i ≤ n);

• vTi vj = 0 for all 1 ≤ i < j ≤ n;

• vTi vi = 1 for all 1 ≤ i ≤ n.

Note that the above theorem implies that a real symmetric matrix has real
eigenvalues.

Definition 2.2.5. The spectrum of a matrix is the multiset of its eigenvalues. The
spectrum of a graph is that of its adjacency matrix. If the matrix is of dimension
n × n, we usually order its eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λn. We may indicate
the multiset of eigenvalues as a set in which the elements have an exponent, which
refers to the multiplicity of the eigenvalue.

Exercise 2.2.6. Show that the spectrum of a graph is the union of the spectra of
its connected components.
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The next theorem is a consequence of the more general Frobenius–Perron the-
orem. We only formulate the results for adjacency matrices of graphs.

Theorem 2.2.7. Let A be the adjacency matrix of a connected, undirected graph
G. Then

• the largest eigenvalue λ1 of A has multiplicity one;

• there is an eigenvector of A with eigenvalue λ whose components are positive;

• for the smallest eigenvalue λn we have |λn| ≤ λ1.

Theorem 2.2.8. Let A ∈ Rn×n be a symmetric matrix, and let λ be its largest
eigenvalue. Then for all u ∈ Rn we have

uTAu ≤ λ|u|2.

Equality holds if and only if u is an eigenvector of A with eigenvalue λ.

Proof. Let v1, . . . , vn be an orthonormal eigenbasis as in Theorem 2.2.4. Then
u = ∑n

i=1 αivi for some αi ∈ R, and |u|2 = uTu = ∑
i,j αiαju

T
i uj = ∑n

i=1 α
2
i . Thus

uTAu =
(

n∑
i=1

αiv
T
i

)
A

 n∑
j=1

αjvj

 =
n∑
i=1

αiv
T
i

n∑
j=1

αjAvj =

n∑
i=1

n∑
j=1

αiαjλjv
T
i vj =

n∑
i=1

α2
iλi ≤ λ1|u|2.

Equality holds if and only if λi < λ1 implies αi = 0, thus u is in the subspace
generated by the eigenvectors with eigenvalue λ1.

Theorem 2.2.9. Let G be a graph with average degree d̄ and maximum degree ∆.
Then d̄ ≤ λ1 ≤ ∆.

Proof. Let e denote the number of edges in G. Then d̄ = 2e/n. Suppose that
Av = λv, v = (v1, . . . , vn) 6= 0. We may assume that v1 ≥ v2 ≥ · · · ≥ vn and
v1 > 0 (as −v is also an eigenvector). Then λv1 = (Av)1 ≤ ∆v1. On the other
hand, Theorem 2.2.8 yields 2e = 1TA1 ≤ λ1n.

Theorem 2.2.10. A graph is regular if and only if 1 is an eigenvector of its
adjacency matrix. The eigenvalue of 1 is the common degree of the vertices.

Proof. Trivial.

One may think of an eigenvector and the corresponding eigenvalue of a graph
in the following way. Let A be the adjacency matrix of the graph G on n vertices
and let v be an eigenvector of A with eigenvalue λ; that is, Av = λv. For any
1 ≤ i ≤ n the ith coordinate of the left-hand-side is (Av)i = ∑

vk∈V : vk∼vi
vk, while

the ith coordinate of the right-hand-side is λvi. So if we write the entries of the
eigenvector v on the corresponding vertices of G, and then replace every entry by
the sum of the entries on the neighboring vertices (in the same time), then we get
the original value multiplied by λ on all vertices. For an illustration, see Figure
2.2.

As an illustration, we give a characterization of bipartite graphs in terms of
their spectrum. Recall that vTAv ≤ λ1|v|2 for all vectors v.
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Figure 2.2: The cycle of length four has spectrum {11, 02,−11}. On the left
part we depicted the eigenvector, on the right part we depicted the result after
adding up the entries of the neighbors. Ordering the vertices from the top-left
corner clockwise, the four eigenvectors are (1; 1; 1; 1), (1;−1; 1;−1), (0; 1; 0;−1),
(1; 1;−1;−1).

Theorem 2.2.11. Let G be a graph on n vertices, and let A be its adjacency
matrix. Then the following hold.

• G is bipartite if and only if the spectrum of A is symmetric (that is, if λ is
an eigenvalue of A with multiplicity m, then −λ is also an eigenvalue of A
with multiplicity m).

• G is bipartite if and only if λ1 = −λn.

Proof. Suppose that G is bipartite on n + m vertices, where the two classes
have n and m vertices, respectively, and let A be its adjacency matrix. Let
v = (v1, . . . , vn+m) be an eigenvector of A with eigenvalue λ. By a proper or-
dering we may assume that the first n coordinates correspond to the vertices of
first vertex class. Let v̄ = (−v1, . . . ,−vn, vn+1, . . . , vn+m). Then v̄ is also an eigen-
vector of A with eigenvalue −λ, hence the spectrum of A is symmetric.
Now suppose that λ1 = −λn. Then λ1 and λn are eigenvalues of the same com-
ponent by the Frobenius–Perron theorem, thus we may assume that our graph is
connected. Let v be an eigenvector of length |v| = 1 with eigenvalue λn, and let
the vector u be defined by ui = |vi| (1 ≤ i ≤ n+m). Then also |u| = 1. As

λn = vTAv =
n∑
i=1

n∑
j=1

Aijvivj,

we have

λ1 = |λn| =

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

Aijvivj

∣∣∣∣∣∣ ≤
n∑
i=1

n∑
j=1

Aij|vi||vj| = uTAu ≤ λ1.
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It the second estimate equality holds if and only if u is an eigenvector with eigen-
value λ1 (Theorem 2.2.8). By the Frobenius–Perron theorem we have that all
components of u are positive. As equality holds in the first estimate (triangle-
inequality), either vivj = |vi||vj| or vivj = −|vi||vj| for all pairs i and j such that
the corresponding vertices are adjacent. As λn < 0, the second option holds.
Thus two vertices may be adjacent only if the corresponding components of v have
different sign; that is, the signs of the components of v yield a bipartition.

If v is an eigenvector of A with eigenvalue λ, then v is also an eigenvector of
Ak with eigenvalue λk.

Theorem 2.2.12. (Am)ij is the number of walks of length m from vi to vj.

Proof. By induction. The cases m = 0, 1 are trivial. (Recall that A0 = I by
definition.) We prove the theorem by induction on m. Now

(Am)ij = (Am−1A)ij =
m∑
k=1

(Am−1)ikAkj =
∑

k : vk∈N(vj)
(Am−1)ik,

which (by the inductive hypothesis) is the number of walks of length m− 1 from
vi to some neighbor of vj, which is just the number of walks of length m from vi
to vj.

We give another proof of Theorem 2.2.11.

Theorem 2.2.13. Let G be a graph on n vertices, and let A be its adjacency
matrix. Then the following hold.

• G is bipartite if and only if the spectrum of A is symmetric (that is, if λ is
an eigenvalue of A with multiplicity m, then −λ is also an eigenvalue of A
with multiplicity m).

• G is bipartite if and only if λ1 = −λn.

Proof. Let G have n vertices. G is bipartite if and only if the number of closed
walks of lengthm inG is zero for all odd integerm, or equivalently, if trace(Am) = 0
for all odd integer m. This holds if and only if sm := ∑n

i=1 λ
m
i = 0 for all odd

integer m. Suppose, say, λ1 > −λn. Then limk→∞ s2k+1 = ∞. Thus λ1 = −λn.
After that, λ2 = −λn−1 also follows etc.

Now let us examine the spectrum of strongly regular graphs.

Theorem 2.2.14. Let G be a graph, and let A be its adjacency matrix. Then the
following are equivalent:

1. G is an SRG(n, k, λ, µ);

2. A2 + (µ− λ)A− (k − µ)I = µJ .

Proof. The entry (A2)ij is the inner product of the vectors corresponding to vi
and vj, which is just the number of common neighbors of vi and vj. Thus G is an
SRG(n, k, λ, µ) if and only if this quantity is k if i = j; λ if vi and vj are adjacent;
and µ otherwise. In other words, A2 = kI+λA+µ(J−I−A), which is equivalent
to the formula stated.
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Theorem 2.2.15. Let G be an SRG(n, k, λ, µ), and let A be its adjacency matrix.
Then

1. the spectrum of A is {k1, rf , sg}, where r > s (r = k may occur);

2. rs = µ− k and r + s = λ− µ;

3. f, g = 1
2

n− 1± (n− 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

 are non-negative integers.

Proof. It is clear that 1 is an eigenvector with eigenvalue k. Let v be an eigenvector
ofA with eigenvalue x and 1Tv = 0. Then Jv = 0. AsA2+(µ−λ)A−(k−µ)I = µJ ,
we obtain

x2v + (µ− λ)xv − (k − µ)v = 0,

thus x2 + (µ− λ)x− (k − µ) = 0. Thus

x =
λ− µ±

√
((µ− λ)2 + 4(k − µ))

2 .

The two roots r and s are different as (µ − λ)2 = 4(µ − k) would contradict
µ ≤ k and λ ≤ k − 1. Thus the first two points follow. As f + g = n − 1 and
trace(A) = k + fr + gs = 0, the last assertion also can be obtained easily.

The third point of the above theorem is a strong restriction on the parameters
of strongly regular graphs, and it is called the integrality or rationality condition.

Exercise 2.2.16. Let G be an SRG(n, k, λ, µ) with three distinct eigenvalues, k >
r > s. Show that (k − r)(k − s) = nµ.

Exercise 2.2.17. Let G be an SRG(n, k, λ, µ). Show that either (n, k, λ, µ) =
(4t + 1, 2t, t − 1, t) for some integer t or the eigenvalues of G are integral. (An
SRG(4t+ 1, 2t, t− 1, t) is called a conference graph.)

Exercise 2.2.18. Let G be an SRG(n, k, λ, µ), where n = p is a prime. Show that
G is a conference-graph.

Exercise 2.2.19. We are about to show that the edges of K10 cannot be partitioned
into three Petersen-graphs in terms of their adjacency matrices: the adjacency
matrix of K10 is J − I, and our aim is to show that it cannot be expressed as
A+B + C, where A, B and C are adjacency matrices of Petersen-graphs.

• Show that the eigenvalue 1 of a Petersen-graph has multiplicity five.

• Show that the eigensubspaces belonging to the eigenvalue 1 in two edge-
disjoint Petersen-graphs intersect nontrivially. (Hint: there is a 9-dimensional
subspace containing both.)

• Show that if A and B are the adjacency matrices of two edge-disjoint Petersen-
graphs, then −3 is an eigenvalue of C, so C is not the adjacency matrix of
a Petersen-graph.
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2.2.1 The Hoffman–Singleton theorem
In the sequel we treat the famous Hoffman–Singleton theorem on strongly reg-

ular graphs of girth five, that is, SRGs with λ = 0 and µ = 1. (The girth of a
graph is the length of the shortest cycle in it.) Note that Theorem 2.1.7 yields
n = k2 + 1 for this case.

Theorem 2.2.20 (Hoffman–Singleton). Let G be an SRG(n, k, 0, 1). Then k =
2, 3, 7 or 57.

Proof. By the integrality condition we have that

1
2

n− 1± (n− 1)(µ− λ)− 2k√
(µ− λ)2 + 4(k − µ)

 = 1
2

(
k2 ± k2 − 2k√

4k − 3

)

are non-negative integers. Then either k2 − 2k = 0, thus k = 2, or
√

4k − 3 is
an integer dividing k(k − 2). Then 4k − 3 divides k2(k − 2)2, so it also divides
256k2(k − 2)2 − (64k3 − 208k2 + 100k + 75)(4k − 3) = 225 = 32 · 52. As 4k − 3 is
a square, 4k − 3 ∈ {9; 25; 225} follows, which proves the assertion.

For k = 2 and 3, the unique SRG(k2+1, k, 0, 1) graphs are the pentagon and the
Petersen-graph. For k = 7 we will show a construction of an SRG(50, 7, 0, 1), which
is called the Hoffman–Singleton-graph. The existence of an SRG(3250, 57, 0, 1) is
still an open question.

Exercise 2.2.21. Let G be a k-regular graph of girth five. Show that G has at
least k2 + 1 vertices, and in case of equality it is strongly regular.

2.2.2 The Hoffman–Singleton-graph
The next construction is due to Robertson. Let Pm be a pentagon, and let Qx

be a pentagram as seen in Figure 2.3, 0 ≤ m ≤ 4, 0 ≤ x ≤ 4. Let the vertex
labeled b of Pm be denoted by the pair [m, b], and let the vertex labeled y of Qx be
denoted by (x, y). Besides the edges of the pentagons and the pentagrams, add an
edge between (x, y) and [m, b] if and only if y ≡ mx + b (mod 5). It is clear that
there is precisely one edge between any pentagon and pentagram, so the resulting
graph is 7-regular. It is also clear that the graph does not contain any triangle.
Suppose that we have a quadrangle. Then its four vertices are of form [m1, b1],
[m2, b2], m1 6= m2, (x1, y1), (x2, y2), x1 6= x2, where

y1 ≡ m1x1 + b1 (mod 5) (2.1)
y2 ≡ m1x2 + b1 (mod 5) (2.2)
y1 ≡ m2x1 + b2 (mod 5) (2.3)
y2 ≡ m2x2 + b2 (mod 5). (2.4)

Then (2.1)− (2.2)− (2.3) + (2.4) ≡ 0 (mod 5), thus

(m1 −m2)(x1 − x2) ≡ 0 (mod 5),

a contradiction.
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Figure 2.3: The pentagons and the pentagrams in Robertson’s construction for
the Hoffman–Singleton-graph.

Exercise 2.2.22. Let P be any subgraph of the Hofmann–Singleton-graph iso-
morphic to the Petersen-graph. Show that each vertex not in P has exactly one
neighbor in P .

Exercise 2.2.23. Let F be a subset of the vertices of the Hoffman–Singleton-graph
that span an empty graph. Show that |F | ≤ 15 and if |F | = 15 then each vertex
not in F has precisely three neighbors in F .
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Chapter 3

István Faragó: Numerical
methods for initial value problems

The first part of the textbook is concerned with initial value problems for scalar
and systems of ordinary differential equations.

Since we have no hope of solving the vast majority of differential equations
in explicit, analytic form, the design of suitable numerical algorithms for accu-
rately approximating solutions is essential. The ubiquity of differential equations
throughout mathematics and its applications has driven the tremendous research
effort devoted to numerical solution schemes, some dating back to the beginnings
of the calculus. Nowadays, one has the luxury of choosing from a wide range of
excellent software packages that provide reliable and accurate results for a broad
range of systems, at least for solutions over moderately long time periods. How-
ever, all of these packages, and the underlying methods, have their limitations,
and it is essential that one be able to to recognize when the software is working as
advertised, and when it produces spurious results!

3.1 Basic of the of the theory of initial-value
problems

For simplicity, in general we will investigate the numerical methods for the
scalar case, where d = 1. Then the formulation of the problem is as follows.

Let QT := [0, T ]× R ⊂ R2, f : QT → R. The problem of the form
du

dt
= f(t, u), u(0) = u0 (3.1.1)

will be called initial value problem,or, alternatively, Cauchy problem (We do not
emphasize the scalar property.) We always assume that for the given function
f ∈ C(QT ) the Lipschitz condition

|f(t, u1)− f(t, u2)| ≤ L |u1 − u2| , ∀(t, u1), (t, u2) ∈ QT , (3.1.2)

is satisfied. Moreover, u0 ∈ R is a given number. Hence, our task is to find a
sufficiently smooth function u : [0, T ]→ R such that the relations

du(t)
dt

= f(t, u(t)), ∀t ∈ [0, T ], u(0) = u0 (3.1.3)

hold.
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3.2 Introduction into the one-step numerical meth-
ods

Our aim is the numerical solution of the problem

du

dt
= f(t, u), t ∈ [0, T ], (3.2.1)

u(0) = u0 (3.2.2)

where T > 0 is such that the initial value problem (3.2.1)–(3.2.2) has a unique
solution on the interval [0, T ]. This means that we want to approximate the
solution of this problem at a finite number of points of the interval [0, T ], denoted
by {t0 < t1 < · · · < tN}. 1 In the sequel we consider those methods where the value
of the approximation at a given time-point tn is defined only by the approximation
at the time-point tn−1. Such methods are called one-step methods.

3.2.1 The Taylor method
This is one of the oldest methods. By definition, the solution u(t) of the Cauchy

problem satisfies the equation (3.2.1), which results in the equality

u′(t) = f(t, u(t)), t ∈ [0, T ]. (3.2.3)

We assume that f is an analytical function, therefore it has partial derivatives of
any order on the set QT . Hence, by use of the chain rule, by differentiation of the
identity (3.2.3), at some point t? ∈ [0, T ] we get the relation

u′(t?) = f(t?, u(t?)),
u′′(t?) = ∂1f(t?, u(t?)) + ∂2f(t?, u(t?)) u′(t?),
u′′′(t?) = ∂11f(t?, u(t?)) + 2∂12f(t?, u(t?)) u′(t?) + ∂22f(t?, u(t?)) (u′(t?))2+

+ ∂2f(t?, u(t?)) u′′(t?).
(3.2.4)

Let us notice that knowing the value u(t?) all derivatives can be computed exactly.
Hence the following numerical methods can be defined.

a) Taylor method
Let us select t? = 0, where the initial condition is given.2

Then the value u(t?) = u(0) is known from the initial condition, and, based
on the formula (3.2.4), the derivatives can be computed exactly at this point.
Hence, using the usual Taylor approximation„ we have

u(t) '
p∑

k=0

u(k)(0)
k! tk, (3.2.5)

where, based on (3.2.4), the values u(k)(0) can be computed.
1We mention that, based on these approximate values, using some interpolation method we

can define some approximation at any point of the interval [0, T ].
2According to Section 3.1, the derivatives do exist at the point t = 0.
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b) Local Taylor method
We consider the following algorithm.

1. On the interval [0, T ] we define the points t0, t1, . . . tN , which define the
mesh ωh := {0 = t0 < t1 < . . . < tN−1 < tN = T}. The distances
between two neighbouring mesh-points, i.e., the values hi = ti+1 − ti,
(where i = 0, 1, . . . N−1,) are called step-size, while h = maxi hi denotes
the measure of the mesh. (In the sequel, we define the approximation
at the mesh-points, and the approximations to the exact values u(ti)
will be denoted by yi, while the approximations to the k-th derivatives
u(k)(ti) will be denoted by y(k)

i , where k = 0, 1, . . . , p.3

2. The values y(k)
0 for k = 0, 1, . . . , p can be defined exactly from the for-

mula (3.2.4), by substituting t? = 0.
3. Then, according to the formula

y1 =
p∑

k=0

y
(k)
0
k! h

k
0, (3.2.6)

we define the approximation to u(t1).
4. For i = 1, 2, . . . , N − 1, using the values yi, by (3.2.4) we define ap-

proximately y
(k)
i (for k = 0, 1, . . . , p), by the substitution t? = ti and

u(t?) = u(ti) ≈ yi.
5. Using the formula

yi+1 =
p∑

k=0

y
(k)
i

k! h
k
i , (3.2.7)

we define the approximation to u(ti+1).

Using (3.2.7), let us define the algorithm of the local Taylor method for the special
cases p = 0, 1, 2!

• For p = 0, yi = y0 for each values of i. Therefore this case is not interesting,
and we will not investigate it.

• For p = 1 we have

yi+1 = yi + y′ihi = yi + hif(ti, yi), i = 0, 1, . . . N − 1, (3.2.8)

where y0 = u0 is given.

• For p = 2 we have

yi+1 = yi+hiy′i+
h2
i

2 y
′′
i = yi+hif(ti, yi)+ h2

i

2 (∂1f(ti, yi) + ∂2f(ti, yi)f(ti, yi)) ,
(3.2.9)

where i = 0, 1, . . . N − 1, and y0 is given.

3 As usual, the zero-th derivative (k = 0) denotes the function.
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Example 3.2.1. We consider the Cauchy problem

u′ = −u+ t+ 1, t ∈ [0, 1],
u(0) = 1.

(3.2.10)

The exact solution is u(t) = exp(−t) + t.

In this problem f(t, u) = −u+ t+ 1, therefore

u′(t) = −u(t) + t+ 1,
u′′(t) = −u′(t) + 1 = u(t)− t,
u′′′(t) = −u(t) + t,

(3.2.11)

i.e., u(0) = 1, u′(0) = 0, u′′(0) = 1, u′′′(0) = −1. The global Taylor method
results in the following approximation polynomials:

T1,u(t) = 1,
T2,u(t) = 1 + t2/2,
T3,u(t) = 1 + t2/2− t3/6.

(3.2.12)

Hence, at the point t = 1 we have T1,u(1) = 1, T2,u(1) = 1.5, T3,u(1) = 1.333). (We
can also easily define the values T4,u(1) = 1.375 and T5,u(1) = 1.3666.) As we can
see, these values approximate the value of the exact solution u(1) = 1.367879 only
for larger values of n.

Let us apply now the local Taylor method taking into account the derivatives
under (3.2.11). The algorithm of the first order method is

yi+1 = yi + hi(−yi + ti + 1), i = 0, 1, . . . , N − 1, (3.2.13)

while the algorithm of the second order method is

yi+1 = yi + hi(−yi + ti + 1) + h2
i

2 (yi − ti), i = 0, 1, . . . , N − 1,

where h1 + h2 + . . . + hN = T . In our computations we have used the step-size
hi = h = 0.1. In Table 3.2.1 we compared the results of the global and local Taylor
methods at the mesh-point of the interval [0, 1]. (LT1 and LT2 mean the first and
second order local Taylor method, while T1, T2 and T3 are the first, second and
third order Taylor methods, respectively.)

Using some numerical method, we can define a numerical solution at the mesh-
points of the grid. Comparing the numerical solution with the exact solution, we
define the error function, which is a grid function on the mesh on which the numer-
ical method is applied. This error function (which is a vector) can be characterized
by the maximum norm. In Table 3.2.2 we give the magnitude of the maximum
norm of the error function on the meshes for decreasing step-sizes. We can observe
that by decreasing h the maximum norm is strictly decreasing for the local Taylor
method, while for the global Taylor method the norm does not change. (This is
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ti the exact solution LT1 LT2 T1 T2 T3
0.1 1.0048 1.0000 1.0050 1.0000 1.0050 1.0048
0.2 1.0187 1.0100 1.0190 1.0000 1.0200 1.0187
0.3 1.0408 1.0290 1.0412 1.0000 1.0450 1.0405
0.4 1.0703 1.0561 1.0708 1.0000 1.0800 1.0693
0.5 1.1065 1.0905 1.1071 1.0000 1.1250 1.1042
0.6 1.1488 1.1314 1.1494 1.0000 1.1800 1.1440
0.7 1.1966 1.1783 1.1972 1.0000 1.2450 1.1878
0.8 1.2493 1.2305 1.2500 1.0000 1.3200 1.2347
0.9 1.3066 1.2874 1.3072 1.0000 1.4050 1.2835
1.0 1.3679 1.3487 1.3685 1.0000 1.5000 1.3333

Table 3.2.1: Comparison of the local and global Taylor methods on the mesh with
mesh-size h = 0.1.

mesh-size LT1 LT2 T1 T2 T3
0.1 1.92e− 02 6.62e− 04 0.3679 0.1321 0.0345
0.01 1.80e− 03 6.12e− 06 0.3679 0.1321 0.0345
0.001 1.85e− 04 6.14e− 08 0.3679 0.1321 0.0345
0.0001 1.84e− 05 6.13e− 10 0.3679 0.1321 0.0345

Table 3.2.2: Maximum norm errors for the local and global Taylor methods for
decreasing mesh-size h.

a direct consequence to the fact that the global Taylor method is independent of
the mesh-size.)

The local Taylor method is a so-called one-step method (or, alternatively, two-
level method). This means that the approximation at the time level t = ti+1
is defined with the approximation obtained at the time level t = ti only. The
error analysis is rather complicated. As the above example shows, the difference
between the exact solution u(ti+1) and the numerical solution yi+1 is caused by
several reasons.

• The first reason is the local truncation error, which is due to the replacement
of the Taylor series by the Taylor polynomial, assuming that we know the
exact value at the point t = ti. The order of the difference on the interval
[ti, ti+hi], i.e., the order of magnitude of the expression u(t)−Tn,u(t) defines
the order of the local error. When this expression has the order O(hp+1

i ),
then the method is called p-th order.

• When we solve our problem on the interval [0, t?], then we consider the
difference between the exact solution and the numerical solution at the point
t?. We analyze the error which arises due to the first two sources, and it is
called global error. Intuitively, we say that some method is convergent at
some fixed point t = t? when by approaching zero with the maximum step-
size of the mesh the global error at this point tends to zero. The order of
the convergence of this limit to zero is called order of convergence of the
method. This order is independent of the round-off error. In the numerical
computations, to define the approximation at the point t = t?, we have to
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execute approximately n steps, where nh = t?. Therefore, in case of local
truncation error of the order O(hp+1), the expected magnitude of the global
error is O(hp). In Table 3.2.2 the results for the methods LT1 and LT2
confirm this conjecture: method LT1 is convergent in the first order, while
method LT2 in the second order at the point t? = 1.

3.2.2 Some simple one-step methods
In the previous section we saw that the local Taylor method, especially for

p = 1 is beneficial: for the computation by the formula (3.2.8) the knowledge
of the partial derivatives of the function f is not necessary, and by decreasing
the step-size of the mesh the unknown exact solution is well approximated at the
mesh-points. Our aim is to define further one-step methods having similar good
properties.

The LT1 method was obtained by the approximation of the solution on the
subinterval [ti, ti+1] by its first order Taylor polynomial.4 Then the error (the local
truncation error) is

|u(ti+1)− T1,u(ti+1)| = O(h2
i ), i = 0, 1, . . . , N − 1, (3.2.14)

which means that the approximation is exact in the second order. Let us define
instead of T1,u(t) some other, first order polynomial P1(t), for which the estimate
(3.2.14) remains true, i.e., the estimation

|u(ti+1)− P1(ti+1)| = O(h2
i ) (3.2.15)

holds.
The polynomial T1,u(t) is the tangent line at the point (ti, u(ti)) to the exact
solution. Therefore, we seek such a first order polynomial P1(t), which passes
through this point, but whose direction is defined by the tangent lines to the
solution u(t) at the points ti and ti+1. To this aim, let P1(t) have the form P1(t) :=
u(ti) + α(t − ti) (t ∈ [ti, ti+1]), where α = α(u′(ti), u′(ti+1)). (E.g., by the choice
α = u′(ti) we get P1(t) = T1,u(t), and then the estimation (3.2.15) holds.)
Is any other suitable choice of α possible? Since

u(ti+1) = u(ti) + u′(ti)hi +O(h2
i ), (3.2.16)

therefore
u(ti+1)− P1(ti+1) = hi(u′(ti)− α) +O(h2

i ),
i.e., the relation (3.2.15) is satisfied if and only if the estimation

α− u′(ti) = O(hi) (3.2.17)

holds.

Theorem 3.2.2. For any θ ∈ R, under the choice of α by

α = (1− θ)u′(ti) + θu′(ti+1) (3.2.18)

the estimation (3.2.17) is true.
4In each subinterval [ti, ti+1] we define a different Taylor polynomial of the first order, but

the dependence of the polynomial on the index i will not be denoted.
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Proof. Let us apply (3.2.16) to the function u′(t). Then we have

u′(ti+1) = u′(ti) + u′′(ti)hi +O(h2
i ). (3.2.19)

Substituting the relation (3.2.19) into the formula (3.2.18), we get

α− u′(ti) = θu′′(ti)hi +O(h2
i ), (3.2.20)

which proves the statement.

Corollary 3.2.3. The above polynomial P1(t) defines the one-step numerical method
of the form

yi+1 = yi + αhi, (3.2.21)

where, based on the relations (3.2.18) and (3.2.1), we have

α = (1− θ)f(ti, yi) + θf(ti+1, yi+1). (3.2.22)

Definition 3.2.4. The numerical method defined by (3.2.21)-(3.2.22) is called θ-
method.

3.2.3 Explicit Euler method
Let us consider the θ-method with the choice θ = 0. Then the formulas (3.2.21)

and (3.2.22) result in the following method:

yi+1 = yi + hif(ti, yi), i = 0, 1, . . . , N − 1. (3.2.23)

Since yi is the approximation of the unknown solution u(t) at the point t = ti,
therefore

y0 = u(0) = u0, (3.2.24)

i.e., in the iteration (3.2.23) the starting value y0, corresponding to i = 0, is given.

Definition 3.2.5. The one-step method (3.2.23)–(3.2.24) is called explicit Euler
method.

We can characterize explicit Euler method The method (3.2.23)–(3.2.24) on
the following example, which gives good inside of the method.

Example 3.2.6. The simplest initial value problem is

u′ = u, u(0) = 1, (3.2.25)

whose solution is, of course, the exponential function u(t) = et.

Since for this problem f(t, u) = u, the explicit Euler method with a fixed step
size h > 0 takes the form

yi+1 = yi + hyi = (1 + h)yi.
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This is a linear iterative equation, and hence easy to get

yi = (1 + h)iu0 = (1 + h)i.

Then this is the proposed approximation to the solution u(ti) = eti at the mesh
point ti = ih. Therefore, the Euler scheme to solve the differential equation, we
are effectively approximating the exponential by a power function

eti = eih ≈ (1 + h)i

When we use simply t? to indicate the fixed mesh-point ti = ih, we recover, in the
limit, a well-known calculus formula:

et
? = lim

h→0
(1 + h)t?/h = lim

i→∞
(1 + t?/h)i

A reader familiar with the computation of compound interest will recognize this
particular approximation. As the time interval of compounding, h, gets smaller
and smaller, the amount in the savings account approaches an exponential.

3.2.4 Implicit Euler method
Let us consider the θ-method by the choice θ = 1. For this case the formulas

(3.2.21) and (3.2.22) together generate the following numerical method:

yi+1 = yi + hif(ti+1, yi+1), i = 0, 1, . . . , N − 1, (3.2.26)

where again we put y0 = u0.

Definition 3.2.7. The one-step numerical method defined in (3.2.26)–(3.2.24) is
called implicit Euler method.

Remark 3.2.8. The Euler method of the form (3.2.26) is called implicit because
yi+1, the value of the approximation on the new time level ti+1, can be obtained by
solving a usually non-linear equation.

• The convergence on the interval [0, t?] yields the relation

lim
h→0

max
i=1,2,...,n

|ei| = 0.

As one can easily see, the relation |en| ≤ C ·h holds for both methods (explicit
Euler methodand implicit Euler method). Therefore the local truncation
error |en| can be bounded at any point uniformly on the interval [0, t?], which
means the convergence in the first order on the interval.

• Since the implicit Euler method is implicit, in each step we must solve a –
usually non-linear – equation, namely, find the root of the equation g(s) :=
s − hf(tn, s) − yn = 0. This can be done by using some iterative method,
such as Newton’s method.
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ti exact solution EE IE TR
0.1 1.0048 1.0000 1.0091 1.0048
0.2 1.0187 1.0100 1.0264 1.0186
0.3 1.0408 1.0290 1.0513 1.0406
0.4 1.0703 1.0561 1.0830 1.0701
0.5 1.1065 1.0905 1.1209 1.1063
0.6 1.1488 1.1314 1.1645 1.1485
0.7 1.1966 1.1783 1.2132 1.1963
0.8 1.2493 1.2305 1.2665 1.2490
0.9 1.3066 1.2874 1.3241 1.3063
1.0 1.3679 1.3487 1.3855 1.3676

Table 3.2.3: Comparison in the maximum norm for the explicit Euler method
(EE), the implicit Euler method (IE), and the trapezoidal method (TR) on the
mesh with mesh-size h = 0.1.

3.2.5 Trapezoidal method
Let us consider the θ-method by the choice θ = 0.5. For this case the formulas

(3.2.21) and (3.2.22) generate the numerical method of the form

yi+1 − yi = hi
2 [f(ti, yi) + f(ti+1, yi+1)] , i = 0, 1, . . . , N − 1, (3.2.27)

where y0 = u0.

Definition 3.2.9. The one-step method (3.2.27) is called trapezoidal method.

3.2.6 Numerical test for the theta-method
We consider the test equation given in Exercise 3.2.10. In Table 3.2.3 we

give the numerical solution by the above listed three numerical methods (explicit
Euler method, implicit Euler method, trapezoidal method). In Table (3.2.4) we
compare the numerical results obtained on refining meshes in the maximum norm.
These results show that on some fixed mesh the explicit Euler method and the
implicit Euler method give approximately the same accuracy, while the trapezoidal
method is more accurate. On the refining meshes we can observe that the error
function of the trapezoidal method has the order O(h2), while for the explicit Euler
method and thebimplicit Euler method the error function is ofO(h). (These results
completely correspond to the theory.)

3.3 Runge-Kutta method
We have seen, the maximum accuracy of the investigated one-step methods

(explicit Euler method,implicit Euler method,trapezoidal method) for the Cauchy
problem (3.2.1)-(3.2.2) is two. However, from practical point of view, this accuracy
isn’t enough: typically we require the construction of numerical methods with
higher order accuracy. The accuracy of Taylor method is higher, but, in this case
the realization of this method requires rather complicated preliminary analysis.
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step-size (h) EE IE TR
0.1 1.92e− 02 1.92e− 02 3.06e− 04
0.01 1.84e− 03 1.84e− 03 3.06e− 06
0.001 1.84e− 04 1.84e− 04 3.06e− 08
0.0001 1.84e− 05 1.84e− 05 3.06e− 10
0.0001 1.84e− 06 1.84e− 06 5.54e− 12

Table 3.2.4: The error in the maximum norm for the explicit Euler method (EE),
the implicit Euler method (IE), and the trapezoidal method (TR) on the mesh
with mesh-size h.

3.3.1 Second order Runge-Kutta methods
Let us consider again the Cauchy problem (3.2.1)-(3.2.2). In order to introduce

the Runge-Kutta methods, first of all we define a one-step method of second order
accuracy, which is different from the trapezoidal method.
Let us define the first members of the Taylor series of the function u(t) at the point
t = t? + h. Then

u(t? + h) = u(t?) + hu′(t?) + h2

2! u
′′(t?) +O(h3). (3.3.1)

Using the derivatives (3.2.4), and introducing the notations

f = f(t?, u(t?)), ∂if = ∂if(t?, u(t?)), ∂ijf = ∂ijf(t?, u(t?)), etc.,

the equation (3.3.1) can be rewritten as

u(t? + h) =u(t?) + hf + h2

2! (∂1f + f∂2f) +O(h3)

=u(t?) + h

2f + h

2 [f + h∂1f + hf∂2f ] +O(h3).
(3.3.2)

Since 5

f(t? + h, u(t?) + hf(t?, u(t?)) = f + h∂1f + hf∂2f +O(h2), (3.3.3)

therefore (3.3.2) can be written in the form

u(t? + h) = u(t?) + h

2f + h

2 (f(t? + h, u(t?) + hf(t?, u(t?))) +O(h3). (3.3.4)

Therefore applying the formula (3.3.4) at some arbitrary mesh-point ti = t? of
ωh, we can define the following one step, explicit numerical method:

yi+1 = yi + h

2f(ti, yi) + h

2f(ti+1, yi + hf(ti, yi)). (3.3.5)

Let us introduce the notations

k1 = f(ti, yi); k2 = f(ti+1, yi + hf(ti, yi)) = f(ti + h, yi + hk1). (3.3.6)
5We recall that the first order Taylor polynomial of the function f : QT → R around the

point (t, u) , for arbitrary constants c1, c2 ∈ R can be written as f(t + c1h, u + c2h) = f(t, u) +
c1h∂1f(t, u) + c2h∂2f(t, u) +O(h2).
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Then the method (3.3.5) can be written in the form

yi+1 = yi + h

2 (k1 + k2). (3.3.7)

Definition 3.3.1. The one-step, explicit numerical method (3.3.6)-(3.3.7) is called
Heun method

Remark 3.3.2. Based on (3.3.4), we have

u(t? + h)− u(t?)− h

2f −
h

2 (f(t? + h, u(t?) + hf(t?, u(t?))) = O(h3). (3.3.8)

This means that the exact solution of the Cauchy problem (3.2.1)-(3.2.2) satisfies
the formula of the Heun method (3.3.5) with the accuracy O(h3), which means that
the Heun method is of second order.

3.3.2 Higher order Runge-Kutta methods
The following generalization seems to be natural:

k1 = f(ti, yi),
k2 = f(ti + a2h, yi + hb21k1),
k3 = f(ti + a3h, yi + hb31k1 + hb32k2),

(3.3.9)

and the approximation on the new mesh-point id defined as

yi+1 = yi + h(σ1k1 + σ2k2 + σ3k3). (3.3.10)

The parameters of this method, according to the table, can be written as follows

0
a2 b21
a3 b31 b32

σ1 σ2 σ3

(3.3.11)

Our aim is to define the parameters in (3.3.9) in the way that the corresponding
numerical method was of third order accurate. To get this condition, we have to
define again the local approximation error, as it was done before. After some long
(but not difficult) calculation we obtain the following result.

Theorem 3.3.3. The numerical method (3.3.9) has third order accuracy, if and
only if the conditions

a2 = b21, a3 = b31 + b32,

a3(a3 − a2)− b32a2(2− 3a2) = 0, σ3b32a2 = 1/6,
σ2a2 + σ3a3 = 1/2, σ1 + σ2 + σ3 = 1

(3.3.12)

are satisfied.

Clearly, (3.3.12) yields six equations (conditions) for eight unknown values.
From the possible solution we give two cases.
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• The method with the parameters

0
1/3 1/3
2/3 0 2/3

1/4 0 3/4

(3.3.13)

is very popular in the different applications.

• The following third order method

0
1/2 1/2
1 −1 2

1/6 2/3 1/6

(3.3.14)

is also often used for the applied problems. We note that this method has
accuracy O(h5) for the problems with f(t, u) = f(t) with the Simpson for-
mula. Therefore this method recommended also fort he problems, when the
partial derivative ∂2f is close to the zero.

When we want the methods higher than three order method (p > 3), then we
need some more generalization. This will be the following form.

Let m ≥ 1 some given integer. We define the following, so called m-stage
explicit Runge-Kutta method:

k1 = f(ti, yi),
k2 = f(ti + a2h, yi + hb21k1),
k3 = f(ti + a3h, yi + hb31k1 + hb32k2),
. . . . . . . . . . . . . . . . . . . . . . . . . . .

km = f(ti + amh, yi + hbm1k1 + hbm2k2 + . . .+ hbm,m−1km−1)

(3.3.15)

yi+1 = yi + h(σ1k1 + σ2k2 + . . .+ σmkm). (3.3.16)
by giving the values of the parameters in this formula, we define the concrete
numerical method. As before, we can write the parameters in a table:.

0
a2 b21
a3 b31 b32
. . . . . . . . . . . .
am bm1 bm2 . . . bm,m−1

σ1 σ2 . . . σm

(3.3.17)

For writing the method in compact form, we introduce some notations. Let
the vectors σ, a ∈ Rm denote the row-vectors with the coordinates σi and ai,
respectively, (where we always assume that a1 = 0). Let B ∈ Rm×m denote the
matrix with the elements bij, which is a strictly lower triangular matrix, i.e.,

Bij =
{
bij, for i > j,
0, for i ≤ j.
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Definition 3.3.4. For some explicit Runge-Kutta method the corresponding table
of the parameters in the form

a> B
σ

(3.3.18)

is called Butcher tableau.

In the sequel, when we specify some explicit Runge-Kutta method, then we list
the lower triangular part of the matrix B, only.

For some fixed explicit Runge-Kutta method the order of the consistency can
be defined by some simple, however usually cumbersome computation:.This can
be realized by the following steps.

• First on the right side of the formulas (3.3.15)-(3.3.15) we replace yi by the
values u(ti).

• Then we replace on the left side of this formula yi+1 by u(ti + h).

• We compute the difference between the two sides, and we define its order by
h.

Executing these steps for the explicit Runge-Kutta method, we get the condition
of the p-th order of some explicit Runge-Kutta method.

3.4 Multistep numerical methods
In the previous sections we have considered the one-step methods, i.e., the

numerical methods such that the value of the approximation to the exact solution
is defined by the approximation, already defined at the previous mesh-point. In
the sequel we generalize this approach in that way, that the new value of the
approximation is defined by not only one but several previous approximations.
Such methods are called multistep method.

Further m (m ≥ 1) denote the number of the mesh-points, at which the ap-
proximations are taken into account for the definition at the new mesh-point.
Such multistep method is called m-step method. (The one-step methods can be
considered as special case of multistep methods with the choice m = 1.)

Next we show on two simple examples that by developing into Taylor series the
solution of the Cauchy problem (3.2.1)-(3.2.2) around suitably chosen points how
can these methods derived.

Example 3.4.1. Clearly

u(ti−1) =u(ti)− hu′(ti) + h2

2 u
′′(ti) +O(h3),

u(ti−2) =u(ti)− 2hu′(ti) + 4h2

2 u′′(ti) +O(h3).
(3.4.1)

Therefore

3u(ti)− 4u(ti−1) + u(ti−2) = 2hu′(ti) +O(h3) = 2hf(ti, u(ti)) +O(h3).
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Hence, by using the notation fi = f(ti, yi) we can define the numerical method
as follows

yi −
4
3yi−1 + 1

3yi−2 = 2
3hfi, i = 2, 3, .... (3.4.2)

As we can see, the method (3.4.2) is two-steps, implicit method, and it has
second order consistency.

Example 3.4.2. We develop into the Taylor series at the point ti−1 the exact
solution and its derivative, too. Hence we have the relations

u(ti) =u(ti−1) + hu′(ti−1) + h2

2 u
′′(ti−1) +O(h3),

u′(ti−2) =u′(ti−1)− hu′′(ti−1) +O(h2).
(3.4.3)

From the second relation we have hu′′(ti−1) = u′(ti−1)− u′(ti−2) +O(h2). Sub-
stituting this expression into the first formula, we obtain

u(ti) = u(ti−1) + h

2 [3u′(ti−1)− u′(ti−2)] +O(h3).

Based on this relation, we define the numerical method

yi − yi−1 = h[32fi−1 −
1
2fi−2], i = 2, 3, ... (3.4.4)

which is two-steps, explicit method, having second order consistency.

3.5 Consistency of the general linear multistep
methods

Following the above examples, we can define the linear multistep methodin a
general form, too.

Definition 3.5.1. Let a0, a1, . . . am and b0, b1, . . . bm given numbers. The iteration
of the form

a0yi + a1yi−1 + · · ·+ amyi−m = h[b0fi + b1fi−1 + . . .+ bmfi−m], i = m,m+ 1, . . . ,
(3.5.1)

is called linear, m-step methods.

In the sequel we always assume that a0 6= 0, otherwise we are not able to
define from the known values yi−m, yi−m+1, . . . , yi−1 the unknown approximation
yi. According the notation fi = f(ti, yi), the method (3.5.1)) is explicit, when
b0 = 0, and it is implicit, when b0 6= 0. We fix some linear multistep method by



Consistency of the general linear multistep methods 37

giving the parameters ak and bk (k = 0, 1, . . . ,m). For instance, the numerical
method (3.4.2) is fixed by giving the values m = 2, a0 = 1, a1 = −4/3, a2 = 1/3,
and b0 = 2/3, b1 = 0, b2 = 0., respectively. When there are given two m-steps
linear multistep methods with the parameters (ak, bk) and (a?k, b?k), and there exists
a parameter β 6= 0 such that ak = βa?k and bk = βb?k for any k = 0, 1, . . . ,m,
then from the given initial values both methods generate the same result. These
methods will be considered as the same method. Hence, the 2m + 2 parameters
((ak, bk), k = 0, 1, . . .m) which define some linear multistep method, one should
be a’priori fixed. This is the reason why we always assume that

a0 = 1. (3.5.2)

Further we define the consistency and the order of consistency of the linear
multistep methodin the form (3.5.1). The local approximation error has the form

gi(h) =
m∑
k=0

[
aku(ti−k)− hbkf(ti−k, u(ti−k))

]
. (3.5.3)

Based on the equation (3.2.1) we have u′(ti−k) = f(ti−k, u(ti−k)),. Therefore

gi(h) =
m∑
k=0

[
aku(ti−k)− hbku′(ti−k)

]
. (3.5.4)

We develop into the Taylor series the functions on the right side (3.5.4) at the
point t = ti up to order p and p− 1, respectively. Then

u(ti−k) =u(ti − kh) = u(ti)− khu′(ti) + 1
2!k

2h2u′′(ti)

+ . . .+ (−1)p 1
p!k

phpu(p)(ti) +O(hp+1),
(3.5.5)

u′(ti−k) =u′(ti − kh) = u′(ti)− khu′′(ti)

+ . . .+ (−1)p−1 1
(p− 1)!k

p−1hp−1u(p)(ti) +O(hp).
(3.5.6)

Substituting these expressions into (3.5.4), for the local approximation error we
obtain

gi(h) = d0u(ti) + hd1u
′(ti) + h2d2u

′′(ti) + . . .+ hpdpu
p(ti) +O(hp+1), (3.5.7)

where
d0 =

m∑
k=0

ak,

d1 = −
m∑
k=0

(kak + bk)

d2 =
m∑
k=0

(1
2k

2ak + kbk),

. . . . . . . . . . . . . . . . . . . . . . . .

dp = (−1)p
m∑
k=0

( 1
p!k

pak + 1
(p− 1)!k

p−1bk).

(3.5.8)

Some linear multistep method is of consistency order p, when gi(h) = O(hp+1),
which results in the condition d0 = d1 = . . . = dp = 0. Using (3.5.8), we obtained
the following statement.
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Theorem 3.5.2. The linear multistep method of the form (3.5.1) has p-th order
consistency, when for the parameters of the method the following conditions are
satisfied:

a0 = 1,
m∑
k=0

ak = 0

1
j

m∑
k=0

kjak +
m∑
k=0

kj−1bk = 0, j = 1, 2, . . . , p.
(3.5.9)

Using the above statement, the condition of the consistency of some linear
multistep method can be also formulated.

Corollary 3.5.3. The linear multistep method of the form (3.5.1) is consistent if
and only if when for the parameters of the method the conditions

a0 = 1,
m∑
k=0

ak = 0

m∑
k=0

kak +
m∑
k=0

bk = 0
(3.5.10)

are satisfied.

3.6 Numerical solution of initial value problems
with Matlab

The investigated numerical methods can be realized on computer with help of
different program packages. In the following we consider the Matlab, which has
several built-in routines for the the different methods, however, to prepare own
code is also possible, and, since this is not difficult, it is highly recommended for
the Readers.

Let consider the explicit Euler method and we prepare the program (so called
m-file for this method. Then we can use very simple this program as a function,
by giving its parameters.

First we describe those steps which are required for the realization.

• In the first step we start the work of Matlab by its running. Then, into the
Editor we type the following:
function[t,y] = expeuler(diffegy, t0, y0, h, N)
t=zeros(N+1,1);
y = zeros(N+1,1);
t(1) = t0;
y(1) = y0;
for i=1:N

t(i+1) = t(i) + h;

y(i+1) = y(i) + h * diffegy(t(i),y(i));
end
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• Let us describe the program in more details.
In the first line of this program we gave how can be called the program. (We
gave the name expeuler.) This means, that on the left side of equality symbol
= we identify the task by listing the input data, and the required input
parameters of the explicit Euler method. On the left side of equality symbol
= in the bracket [·] we list the output parameters. (Typically they are such
values which are computed within the program and later are used for some
purposes.) In our case we have five input and two output parameters. The
output parameters (results) are two vectors: the first vector (t) is the vector
containing the discrete time points (the mesh-points), and the second vector
(y) contains the numerical solution at these points. The first input parameter
(diffegy) identifies the differential equation by giving the function, standing
on the right side of the differential equation (which was denoted by f). The
second parameter (t0) denotes the point, where the initial condition is given.
The third parameter (y0) is the initial value at this point.The next parameter
(h) which denotes the step-size of the mesh, where the numerical solution is
defined. Finally, N denotes the number of the steps on this mesh. (I.e., the
numerical solution is defined at the equidistant mesh-point of the interval
[t0, Nh].)
In the second and third lines we give zero value for the vectors t and y, where
the numerical approximations will be computed. In the next two lines we
define the starting values for these vectors.

In fact, these steps were the preparation work for the method.

From the next line we start to give the algorithm of the method. Within a
cycle first we give the values of ti, then we compute the slope of the approx-
imation, and then we compute yi according to the explicit Euler method.

• With this program we cannot compute directly the numerical solution of the
problem, because we have to identify the function "diffegy", too. (We remind
that this function describes the right side of the equation f .)
We will consider the example, given as

u′(t) = −u(t) + t+ 1,

where t ∈ [0, 1] and u(0) = 1.6 To prepare the function "diffegy", we open a
new m-file, and we write the following:
function dydt = diffegy(t,y)
dydt = -y + t + 1;

• When both routines are ready, we can run the program. We will use the
parameters h = 0.1, h = 0.01 and h = 0.001 on the interval [0, 1]. In the
windows Command we type the following:
[T1,Ye] = expeuler(@diffegy, 0, 1, 0.1, 10).
After pushing Enter we obtain the vectors T1 and Ye, which contains the
place and the values of the approximation. If we want to draw the solution,
then by giving the command

6We remind that this example was already considered previously. In this section section we
will solve this problem by Runge-Kutta methods, and linear multistep method, too.
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plot(T1,Ye)

we can do it, and then in the separate windows we will see the graphic of
the numerical solution. (For h = 0.01 and h = 0.001 we should type
[T1,Ye] = expeuler(@diffegy, 0, 1, 0.01, 100)

and
[T1,Ye] = expeuler(@diffegy, 0, 1, 0.001, 1000),
respectively.)

In order to get the global error of the explicit Euler method we have to compare
the numerical solution with the exact solution. The solution of our problem is the
function

u(t) = e−t + t.

On the Figures 3.6.1-3.6.3 we can see the accuracy of the method for the step-sizes
h = 0.1, h = 0.01 and h = 0.001, respectively. In accordance with the theory, by
decreasing h the graph of the numerical solution approaches to the graph of the
exact solution.

Figure 3.6.1: The explicit Euler method with step-size h = 0.1.

3.7 In-built Matlab programs
The Matlab has possibility to use in-built programs, which, in fact realize the

most useful methods. These methods allow us to get the numerical solution of the
initial value problems efficiently with high accuracy.

One of the methods is called ode45, which is based on the embedded Dormand-
Prince method. We recall that these methods are bases on two Runge-Kutta
methods with different order, but in their Butcher tableau a> and B are the same.
(However, the weighting vectors σ are different, and therefore their orders are also
different. The suitable combination of these methods give us possibility for the
right choice of the varying step-size of the combined method.) This method based
on the combination of some fourth and fifth order Runge-Kutta methods, and the



In-built Matlab programs 41

Figure 3.6.2: The explicit Euler method with step-size h = 0.01.

Figure 3.6.3: The explicit Euler method with step-size h = 0.001.

step-size is chosen that the error of the combined method is the error of the fourth
order method. In the Table 3.7.1 we give the Butcher tableau of the method. (The
first row for σ belongs tot eh fourth order method, while the second row does to
the fifth order method.) The routine ode45 can be called in the same way as the
routines written by us in the previous section. Namely, the form is [T1, Y45]
= ode45(@diffegy, T1, 1). We have two output vectors again, which give the
time points and the values of the approximations. The input parameters are the
following: "diffegy" is the function, which describes the right side of the equation;
"T1" is the vector, which give those points where we aim the get the numerical
solution, and finally we give the initial value for the problem.7

The accuracy of the method ode45 we have checked on the previous Exercise
7We note that it is also possible a fourth (optional) parameter for numerical integrating.

However, typically its default value is enough for the practical purposes. If one wants to change
the default value, it is possible by using the program ode45, and the details can be found in the
help list of Matlab.
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Table 3.7.1: The parameters of the embedded Dormand-Prince RK in ode45
routine

3.2.10, with the step-sizes h = 0.1 and h = 0.01, respectively. The corresponding
results are included into the Tables 3.7.2 and 3.7.3. We can see that the accuracy
of the method doesn’t decrease with decreasing the step-size. The reason is that,
due to the adaptivity of the choice of the mesh-size in the method, the obtainable
accuracy is reached already for the first choice h = 0.1.

Another in-built and widely used routine is the embedded Runge-Kutta method
ode23, which is also called as Bogacki-Shampine method . This program can

ti exact solution numerical solution error
0 1.0000 1.0000 0

0.1000 1.0048 1.0048 2.9737e− 010
0.2000 1.0187 1.0187 5.3815e− 010
0.3000 1.0408 1.0408 7.3041e− 010
0.4000 1.0703 1.0703 8.8120e− 010
0.5000 1.1065 1.1065 9.9668e− 010
0.6000 1.1488 1.1488 1.0822e− 009
0.7000 1.1966 1.1966 1.1424e− 009
0.8000 1.2493 1.2493 1.1814e− 009
0.9000 1.3066 1.3066 1.2026e− 009
1.0000 1.3679 1.3679 1.2090e− 009

Table 3.7.2: Results for the ode45 method with step-size h = 0.1
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ti exact solutuion numerical solution error
0 1.0000 1.0000 0

0.0100 1.0000 1.0000 2.2204e− 016
0.0200 1.0002 1.0002 8.8940e− 011
...

...
...

...
0.1000 1.0048 1.0048 5.4080e− 009
...

...
...

...
0.5000 1.1065 1.1065 2.8278e− 009
...

...
...

...
0.8000 1.2493 1.2493 1.6519e− 009
...

...
...

...
0.9000 1.3066 1.3066 1.3610e− 009
...

...
...

...
0.9900 1.3616 1.3616 1.0920e− 009

Table 3.7.3: Results for ode45 method with step-size h = 0.01.
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Table 3.7.4: The parameters of the embedded Bogacki-Shampine RK in the rou-
tine ode23

be called as [T1, Y23] = ode23(@diffegy, T1, 1), , similarly to the ode45
method. The Table 3.7.4 contains the Butcher tableau of the method.

We emphasize that Bogacki-Shampine method is explicit, (2, 3)-type Runge-
Kutta method. This method is especially useful when we want to get numerical
solution quickly and with cheap but low accuracy. (Usually the methods ode45
and ode23 are used only for non-stiff problems.)

Testing the ode23 routine on the Exercise 3.2.10 for the mesh-sizes h = 0.1
and h = 0.01, we obtain the Tables 3.7.5 and 3.7.6, respectively.

In Matlab we can also find in-built routines for the linear multistep methods.
Such routine is the ode113 method , which order can change from 1 until 13,
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ti exact solution numerical solution error
0 1.0000 1.0000 0

0.1000 1.0048 1.0048 4.0847e− 006
0.2000 1.0187 1.0187 7.3920e− 006
0.3000 1.0408 1.0408 1.0033e− 005
0.4000 1.0703 1.0703 1.2104e− 005
0.5000 1.1065 1.1065 1.3690e− 005
0.6000 1.1488 1.1488 1.4865e− 005
0.7000 1.1966 1.1966 1.5692e− 005
0.8000 1.2493 1.2493 1.6227e− 005
0.9000 1.3066 1.3066 1.6518e− 005
1.0000 1.3679 1.3679 1.6607e− 005

Table 3.7.5: Results of the routine ode23 for h = 0.1.

ti exact solution numerical solution error
0 1.0000 1.0000 0

0.0100 1.0000 1.0000 4.1583e− 010
0.0200 1.0002 1.0002 3.3825e− 008
...

...
...

...
0.1000 1.0048 1.0048 1.8521e− 006
...

...
...

...
0.5000 1.1065 1.1065 1.2194e− 005
...

...
...

...
0.9000 1.3066 1.3066 1.5515e− 005
...

...
...

...
0.9900 1.3616 1.3616 1.5233e− 005
1.0000 1.3679 1.3679 1.5087e− 005

Table 3.7.6: Results of the routine ode23 for h = 0.01.
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ti exact solution numerical solution error
0 1.0000 1.0000 0

0.1000 1.0048 1.0048 6.2300e− 006
0.2000 1.0187 1.0187 1.8714e− 005
0.3000 1.0408 1.0408 2.7885e− 005
0.4000 1.0703 1.0703 2.1933e− 005
0.5000 1.1065 1.1065 1.8889e− 005
0.6000 1.1488 1.1488 1.7254e− 005
0.7000 1.1966 1.1966 1.5668e− 005
0.8000 1.2493 1.2493 1.4228e− 005
0.9000 1.3066 1.3066 1.2872e− 005
1.0000 1.3679 1.3679 1.1643e− 005

Table 3.7.7: Results of the routine ode113 for h = 0.1.

and based on the Adams-Bashforth-Moulton method. Comparing with the ode45
method, we can conclude that the ode113 method is less accurate but cheaper.
This method is especially recommended when the evaluation of the function f is
expensive.

The syntax of the routine is the usual [T1, Y113] = ode113(@diffegy, T1,
1) with the same output and input parameters, and the method is applicable for
the non-stiff problems. The accuracy of the method, for the step-sizes h = 0.1 and
h = 0.01, on the previous test problem can be seen on the Tables 3.7.7 and 3.7.8,
respectively.

Below we summarize the accuracy of the different methods, investigated in
this part, for the same problem (3.2.10). We compare the errors at the time-point
t? = 1 on the meshes with mesh-size h = 0.1 and h = 0.01, respectively.

en∗
method h1 = 0.1 h2 = 0.01

explicit Euler 1.9201e-002 1.8471e-003
improved Euler 6.6154e-004 6.1775e-006

implicit Euler (more accurate) 1.7664e-002 1.8318e-003
implicit Euler 2.1537e-002 1.8687e-003

ode45 1.2090e-009 1.0903e-009
ode23 1.6607e-005 1.5087e-005
ode113 1.1643e-005 1.6360e-008

Finally we note that in Matlab there are in-built routines for the stiff problems,
too. Such method is ode23s, which can be called by the usual command [T1,
Y23s] = ode23s(@diffegy, T1, 1)). The routines ode123t and ode123tb
are recommended for the numerical solution of stiff problems with mild stiff num-
ber. These methods have only moderate accuracy. The method ode15s based on
the backward differentiation formulas, which are also called Gear methods. The
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ti exact solution numerical solution error
0 1.0000 1.0000 0

0.0100 1.0000 1.0001 1.6625e− 007
0.0200 1.0002 1.0002 1.4800e− 007
...

...
...

...
0.1000 1.0048 1.0048 1.4004e− 007
...

...
...

...
0.5000 1.1065 1.1065 1.7178e− 008
...

...
...

...
0.8000 1.2493 1.2493 2.0090e− 008
...

...
...

...
0.9000 1.3066 1.3066 1.8052e− 008
...

...
...

...
0.9800 1.3553 1.3553 1.6692e− 008
0.9900 1.3616 1.3616 1.6525e− 008
1.0000 1.3679 1.3679 1.6360e− 008

Table 3.7.8: Results of the routine ode113 for h = 0.01.

algorithm uses the varying step-size formula. This method is especially applicable
when the method ode45 is very slow or it is failed. The method ode23s is a
second order, modified one-step Rosenbrock- method. Because this is a one-step
method, usually it is more economic than the ode15s method.



Chapter 4

Ferenc Izsák: Computer aided
simulation of time dependent
phenomena

4.1 Introduction
In the natural sciences, many time dependent phenomena can be simulated

with partial differential equations (PDE’s). For the simulations, we have to solve
the correspondig equations. This is almost impossible with analytic methods,
therefore, we have to use efficient numerical methods. From the theoretical point
of view, we have to prove convergence results, i.e., we have to verify that the
corresponding numerical approximations converge to the analytic solutions and a
convergence speed have to be given.

We deal with linear partial differential equations, or in details, with initial-
boundary value problems for these equations [2]. In concrete terms, the following
phenomena will be simulated:
• Diffusion - transport governed by concentration differences.

• Advection - transport governed by an external force.

• Wave propagation - transport of deformation/dilatation governed by an elas-
tic medium.

4.2 The basic principles in the numerical solu-
tion

We apply finite difference approach such that both sides of the equations are
approximated with finite differences and solve the corresponding system of equa-
tions. To clarify the details, we introduce the following notations, where for the
simplicity, the spatial dimension is two.
• Unknowns in the numerical approximation are unj,k ≈ u(tn, xj, yk), so the

solution is approximated at distinct points at distinct times, where

– (xj, yk) denote the vertices in a given rectangular grid Ωh of the original
domain Ω.
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– t1, . . . , tn denote distinct times, tn = n · δ, tN = T .
– Unknowns at time nδ: un = {unj,k : (xj, yk) ∈ Ωh}, all unknowns:

udisc = {unj,k : n = 1, 2, . . . , N}.
– In any case, the initial conditions are given as u0 and we use appropriate

boundary values for the computations.

4.3 Motivation: a model problem and the chief
questions

To demonstrate the main principles and the chief questions, we discuss a simple
model problem for a one-dimensional diffusion problem


∂tu(t, x) = σD∂xxu(t, x) t ∈ R+, x ∈ (0, π)
u(t, 0) = u(t, π) = 0 t ∈ R+

u(0, x) = sin x x ∈ (0, π).
(4.3.1)

We approximate then both sides of (4.3.1) and give the resulting system of linear
equations.

4.3.1 First step: approximate the differential operators
For the time derivative

∂tu(t, x) ≈ 1
δ

(u(t+ δ, x)− u(t, x)), (4.3.2)

such that we have the error term

∂tu(t, x) = 1
δ

(u(t+ δ, x)− u(t, x)) +O(δ).

For the spatial derivative we use

σD∂xxu(t, x) ≈ 1
h

(u(t, x+ h)− 2u(t, x) + u(t, x− h)), (4.3.3)

4.3.2 Second step: construct a linear system to solve
Using (4.3.2) and (4.3.3), for any (t, x) with x − h ∈ [0, π] and x + h ∈ [0, π]

we have

1
δ

(u(t+ δ, x)− u(t, x)) ≈ σD
1
h2 (u(t, x+ h)− 2u(t, x) + u(t, x− h)), (4.3.4)

which componentwise results in the following equalities for the numerical approx-
imations:

un+1
k = unk +σD

δ

h2 (unk−1−2unk +unk+1) = unk +r(unk−1−2unk +unk+1) k = 1, 2, . . . , N
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with r = σDδ
h2 , where N is the number of internal gridpoints in [0, π]. According to

the boundary conditions, we also have un+1
0 = un+1

N+1 = 0.
Summarized, we arrive at the numerical scheme

u0
k = sin(kh), k = 0, 1, . . . , N,N + 1
un+1
k = unk + r(unk−1 − 2unk + unk+1), k = 1, 2, . . . , N
un+1

0 = un+1
N+1 = 0,

(4.3.5)

where the time step can be recasted into the matrix form

un+1
1
un+1

2
...

un+1
N−1
un+1
N

 =



1− 2r r 0 . . . 0 0 0
r 1− 2r r . . . 0 0 0
...

...
. . .

...
0 0 0 . . . r 1− 2r r
0 0 0 . . . 0 r 1− 2r





un1
un2
...

unN−1
unN

 .

In this way, the approximations u1,u2, . . . in the consecutive time steps can be
computed.

4.3.3 Third step: some numerical experiments
In all cases, we simulated on the time interval (0, 1) with δ = 0.01. The relative

error can be seen for various parameters at t = 1 on the computational grid using
100 time steps.

Figure 4.3.1: Linear interpolation of the relative error (proportion of the error and
the analytic solution) at the grid points in the case of 10 (left) 20 (middle) and 40
(right) internal grid points.

It is really strange that incresing the spatial accuracy (taking more grid points)
the aprroximation results can be worse. This clearly demonstrates that some
mathematical analysis is necessary to have a somewhat deeper insight into these
numerical methods. In the remaining part of lecture we want to track this problem
and develop numerical methods to avoid this phenomenon.

4.3.4 Theoretical basis
We investigate the general problem

∂tu = Lu,
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where L is a differential operator which consists the boundary conditions, as well.
We use the notation udisc for the restriction of u to the set (0, δ, . . . , T )× Ωh.

It is natural to require that the approximations of the both sides are accurate:

∂tu(nδ, xi, yj) ≈ [Dtudisc]nj,k

and
Lu(nδ, xi, yj) ≈ [DLudisc]nj,k.

We should also demand that the consecutive time steps should not increase too
much the (approximation) error. Anyway, in the solution process

u0 Qh,δ,1−−−→ u1 Qh,δ,2−−−→ u2 . . .
Qh,δ,N−−−−→ uN (4.3.6)

the error will increase as we perform time/space refinement.
Here the given operators Qh,δ,1, Qh,δ,2, . . . , Qh,δ,N are called the time step oper-

ators.
For the precise setting we observe that for the analytic solution u the left and

the right hand side coincide:
∂tu− Lu = 0.

Definition 4.3.1. We call the approximation given with Dt and DL consistent in
order (α0, α1, . . . , αd) with respect to the ‖ · ‖∗ norm if for the analytic solution u

‖Dtudisc −DLudisc‖∗ = O(δα0) +O(hα1
1 ) + · · ·+O(hαdd ). (4.3.7)

Definition 4.3.2. If there is a constant Cstab such that for each vector v

Qh,δ,1Qh,δ,2 · · ·Qh,δ,N‖v‖∗ ≤ Cstab‖v‖∗, (4.3.8)

independently of N = T/δ and h then the method is called unconditionally stable.

If the inequality in (4.3.8) holds only under a certain condition (mostly de-
pending on the discretization parameters) then the corresponding method is called
conditionally stable under this condition.

The fundamental theorem in the analysis can be written shortly as

stability + consistency⇔ convergence,

which was published by Lax and Richtmyer in 1956. In a bit more details:

Theorem 4.3.3. If the method is consistent of order (α0, α1, . . . , αd) with respect
to the ‖ · ‖∗ norm and stable with respect to the ‖ · ‖∗ norm then the method is
convergent of order (α0, α1, . . . , αd) in the ‖ · ‖∗ norm,

where the notion of the convergence has still to be clarified as the approxi-
mations are vectors with finite entries while, the analytic solution is a continuous
function. Indeed, the converse of the theorem is also true.

In the remaining part, we discuss how the conditions of the above theorem can
be verified for different numerical methods.

A detailed exposition of the theoretical basis can be found in [6] and [7].
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4.4 Tools for the analysis

4.4.1 Consistency analysis: finite differences
The consistency order of the approximations are calculated usually using Taylor

expansions. This is only justified if the analytic solution of the problem under
investigation is sufficiently smooth (differentiable). For diffusion equations, it is
satisfied automatically, and for wave equations and advection equations it depends
on the boundary condition. This requirement is a weakness of the finite difference
methods.

Instead of the norm consistency, we usually verify that the approximation order
in (4.3.7) has pointwise a sufficient order.
Example 4.4.1. Central difference approximation of the first order derivative:

∂xu(t, x) ≈ 1
2h(u(t, x+ h)− u(t, x− h)).

Here we obtain using Taylor expansion that

u(t, x+ h) = u(t, x) + h∂xu(t, x) + h2

2 ∂xxu(t, x) + h3

6 ∂xxxu(t, x) +O(h4)

and similarly

u(t, x− h) = u(t, x)− h∂xu(t, x) + h2

2 ∂xxu(t, x)− h3

6 ∂xxxu(t, x) +O(h4),

which give then
1

2h(u(t, x+h)−u(t, x−h)) = ∂xu(t, x)+ h2

12∂xxxu(t, x)+O(h4) = ∂xu(t, x)+O(h2)

provided that ∂xxxu(t, x) is continuous in a neighborhood of (t, x).

4.4.2 Stability analysis: discrete time Fourier transform
We investigate l2 stability for approximation vectors of form v = . . . , v−1, v0, v1, v2, . . . ,

i.e. for the case if Ω = R.
Definition 4.4.2. (discrete time Fourier transform) We define the mapping F :
l2 → L2[−π, π] as follows

F(u)(s) = 1√
2π

∞∑
k=−∞

e−iksuk,

where l2 is the linear space of series . . . , v−1, v0, v1, v2, . . . for which
∑∞
j=−∞ v

2
j <∞.

One can easily verify the following.
• F is an isometry, i.e.

‖F(u)‖2 = ‖u‖2,

we we have used the symbol ‖ · ‖2 for two different norms.

• The inverse F−1 : L2[−π, π]→ l2 of F can be given as

(F−1g)k = 1√
2π

∫ π

−π
eiksg(s) ds.
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Some important discrete time Fourier transform

If + and − denotes the right and the left-shift operator on l2, we have
• F(v+ − v) = (eis − 1)F(v),

• F(v− v−) = (1− e−is)F(v),

• F(v+ − v−) = 2i sin s · F(v).
We will investigate the coefficient ρ : [−π, π]→ R with

ρ(s) = F(un)(s)
F(un−1)(s) ,

which is called the amplification factor, which indeed, depends on δ and h. Then
we also have

F(un)(s) = ρn(s)F(un−1)(s)
and therefore, we also obtain the following.
Theorem 4.4.3. If |ρ(s)| ≤ 1 for each s ∈ [−π, π] then the corresponding scheme
is stable.

This approach has two drawbacks: first the theory can be applied only for
constant coefficient problems and only on infinite domain.

4.4.3 Matrix analysis
To investigate real-life problems, we have to take a bounded Ω such that the

operators in (4.3.6) become matrices and for the caseQh,δ,j = Q stability is satisfied
if and only if

‖uN‖∗ ≤ C‖QNu0‖∗
is valid for some mesh-independent constant C. A trivial sufficient condition is
given in the following:
Theorem 4.4.4. The numerical scheme with the constant one-step operator Q is
stable in the ‖ · ‖2 norm if
• ‖Q‖2 ≤ 1

• s(Q) = max{|λ| : λis an eigenvalue of Q} ≤ 1, whenever Q is symmeric.
Further details, see [6] and [7].

4.5 Numerical methods for diffusion problems
We again investigate∂tu(t, x) = σD∂xxu(t, x), x ∈ R, t ∈ R+

u(0, x) = u0(x), x ∈ R

now on an infinite domain. The corresponding scheme isu0
k = u0(kh), k ∈ Z
un+1
k = unk + σDδ

h2 (unk−1 − 2unk + unk+1), k ∈ Z, n = 0, 1, 2, . . .
(4.5.1)
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Proposition 4.5.1. The scheme in (4.5) is conditionally stable: it is stable with
respect to the l2-norm if and only if r ≤ 1

2 .

A tiny modification in the scheme can make it undonditionally convergent:

Proposition 4.5.2. The schemeu0
k = u0(kh), k ∈ Z
un+1
k = unk + σDδ

h2 (un+1
k−1 − 2un+1

k + un+1
k+1), k ∈ Z, n = 0, 1, 2, . . .

is unconditionally stable.

This method is implicit since the time steps can not be given with a simple
explicit formula but one have to solve a linear system in each time step. One can
prove similar statements also in the case of a bounded bounded domain. This
requires the stability results on matrices in Section 4.4.3.

4.6 Numerical methods for advection problems
The numerical methods will be demonstrated for the simple advection problem

∂tu(t, x) + a∂xu(t, x) = 0 t ∈ R+, x ∈ I = (bl, br)
u(0, x) = u0(x) x ∈ I
u(t, bl) = uleft(t) if bl 6= −∞

(4.6.1)

where the initial function u0 and the left-hand side values uleft (if applicable) are
given and the advection speed a is positive. We use the parameter R = a δ

h
. The

following statements can be verified.

Proposition 4.6.1. The schemeu0
k = u0(kh), k ∈ Z
un+1
k = unk − R

2 (unk+1 − un+1
k−1), k ∈ Z, n = 0, 1, 2, . . .

is consistent with (4.6.1) for I = R and the order of consistency is (2, 2) but it can
never be stable.

Proposition 4.6.2. The schemesu0
k = u0(kh), k ∈ Z
un+1
k = unk −R(unk − un+1

k−1), k ∈ Z, n = 0, 1, 2, . . .

and 
u0
k = u0(kh), 0 < kh < 1
un+1
k = unk −R(unk − un+1

k−1), 0 < kh < 1 n = 0, 1, 2, . . .
un0 = uleft(nδ), n = 0, 1, 2, . . .

are both conditionally stable under the condition R ≤ 1. The first corresponds to
the case of the infinite domain and the second one to the case I = (0, 1).
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Since the condition a > 0 is crucial in the preceding statements, we also mention
a scheme where this condition can be relaxed.

Proposition 4.6.3. The schemeu
0
k = u0(kh), k ∈ Z
un+1
k =

(
R2

2 + R
2

)
unk−1 + (1−R2)unk +

(
R2

2 −
R
2

)
unk+1, k ∈ Z, n = 0, 1, 2, . . .

is consistent with (4.6.1) for I = R and the order of consistency is (2, 2). It is
stable if and only if |R| ≤ 1. This is valid also for the modification of (4.6.1) with
a < 0.

For further schemes and key questions, see [1], [7].

4.7 Numerical methods for the one-dimensional
wave-equations

A numerical methods will be given for the simple wave propagation problem
∂ttu(t, x) = ∂xxu(t, x) t ∈ R+, x ∈ I = (bl, br)
u(0, x) = u0(x) x ∈ I
∂tu(0, x) = g(x) x ∈ I
u(t, bl) = uleft(t), u(t, br) = uright(t) if bl 6= −∞ and bl 6= −∞

(4.7.1)

where the initial function u0, the initial derivative g and the boundary values
uleft, uright (if applicable) are given. We use the parameter R = δ

h
.

Here we have to apply a two-step method to obtain a consistent approximation
of the second order spatial derivative.

The following statement can be verified.

Proposition 4.7.1. For I = R the schemeu0
k = u0(kh), k = . . . ,−1, 0, 1, . . .

1
δ2 (un+1

k − 2unk + un−1
k ) = 1

h2 (unk+1 − 2unk + unk−1), k ∈ Z, n = 1, 2, . . .
(4.7.2)

is consistent with the first equation in (4.7.1) and the order of consistency is (2, 2).
Furthermore, it is stable if and only if |R| ≤ 1.

In the practice, we have to deal with problems on finite intervals and one
should also give the approximation u1 to compute with the consecutive time steps
in (4.7.2).

Proposition 4.7.2. If we use the initialization

u1
k = u0

k + δ

2g(kh) + u0
k−1 − 2u0

k + u0
k+1

2h2 (4.7.3)

then the order of consistency with (4.7.1) remains (2, 2).

For the detailed analysis, we refer to [7].
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Chapter 5

András Frank: The graph
orientation problem

5.1 Introduction
By orienting an undirected edge e = uv, we mean the operation that replaces e

by one of the two directed edges uv and vu. An orientation of an undirected graph
G arises from G by orienting each edge of G. In the basic form of the orientation
problem, we are interested in finding an orientation of G meeting some specified
properties. A more general form arises when some edges are already oriented and
only the undirected edges are requested (and allowed) to be oriented. In other
words, in this case we want to find an orientation of a mixed graph.

The goal of this mini-course is to outline some of the basic results and tech-
niques concerning orientations as well as to exhibit several applications. The in-
terested reader can get deeper inside from the book Connections in Combinatorial
Optimization [5].

One may be interested, for example, in a root-connected orientation which
means that every node is reachable from a specified root-node r0 along a one-way
path. The reader will easily find a proof for the following observation.
Proposition 5.1.1. A graph G has a root-connected orientation if and only if G
is connected.

Somewhat trickier, but still rather easy, is to prove the following pretty result
of Robbins.
THEOREM 5.1.2 (Robbins). An undirected graph G has a strongly connected
(or just, strong) orientation if and only if G is 2-edge-connected.
Proof. Let s be a specified node and compute a Depth-first-search tree F of
root s. Define an arborescence ~F by orienting the edges of F away from s. By a
basic property of DFS trees, the unique path connecting the end-nodes of every
non-tree edge determines a directed path in ~F . Orient all the non-tree edges so as
to form a directed circuit with this path (that is, toward s). We claim that each
arc of the digraph D obtained in this way belongs to a di-circuit, and hence D is
strongly connected. As a result of this construction, each non-tree edge belongs
to a di-circuit. Let f = uv be an arc of ~F and let X denote the subset of nodes
reachable in ~F from v. Since G is 2-edge-connected, there is an edge e in G leaving
X. Since there is no cross-edge to F , f belongs to the di-circuit defined by e. •
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Problem 5.1.1. Find a necessary and suffcient condition for a mixed graph to
have a (a) root-connected (b) strong orientation.

We call a digraph smooth if the in-degree and the out-degree of every node
differ by at most 1.

Proposition 5.1.3. Every graph has a smooth orientation.

Proof. We may assume that G has at least one edge. If G includes a circuit K,
then inductively we find first a smooth orientation of the subgraph G − K, and
orient then K so as to obtain a one-way circuit. Suppose now that G is a forest.
Then it has a node v of degree 1. Let e = uv be the single edge incident to v.
Inductively there is a smooth orientation of G−e. We may assume that %(v) ≤ δ(v)
since the reorientation of a smooth digraph is also smooth. By orienting e toward
v we obtain a smooth orientation of G. •

When the initial graph is Eulerian (that is, every degree is even) we obtain the
following observation.

Proposition 5.1.4. An Eulerian graph has a di-Eulerian orientation.

After these easy orientation results, let us mention a significantly more difficult
one.

THEOREM 5.1.5 (Nash-Williams, [14]). An undirected graph G = (V,E) has
a k-edge-connected orientation if and only if G is 2k-edge-connected.

In this theorem the necessity of the given condition is straightforward since in
a k-edge-connected digraph there are at least k edges entering X and at least k
edges leaving X for every non-empty X ⊂ V . The proper difficulty lies in proving
sufficiency.

In some cases, however, it is not straightforward even to figure out the right
condition. For example, when does a mixed graph have a di-Eulerian orientation?
Or, when does a graph have an orientation in which there are k edge-disjoint paths
from a specified root-node to every other node?

It turns out that orientation theorems help answer questions arising in appar-
ently remote areas of graph theory. The goal of this mini-course is to outline the
basic orientation results as well as their applications.

5.2 Degree-constrained orientations
We pointed out in Proposition 5.1.3 that every undirected graph has a smooth

orientation. The question naturally arises: When does a graph have an orientation
in which the in-degree of each node belongs to a prescribed interval? A special case
is when each interval has exactly one element, that is, the in-degree of each node is
specified. Note that one could consider out-degrees as well, however the in-degree
plus the out-degree of a node is its undirected degree, which is independent of the
orientation, and therefore a constraint for the out-degree can easily be transformed
to a constraint for the in-degree.
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5.2.1 In-degree specification
The earliest result of this type is by Landau [11], who solved it for complete

graphs. By the in-degree sequence (or vector) of a directed graph with n nodes,
we mean a sequence consisting of the in-degrees of the nodes of the digraph.

THEOREM 5.2.1 (Landau). A sequence m1 ≥ m2 ≥ · · · ≥ mn of non-negative
integers is the in-degree sequence of a tournament if and only if

n∑
i=1

mi =
(
n

2

)
(5.2.1)

and
k∑
i=1

mi ≤ k(k − 1)/2 + k(n− k) (k = 1, . . . , n) (5.2.2)

hold, which are equivalent to requiring (5.2.1) and
n∑

i=n−h+1
mi ≥

(
h

2

)
(h = 1, . . . , n). (5.2.3)

We prove the theorem in a more general form.

THEOREM 5.2.2 (Orientation lemma, Hakimi, [8]). For an undirected graph
G = (V,E) and a function m : V → Z satifying m̃(V ) = |E|, the following are
equivalent.
(A) G has an orientation so that %̇ = m, that is,

%(v) = m(v) for every node v, (5.2.4)

(B) eG ≥ m, that is,

eG(X) ≥ m̃(X) for every subset X ⊆ V (5.2.5)

where eG(X) denotes the number of edges having at least one end-node in X.
(C) iG ≤ m, that is,

iG(Y ) ≤ m̃(Y ) for every subset Y ⊆ V (5.2.6)

where iG(Y ) denotes the number of edges induced by Y .

Proof. Since eG(X) + iG(V − X) = |E| = m̃(V ) = m̃(X) + m̃(V − X), the
equivalence of (5.2.5) and (5.2.6) is evident.

Suppose now that there exists a requested orientation. Then eG(X) = ∑[%(v) :
v ∈ X] + δ(X) ≥ ∑[m(v) : v ∈ X] = m̃(X) holds for any subset X ⊆ V , and
hence (A) implies (B).

Finally, suppose that (5.2.5) is met. The function eG can easily be seen to be
submodular, that is, eG(X) + eG(Y ) ≥ eG(X ∩ Y ) + eG(X ∪ Y ). Call a subset X
tight if m̃(X) = eG(X). The empty set is tight and so is V by the hypothesis
m̃(V ) = |E|.

Proposition 5.2.3. The intersection and the union of two tight sets X and Y are
also tight.
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Proof. m̃(X) + m̃(Y ) = eG(X) + eG(Y ) ≥ eG(X ∩Y ) + eG(X ∪Y ) ≥ m̃(X ∩Y ) +
m̃(X ∪ Y ) = m̃(X) + m̃(Y ) and the proposition follows. •

We proceed by induction on m̃(V ). The statement is straightforward when
m̃(V ) = |E| = 0, so we can assume that there is a node s for which m(s) > 0.
The proposition implies that there is a unique largest tight set Z not containing
s. There exists an edge f = us for which u 6∈ Z, for otherwise eG(Z + s) =
eG(Z) = m̃(Z) = m̃(Z + s) −m(s) < m̃(Z + s), and hence Z + s would violate
condition (5.2.5). Delete f and reduce the value of m(s) by one. We claim that
condition (5.2.5) also holds for the resulting graph G′ and for the revised in-
degree specification m′. Indeed, if a subset X would violate (5.2.5), then X would
originally be a tight us̄-set. From the maximal choice of Z we would have X ⊆ Z,
contrary to the assumption u 6∈ Z.

By induction, G′ has an orientation of in-degree vector m′, from which we
obtain an orientation of G with in-degree vector m by adding the directed edge
us. • •

Theorem 5.2.1 follows immediately from the Orientation lemma, since in a
complete graph the number iG(X) of edges induced by a subset X ⊆ V is the
same for each h-element subset, namely, h(h − 1)/2. Therefore, it suffices to
require the condition iG(X) ≤ m̃(X) only for the h smallest values mi.

Problem 5.2.1. At a chess tournament, the winner of a game gets one point, the
loser no points, while both players get half point for a draw. In order to avoid
fractions, multiply everything by two. Then the winner, for example, gets 2 points.
Under this assumption, when can a sequence m1 ≥ m2 ≥ · · · ≥ mn be the final
score of a chess tournament?

Research problem 5.2.2 (A. Iványi). Decide if a sequence of n integers can be
the final score of a football tournament of n teams. The winner of a game gets 3
points, the loser no point, while both teams get 1 point for a draw.

Euler orientations of mixed graphs

As mentioned above, an undirected Euler graph always has an Euler orien-
tation. The Orientation lemma allows one to extend this observation to mixed
graphs.

THEOREM 5.2.4 (Ford and Fulkerson). Let M = (V,A+E) be a mixed graph
consisting of an undirected graph G = (V,E) and a digraph D = (V,A). It is
possible to orient the edges of E in such a way that the resulting directed graph is
Eulerian if and only if every node of M is incident to an even number of (directed
or undirected) edges, that is,

δD(v) + %D(v) + dG(v) is even (5.2.7)

and
dG(X) ≥ %D(X)− δD(X) holds for every subset X ⊆ V . (5.2.8)

Proof. Let % ~G and δ ~G denote, respectively, the in-degree and the out-degree
functions of an orientation ~G = (V, ~E) of G. The digraph D+ ~G is Eulerian if and
only if %D(v)+% ~G(v) = δD(v)+δ ~G(v) for every node v. This equality is equivalent,
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via % ~G(v) + δ ~G(v) = dG(v), to % ~G(v) = (δD(v) − %D(v) + dG(v))/2. Denote the
right-hand side by m(v). By (5.2.7), m is integer-valued. Apply theorem 5.2.2 and
observe that the requirements (5.2.8) and (5.2.5) are equivalent for the specified
m. •

5.2.2 Upper and lower bounds
The Orientation lemma follows immediately from a more general result of

Hakimi [8], in which lower bounds, rather than exact values, are given for the
in-degrees. This problem is equivalent to that of imposing upper bounds on the
out-degree of the nodes. We now combine these two and solve the orientation
problem when both lower and upper bounds are prescribed for the in-degree of
the nodes. To this end, let f : V → Z+ ∪ {−∞} and g : V → Z+ ∪ {∞} be two
functions for which f ≤ g. (The lower bound −∞ on a node means that there is
no actual lower bound. We could have replaced −∞ by zero, but −∞ shows more
directly that these nodes do not play any role. Analogous is the situation with the
upper bound ∞.)

THEOREM 5.2.5. An undirected graph G = (V,E) has an orientation for which

(A) %(v) ≥ f(v) for every node v if and only if

eG ≥ f̃ (that is, eG(X) ≥ f̃(X) for every subset X ⊆ V ), (5.2.9)

(B) %(v) ≤ g(v) for every node v if and only if

iG ≤ g̃, (5.2.10)

(C) f(v) ≤ %(v) ≤ g(v) for every node v if and only if both eG ≥ f̃ and iG ≤ g̃
hold.

Proof. If a requested orientation exists, then f̃(X) ≤ ∑[%(v) : v ∈ X] ≤ eG(X),
and the necessity of (5.2.9) follows.

For proving sufficiency, assume (5.2.9). In an orientation of G we define a
node s deficient if %(s) < f(s). Let us choose an orientation of G in which the
total deficiency defined by the sum ∑[f(v) − %(v) : v deficient] is minimum. If
this sum is positive, then there is a deficient node s. Let X denote the set of
nodes reachable from s in the given orientation. No directed edge leaves X, hence∑[%(v) : v ∈ X] = eG(X). Now X must contain a node t, for which %(t) > f(t).
Otherwise f̃(X) > ∑[%(v) : v ∈ X] = eG(X), contradicting (5.2.9). By reorienting
a directed path from s to t, we obtain another orientation of G in which the total
deficiency is smaller, contradicting the choice of the original orientation. Therefore,
the total deficiency must be 0, that is, there is no deficient node, and we are done.

Part (B) can be proved analogously (with the difference that a node t is deficient
now if in the current orientation %(t) > g(t) and X denotes the set of nodes from
which t is reachable). Alternatively, the second part is formally equivalent to
that version of the first one when the out-degree of a node v is at least f(v) :=
dG(v)− g(v).

Finally, to see sufficiency in Part (C), let us start with an orientation of G for
which (∗) %(v) ≤ g(v) holds for every node v. Apply the algorithm of Part (A)
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and observe that the in-degree of a node s can increase only if %(s) < f(s) ≤ g(s),
and hence (∗) remains automatically valid. •

Note that the Part (C) involves the first two parts.

Corollary 5.2.6. Let G = (V,E) be an undirected graph with a specified subset
U ⊆ V of nodes and let m : U → Z+ be an in-degree specification on U . There
exists an orientation of G such that %(v) = m(v) for every v ∈ U if and only if
iG(X) ≤ m̃(X) ≤ eG(X) holds for every subset X ⊆ U .

Proof. Let f(v) := g(v) := m(v) if v ∈ U , and f(v) := −∞ and g(v) := ∞ if
v ∈ V − U . Apply Theorem 5.2.5. •

It is worth emphasizing the following interesting consequence.

Corollary 5.2.7. Let f and g be integer-valued functions on E for which f ≤ g.
If the graph G = (V,E) has an orientation for which %1(v) ≥ f(v) for every node
v, and G has an orientation for which %2(v) ≤ g(v) for every node v, then there is
an orientation of G meeting both requirements. •

This property is called the linking property. One of its earliest occurrences
appeared in a paper of Mendelsohn and Dulmage [12]. It was formulated by Ford
and Fulkerson [3] (Page 49) in a related theorem on the existence of integral ma-
trices for which the row-sums and the column-sums lie between specified bounds.
The concept was investigated in detail in the book of Mirsky [13]. The linking
property shows up under much more complicated circumstances, too.

Note that the Orientation lemma follows immediately from Part (A) of Theo-
rem 5.2.5.
Alternative proof of (the non-trivial part of) the Orientation lemma. Observe
that for f := m, (5.2.5) and (5.2.9) are the same. Therefore, Theorem 5.2.5
implies the existence of an orientation of G for which %(v) ≥ m(v) for every node
v. Since |E| = ∑[%(v) : v ∈ V ] ≥ ∑[m(v) : v ∈ V ] = m̃(V ) = |E|, we must have
equality for every node v, that is, %(v) = m(v). •

Exercise 5.2.3. Prove that if D1 and D2 are two orientations of the same undi-
rected graph such that %1(v) = %2(v) holds for each node v, then it is possible to
get from D1 to D2 by a sequence of reorienting directed circuits.

Exercise 5.2.4. Show that if % and %′ denote the in-degree functions of two ori-
entations of G for which %(v) = m(v) = %′(v) for every node v, then %(X) = %′(X)
for every subset X ⊆ V .

Problem 5.2.5. Develop a necessary and sufficient condition for the existence of
an orientation where lower and uppers bounds are given for the in-degrees as well
as for the out-degrees.

Alternative algorithmic proof: a push-relabel approach

Consider again Part (A) of Theorem 5.2.5, where the goal was to find an
orientation for which the in-degrees obey lower bounds on the nodes. Suppose
for a moment that we do not know yet the path reorientation technique used
above and that we want to solve the orientation problem from scratch. A naive
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approach would be to start with an arbitrary orientation, reorient any edge leaving
an arbitrary node with %(v) < f(v), and repeat these edge reorientations as long
as there are deficient nodes. Not surprisingly, such a primitive procedure need
not terminate: For example, if e is an uv-edge and both u and v are deficient,
then the algorithm may choose to reorient e every time, in which case there is
no progress. However, if we introduce a clever control parameter (to be called
level) on the nodes to select the proper deficient node and the proper leaving edge,
then this approach does work. Precisely this approach is the idea of the push-
relabel algorithm of Goldberg and Tarjan [7] that was developed for computing a
maximum flow (and beat the alternating path method). The algorithm below is
merely an adaptation of the algorithm of Goldberg and Tarjan for orientations. It
may help the reader to capture the very essence of this technique in the present,
particularly simple setting. In Part III, we shall see that the push-relabel approach
extends well beyond network flows.

The procedure starts with an arbitrary orientation and works throughout with
a non-negative integer-valued level function Θ : V → Z+ on the nodes. The
following two level properties will be maintained:

(L1) Every oversaturated node v (that is, one with %(v) > f(v)) is on level 0.
(L2) Θ(v) ≥ Θ(u)− 1 holds for every directed edge uv.

The algorithm terminates when one of the following stopping rules holds.

(A) There are no more in-deficient nodes where v is in-deficient if %(v) < f(v).
(B) There exists an in-deficient node z and an empty level j under the level of z,
that is, j < Θ(z) and {u ∈ V : Θ(u) = j} = ∅.

Stopping rule (A) means that the current orientation satisfies the requirement
%(v) ≥ f(v) for every node v. We claim that Stopping rule (B) implies that
eG(X) < f̃(X) for subset X := {u : Θ(u) ≥ j}, and hence X violates (5.2.9).
Indeed, on the one hand, X contains no oversaturated node by Property (L1),
whereas it contains the in-deficient z, from which ∑[%(u) : u ∈ X] < ∑[f(u) : u ∈
X] = f̃(X) follows. On the other hand, no edge leaves X by Property (L2), from
which eG(X) = ∑[%(u) : u ∈ X] < f̃(X).

The algorithm runs as follows. At the beginning Θ ≡ 0. As long as there
are in-deficient nodes, select arbitrarily one, to be denoted by z. If there is an arc
e = zv with Θ(v) = Θ(z)−1, then reorient e. When this operation makes Stopping
rule (A) valid, the algorithm terminates by returning a requested orientation.

If there is no such an arc, then increase Θ(z) by one. When this operation
makes Stopping rule (B) valid, the algorithm terminates by returning a subset X
violating (5.2.9). Note that both operations maintain properties (L1) and (L2).

The level of a node can be increased at most n times, since once a node reaches
level n = |V | there must be an empty level under it, in which case (B) certainly
holds. Therefore, the total number of level increases is at most n2.

Since an edge is reoriented only if its head has a lower level than its tail, the
sum Θ(u) + Θ(v) increases by at least 2 between two consecutive reorientations of
uv. Since the level of every node is less than n, the sum Θ(u)+Θ(v) is at most 2n,
and hence every edge can be reoriented at most n = 2n/2 times. Therefore, the
total number of reorientations is at most mn, implying that the overall complexity
of the algorithm is O(nm). •
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5.3 Applications

5.3.1 Paths and matchings
Menger’s theorem

There are several versions of Menger’s theorem. Here we derive the directed
edge-version.

THEOREM 5.3.1 (Menger). Let D = (V,A) be a digraph with a source-node
s and a sink-node t so that no edge enters s and no edge leaves t. There are k
edge-disjoint st-paths if and only if

δ(X) ≥ k holds for every st̄-set X. (5.3.1)

Proof. A necessity is straightforward, we prove only sufficiency.
Observe first that it suffices to construct a subgraph D′ = (V,A′) of D in which

δD′(s) = k, %D′(s) = 0 and %D′(v) = δ′(v) holds for every v ∈ V − {s, t} (5.3.2)

since in such a D′ one can find in a greedy way the k edge-disjoint st-walks.
We assumed that %D(s) = 0 = δD(t). Let G denote the underlying undirected

graph of D and define m : V → Z by

m(v) :=


%D(v) if v ∈ V − {s, t}
k if v = s

%D(t)− k if v = t

. (5.3.3)

Claim 5.3.2. m̃(X) ≤ eG(X) for every X ⊆ V , with equality for X = V .

Proof. First, m̃(V ) = ∑[m(v) : v ∈ V ] = ∑[%D(v) : v ∈ V ] + k − k = eD(V ) =
eG(V ). Second, observe that (5.3.1) is equivalent to requiring that δD(X) ≥ k(|X∩
{s}| − |X ∩ {t}|) for every subset X of V . We have

m̃(X) =
∑

[%D(v) : v ∈ X]+k(|X∩{s}|−|X∩{t}|) = eG(X)−δD(X)+k(|X∩{s}|−|X∩{t}|)

from which m̃(X) ≤ eG(X) follows. •

By the Orientation lemma (Theorem 5.2.2), there is an orientation ~G of G with
in-degree specification m. Let D′ denote the subgraph of D consisting of those
edges which have been reversed in ~G. Because of the definition of m, D′ satisfies
the properties given by (5.3.2). • •

By adapting the path-reversing proof technique described in the proof of The-
orem 5.2.5, one obtains the following simple algorithm for finding the requested
degree-specified reorientation of D. Start with D. As long as there is a directed
st-path in the current reorientation of D, find one and reorient its edges. Since
this operation reduces the out-degree of each st̄-set by one, after k reorientations
we shall have arrived at the one satisfying the requested in-degree specification m.
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Factors of bipartite graphs

THEOREM 5.3.3 (Hall). A bipartite graph G = (S, T ;E) has a perfect match-
ing if and only of |S| = |T | and

|Γ(YT )| ≥ |YT | for every YT ⊆ T (5.3.4)

where Γ(YT ) denotes the subset of nodes in S having a neighbour in YT .

Proof. Necessity is being straightforward, we prove only sufficiency.
Observe that by orienting the edges of a perfect matching M toward S while

all the other edges toward T we obtain an orientation of G in which the in-degree
of every node s ∈ S is m(s) := 1 and the in-degree of every node t ∈ T is
m(t) := dG(t) − 1, and conversely, in an orientation of G with this in-degree
specification m the set of edges entering S is a perfect matching.

By the Orientation lemma, there is an orientation (that is, there is a perfect
matching) if and only if m̃(V ) = |E|, where V = S ∪ T , and m̃(Y ) ≥ i(Y ) for
every Y ⊆ V . Clearly m̃(V ) = m̃(T ) + m̃(S) = ∑[d(t) − 1 : t ∈ T ] + ∑[1 :
t ∈ S] = |E| − |T | + |S| = |E|. For a subset Y ⊆ V , let YS := Y ∩ S and
YT := Y ∩ T . By (5.3.4) we have |YS| + d(Y, S) ≥ |Γ(YT )| ≥ |YT | from which
m̃(Y ) = |YS|+ [d(YT )− |YT |] = |YS|+ i(Y ) + d(Y, S)− |YT | ≥ i(Y ). •

Problem 5.3.1. Let G = (S, T ;E) be a bipartite graph and let b : S ∪ T → Z+
be a function. There exists a subset F ⊆ E of edges so that dF (v) = b(v) for every
v ∈ S ∪ T if and only if b̃(S) = b̃(T ) and b̃(Γ(Y )) ≥ b̃(Y ) holds for every Y ⊆ T .

Finding degree-constrained subgraphs

Let G = (V,E) be an undirected graph. At every node v of G, we are given a
set F (v) ⊆ {0, 1, . . . , dG(v)} of forbidden degrees, where dG(v) denotes the degree
of v. A subgraph G′ = (V,E ′) of G is called F -avoiding if dG′(v) 6∈ F (v) for every
v ∈ V. The problem of deciding if there is an F -avoiding subgraph is NP-complete
in general. Indeed, the hypergraph perfect matching problem (that seeks to find
a partition of the node set consisting of hyperedges), which is known to be NP-
complete even for 3-uniform hypergraphs, can easily be formulated this way. To
this end, consider the bipartite graph G = (V, U ;E) associated with hypergraph
H = (V,F). Note that the degree of every node u ∈ U is 3. At every node
v ∈ V , let F (v) := {0, 2, 3, . . . , dG(v)}. This means that for v ∈ V the set F (v)
the complementary set of {1}. At every node u ∈ U , let F (u) = {1, 2}. Clearly,
there is a one-to-one correspondence between the perfect matchings of H and the
F -avoiding subgraphs of G.

Intuition suggests that there must be an F -avoiding subgraph if each forbidden
set F (v) is sufficiently small and this natural feeling is formulated in the next result
of Shirazi and Verstraëte [17].

THEOREM 5.3.4. If

|F (v)| ≤ bdG(v)/2c for every v ∈ V , (5.3.5)

then G admits an F -avoiding subgraph.
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Interestingly, the original proof of this disarmingly simple-sounding statement
made use of a fundamental combinatorial result concerning polynomials, a result
by Alon [1]. The simple combinatorial proof below neatly exemplifies the paradigm
that it can be highly rewarding to figure out a proper extension of the statement
in order to get a short and simple proof.

We have seen in Theorem 5.1.3 that every graph G has a smooth orientation
D = (V, ~E). In such an orientation, %D(v) ≥ bdG(v)/2c for every node v. There-
fore, the following result of Frank, Lao, and Szabó [6] implies Theorem 5.3.4.

THEOREM 5.3.5. If a graph G has an orientation D = (V, ~E) in which %D(v) ≥
|F (v)| for every node v, then G has an F -avoiding subgraph.

Proof. We proceed by induction on the number of edges. For an edge e ∈ E of
G, let ~e denote the corresponding directed edge of D. If 0 does not occur at any
node as a forbidden degree, then the graph (V, ∅) is an F -avoiding subgraph of
G. Suppose now that 0 ∈ F (t) for some node t. Then %D(t) ≥ |F (t)| ≥ 1, and
therefore there is an edge e = st of G for which ~e is directed toward t.

Let G− := G− e and D− := D − ~e. Define F− as follows.

F−(v) :=

{i− 1 : i ∈ F (t)− {0}} if v ∈ {s, t},
F (v) if v ∈ V − {s, t}.

(5.3.6)

Since |F−(t)| = |F (t)| − 1, we have %D−(v) ≥ |F−(v)| for every node v. By
induction, G− has an F−-avoiding subgraph G′′. It follows from the definition of
F− that the subgraph G′ := G′′ + e of G is F -avoiding. •

This approach shows that the hypothesis (5.3.5) in Theorem 5.3.4 can be made
more flexible. By combining Theorem 5.3.5 with Part (A) of Theorem 5.2.5, one
obtains the following.

THEOREM 5.3.6. Suppose that eG(X) ≥ ∑[|F (v)| : v ∈ X] holds for every
subset X ⊆ V of nodes of an undirected graph G. Then G has an F -avoiding
subgraph. •

5.3.2 Sparsity and list-colouring
Recognizing k-sparse graphs

A interesting feature of graph orientation problems is that, in several applica-
tions, our primary interest is not the existence of a certain orientation. Instead,
we want to check, for example, the validity of criterion (5.2.9) or (5.2.10). We call
a subset Z ⊆ V of nodes of an undirected graph G = (V,E) k-sparse if

iG(X) ≤ k(|X| − 1) (5.3.7)

holds for every non-empty subset X ⊆ Z. The graph G itself is also said to be
k-sparse if V is k-sparse. A classic theorem of Nash-Williams [15] states that
the edge-set of G can be partitioned into k forests if and only if G is k-sparse.
Here we show how it is possible to test a graph for k-sparsity with the help of
degree-constrained orientations.

It follows from Part (B) of Theorem 5.2.5 that there is an orientation of G so
that the in-degree of a specified node s is 0 while all other in-degrees are at most
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k if and only if iG(X) ≤ k(|X| − 1) holds for every subset X ⊆ V containing s
and iG(X) ≤ k|X| holds for every subset X ⊆ V not containing s. Therefore all
we need to do is to check if there is such an orientation for every possible choice
of s ∈ V . If the answer is yes for every s, then the graph is k-sparse, while if
the answer is no for at least one s ∈ V , then the algorithm returns a subset X
violating (5.3.7), showing that the graph is not k-sparse.

List-colouring of bipartite graphs

The chromatic number of a graph G is the smallest integer k for which the
nodes of G can be coloured with k colours so that no colour class induces any
edge. In the list-colouring problem, each node of G admits a list of colours and we
are interested in a colouration of nodes so that the colour of each node is taken from
its list. G is said to be k list-colourable if there is a list-colouration whenever the
list of each node has at least k colours. The smallest such k is the list-chromatic
number of G. Clearly, the size of a maximum clique is a lower bound for the
chromatic number and hence it is a lower bound for the list-chromatic number.

The list-chromatic number can be arbitrarily larger than the chromatic number
even for bipartite graphs. However an upper bound depending on the edge density
can be obtained.

We say that a stable subset K of a digraph D = (V,A) is a kernel if there is
an edge uv ∈ A, u ∈ K for every node v ∈ V −K. A directed circuit of odd length
shows that not every digraph has a kernel.

THEOREM 5.3.7 (Fleiner). The union of two transitive and acyclic digraphs
has a kernel. Equivalently, given two posets P1 and P2 on a common groundset V ,
there is an antichain A in common such that, for every element x ∈ V − A, there
is a p ∈ A which is larger than x in at least one of the two posets.

Proof. Let A1 be the set of maximal elements in P1. This is clearly an antichain
in P1. If A1 happens to be an antichain of P2, too, then A1 will do.

Suppose now that there are elements p, y ∈ A1 for which p is larger than y in
P2. By induction, after deleting y there is an antichain A′ in common with the
required property. If p ∈ A′, then A′ will do for the original posets. If p 6∈ A′, then
there is an element p′ ∈ A′ that is larger than p in one of the posets. Due the the
definition of A1, p′ is larger than p in P2. Now the transitivity implies that p′ is
larger than y in P2. •

The following is a special case.

THEOREM 5.3.8. A directed bipartite graph has a kernel. •

THEOREM 5.3.9. If a bipartite graph G has an orientation in which every
degree is at most k (that is, by the Orientation lemma, every subset Z of nodes
induces at most k|Z| edges), then the list-clouring number of G is at most k + 1.

Proof. We prove the following stronger statement.

Let D be an orientation of a bipartite graph G = (V,E). For each v ∈ V
we are given a list L(v) of colours of size at least %D(v) + 1. Then G admits a
list-colouring.
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To see this, let s be a colour appearing in a list and consider the set Vs of nodes
whose list contains s. By Theorem 5.3.9 the subdigraph Ds induced by Vs includes
a kernel Ks. Assign colour s to each node in Ks and delete s from each list. In the
subgraphD′ = D−Ks, for the reduced lists we claim that |L′(v)| ≥ %D′(v)+1. This
clearly holds for a node v with |L′(v)| = |L(v)| so assume that |L′(v)| = |L(v)|−1.
Then v ∈ Vs −Ks. Since Ks is a kernel in Ds, there is a directed edge from Ks to
v. Therefore %D′(v) < %D(v) and hence |L′(v)| = |L(v)| − 1 ≥ %D(v) ≥ %D′(v) + 1,
as required.

By induction, there is a list-colouring of D′ with respect to the lists L′(v). By
adding Ks as an additional class coloured by s, we obtain a list-colouring of G. •

For planar bipartite graphs we have the following corollary.

THEOREM 5.3.10 (Alon and Tarsi, [2]). The list-colouring number of a planar
bipartite graph is at most 3.

Proof. We may assume that G is simple. Let n and m denote the number of
nodes and edges, respectively. In a simple planar bipartite graph each region s
bounded by at least 4 edges. Therefore the number t of regions is at most m/2.

By Euler’s formula, t + n = m + 2 from which m/2 + n ≥ m + 2 and hence
m ≤ 2n−4. Since every subgraph of G is also planar and bipartite, it follows that
each subset Z of nodes of G induces at most 2|Z| − 4 edges. By the Orientation
lemma, G admits an orientation of D in which every in-degree is at most 2. By
Theorem 5.3.9, G is 3-list-colourable. •
Problems

5.3.2. Let ` and k be non-negative integers where ` ≤ k. Extend the approach
above to test, for a graph G, whether iG(X) ≤ k|X|− ` holds for every non-empty
subset X ⊆ V .

5.3.3 (Kampen, [10]). Let G be a simple planar graph. Relying on the Euler’s
formula, prove that G has an orientation in which every in-degree is at most 3.

5.3.4. Let G = (V,E) be a simple maximal (that is, triangulated) planar graph
on at least five nodes. Prove that E can be partitioned into claws, where a claw
is the complete bipartite graph K1,3.

5.3.5. Adapt the graph-orientation idea above to test in a graph if iG(X) ≤
m̃(X) − ` holds for every non-empty subset X of V where m : V → Z+ is a
non-negative integer-valued function and ` is a non-negative integer for which
` ≤ m(v) for every v ∈ V .

5.3.6. Develop a (slightly more sophisticated) approach to test in a graph if iG(X) ≤
2|X| − 3 holds for every subset X ⊆ V with at least 2 elements.
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Chapter 6

Péter E. Frenkel: Algebraic
inequalities and sums of squares

Many of the most important inequalities in mathematics are, or can be refor-
mulated as, algebraic inequalities. An algebraic inequality is one which asserts
that some given polynomial is nonnegative everywhere (or is nonnegative on some
specified set).

6.1 Inequalities between means
As examples, consider the inequalities listed below. In each of these, the vari-

ables xi, Xi, Yi are meant to be nonnegative reals.

• The inequality
q

√√√√ 1
n

n∑
i=1

xqi ≤ p

√√√√ 1
n

n∑
i=1

xpi (6.1.1)

between power means. This holds for any real exponents p ≥ q > 0, and can
be rewritten as an algebraic inequality when p and q are integers.

• The more general inequality of Lyapunov:(
n∑
i=1

xqi

)p−r
≤
(

n∑
i=1

xpi

)q−r ( n∑
i=1

xri

)p−q
. (6.1.2)

This holds for any real exponents p ≥ q ≥ r ≥ 0, and is an algebraic
inequality when p, q and r are integers. Note that the special case r = 0 is
the preceding power mean inequality.

• Maclaurin’s inequality

q

√√√√√(n
q

)−1 ∑
1≤i1<···<iq≤n

xi1 · · ·xiq ≥ p

√√√√√(n
p

)−1 ∑
1≤i1<···<ip≤n

xi1 · · ·xip (6.1.3)

between elementary symmetric means. This holds for integers n ≥ p ≥ q ≥ 1,
and can be rewritten as an algebraic inequality. Note that the special case
q = 1, p = n is the inequality between the arithmetic and the geometric
mean.



72 Péter E. Frenkel: Algebraic inequalities and sums of squares

• A Lyapunov type generalization of Maclaurin’s inequality:∑i1<···<iq xi1 · · ·xiq(
n
q

)
p−r ≥

≥

∑i1<···<ip xi1 · · ·xip(
n
p

)
q−r ∑i1<···<ir xi1 · · ·xir(

n
r

)
p−q

for the elementary symmetric means. This holds for integers n ≥ p ≥ q ≥
r ≥ 0, and is an algebraic inequality. Note that the special case r = 0 is
Maclaurin’s inequality, and the special case r = q− 1, p = q+ 1 is Newton’s
well-known inequality. This latter special case is easily seen to imply the
general case.

• Minkowski’s inequality (superadditivity of the geometric mean):

n

√√√√ n∏
i=1

Xi + n

√√√√ n∏
i=1

Yi ≤ n

√√√√ n∏
i=1

(Xi + Yi).

One way of proving an algebraic inequality f ≥ 0 is to rewrite f as a sum of
squares. A polynomial f ∈ R[x] which is nonnegative on the real line is always a
sum of two squares of polynomials. This is an easy consequence of the fundamental
theorem of algebra. Minkowski conjectured that this fails for multivariate polyno-
mials, i.e., a polynomial f ∈ R[x1, . . . , xn] that is nonnegative everywhere on Rn

is not necessarily a sum of squares (of any number of polynomials). Minkowski’s
conjecture was proved by Hilbert. The simplest known example showing that
Minkowski was right was given by Motzkin. This example is given below, after
Exercise 5.

However, if the inequality f ≥ 0 is ‘classical’ and ‘famous’ enough, then f
usually turns out to be representable as a sum of squares, although such a rep-
resentation is not always easy to find. For example, the most standard proof of
the Cauchy–Schwarz inequality is not the one that rewrites the difference of the
two sides as a sum of squares, but such a rewriting is possible (and almost as well
known). More interestingly, the inequality between the arithmetic and the geo-
metric mean also has such a proof, as was demonstrated by Hurwitz [6] in 1891.
The paper of Fujisawa [4] gives numerous further examples of this phenomenon.

Such a purely algebraic proof of an algebraic inequality, even if it is not the
simplest proof, gives some extra understanding of why the inequality ‘must be
true’.

In many cases binomial squares, i.e., squares of binomials axα+bxβ suffice. Here
xα is a shorthand for xα1

1 · · ·xαnn , and the coefficients a and b are real numbers. For
example, for n = 2,

x2 + y2

2 −
(
x+ y

2

)2
=
(
x− y

2

)2

is a binomial square.
In the course, I will explain — following [5] — how positive polynomials arising

from some of the inequalities listed above can be represented as sums of binomial
squares. As a warm-up, the reader is encouraged to try solving the following
exercises before reading the solutions.
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1. (a) Can

f(x, y, z) = x2 + y2 + z2

3 −
(
x+ y + z

3

)2

be written as the square of a polynomial?
(b) Can it be written as a sum of squares of polynomials?
Solution. (a) No. Since the given polynomial f is homogeneous of degree 2,
the square root would have to be homogeneous of degree 1, i.e., of the form
g(x, y, z) = ax + by + cz. Comparing coefficients in f and g2 shows that
f = g2 is impossible.
(b) Yes, e.g.

f(x, y, z) =
(
x− y

3

)2
+
(
y − z

3

)2
+
(
z − x

3

)2
.

2. (a) More generally, can

x2
1 + · · ·+ x2

n

n
−
(
x1 + · · ·+ xn

n

)2

be written as a sum of squares of polynomials?
(b) Same question for

x3 + y3

2 −
(
x+ y

2

)3
.

Solution. (a) Yes, e.g. ∑
i<j

(
xi − xj
n

)2
.

(b) Of course not! It is negative for x = y = −1.

Classical inequalities often involve nonnegative real variables as opposed to
real variables. In the setting of nonnegative variables, the suitable analog of the
semiring of sums of squares is the semiring

S = Sn =


1∑

ε1=0
. . .

1∑
εn=0

rε
n∏
j=1

x
εj
j | rε is a sum of squares in R[x1, . . . , xn]

 .
It is immediately seen that S is indeed a semiring, i.e., it is closed under addition
and multiplication. In fact, S is the semiring generated by the variables x1, . . . ,
xn and by the squares of all polynomials.

Note that p ∈ S implies that p is nonnegative for x1, . . . , xn ≥ 0, but not
conversely. Clearly, p is nonnegative for x1, . . . , xn ≥ 0 if and only if p(x2

1, . . . , x
2
n)

is nonnegative everywhere. The relevance of the semiring S is explained by the
following Lemma.

Lemma 6.1.1 ( [5]). Let p ∈ R[x1, . . . , xn]. Then p ∈ S if and only if p(x2
1, . . . , x

2
n)

is a sum of squares in R[x1, . . . , xn].
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Proof. The ‘only if’ part is trivial. For the ‘if’ part, we consider the linear operator

R : R[x1, . . . , xn]→ R[x2
1, . . . , x

2
n]

that maps the monomial ∏xkjj to itself if all kj are even and maps it to zero
otherwise. We assume that p(x2

1, . . . , x
2
n) is a sum of squares, i.e., there exist

polynomials ri such that

q(x1, . . . , xn) := p(x2
1, . . . , x

2
n) =

k∑
i=1

r2
i (x1, . . . , xn).

In ri, we group terms according to the parity of the exponents of x1, . . . , xn. We
define the polynomials ri,ε for each ε = (ε1, . . . , εn) ∈ {0, 1}n so that

ri(x1, . . . , xn) =
1∑

ε1=0
. . .

1∑
εn=0

ri,ε(x2
1, . . . , x

2
n)

n∏
j=1

x
εj
j .

Apply R to r2
i , then

(Rr2
i )(x1, . . . , xn) =

1∑
ε1=0

. . .
1∑

εn=0
r2
i,ε(x2

1, . . . , x
2
n)

n∏
j=1

x
2εj
j .

Hence,
p(x2

1, . . . , x
2
n) = q(x1, . . . , xn) = (Rq)(x1, . . . , xn) =

=
k∑
i=1

(Rr2
i )(x1, . . . , xn) =

k∑
i=1

1∑
ε1=0

. . .
1∑

εn=0
r2
i,ε(x2

1, . . . , x
2
n)

n∏
j=1

x
2εj
j .

Therefore,

p(x1, . . . , xn) =
k∑
i=1

1∑
ε1=0

. . .
1∑

εn=0
r2
i,ε(x1, . . . , xn)

n∏
j=1

x
εj
j ,

whence p ∈ S.

Let us return to our exercises.

3. (a) Is the polynomial of Exercise 2(b) in S ? I.e., can it be obtained by
addition and multiplication (but no subtraction) from x, y and squares of
suitable polynomials?
(b) More generally, is

xp1 + · · ·+ xpn
n

−
(
x1 + · · ·+ xn

n

)p
in S ? (Note that p is a natural number.)
Solution. (a) Yes, it is (3/8)(x+ y)(x− y)2.
(b) Yes. Hint: use induction on p.
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4. Is the polynomial (
x+ y + z

3

)3
− xyz

in S ?
Answer. Yes.

5. Suppose that the polynomial f(x1, . . . , xn) is non-negative for all non-negative
x1, x2, . . . , xn (as in all examples above). Does it follow that f ∈ S ?
Solution. No. Let n = 2 and

f(x, y) = 1− 3xy + xy2 + x2y.

It follows from the inequality between the arithmetic and the geometric mean
that f ≥ 0 whenever x and y are nonnegative. However, f 6∈ S. We leave
the proof to the reader but, as a hint, we define the main tool. The Newton
polygon of a polynomial g(x, y) = ∑

aijx
iyj is the convex hull af the lattice

points (i, j) ∈Z2
≥0 such that aij 6= 0. For example, the Newton polygon of f

is the triangle with vertices (0, 0), (1, 2) and (2, 1).

By Lemma 6.1.1, this means that the polynomial

f(x2, y2) = 1− 3x2y2 + x2y4 + x4y2

is not a sum of squares, although it is nonnegative everywhere on R2. This is
Motzkin’s example.

6.2 Positive semi-definite matrices
There is another type of algebraic inequality that I will also discuss in the

minicourse: determinantal and permanental inequalities for positive semidefinite
matrices.

Recall that the determinant and the permanent of an m×m matrix C = (ci,j)
are defined by

detC =
∑
π∈Sm

(−1)π
m∏
i=1

ci,π(i), perC =
∑
π∈Sm

m∏
i=1

ci,π(i),

where Sm is the symmetric group on m elements. Throughout this section, we
assume that C is a positive semi-definite Hermitianm×mmatrix (we write C ≥ 0).
For such C, Hadamard proved that

detC ≤
m∏
i=1

ci,i, (6.2.1)

with equality if and only if C has a zero row or is a diagonal matrix. Fischer
generalized this to

detC ≤ detB′ · detB′′ (6.2.2)
for

C =
(
B′ A
A∗ B′′

)
≥ 0, (6.2.3)
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with equality if and only if detB′ · detB′′ · A = 0.
Concerning the permanent of a positive semi-definite matrix, Marcus [8, 9]

proved that
perC ≥

m∏
i=1

ci,i, (6.2.4)

with equality if and only if C has a zero row or is a diagonal matrix. Lieb [7]
generalized this to

perC ≥ perB′ · perB′′ (6.2.5)
for C as in (6.2.3), with equality if and only if C has a zero row or A = 0. Moreover,
he proved that in the polynomial P (λ) of degree n (=size of B′) defined by

P (λ) = per
(
B′ A
λA∗ B′′

)
=

n∑
t=0

ctλ
t,

all coefficients ct are real and non-negative. This is indeed a stronger theorem
since it implies

perC = P (1) =
n∑
t=0

ct ≥ c0 = perB′ · perB′′.

If m = 2n, then the inequalities ct ≥ 0 even imply
perC ≥ perB′ · perB′′ + | perA|2, (6.2.6)

since the right hand side is c0 + cn. Inequality (6.2.6) is case p = 2 of the following
conjecture of Marcus: If C is a positive semi-definite Hermitian pn × pn matrix
partitioned into p× p blocks Ai,j, each of size n× n, then

perC ≥ per((perAi,j)i,j).
This is itself a special case of the so-called permanental dominance conjecture,
which we do not state here.

Ðoković [3,11] gave a simple proof of Lieb’s above inequalities, and showed also
that if B′ and B′′ are positive definite then ct = 0 if and only if all sub-permanents
of A of order t vanish. Lieb [7] also states an analogous (and analogously provable)
theorem for determinants: for C as in (6.2.3), let

D(λ) = det
(

B′ A
−λA∗ B′′

)
=

n∑
t=0

dtλ
t. (6.2.7)

If detB′ · detB′′ = 0, then D(λ) = 0. If B′ and B′′ are positive definite, then dt is
positive for t ≤ rkA and is zero for t > rkA. In contrast to the above deduction
of the permanental Lieb inequality (6.2.5) from ct ≥ 0, there is no obvious way of
deducing the Fischer inequality (6.2.2) from dt ≥ 0. Instead of (6.2.2), we get

D(1) = det
(
B′ A
−A∗ B′′

)
≥ detB′ · detB′′. (6.2.8)

Remark 6.2.1. In all of Lieb’s inequalities mentioned above, the condition that
the matrix C is positive semi-definite can be replaced by the weaker condition that
the diagonal blocks B′ and B′′ are positive semi-definite. The proof goes through
virtually unchanged. Alternatively, this stronger form of the inequalities can be
easily deduced from the seemingly weaker form above.

In the minicourse, I will explain proofs for some of these inequalities. All proofs
will be based on representing the relevant positive polynomial as a sum of squares.
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Chapter 7

Tibor Jordán: Location and
localization problems in networks

7.1 Introduction
In the network localization problem the locations of some nodes (called anchors)

of a network as well as the distances between some pairs of nodes are known, and
the goal is to determine the location of all nodes. This is one of the fundamental
algorithmic problems in the theory of wireless sensor networks, see for example [1].

A natural additional question is whether a solution to the localization problem
is unique. The network, with the given locations and distances, is said to be
uniquely localizable if there is a unique set of locations consistent with the given
data. The unique localizability of a two-dimensional network, whose nodes are ‘in
generic position’, can be characterized by using results from graph rigidity theory.
In this case unique localizability depends only on the combinatorial properties of
the network and can be tested by efficient algorithms.

The goal of this series of lectures is to explore the combinatorial background
of this characterization and the corresponding algorithms. After proving some of
the classical results of combinatorial rigidity theory and discussing the necessary
algorithmic tools, we shall investigate several versions and extension of the network
localization problems and their solutions.

7.1.1 Basic definitions
In what follows we shall summarize the basic concepts and some of the key

preliminary results. See the Appendix for more definitions concerning graphs and
matroids.

As we shall see, unique localizability (in the ‘generic case’) is determined com-
pletely by the distance graph of the network and the set of anchors, or equivalently,
by the grounded graph of the network and the number of anchors. The vertices
of the distance and grounded graph correspond to the nodes of the network. In
both graphs two vertices are connected by an edge if the corresponding distance is
explicitly known. In the grounded graph we have additional edges: all pairs of ver-
tices corresponding to anchor nodes are adjacent. The grounded graph represents
all known distances, since the distance between two anchors can be obtained from
their locations. Before stating the basic observation about unique localizability
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Figure 7.1.1: Two realizations of the same graph G in R2: F1 is globally rigid; F2
is not since we can obtain a realization of G which is equivalent but not congruent
to F2 by reflecting p2 in the line through p1, p5, p3.

we need some additional terminology. It is convenient to investigate localization
problems with distance information by using frameworks, the central objects of
rigidity theory.

A d-dimensional framework (also called geometric graph or formation) is a pair
(G, p), where G = (V,E) is a graph and p is a map from V to Rd. We consider
the framework to be a straight line realization of G in Rd. Two frameworks (G, p)
and (G, q) are equivalent if corresponding edges have the same lengths, that is, if
||p(u) − p(v)|| = ||q(u) − q(v)|| holds for all pairs u, v with uv ∈ E, where ||.||
denotes the Euclidean norm in Rd. Frameworks (G, p), (G, q) are congruent if
||p(u) − p(v)|| = ||q(u) − q(v)|| holds for all pairs u, v with u, v ∈ V . This is the
same as saying that (G, q) can be obtained from (G, p) by an isometry of Rd. We
shall say that (G, p) is globally rigid, or that (G, p) is a unique realization of G,
if every framework which is equivalent to (G, p) is congruent to (G, p), see Figure
7.1.1.

The next observation shows that the theory of globally rigid frameworks is the
mathematical background which is needed to investigate the unique localizability
of networks.

Theorem 7.1.1. Let N be a network in Rd consisting of m anchors located at
positions p1, ..., pm and n−m ordinary nodes located at pm+1, ..., pn. Suppose that
there are at least d + 1 anchors in general position. Let G be the grounded graph
of N and let p = (p1, ..., pn). Then the network is uniquely localizable if and only
if (G, p) is globally rigid.

7.1.2 Generic frameworks
It is a hard problem to decide if a given framework is globally rigid. Indeed Saxe

[8] has shown that this problem is NP-hard even for 1-dimensional frameworks.
The problem becomes more tractable, however, if we assume that there are no
algebraic dependencies between the coordinates of the points of the framework.

A framework (G, p) is said to be generic if the set containing the coordinates
of all its points is algebraically independent over the rationals. (Recall that a
set {α1, α2, . . . , αt} of real numbers is algebraically independent over the rationals
if, for all non-zero polynomials with rational coefficients p(x1, x2, . . . , xt), we have
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p(α1, α2, . . . , αt) 6= 0.) Restricting to generic frameworks gives us two important
‘stability properties’. The first is that, if (G, p) is a globally rigid d-dimensional
generic framework then there exists an ε > 0 such that all frameworks (G, q) which
satisfy ||p(v) − q(v)|| < ε for all v ∈ V are also globally rigid. The second, which
follows from a recent result of Gortler at al. [4], is that if some d-dimensional
generic realization of a graph G is globally rigid, then all d-dimensional generic
realizations of G are globally rigid.

7.2 Rigidity and global rigidity of graphs
Rigidity, which is a weaker property of frameworks than global rigidity, plays

an important role in the exploration of the structural results of global rigidity as
well as in the corresponding algorithmic problems. Intuitively, we can think of a
d-dimensional framework (G, p) as a collection of bars and joints where vertices
correspond to joints and each edge to a rigid bar joining its end-points. The
framework is rigid if it has no continuous deformations. Equivalently, and more
formally, a framework (G, p) is rigid if there exists an ε > 0 such that, if (G, q) is
equivalent to (G, p) and ||p(u)− q(u)|| < ε for all v ∈ V , then (G, q) is congruent
to (G, p).

Rigidity, like global rigidity, is a generic property of frameworks, that is, the
rigidity of a generic realization of a graph G depends only on the graph G and
not the particular realization. We say that the graph G is rigid, respectively
globally rigid or uniquely realizable, in Rd if every (or equivalently, if some) generic
realization of G in Rd is rigid, respectively globally rigid.

The problem of characterizing when a graph is rigid in Rd has been solved for
d = 1, 2. We refer the reader to [5,10,11] for a detailed survey of the rigidity of d-
dimensional frameworks. A similar situation holds for global rigidity: the problem
of characterizing when a generic framework is globally rigid in Rd has also been
solved for d = 1, 2.

We shall state these characterizations and study their algorithmic implications.
Here we only mention a general necessary condition, due to Hendrickson, which is
valid in all dimensions. We say that G is redundantly rigid in Rd if G− e is rigid
in Rd for all edges e of G.

Theorem 7.2.1. [6] Let (G, p) be a generic framework in Rd. If (G, p) is globally
rigid then either G is a complete graph with at most d+ 1 vertices, or G is (d+ 1)-
connected and redundantly rigid in Rd.

7.3 Rigidity matrices and matroids
A matroid is an abstract structure which extends the notion of linear indepen-

dence of vectors in a vector space. We will see that many of the rigidity properties
of a generic framework (G, p) are determined by an associated matroid defined on
the edge set of G. (See the Appendix for the basic definitions and [7, 9] for more
information on matroids.)

Let (G, p) be a d-dimensional realization of a graph G = (V,E). The rigidity
matrix of the framework (G, p) is the matrix R(G, p) of size |E| × d|V |, where,
for each edge e = vivj ∈ E, in the row corresponding to e, the entries in the two
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columns corresponding to vertices i and j contain the d coordinates of (p(vi)−p(vj))
and (p(vj)−p(vi)), respectively, and the remaining entries are zeros. See [5,10] for
more details. The rigidity matrix of (G, p) defines the rigidity matroid of (G, p) on
the ground set E where a set of edges F ⊆ E is independent if and only if the rows
of the rigidity matrix indexed by F are linearly independent. Any two generic
d-dimensional frameworks (G, p) and (G, q) have the same rigidity matroid. We
call this the d-dimensional rigidity matroid Rd(G) of the graph G. We denote the
rank of Rd(G) by rd(G).

As an example, consider a 1-dimensional framework (G, p). In this case, the
rows of R(G, p) are just scalar multiples of a directed incidence matrix of G. It
is well known that a set of rows in this matrix is independent if and only if the
corresponding edges induce a forest in G. Thus R1(G) is the cycle matroid of G.

Gluck characterized rigid graphs in terms of their rank.
Theorem 7.3.1. [3] Let G = (V,E) be a graph. Then G is rigid in Rd if and only
if either |V | ≤ d+ 1 and G is complete, or |V | ≥ d+ 2 and rd(G) = d|V | −

(
d+1

2

)
.

This characterization does not give rise to a polynomial algorithm for deciding
whether a graph is rigid in Rd. The problem is that to compute rd(G) we need
to determine the rank of the rigidity matrix of a generic realization of G in Rd.
There is no known polynomial algorithm for calculating the rank of a matrix in
which the entries are linear functions of algebraically independent numbers.

We say that a graph G = (V,E) is M -independent in Rd if E is independent in
Rd(G). Knowing when subgraphs of G are M -independent allows us to determine
the rank of G (and hence determine whether G is rigid), since we can construct
a base for Rd(G) by greedily constructing a maximal independent set of Rd(G).
This follows from axiom (M3) which guarantees that an independent set which is
maximal with respect to inclusion is also an independent set of maximum cardi-
nality. For example, when d = 1, we have seen that a subgraph is independent if
and only if it is a forest. Thus we can determine the rank of G by greedily growing
a maximal forest F in G. By Theorem 7.3.1, G is rigid if and only if F has |V |− 1
edges, i.e. F is a spanning tree of G.

7.4 Warm up exercises
The following exercises may help warm up for these lectures.

Exercise 7.4.1. Show that a framework (G, p) is rigid in R1 if and only if G is
connected.
Exercise 7.4.2. Characterize the redundantly rigid graphs in R1 and develop an
efficient algorithm for testing whether a given graph has this property.
Exercise 7.4.3. Construct two-dimensional frameworks (G, p) on n vertices for
all n ≥ 2 which are rigid and have 2n− 3 edges. Define a family of graphs which
contains a rigid graph in R2 on n vertices and with 2n− 3 edges for all n ≥ 2.
Exercise 7.4.4. Construct two-dimensional frameworks (G, p) on n vertices for
all n ≥ 4 which are rigid and have 2n − 4 edges. Can you do that so that the
framework is in generic (or general) position?
Exercise 7.4.5. Construct globally rigid graphs in R2 on n vertices for all n ≥ 2.
Try to do it so that the number of edges is as small as possible.
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7.5 Appendix
In what follows we introduce the basic graph (and matroid) theoretical notions.

For more details see for example [2].
A graph G = (V,E) consists of two sets V and E. The elements of V are called

vertices (or nodes). The elements of E are called edges. Each edge e ∈ E joins two
vertices from V , which are called the endvertices of e. The notations V (G) and
E(G) are also used for the vertex- and edge-sets of a graph G. If vertex v is an
endvertex of edge e then v is said to be incident with e and e is incident with v.
A vertex v is adjacent to vertex u if they are joined by an edge. A graph is simple
if the pairs of endvertices of its edges are pairwise distinct.

The degree of a vertex v in a graph G, denoted by dG(v), is the number of
edges incident with v. A graph is regular if every vertex is of the same degree. It
is k-regular if every vertex is of degree k.

A path in a graph G from vertex u to vertex v is an alternating sequence of
vertices and edges, which starts and ends with u and v (which are its initial and
final vertices, respectively), and for which consecutive elements are incident with
each other and no internal vertex is repeated. A cycle is a path which contains at
least one edge and for which the initial vertex is also the final vertex. A graph is
connected if between every pair of vertices there is a path.

A subgraph of a graph G is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G).
In a graph G the induced subgraph on a set X of vertices, denoted by G[X], has
X as its vertex set and it contains every edge of G whose endvertices are in X. A
subgraph H is a spanning subgraph if V (H) = V (G). A component of a graph G
is a maximal connected subgraph. A k-factor of a graph G is a k-regular spanning
subgraph.

The operation of deleting a vertex set X ⊆ V (G) from a graph G removes the
vertices in X from V (G) and also removes every edge which has an endvertex in
X from E(G). The resulting graph is denoted by G−X (or G− x, if X = {x} is
a single vertex). The operation of deleting an edge set F ⊆ E(G) from a graph G
removes the edges in F from E(G). The resulting graph is denoted by G− F (or
G− f , if F = {f} is a single edge).

A forest is a graph without cycles and a tree is a connected forest. A spanning
tree of a graph G is a spanning subgraph which is a tree.

A graph is a complete graph if each pair of its vertices is joined by an edge. A
complete graph on n vertices is denoted by Kn. A graph is bipartite if its vertices
can be partitioned into two sets in such a way that no edge joins two vertices in
the same set. A complete bipartite graph is a bipartite graph in which each vertex
in one partite set is adjacent to all vertices in the other partite set. If the two
partite sets have cardinalitites m and n, then this graph is denoted by Km,n. A
graph G on n vertices is a wheel, denoted by Wn, if it has an induced subgraph
which is a cycle on n− 1 vertices and the remaining vertex is joined to all vertices
of this cycle.

A k-vertex-cut in a graph G is a set X ⊆ V (G) of k vertices for which G−X
is not connected. A k-edge-cut is a set F ⊆ E(G) of k edges for which G − F
is not connected. A graph is called k-vertex-connected (or k-connected) if it has
at least k + 1 vertices and contains no l-vertex-cut for l ≤ k − 1. A graph is
k-edge-connected if it contains no l-edge-cuts for l ≤ k − 1.

Two paths are called openly disjoint if they have no common internal vertex.
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They are called edge disjoint if they have no common edge. A fundamental theorem
of Menger states that if u and v are non-adjacent vertices in graph G then the
smallest integer k for which there is a k-vertex-cut X in G such that u and v are
in different components of G − X is equal to the maximum number of pairwise
openly disjoint paths from u to v. The edge disjoint version of Menger’s theorem is
as follows. For any pair of vertices u, v in G the smallest integer k for which there
is a k-edge-cut F in G such that u and v are in different components of G− F is
equal to the maximum number of pairwise edge disjoint paths from u to v.

An isomorphism between two graphs G and H is a vertex bijection φ : V (G)→
V (H) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(H). A graph automorphism
is an isomorphism of the graph to itself. The orbit of a vertex u of a graph G is
the set of all vertices v ∈ V (G) such that there is an automorphism φ such that
φ(u) = v. A graph is vertex-transitive if all the vertices are in the same orbit.

The incidence matrix of a graph G = (V,E) is an |E|× |V | matrix I where the
entry in the row of edge e and vertex v is equal to 1 if e is incident with v, and
0 otherwise. The directed incidence matrix of G is obtained from I by replacing
exactly one of the two 1’s in each row of I by −1.

7.5.1 Matroids
A matroid is an ordered pair M = (E, I) where E is a finite set, and I is a

family of subsets of E, called independent sets, which satisfy the following three
axioms.
(M1) ∅ ∈ I,
(M2) if I ∈ I and D ⊆ I then D ∈ I,
(M3) for all F ⊆ E, the maximal independent subsets of F have the same cardi-
nality.
The fundamental example of a matroid is obtained by taking E to be a set of
vectors in a vector space and I to be the family of all linearly independent subsets
of E.

Given a matroidM = (E, I), the cardinality of a maximum independent subset
of a set F ⊆ E is defined to be the rank of F and denoted by r(F ). The rank of
E is referred to as the rank ofM. A base ofM is a maximum independent subset
of E. A subset of E which is not independent is said to be dependent. A circuit of
M is a minimal dependent subset of E. The matroidM is said to be connected if
every pair of elements of E are contained in a circuit.

Given a graph G = (V,E), we may define a matroidM = (E, I) by letting I
be the family of all edge sets of forests in G. The rank of a set F ⊆ E is given
by r(F ) = |V | − k(F ), where k(F ) denotes the number of connected components
in the graph (V, F ). A base ofM is the edge set of a forest which has the same
number of components as G. A circuit ofM is the edge set of a cycle of G, and
M is connected if and only if G is 2-connected. This matroid is called the cycle
matroid of G.
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Chapter 8

Márton Naszódi: A Glimpse of
Discrete Geometry

On the lectures at the ELTE Summer School in Mathematics 2013 we will
discuss various topics in Geometry that are accessible at BSc. level and yet, lead
to contemporary research. The main goal in the selection of the problems is to
present a diverse set of methods and thus invite you to a field where linear algebra,
combinatorics, probability and analysis all come together.

8.1 Borsuk’s partitioning problem
The diameter of a convex set K in Rd is the supremum of distances between

points of K. In 1932 Borsuk [4] asked whether any convex body can be partitioned
into d+1 pieces of smaller diameter – he did not actually conjectured it to be true,
but it still became to be known as Borsuk’s Conjecture. The answer is affirmative
for the Euclidean ball (of any dimension) as well as for any planar convex body. As
we will see in section 8.2, it is true for any smooth convex body (that is a convex
body with a unique supporting hyperplane at each boundary point).

Theorem 8.1.1. If K is a convex body that is symmetric about a point then K
has a Borsuk partition of cardinality d+ 1.

We may define the quantity b(d) := max{b(K) : K ⊂ Rd a convex body},
where b(K) is the minimal cardinality of a family of sets of diameter less than that
of K that cover K.

In 1993, Kahn a Kalai [9] surprised the mathematical community by showing
that certain sets in Rd require at least 1.2

√
d parts (if d is large), that is b(d) ≥

1.2
√
d. On the other hand, Schramm (see later) showed that, roughly, b(d) ≤ 1.23d.

In conclusion, we know that b(d) is far greater than d + 1, but we still do not
understand its order of magnitude.

8.2 Covering by translates of a convex body
Say you have a penny that you want to cover with other pennies, but the

obvious solution of putting one right on top of the other is not allowed. How many
do you need? Next, you have a square that you want to cover with slightly smaller
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squares whose sides are parallel to the sides of the bigger square. How many do
you need now? How about hexagons, etc.? How many pennies do you need to
cover a one dollar bill? These questions yield the following

Definition 8.2.1. Let K and L be convex set in Rd with non-empty interior. The
covering number N(K,L) of K by L is the minimum number of translates of L
that cover K.

Exercise 8.2.2. Prove that N(K,M) ≤ N(K,L)N(L,M) for any three convex
bodies K,L and M .

The main topic of this lecture is estimating N(K, intK), where intK denotes
the (topological) interior of the set K. This question turns out to be the same as
covering K by slightly smaller translates of itself.

Exercise 8.2.3. Prove that N(K, intK) = min{N(K,λK) : λ < 1} for any convex
body K.

Exercise 8.2.4. Prove that this quantity is affine-invariant, that is N(K, intK) =
N(K̃, intK̃) for any convex body K and its non-degenerate affine image K̃.

Gohberg and Markus [6] conjectured that 2d translates suffice.

Conjecture 8.2.5. For any convex body K ⊂ Rd we have N(K, intK) ≤ 2d and
equality holds only if K is a parallelotope.

Exercise 8.2.6. Prove the conjecture on the plane, that is for d = 2.
Boltyanski [3] and Hadwiger [7,8] raised the following — rather different looking

— problem: We say that a direction u ∈ Rd( with |u| = 1) illuminates a boundary
point b ∈ bdK of K if the ray emanating from b with direction u (that is {b+λu :
λ > 0}) intersects the interior of K. The illumination number of K is defined as
the minimum number of directions that illuminate the whole boundary of K.

Exercise 8.2.7. We could define the following version of illumination: a point
p ∈ Rd (think of it as a light source) illuminates a boundary point b ∈ bdK of
K if the ray emanating from b with direction

−→
pb (that is {b + λ(b − p) : λ > 0})

intersects the interior of K. Prove that the illumination number of K is equal to
the minimum number of points that illuminate the whole boundary of K.

Finally, it is not difficult to show that the two problems are equivalent:

Exercise 8.2.8. Show that the illumination number of K is equal to N(K, intK).

8.2.1 Results
Several special cases of the Illumination Conjecture have been settled. For ex-

ample, ifK is a smooth convex body (that is it has a unique supporting hyperplane
at each point of it boundary) than the illumination number is far from maximal,
it is d + 1. We will prove this using the Gauss-map on the boundary of a convex
body. This will explain why the Illumination Conjecture can be thought of as an
“integration problem”: find a necessary condition for a partition of the unit sphere
to be the Gaussian image (ie. the “derivative”) of a convex body.

Exercise 8.2.9. Show that the illumination number of the euclidean ball is d+1.
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Exercise 8.2.10. Show that the illumination number of the cube [−1, 1]d is 2d.
Definition 8.2.11. A convex body W ⊂ Rd is a set of constant width one if the
distance of any pair of parallel supporting hyperplanes of W is one.
Exercise 8.2.12. Give an example of a planar set of constant width one. Now,
give and example that is not the circle.

Schramm [15] proved the Illumiation Conjecture for sets of constant width.
We also know that three-dimensional sets that are symmetric about a point

can be illuminated by 8 light directions [10] [2]. However, in general the best upper
bound (due to Rogers [12]) is over half a century old.
Theorem 8.2.13.

N(K, intK) ≤ vol(K −K)
vol(K) (d ln d+ d ln ln d+ 5d) ≤ (8.2.1)

2d(d ln d+ d ln ln d+ 5d) if K = −K,(
2d
d

)
(d ln d+ d ln ln d+ 5d) otherwise.

To prove this result, we will first cover the whole space, Rd by (infinitely many)
translates of intK in an economical way, and then show that this covering yields
a covering of K.
Definition 8.2.14. For a family K of translates of a convex body K ⊂ Rd within
the cube Cs = [−s, s]d we define

ρ−(K,Cs) := 1
(2s)d

∑
K∈K,K⊂Cs

volK.

Next, the lower density of K is defined as

ρ−(K) := lim inf
s→∞

ρ−(K,Cs)

Finally, the covering density of K is

θ(K) := inf
K
ρ−(K)

where the infimum is taken over all families K of translates of K.
Theorem 8.2.15 (Rogers, [12]). For any convex body K ⊂ Rd, we have

θ(K) ≤ d log d+ d log log d+ 5d.

We will use this result to prove Theorem 8.2.13.

8.3 Rigidity of Polyhedra
A three dimensional convex polyhedron is the convex hull of finitely many

points in R3 which do not lie in a plane. What parameters determine a convex
polyhedron? One of Cauchy’s most famous and elegant results is his proof of the
fact that knowing each face and how they are connected to one another enables
one to reconstruct the polyhedron. To make this statement more precise, we will
first visit the basics of the theory of convex polyhedra. This will be beneficial for
those too, who lack a strong interest in geometry, since these objects appear in
many areas of mathematics.
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Definition 8.3.1. The convex hull of a finite set in Rd is called a convex polytope.

Definition 8.3.2. The intersection of finitely many half spaces in Rd is a poly-
hedral set.

Exercise 8.3.3. Are these two notions the same? Give an example showing that
they are not.

As a somewhat confusing (but historically firmly agreed) terminology is to call
three dimensional convex polytopes convex polyhedra.

Let P ⊂ Rd be a convex polytope and H be a hyperplane that supports P ,
that is, H intersects P but not the interior of P . Then we call F := H ∩ P a face
of P . Since F is a convex subset of H, its dimension is defined in the natural way.
Moreover, through each boundary point of P there is a supporting hyperplane of
P , and thus, the boundary of P is covered by its faces. It is not difficult to see that
the intersection of two faces is a face again and that P has finitely many faces.
To simplify some arguments, P itself is also a face of P , as well as the empty set
(whose dimension is agreed to be -1).

Theorem 8.3.4. The set of faces of a convex polytope form a lattice with respect
to containment.

We call this lattice the face lattice of P . This lattice is the combinatorial
structure of P . Next, we introduce its metric structure.

Two sets in Rd are congruent if there is an isometry φ : Rd → Rd that maps
one set onto the other.

Theorem 8.3.5 (Cauchy [5]). Let P and Q be (three dimensional) convex poly-
hedra with isomorphic face lattices and assume that the corresponding edges and
faces are congruent. Then P and Q are congruent.

Exercise 8.3.6. Show that the assumption of convexity cannot be dropped, that
is, construct two polyhedra with isomorphic face lattices and with congruent corre-
sponding edges and faces that are not congruent.

We will discuss Cauchy’s ingenious proof that combines a “global” combinato-
rial and a “local” geometric argument.

One way of phrasing the theorem is to say that convex polyhedra are globally
rigid. A local version of rigidity can also be introduced: a polyhedron P is locally
rigid, if there is an ε > 0 such that for any polyhedron Q whose face lattice is
isomorphic to that of P and whose corresponding edges and faces are congruent
to those of P the following holds: if the vertices of Q are at distance at most ε
from the corresponding vertex of P then Q is congruent to P . If time permits, we
will discuss a few results on local rigidity, too.

Cauchy’s result can be considered as the starting point of a theory that offers
a number of open questions. One of them is

Stoker’s Conjecture: The dihedral angles (that is, the angles of faces con-
nected by an edge) and the face lattice of a polytope all of whose faces are triangles
determine the face angles.

Exercise 8.3.7. Show that the dihedral angles and the face lattice do not determine
a polytope up to similarity.

Exercise 8.3.8. Show that the face angles and the face lattice determine the di-
hedral angles of a polytope all of whose vertices are adjacent to three edges.
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Chapter 9

Dömötör Pálvölgyi: Algorithmic
problems

The minicourse focuses on three interesting results and their corollaries from
the field of computer science. They do not build on each other, so missing a class
is no problem.

First, I present a simple algorithm that draws a planar graph with n vertices
onto a 2n− 4× n− 2 grid.

Second, I will talk about online competitive algorithms focusing on the k-server
problem. Here we have a graph on n vertices, with given edge lengths and some
information in each vertex. We can move k servers that can read out and transfer
the information. At every step one of the data is requested and our goal is to move
the servers such that the sum of the distances they travel is minimized. How much
does it help if we know the queries in advance? It turns out that it helps at most
a constant factor.

Finally, I would like to state the PCP theorem (probabilistically checkable
proof) and a few of its corollaries about approximations. It shows that one can
verify a proof’s correctness with high probability with reading just a few bits of it,
if the proof is in a given format. A corollary is that it is very hard to tell whether
a graph with n vertices contains a clique of size n0.99 or if each clique is smaller
than n0.01.

9.1 Embedding planar graphs on a small grid

9.1.1 Planar graphs
A graph is planar if it can be embedded in the plane such that its vertices are

points and its edges are non-crossing simple curves. We call an already embedded
graph a plane graph. Planar graphs have several useful properties, maybe the most
well-known is Euler’s formula: v(G)−e(G)+f(G) ≥ 2 where equality holds if and
only if G is connected. Here v(G) is the number of vertices, e(G) the number of
edges and f(G) the number of faces, so we can already conclude that the number
of faces does not depend on the embedding, only on the graph. From the formula
we can also reduce that if G has at least 3 vertices, then e(G) ≤ 3v(G) − 6 and
f(G) ≤ 2v(G) − 4 where equality holds for triangulated graphs, i.e. if all faces of
the graph have 3 sides. Another simple consequence is that the chromatic number
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of any planar graph G, χ(G) is at most 5. The strengthening of this, χ(G) ≤ 4, is
the famous Four color theorem that was a conjecture for a long time.

Here we will focus on straight-line drawings, i.e. when every edge is embedded
as a straight-line segment. The existence of such an embedding was discovered
independently by Fáry, Tutte and Wagner. We will give a different proof of this
result. In our case not only the edges will be straight-line segments, but even the
vertices will have small, integer coordinates. This has applications in computer
science to draw a graph on a screen or can be used in theoretical computer science
to give a polynomial witness of the planarity of a graph.

9.1.2 Canonical ordering
We need the following observation.

Lemma 9.1.1. Let G be a plane graph, whose exterior face is bounded by a cycle
u1, u2, . . . , uk. Then there is a vertex ui (i 6= 1, k) not adjacent to any uj other
than ui−1 and ui+1.

Proof. If there are no two non-consecutive vertices along the boundary of the
exterior face that are adjacent, then there is nothing to prove. Otherwise, pick an
edge uiuj ∈ E(G), for which j > i + 1 and j − i is minimal. Then ui+1 cannot
be adjacent to any element of {u1, . . . , ui−1, uj+1, . . . , uk} by planarity, nor can it
be adjacent to any other vertex of the exterior face different from ui and ui+2, by
minimality of j − i.

Theorem 9.1.2 (Canonical Ordering). Let G be a triangulation of n vertices,
with exterior face uvw. Then there is an ordering of the vertices v1 = u, v2 =
v, v3, . . . , vn = w satisfying the following conditions for every k (4 ≤ k ≤ n):

(i) the boundary of the exterior face of the subgraph Gk−1 of G induced by
{v1, v2, . . . , vk−1} is a cycle Ck−1 containing the edge uv;

(ii) vk is in the exterior face of Gk−1, and its neighbors in V (Gk−1) are some (at
least two) consecutive elements along the path obtained from Ck−1 by removal
of the edge uv. (See Figure 9.1.1)

Proof. The vertices vn, vn−1, . . . , v3 will be defined by reverse induction. Set vn =
w, and let Gn−1 be the graph obtained from G by the deletion of vn. Since G is a
triangulation, the neighbors of w form a cycle Cn−1 containing uv, and this cycle
is the boundary of the exterior face of Gn−1.

Let 4 ≤ k ≤ n be fixed and assume that vn, vn−1, . . . , vk have already been
determined so that the subgraph Gk−1 induced by V (G)\{vk, vk+1, . . . , vn} satisfies
condition (i) and (ii). Let Ck−1 denote the boundary of the exterior face of Gk−1.
Applying Lemma 9.1.1 to Gk−1, we obtain that there is a vertex u′ on Ck−1,
different from u and v, which is adjacent only to two other points of Ck−1 (i.e., to
its immediate neighbors). Letting vk−1 = u′, the subgraph Gk−2 ⊆ G induced by
V (G) \ {vk−1, vk, . . . , vn} obviously meets the requirements.

Using this theorem, we can easily prove the main result of this section.
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Figure 9.1.1: Gk−1 and vk in the exterior

Corollary 9.1.3. Every planar graph has a straight-line embedding in the plane.

Proof. It is sufficient to show that the statement is true for triangular planar
graphs.

Let G be any triangulation with the canonical ordering v1 = u, v2 = v,
v3, . . . , vn = w, described above. We will determine the positions f(vk) = (x(vk), y(vk))
of the vertices by induction on k.

Set f(v1) = (0, 0), f(v2) = (2, 0), f(v3) = (1, 1). Assume that f(v1), f(v2), . . . ,
f(vk−1) have already been defined for some k ≥ 4 such that, connecting the images
of the adjacent vertex pairs by segments, we obtain a straight-line embedding of
Gk−1, whose exterior face is bounded by the segments corresponding to the edges
of Ck−1. Suppose further that

x(u1) < x(u2) < . . . < x(um),
y(ui) > 0 for 1 < i < m,

(9.1.1)

where u1 = u, u2, u3, . . . , um = v denote the vertices of Ck−1 listed in cyclic order.
By condition (ii) of Theorem 9.1.2, vk is connected to up, up+1, . . . , uq for some
1 ≤ p ≤ q ≤ m. Let x(vk) be any number strictly between x(up) and x(uq). If
we choose y(vk) > 0 to be sufficiently large and connect f(vk) = (x(vk), y(vk)) to
f(up), f(up+1), . . . ,f(uq) by segments, then we obtain a straight-line embedding
of Gk meeting all the requirements (including the auxiliary Hypothesis (9.1.1) for
the vertices of Ck).

9.1.3 Embedding on the grid
Now we shall restrict our attention to straight-line drawings, where each point

is mapped into a grid point, i.e. a point with integer coordinates. Our goal is to
minimize the size of the grid needed for the embedding of any planar graph of n
vertices. The set of all grid points (x, y) with 0 ≤ x ≤ m, 0 ≤ y ≤ n is said to be
an m× n grid.

Theorem 9.1.4. Any planar graph with n vertices has a straight-line embedding
on the 2n− 4 by n− 2 grid.
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Proof. It suffices to prove the theorem for triangulations. Let G be a triangulation
with exterior face uvw, and let v1 = u, v2 = v, v3, . . . , vn = w be a canonical
labelling of the vertices (see Theorem 9.1.2).

We are going to show by induction on k that Gk, the subgraph of G induced
by {v1, v2, . . . , vk}, can be straight-line embedded on the 2k − 4 by k − 2 grid, for
every k ≥ 3. Let f3 be the following embedding of G3:

f3(v1) = (0, 0), f3(v2) = (2, 0), f3(v3) = (1, 1).

Suppose now that for some k ≥ 4 we have already found an embedding fk−1(vi) =
(xk−1(vi), yk−1(vi)), 1 ≤ i ≤ k − 1, with the following properties:

(a) fk−1(v1) = (0, 0), fk−1(v2) = (2k − 6, 0);

(b) If u1 = u, u2, . . . , um = w denote the vertices of the exterior face of Gk−1 in
cyclic order, then

xk−1(u1) < xk−1(u2) < . . . < xk−1(um);

(c) The segments fk−1(ui)fk−1(ui+1), 1 ≤ i < m, all have slope +1 or −1.

Note that (c) implies that the Manhattan distance |xk−1(uj)−xk−1(ui)|+|yk−1(uj)−
yk−1(ui)| between the image of any two vertices ui and uj on the exterior face of
Gk−1 is even. Consequently, if we take a line with slope +1 through ui and a line
with slope −1 through uj, then they always intersect at a grid point P (ui, uj).

Let up, up+1, . . . , uq be the neighbours of vk in Gk (1 ≤ p < q ≤ m). Clearly,
P (up, uq) is a good candidate for fk(vk), except that we may not be able to
connect it to e.g. fk−1(up) by a segment avoiding fk−1(up+1). To resolve this
problem, we have to modify fk−1 before embedding vk. We shall move the im-
age of up+1, up+2, . . . , um one unit to the right, and then move the images of
uq, uq+1, . . . , um to the right by an additional unit. That is, let

x̃k(ui) =


xk−1(ui), for 1 ≤ i ≤ p,

xk−1(ui) + 1, for p < i < q,

xk−1(ui) + 2, for q ≤ i ≤ m,

yk(ui) = yk−1(ui), for 1 ≤ i ≤ m,

and let fk(vk) be the point of intersection of the lines of slope +1 and −1
through fk(up) and fk(uq), respectively. Of course, fk(vk) is a grid point that
can be connected by disjoint segments to the points fk(ui) = (xk(ui), yk(ui)),
p ≤ i ≤ q, without intersecting the polygon fk(u1)fk(u2) . . . fk(um). However, as
we move the image of some ui, it may be necessary to move some other points (not
on the exterior face) as well, otherwise we may create crossing edges.

In order to tell exactly which set of points has to move together with the
image of a given exterior vertex ui, we define recursively a total order ’≺’ on
{v1, v2, . . . , vn}. Originally, let v1 ≺ v3 ≺ v2. If the order has already been
defined on {v1, v2, . . . , vk−1}, then insert vk just before up+1. According to this
rule, obviously

u1 ≺ u2 ≺ · · · ≺ um .
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Now we can extend the definition of fk to the interior vertices of Gk−1, as follows.
For any 1 ≤ i ≤ k − 1, let

x̃k(vi) =


xk−1(vi), if vi ≺ up+1,

xk−1(vi) + 1, if up+1 � vi ≺ uq,

xk−1(vi) + 2, if uq � vi,

yk(vi) = yk−1(vi) .
Evidently, fk satisfies conditions (a),(b) and (c).

To complete the proof, it remains to verify that fk is a straight-line embedding,
i.e., no two segments cross each other. A slightly stronger statement follows by
straightforward induction.
Lemma 9.1.5. Let fk−1 = (xk−1, yk−1) be the straight-line embedding of Gk − 1,
defined above, and let α1, α2, . . . , αm ≥ 0. For any 1 ≤ i ≤ k − 1, 1 ≤ j ≤ m, let

x(vi) = xk−1(vi) + α1 + α2 + · · ·+ αj if uj � vi ≺ uj+1 ,

y(vi) = yk−1(vi) .
Then f ′k−1 = (x, y) is also a straight-line embedding of Gk−1 .

The claim is trivial for k = 4. Assume that it has already been confirmed for
some k ≥ 4, and we want to prove the same statement for Gk. The vertices of the
exterior face of Gk are u1, . . . , up, vk, uq, . . . , um. Fix now any nonnegative num-
bers α(u1), . . . , α(up), α(vk), α(uq), . . . , α(um). Applying the induction hypothesis
to Gk−1 with α1 = α(u1), . . . , αp = α(up), αp+1 = α(vk) + 1, αp+2 = · · · = αk−1 =
0, αq = α(uq) + 1, αq+1 = α(uq+1), . . . , αm = α(um), we obtain that the restriction
of f ′k to Gk−1 is a straight-line embedding. To see that the edges of Gk inci-
dent to vk do not create any crossing, it is enough to notice that fk and f ′k map
{up+1, . . . , uq−1} into congruent sets.

9.2 Online competitive algorithms

9.2.1 Baby example
As an example, consider the following problem. When a baby is born, the

parents need a baby scale to measure how much she eats. To get a baby scale, they
have three options.
1) Buy one for 30e.
2) Rent one for 5e/month.
3) Borrow one from a friend.

Let us rule out the mathematically less fascinating third option and suppose
they only have the first two options. It is not hard to decide which to choose if
they know for how long they need the scale; for less than five months rent and
for more months buy. (Here we suppose that the scale will have no value for
them later - we could easily modify this condition by subtracting the price for
which they can sell it later from the initial price.) But what if they have no clue
at all? One option would be to guess and calculate some expected values from
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the probabilities. However, there can be too many factors (how well the baby
is gaining weight, number of future children) to make any reasonable estimates.
Another option is to try to minimize their later regrets, to make sure they could
not have done much better.

For example if they decide to buy one (30e) and need it for only one month
(5e), then their competitive ratio is 6:1 (compared to the best possible choice they
could have made). However, if they decide to rent and are blessed with many
children and, say, 18 months of scale usage (90e), their ratio becomes 3:1 and
could be even worse. So what should they do to minimize the competitive ratio?

The answer first might seem counterintuitive but the best is to mix the above
strategies - first rent for a while, then buy. After a little thinking, we can realize
that in fact this is the only thing that makes sense and turns out to be not that
a crazy idea after all. Now the only thing left to decide is for how long to rent
before buying.

Suppose we rent for R month and then buy if we still need the scale. This
way we spend 5i if we need it for i ≤ R months and 5R + 30 if we need it for at
least R + 1. The best option would be either to rent the whole time (for 5i if we
need it for i ≤ 6 months) or to buy immediately (for 30 if we need it for at least
6 months). Our ratio against the renting option is worst if we need the scale for
exactly R + 1 months, in this case we get 5R+30

5R+5 . Our ratio against the buying
option is of course also worst if we need the scale for at least R + 1 months, in
this case we get 5R+30

30 . So our goal is to minimize max(5R+30
5R+5 ,

5R+30
30 ) by suitably

choosing R. For this we solve 5R+30
5R+5 = 5R+30

30 which gives R = 5, so we have to buy
in the sixth month, which is exactly what we would have done with my wife, but
we needed the scale for only five month. So with the next child, we buy from the
start...

9.2.2 k-server problem
In the k-server problem we control k servers each of which occupies one point

in a given finite metric space from which it can move to another one for the cost
of the distance between them. There is a series of requests, each of which is a
point where we have to move a server (if there is no server present there at the
moment). Our goal is to keep our total cost as small as possible. Since we do
not know anything against the requests, the best we can try is to minimize the
competitive ratio of our algorithm against the cost of what would have been the
best sequence of moves, known as the offline optimum. It is conjectured that
there is an algorithm that is k-competitive1 but the best known algorithm is only
2k − 1-competitive. An interesting special case is when all distances are the same
is called the k-paging problem. First we show that already in this case we cannot
hope to have a < k-competitive algorithm.

Claim 9.2.1. No online algorithm can achieve a better competitive ratio than k
for the k-paging problem if the metric space has at least k + 1 points.

Proof. Suppose that the space has exactly k + 1 points (if it has more, we never
request them). Every time we request the point that has no server on it (no optimal

1Here in the definition of the ratio we are interested in the asymptotic behavior and ignore
additive constants.
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algorithm would put two servers to the same point, so we can suppose that there is
exactly one such point). This way after R requests, the cost of the algorithm is R.
However, the best choice would be at each step to move the server whose location
would be requested the latest, so after at least k − 1 further requests. Thus the
offline optimum is at most dR

k
e.

Next we present an algorithm that for a space with k + 1 points achieves a
competitive ratio of k. Denote by D(i) the distance traveled by server i before
the request and by d(i) the distance of server i from the requested location. The
algorithm called BALANCE has the following simple rule:

Always move the server for which D(i) + d(i) is minimized.

So if e.g. we have three servers, the first has traveled 3, the second 4 and the
third 6 units until the query, which is at distance 4 from the first, at distance 2
from the second and at distance 1 from the third server. In this case BALANCE
moves the second server, as that gives a minimum distance of 6 after the move,
while the other two would give 7.

Proof. We can suppose that the request is always the only unoccupied location.
First we need to make some definitions. Define d(i, j) as the distance between
location i and j. Let Rt be the t-th request. Let optti be the offline optimum of
the first t requests that has no server on location i (if Rt = i, i.e. the last request
was i, then an extra move must be made after it to move away the server from it).
Finally, let Dt

i be the distance traveled by the server at location i after t requests
(if i 6= Rt+1, since that place is unoccupied).
Observation 9.2.2. optt+1

i = optti if i 6= Rt+1 and
optt+1

Rt+1 = mini 6=Rt+1optti + d(i, Rt+1).
Lemma 9.2.3. For every i 6= Rt+1 we have Dt

i ≤ optti.

Proof. We prove this by induction on t. Let h = Rt+1 and m denote the location
for which Dt

m+d(m,h) is minimal (in fact m = Rt+2). If i 6= m,h, then Dt+1
i = Dt

i

and since optt+1
i ≥ optti, we are done. Otherwise, we have Dt+1

h ≤ Dt
i + d(i, h) for

all i 6= h, by the choice of the server we moved to the empty position. But using
induction we have Dt

i + d(i, h) ≤ optti + d(i, h) and using the previous observation
there is an i 6= h for which optti+d(i, h) = optt+1

h . Putting the inequalities together,
we get exactly what we wanted, Dt+1

h ≤ optti + d(i, h).

From here the proof of the theorem follows from ∑
iD

t
i ≤

∑
i opt

t
i ≤ k ·

(offline optimum + largest distance).

9.2.3 Randomization
Another, very interesting problem emerges if we allow randomized online al-

gorithms. Here we can measure the competitiveness depending on what kind of
offline optimum we take. We imagine that the requests are given by some adver-
sary and we distinguish the three following types.

Oblivious: The requests are generated in advance.
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Adaptive Online: The requests are generated depending on the moves so far
but the adversary must also make its moves online.

Adaptive Offline: The requests are generated depending on the moves so far
and the adversary can decide its moves after all the requests are made.

By definition, we have the following relations among the respective competitive
ratios: COB ≤ CADON ≤ CADOFF ≤ CDET .

While COB can be much smaller than CDET (e.g. about log k for the k-paging
problem with k + 1 locations), the other two quantities are not that far. We can
prove this through a few simple statements.

Claim 9.2.4. If for G and H algorithms we have CADON(G) ≤ α and COB(H) ≤ β,
then CADOFF (G) ≤ αβ.

Claim 9.2.5. If there are finitely many options at each request, then CADOFF =
CDET .

Corollary 9.2.6. If there are finitely many options at each request, then CDET ≤
(CADON)2.

9.3 Probabilistically checkable proofs
Note that depending on time and interest, we might completely skip this section

and rather to some earlier topics, or just cover parts of it, so the write-up is also
more sketchy.

9.3.1 Interactive proofs
A very famous open problem of theoretical computer science is the graph iso-

morphism problem. The input is two graphs, G and H, and our goal is to decide
whether they are isomorphic or not. Of course special cases are easy to decide,
e.g. if they do not have the same number of vertices, or edges, then they cannot
be isomorphic. It is also not hard to come up with an algorithm if one of them
is a tree. In case they are isomorphic, at least we have a certificate for it - an
isomorphism. (This means that the problem belongs to NP .) But it is not even
known whether we can certify in such a way that they are not isomorphic. (This
means that we do not know whether the problem belongs to co−NP .) However,
we have a certain interactive certificate for non-isomorphism.

Suppose that P (Prover) can distinguish between G and H and wants to con-
vince V (Verifier) of this fact. If his method is something easy to compute (like
count the number of vertices whose degree is 7 and they differ), then of course
he can just reveal the method to V who can check this fact himself. But maybe
what P does is more complicated, maybe he has computational powers that are
far bigger than V’s (like me submitting a request to Wolfram|Alpha). Of course if
V believes P, then his word is sufficient (like in my case) but suppose that V does
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not trust P and wants to verify that he is not lying or mistaken. How can he do it?

V can use the following simple interactive protocol. He takes one of G or H ran-
domly and permutes its vertices, obtaining the graph R. Then he asks P whether
G and R are isomorphic or not. If P knows how to distinguish between G and H,
then he can easily answer this. If not, then he can only guess randomly, which
means he makes a mistake at least 50% of the time if R was selected randomly.
By repeating the above several times, V can be quite sure that P indeed knows
how to differentiate between G and H.

Notice that the above protocol also has the nice property that V does not learn
anything about P’s method, so he can keep it secret. Interactive proofs of this
type have a large theory, called zero knowledge proofs.

9.3.2 PCP theorem
Suppose someone claims that they have proved an important mathematical

conjecture, like P = NP . Of course such claims are usually incorrect but it takes
a great effort to read through a long paper to find a mistake in it. The PCP
theorem (informally) says that every proof can be (algorithmically) transformed
into another whose correctness can verified easily - in the new proof reading only a
constant number of bits (letters) will reveal any mistake with at least 50% chance!
Moreover, repeating this several times (each time with different, randomly chosen
letters) we can reduce the probability of the error to arbitrarily small. Also, the
length of the new proof won’t be much more than the old one (it only grows from
n to O(npolylogn)).

9.3.3 Hardness of approximation
Using the PCP theorem, it can be shown that many problems cannot be ap-

proximated efficiently, unless certain surprising fact were true. Here we sketch one
of these proofs.

Suppose that there is an efficient (i.e. polynomial time) algorithm that com-
putes an approximation f(G) of the clique number (ω(G)) of any graph G such
that ω(G) ≤ f(G) ≤ 2ω(G). Then we can efficiently decide of any statement
whether it has a not too long proof (e.g. if we are looking for a proof of length n,
then we can decide it in poly(n) time).

Proof. By the PCP theorem, any such statement also has a proof P that is not
much longer and must be checked only at a few places, and if the proof is incorrect,
it is discovered with probability at least 50%. Let us denote the verifying algorithm
by V and suppose that V uses k ≤ O(log n) random bits and reads b = O(1) bits
of P .

For any statement, we construct a graph G as follows. The nodes of G will be
certain pairs (r, a), where r ∈ {0, 1}k and a ∈ {0, 1}b. To decide if such a pair is a
node, we start the algorithm V with the given statement and with r as its random
bits. After some computation, it tries to look up b entries of P ; we give it the bits
a1, . . . , ab. At the end, it outputs 0 or 1; we take (r, a) as a node of G if it outputs
1.
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To decide if two pairs (r, a) and (r′, a′) are adjacent, let us also remember which
positions in P the algorithm V tried to read when starting with r, and also when
starting with r′. If there is one and the same position read both times, but the
corresponding bits of a and a′ are different, we say that there is a conflict. If there
is no conflict, then we connect (r, a) and (r′, a′) by an edge. Note that the graph
G can be constructed in polynomial time.

Suppose that the statement has a short proof. For every sequence r = r1 . . . rk
of random bits, we can specify a string a ∈ {0, 1}b such that (r, a) ∈ V (G), namely
the string of bits that the algorithm reads from P when started with the random
sequence r. Furthermore, it is trivial that between these there is no conflict, so
these 2k nodes form a clique. Thus in this case ω(Gx) ≥ 2k.

Now suppose that the statement does not have a short proof, and assume that
the nodes (r1, a1), (r2, a2), . . . , (rN , aN) form a clique of size ω(G) in G. The strings
r1, r2, . . . must be different; indeed, if ri = rj, then V tries to look up the same
positions in P in both runs, so if there is no conflict, then we must have ai = aj.

We create a string P as follows. Initially all its bits are empty. We run V
with the random bits r1, and we insert the bits of a1 in the b positions which the
algorithm tries to look up. Then we repeat this with random bits r2; if we need
to write in a position we already have a bit in, we do not have to change it since
(r1, a1) and (r2, a2) are connected by an edge. Similarly, we can enter the bits of
each ai in the appropriate positions without having to overwrite previously entered
bits.

At the end, certain positions in P will be filled. We fill the rest arbitrarily. It
is clear from the construction that for the string P constructed this way, V will
accept with probability at least N

2k , what must be less than 1
2 if the statement has

no short proof. Therefore ω(G) = N < 2k−1.
Now if a polynomial time algorithm exists that computes a value f(G) such

that ω(G) ≤ f(G) ≤ 2ω(G), then we have f(G) ≥ ω(G) ≥ 2k if the statement has
a short proof, but f(G) ≤ 2ω(G) < 2k if it does not, so we can efficiently decide
this.

computing, in Proc. of 11th ACM Symposium on Theory of Computing, 1979,
209-213.



Chapter 10

Gergely Zábrádi: p-adic numbers
and applications

These are the notes for the course ‘p-adic numbers and applications’ at the
Summer School for undergraduates at ELTE, July 2013.

In this course we intend to advertise the usefulness and relevance of the p-adic
numbers. Instead of concentrating on the proof of one particular theorem, our goal
is to give an idea of 1) how things work in the p-adic world; 2) what questions can
be answered using them; 3) what directions of current research there are.

The book [4] that we will mostly follow in motivating p-adics is an excellent
introduction. The books [7, 12] are more advanced. The former gives a concise
introduction to the theory of p-adic L-functions (and zeta-functions) and the latter
contains an elementary proof of the Hasse-Minkowski theorem.

10.1 Why p-adic numbers?
Historically, the main motivation for the developement of algebraic number

theory was the attempt to prove Fermat’s Last Theorem, ie. when n ≥ 3 is an
integer then there are no integer solutions of xn + yn = zn with xyz 6= 0. This
was such a problem in mathematics whose solution required the systematic study
of several areas and led to the developement of arithmetic geometry, among many
others.

Arithmetic algebraic geometry is the area of mathematics dealing with the
rational or integer solutions of polynomial equations.

Over the last century, p-adic numbers have played a very important role in
arithmetic geometry. They were introduced by Kurt Hensel in 1897 motivated
by the analogies of Z with field of fractions Q and C[t] (complex polynomials in
1 variable) with field of fractions C(t). Note for instance that both Z and C[t]
are unique factorisation domains, ie. any element can be decomposed (upto units
uniquely) as a product of primes. While the primes in Z are the usual prime
numbers, the primes in C[t] are the linear polynomials t − α (α ∈ C). Moreover,
any rational number can be written as the quotient of two integers; similarly, any
rational function can be—by definition—written as a quotient of two polynomials.
The analogy, in fact, is much deeper. We may write each polynomial P (t) in the
form P (t) = a0 + a1(t− α) + a2(t− α)2 + · · ·+ an(t− α)n (with ai ∈ C) and each
integer m ≥ 0 in the form m = a0 +a1p+ · · ·+anpn with ai ∈ {0, 1, . . . , p−1}. The
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expansion in t−α will show, for example, whether or not the polynomial vanishes
at t = α and if so, to which order. On the other hand, for integers this expansion
tells us to what order p divides m. Moreover, in case of quotients of polynomials
we can push this further. Taking f(t) = P (t)/Q(t) and α ∈ C we may expand

f(t) = an0(t− α)n0 + an0+1(t− α)n0+1 + · · · =
∑
i≥n0

ai(t− α)i .

This is called the Laurent series expansion of f around α.

• We can have n0 < 0 here—this happens if and only if the order of the root
of Q(t) at α is bigger than the order of the root of P (t) at α. In complex
analysis we say in this case that f has a pole at α of order −n0.

• The expansion will not be finite. In fact, it will only be finite if Q(t) is con-
stant times a power of t−α. One can show that the series will be convergent
in a punctured neighbourhood of α, but for now we regard the expression
above as a formal Laurent series, ignoring the question of convergence.

Why don’t we try the same for the rational numbers? We may write both the
numerator and denominator in base p and divide formally. For example, with
p = 5 we obtain

35
31 = 2p+ p2

1 + p+ p2 = 2p+ 4p2 + 3p3 + p4 + 4p5 + 4p6 + . . . .

To check that this is indeed correct we multiply both sides by 31 = 1 + p+ p2 and
use p = 5 to compute (expanding upto p6)

(1 + p+ p2)(2p+ 4p2 + 3p3 + p4 + 4p5 + 4p6 + . . . ) =
= (2p+ 2p2 + 2p3) + (4p2 + 4p3 + 4p4) + (3p3 + 3p4 + 3p5)+

+(p4 + p5 + p6) + 4p5 + 4p6 + 4p6 + · · · =
= 2p+ 6p2 + 9p3 + 8p4 + 8p5 + 8p6 + · · · =
= 2p+ p2 + 10p3 + 8p4 + 8p5 + 8p6 + · · · =

= 2p+ p2 + 10p4 + 8p5 + 8p6 + · · · = 2p+ p2

This above is not precise at all (with all those dots) but at least you should get
the feeling what is going on. However, it is easy to check that this can always be
done and the process gives an infinite expansion

a

b
= an0p

n0 + an0+1p
n0+1 + . . .

of any (positive, for now) rational number a/b with ai ∈ {0, 1, . . . , p − 1}. This
even reflects the properties of the rational number a/b “near p” (or “locally at p”),
ie. if (a, b) = 1 then n0 < 0 if and only if p | b. You could ask what happens to the
negatives? As any negative number is a product of −1 and a positive number, it
suffices to expand −1:

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + · · ·+ (p− 1)pn + . . . .

If we return for the moment to the case of rational functions, each f(t) ∈ C(t)
can be expanded as Laurent series at each primes t − α. However, we have seen
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many functions at calculus class having a Laurent (even Taylor) series expansion
that are not a quotient of two polynomials, for instance et or sin t. We may even
ignore convergence and take the field C((t)) of all formal Laurent series (with finite
“tail”). The field C(t) of rational functions is a subfield of this. The field Qp of
p-adic numbers is the analogue of C((t)), ie. the set

Qp = {an0p
n0 + an0+1p

n0+1 + · · · | ai ∈ {0, 1, . . . , p− 1}, n0 ≤ i}

of finite-tailed (= “finite to the left”, but usually infinite to the right) Laurent
series with the above described multiplication and addition. Note that unlike in
C((t)) we need to “carry over”, e.g. (2+0·p+. . . )+((p−1)+0·p+. . . ) = 1+1·p+. . . .
We denote by Zp the subring of those elements in Qp with n0 ≥ 0. This subset is
indeed closed under addition and multiplication.

10.1.1 Exercises

Exercise 10.1.1. Suppose that f(t) = P (t)/Q(t) is in lowest terms so that P (t)
and Q(t) do not have common zeros. Show that the expansion of f(t) in t− α is
finite if and only if Q(t) = am(t− α)m for some 0 ≤ m ∈ Z and 0 6= am ∈ C.

Exercise 10.1.2. Consider a p-adic number x = a0 +a1p+ · · ·+anp
n+ . . . . What

is the expansion of −x?

Exercise 10.1.3. Show that Qp is indeed a field.

Problem 10.1.4. Prove that the p-adic expansion of an element inQp is eventually
periodic if and only if the element is rational (ie. lies in Q). Hint: Mimic the proof
of the analogous statement in R

10.2 Solving equations in Qp

We would like to illustrate how solving equations in the p-adics is related to
solving equations modulo pn. For example, take p = 7 and consider the equation
x2 = 2. Solve it first mod 7, we find right away that x ≡ ±3 (mod 7) is a solution.
Then proceed to mod 72 and look for the solution in the form x = 3 + 7x1 (or
x = −3 + 7x1). (3 + 7x1)2 = 9 + 42x1 + 49x2

1 ≡ 9 + 42x1 (mod 49), so we
need 9 + 42x1 ≡ 2 (mod 49), that is x1 ≡ 1 (mod 7). Note that in this second
step we only need to solve a linear equation, not quadratic any more. Now we
go on to 73 and look for the solution in the form x = 3 + 1 · 7 + 72x2. By a
similar calculation we obtain x2 ≡ 2 (mod 7). And so forth we obtain a solution
x = 3 + 7 + 2 · 72 + · · · ∈ Q7 of the equation x2 = 2. (In particular we see that
Q ( Q7.) Similarly, we will also find a solution of the form x = 4 + 5 · 7 + · · · ∈ Q7
starting with the solution −3 ≡ 4 (mod 7). As mathbbQ7 is a field, we have found
all the solutions. All this worked out pretty well because 7 does not divide the
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discriminant of the polynomial x2 − 2. The tree of solutions in Z7 looks like

0 Z/Z

3

AA��������
4

]]::::::::

Z/7Z

10

@@��������
39

^^<<<<<<<<

Z/72Z

108

>>}}}}}}}}}
255

``AAAAAAAAA

Z/72Z

What happens if the prime p does divide the discriminant of our equation? Let
us have a look at the equation x2 = 9 in Q3. Modulo 3 this has only one double
root, x ≡ 0 (mod 3). So we are looking for the solution in the form x = 3x1 and
(3x1)2 ≡ 9 ≡ 0 (mod 9) is satisfied trivially for any x1 = 0, 1, 2, therefore we have
3 solutions of x2 = 9 in Z/9Z, namely 0, 3, and 6. Now we look at the equation
mod 33 = 27. (3x1)2 ≡ 9 (mod 27) has solutions x1 ≡ 1, 2 (mod 3). Hence we
have {x ∈ Z/27Z | x2 = 9} = {3, 6, 12, 15, 21, 24}. In other words, the solutions
x ≡ 3, 6 (mod 9) can be lifted to a solution mod 27 in three ways, but the solution
x ≡ 0 (mod 9) cannot be lifted. By proceeding further, it is not hard to see that
we will always have either 3 or 0 lifts of each solution mod 3n to a solution mod
3n+1 for all n ≥ 1 and the tree
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...
...

of solutions have 2 infinite branches (and many finite) contending to the fact that
there are only 2 solutions (namely x = ±3) in Q3.

10.2.1 Exercises
Exercise 10.2.1. Give a rigorous proof that the above process gives you a solution
of x2 = 2 in Q7.

Exercise 10.2.2. Prove that x2 + 1 = 0 has a solution in Q5, but not in Q7. Can
you describe the primes p for which this equation has a solution in Qp?
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Problem 10.2.3. Show that if f(x) ∈ Z[x] is a monic polynomial and p is a
prime then all the solutions of f(x) = 0 in Qp lie in fact in Zp. Hint: Prove by
contradiction and try and compute the first nonzero term of f(α) for α ∈ Qp \Zp.

Problem 10.2.4. Prove that the field Qp is not algebraically closed for any prime
number p. Can you construct an irreducible polynomial over Qp of any given
degree 0 < n ∈ Z?

Problem 10.2.5. Verify that the inclusion Q ↪→ Qp is strict for any prime number
p. Hint: You could argue by noting that the cardinality of Qp is bigger than the
cardinality of Q, but there is also an algebraic argument.

10.3 Precise definition of Qp

Definition 10.3.1. Let K be a field. We call a function | · | : K → R≥0 an absolute
value (or multiplicative valuation) on K, if it satisfies

(1) |x| = 0 ⇐⇒ x = 0;

(2) |xy| = |x||y|;

(3) |x+ y| ≤ |x|+ |y| (triangle inequality).

The absolute value | · | induces a metric d(x, y) := |x − y| on K. This way K
becomes a metric space, in particular, there is a topology on it.

Example 10.3.2. The trivial absolute value: |x| = 1 if x 6= 0 and |0| = 0.

Definition 10.3.3. We say that the two absolute values | · |1 and | · |2 on K are
equivalent, if they induce the same topology.

Proposition 10.3.4. | · |1 and | · |2 are equivalent if and only if there exists a real
number s > 0 such that |x|1 = |x|s2 for all x ∈ K.

Proof. The implication ⇐ is trivial. Conversely, note that |x|i < 1 holds if and
only if the powers of x tend to zero in the absolute value | · |i (i = 1, 2). Hence if
| · |1 and | · |2 induce the same topology then |x|1 < 1 ⇐⇒ |x|2 < 1. Applying
this to x = a/b and x = b/a we obtain |a|1 ≤ |b|1 ⇔ |a|2 ≤ |b|2 (a, b ∈ K). In
particular, if one of | · |1 and | · |2 is trivial then so is the other. Therefore we
may assume that there exists a y ∈ K such that |y|1 > 1 (whence |y|2 > 1), so
we choose 0 < s := log|y|2 |y|1 ∈ R so that we have |y|1 = |y|s2. Now for any
0 6= x ∈ K there is an α = α(x) ∈ R with |x|1 = |y|α1 . We choose the sequence
(mi
ni

)i∈N (mi, ni ∈ Z, ni 6= 0) of rational numbers so that limi→∞
mi
ni

= α + 0. We
obtain |x|1 = |y|α1 < |y|mi/ni1 , hence |xni|1 < |ymi |1, whence |xni|2 < |ymi |2, ie.
|x|2 < |y|mi/ni2 . Letting i→∞ we deduce |x|2 ≤ |y|α2 . The inequality |x|2 ≥ |y|α2 is
proven in a similar fashion, so we have |x|1 = |y|α1 = |y|sα2 = |x|s2 for all 0 6= x ∈ K
(and, of course, also for x = 0).

Definition 10.3.5. We say that the absolute value | · | non-archimedean if the set
{|n · 1| : n ∈ Z} ⊆ R is bounded. Otherwise | · | is archimedean.



108 Gergely Zábrádi: p-adic numbers and applications

Remark. The above definition is equivalent to saying that the ring homomorphism
f : Z→ K, f(1) = 1 has bounded image in K if and only if | · | is non-archimedean.

Example 10.3.6. 1. The trivial absolute value is non-archimedean.

2. The usual absolute value (that we denote by | · |∞ in this note) on R (or on
C, or on any subfield K ≤ C) is archimedean.

3. Let p be a prime. The p-adic absolute value | · |p on Q is defined by |a
b
pn|p =

p−n where p - a, b ∈ Z (and |0|p = 0). This is non-archimedean, since
whenever a

b
pn ∈ Z we have n ≥ 0 and |a

b
pn|p = p−n ≤ 1.

Proposition 10.3.7. The absolute value | · | is non-archimedean if and only if the
so called ultrametric inequality holds:

(3′) |x+ y| ≤ max(|x|, |y|).

Moreover, if | · | is non-archimedean then {|n · 1|, n ∈ Z} is not only bounded, but
bounded by 1.

Proof. If (3′) holds then we have |n·1| ≤ |1| = 1. On the other hand, for 0 < k ∈ Z,
|x| ≥ |y| and |n · 1| ≤ C for some 0 < C ∈ R then we have

|x+ y|k = |(x+ y)k| = |
k∑
j=0

(
k

j

)
xjyk−j| ≤

≤
k∑
j=0
|
(
k

j

)
· 1||x|j|y|k−j ≤

k∑
j=0

C|x|k = (k + 1)C|x|k .

Taking kth root and letting k →∞ the statement follows.

Theorem 10.3.8 (Ostrowski). On Q any nontrivial absolute value |·| is equivalent
to either the real | · |∞ or the p-adic | · |p absolute value for some prime p. These
valuations are pairwise inequivalent.

Proof. Case 1: | · | is non-archimedean. If we have |p| = 1 for all primes p then the
absolute value is trivial (see Exercise 10.3.1). So we may take a prime p such that
‖p‖ < 1. Therefore the set A := {a ∈ Z : ‖a‖ < 1} contains p and is an ideal in
Z as it is closed under addition by (3′) and also by multiplication by any integer
because of (2) (see Proposition 10.3.7). On the other hand, 1 6∈ A so we have
A = (p) as (p) is a maximal ideal in Z. Hence for p - a, b ∈ Z we have |a| = |b| = 1
and |a

b
pn| = |p|n = |a

b
pn|sp where s := log1/p |p|.

Case 2: | · | is archimedean. Let 1 < m,n ∈ Z be arbitrary.

Lemma 10.3.9. We have |m|1/ logm = |n|1/ logn. (Here log denotes, say, the nat-
ural logarithm, in fact the base doesn’t matter.)

Proof. Write m in base n, ie. m = ∑r
i=0 ain

i where 0 ≤ ai < n (0 ≤ i ≤ r). So we
have nr ≤ m, whence r ≤ logm

logn and |ai| ≤ ai|1| = ai ≤ n. Therefore we compute

|m| = |
r∑
i=0

ain
i| ≤

r∑
i=1
|ai||n|i . (10.3.1)
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Note that |n| ≤ 1 implies |m| ≤ nr ≤ n logm
logn . Applying this to m replaced by mk

and taking kth root we obtain |m| ≤ k

√
kn logm

logn . Letting k → ∞ we get an upper
bound for |m| independent of m which contradicts to the assumption | · | being
archimedean. So we have |n| > 1, and using (10.3.1) we compute

|m| ≤
r∑
i=0
|ai||n|i ≤ |n|r

r∑
i=0
|ai| ≤ |n|rn(r + 1) ≤ |n|logm/ lognn(1 + logm

log n ) .

Substituting mk into m, taking kth root, and letting k → ∞ we obtain |m| ≤
|n|logm/ logn. The statement follows by interchanging m and n.

Put s := log |n|
logn for some fixed 1 < n ∈ Z. By the above Lemma 0 < s and s

does not depend on the choice of n. So we have |m| = es logm = ms = |m|s∞ for all
1 < m ∈ Z. The statement follows for all nonnegative rational numbers by taking
quotients and by Exercise 10.3.1 for negative rationals.

Definition 10.3.10. The field K is said to be complete with respect to the absolute
value | · | if any Cauchy sequence is convergent.

Example 10.3.11. Both R and C are complete with respect to | · |∞, but Q is only
complete with respect to the trivial absolute value.

In the following we are going to show that any field K with an absolute value
| · | can be embedded isometrically as a subfield into a complete field. We define

R := {(an)n ∈ KN : ∀ε > 0∃N ∈ N s. t. |an − am| < ε for all m,n ≥ N}

as the ring of Cauchy sequences in K. This is indeed a ring with respect to the
pointwise addition and multiplication. Note that K can be embedded into R
diagonally, ie. we have a ring homomorphism ι : K ↪→ R defined by ι(c) := (c)n.
Let I0 ⊂ R be the set of those sequences that are identically 0 except for finitely
many terms. This set is an ideal in R. Let R0 := R/I0 the quotient. We may
think of R0 as the ring of equivalence classes of Cauchy sequences with respect to
the equivalence relation (an)n ∼ (bn)n if an = bn for all but finitely many n ∈ N.

Proposition 10.3.12. R0 is a local ring. Its unique maximal ideal consists of the
those Cauchy sequences that converge to 0 (“zero sequences”).

Remark. In case you just heard this expression for the first time a commutative
ring R is said to be a local ring if it has a unique maximal ideal.

Proof. Let M ⊂ R be the set of zero sequences. It is clear that I0 ⊂ M and M
is an ideal in R. On the other hand, if (an)n is a Cauchy sequence with an 6→ 0
then 1/an makes sense if n is large enough and is also a Cauchy sequence. This
shows that the equivalence class of (an)n is invertible in R0. ThereforeM is indeed
the unique maximal ideal of R containing I0, or equivalently, M/I0 is the unique
maximal ideal in R0 by Exercise 10.3.4.

Definition 10.3.13. Let K be a field with an absolute value | · |. We define
K̂ := R/M to be the completion of K wrt. | · |. Note that this is indeed a field as
M is a maximal ideal in R.
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Note that the composite map K
ι
↪→ R → K̂ = R/M is still injective: if

0 6= c ∈ K the the constant c sequence does not tend to 0 hence does not lie in M .
So from now on we identify K with its image in K̂. We still need to verify that
K̂ is indeed complete in order to justify the term “completion”. (In fact we also
need the universal property of K̂ for being the completion, ie. any ismoetric field
homomorphism ϕ : K → F into a valued field F factors through K̂.) For this we
first need to extend | · | from K to K̂. Since the topology on K is defined so that
the map | · | : K → R is continuous, it takes any Cauchy sequence in K to a Cauchy
sequence in R. As R is complete, we may define |(an)n| as a limit limn→∞ |an|. So
we obtain a valuation R andM is the set of elements with valuation 0 by definition.
Therefore the absolute of (an)n ∈ R only depends on its class in R/M = K̂. This
way we obtain an absolute value on K̂ which we still denote by | · |. We leave the
proof of the fact that K̂ is indeed complete and has the required universal property
to the reader as an exercise (see Exercises 10.3.6 and 10.3.7).

Definition 10.3.14. The field Qp of p-adic numbers is the completion of Q with
respect to the p-adic absolute value | · |p.

10.3.1 Exercises
Exercise 10.3.1. Show that if | · | is any absolute value on the field K then we
have |1| = 1 and | − x| = |x|.

Exercise 10.3.2. Show that in an ultrametric space all triangles are isosceles.

Exercise 10.3.3. Show that the absolute value | · |p on Q satisfies the axioms
(1)− (3).

Problem 10.3.4. Show that a commutative ring R is local if and only if it contains
an ideal I CR such that all the elements in R \ I are invertible in R.

Exercise 10.3.5. Verify the axioms (1) − (3) for the absolute value | · | on K̂ if
K̂ is the completion of a valued field (K, | · |).

Problem 10.3.6. The field K̂ is complete wrt. | · |. Hint: We need to show that
any Cauchy sequence of Cauchy sequences converges to a Cauchy sequence. You
can construct the limit sequence as taking the nith term of the ith sequence for ni
large enough (depending on i and the actual sequnce). It is a usual elementary
argument in first year analysis how to choose these ni.

Exercise 10.3.7. Verify the universal property of K̂, ie. all ϕ : K → F isometric
field embeddings factor through K̂ uniquely. Also show thatK is dense in K̂. Hint:
Take a complete field F with respect to the absolute value | · | and an isometric
embedding ϕ : K → F of K as subfield of F . Extend ϕ to R as ϕ̃((an)n) :=
limn ϕ(an). Since (an)n is a Cauchy sequence and F is complete, this makes sense.
The kernel of ϕ̃ is exactly M , in particular it factors through K̂ = R/M .

Problem 10.3.8. Show that the field Qp of p-adic numbers constructed in the
previous section is indeed the completion of Q wrt. the absolute value | · |p.
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Exercise 10.3.9. Let (K, | · |) be a—not necessarily complete—non-archimedean
valued field. We define OK := {a ∈ K : |a| ≤ 1} to be the ring of integers in
K. Show that this is indeed a subring, moreover, a local ring with maximal ideal
MK := {a ∈ K : |a| < 1}. The field OK/MK is called the residue class field of
K. Hint: Use Exercise 10.3.4 and note that the elements with absolute value 1
are invertible in OK .

Exercise 10.3.10. Show that the ring of integers in Qp is Zp.

Exercise 10.3.11. Show that the image of | · |p : Qp → R is the same as the image
of its restriction to Q, namely {0} ∪ pZ ⊂ R.

Problem 10.3.12. What is the region of convergence of the Taylor series of log(1+
x) and exp(x) at 0 in Qp?

10.4 Towards irreducibility criteria for polyno-
mials over Q

Exercise 10.4.1. a) Show that the polynomial x5 − 2x2 + 6x − 10 ∈ Q[x] is
irreducible.

b) Show that the polynomial x2 + 1 ∈ Q[x] is irreducible.

We note that the above polynomial in a) satisfies Eisenstein’s criterion for
p = 2 as 2 divides all the coefficients except for the leading term and 4 does not
divide the constant term. In fact, in this proof we only used the prime 2 so the
same proof works over Q2, as well. On the other hand, the polynomial in b) is
irreducible even over R, so, in particular, it is irreducible over Q. What is the
common in these examples?

In fact, Eisenstein’s criterion is really a statement over Qp, not over Q. When-
ever a polynomial in Q[x] is irreducible over some Qp or over R we may deduce
its irreducibility over Q, so the method is basically the same in the two examples,
but we used different completions.

Over R it is easy to describe all the irreducible polynomials. These are the
linear polynomials, and those quadratics that do not have a root in R. What
about Qp? Can we describe all the irreducible polynomials? The answer is yes,
and we need Newton polygons for that. This will provide us with new irreducibility
criteria—similar to Eisenstein’s—over Q. However, our job is a little bit harder
than over R, as the algebraic closure of Qp is not a quadratic extension of Qp, not
even a finite extension.

Exercise 10.4.2. Show that the polynomial x5 − 2x4 + 4 ∈ Q[x] is irreducible.

“Solution”. This is not an Eisenstein polynomial for p = 2 (nor for any other
prime) as 4 divides the constant term. What next? The idea is to have a look at
the 2-adic absolute values of the roots of this polynomial. Assume we decompose
this polynomial x5 − 2x4 + 4 = (x − α1)(x − α2)(x − α3)(x − α4)(x − α5) over a
larger field Q < Q2 ≤ K and put ci := − log2 |αi|2 ∈ R (1 ≤ i ≤ 5). Then we have∏5
i=1 αi = −4 hence ∑5

i=1 ci = − log2 |−4|2 = 2. Moreover we compute |α5
i |2 = 1

25ci

and |2α4
i | = 1

24ci+1 . Since in the ultrametic world all triangles are isosceles, we have
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5ci = 4ci + 1 or min(5ci, 4ci + 1) = 2 by the ultrametric inequality. Note that
5ci ≥ 4ci + 1 is impossible as otherwise α5

i − 2α4
i = −4 would be divisible by 25

which is nonsense. Therefore we have ci = 2/5 for all 1 ≤ i ≤ 5. Now assume
that x5 − 2x4 + 4 = g(x)h(x) with monic nonconstant g, h ∈ Qp[x]. Then g(x)
is a product of some x − αi (1 ≤ i ≤ 5). Therefore g(0) is a product of some of
the αi (upto sign) therefore its 2-adic absolute value is |g(0)| = |αi|deg g = 22 deg g/5.
However, g(0) ∈ Qp, so its absolute value is an integer power of 2. So 5 | deg g
gives us a contradiction as neither g nor h is constant. Therefore x5 − 2x4 + 4 is
irreducible over Qp hence also over Q.

The problem with the above solution is that we have not quite defined the
p-adic absolute value of an element of an extension of Qp. Let alone showing it
satisfies the ultrametric inequality. So we are going to do this in the sequel in a
precise way.

10.4.1 Hensel’s Lemma
There are various forms of Hensel’s Lemma. We are going to prove the version

that is needed for extending absolute values from K to a finite field extension as
this is needed for Newton polygons. It is in some sense the precise generalization
of our observations concerning the solutions of x2 = 2 in Q7. Let K be a complete
non-archimedean field with respect to the valuation | · |, denote by O = OK =
{x ∈ K | |x| ≤ 1} its ring of integers, by p = {x ∈ K | |x| < 1} its maximal
ideal, and by k = O/p its residue field. We say that a polynomial f(x) ∈ O[x] is
primitive if f(x) = a0 + a1x+ · · ·+ anx

n with |f | := max0≤i≤n(|ai|) = 1.
Theorem 10.4.1 (Hensel’s Lemma). Let f(x) ∈ O[x] be a primitive polynomial
and suppose that f(x) := f(x) (mod p) ∈ k[x] can be written as f(x) = g(x)h(x)
with (g(x), h(x)) = 1 in k[x]. Then there exist primitive polynomials g(x), h(x) ∈
O[x] such that f(x) = g(x)h(x), g(x) = g(x) (mod p), h(x) = h(x) (mod p), and
deg g = deg g.
Proof. Put d := deg f , m := deg g. Then we have d − m ≥ deg h. (Note that
we only have deg f ≤ d as some of the coefficients in f(x) might reduce to zero
modulo p.) At first we lift g and h arbitrarily by choosing g0, h0 ∈ O[x] such that

g = g0 (mod p) , h = h0 (mod p)

and deg g0 = deg g, deg h0 = deg h ≤ d − m. Since we have (g, h) = 1, there
exist polynomials a(x), b(x) ∈ O[x] with a(x)g0(x) + b(x)h0(x) ≡ 1 (mod p). So
all the coefficients of both f(x)− g0(x)h0(x) and a(x)g0(x) + b(x)h0(x)− 1 are in
the maximal ideal p. Let π be the coefficient with biggest absolute value in these
polynomials (in particular, we have |π| < 1). We are going to construct g and h
in the form

g(x) = g0(x) + πp1(x) + · · ·+ πnpn(x) + . . .

h(x) = h0(x) + πq1(x) + · · ·+ πnqn(x) + . . .

such that deg pi < m and deg qi ≤ d−m. We construct these polynomials induc-
tively. Let n ≥ 1 and assume we have constructed

gn−1(x) = g0(x) + πp1(x) + · · ·+ πn−1pn−1(x)
hn−1(x) = h0(x) + πq1(x) + · · ·+ πn−1qn−1(x)
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such that |f − gn−1hn−1| ≤ |π|n. Put fn(x) := f(x)−gn−1(x)hn−1(x)
πn

∈ O[x]. We define
pn(x) to be the residue in the Euclidean division of b(x)fn−1(x) by g0(x), ie. we have
b(x)fn−1(x) = Qn(x)g0(x) + pn(x) with some Qn ∈ O[x] and deg pn < deg g0 = m.
Note that one can indeed take the euclidean division as the leading coefficient
of g0(x) does not lie in p hence it is invertible in O. Now we define qn(x) ∈
O[x] to be the polynomial we obtain by ommiting all the nonzero coefficients of
h0(x)Qn(x)+a(x)fn(x) with valuation≤ |π| so that we have |qn−h0Qn−afn| ≤ |π|.
On the other hand, we have

h0pn + g0(h0Qn + afn) = (h0b+ g0a)fn ≡ fn (mod π) ,

so deg qn ≤ deg fn − deg g0 ≤ d−m as we clearly have deg(h0pn) ≤ d. Moreover,
if we put gn = gn−1 + πnpn and hn = hn−1 + πnhn then we compute

f − gnhn = f − gn−1hn−1 − πn(gn−1qn + hn−1pn)− π2npnqn ≡
≡ πn(fn − gn−1qn − hn−1bfn + hn−1Qng0) ≡

≡ πn(fn − q0h0Qn − g0afn − h0bfn + h0Qng0) ≡ 0 (mod πn+1)

as we have gn−1 ≡ g0 (mod π) and hn−1 ≡ h0 (mod π). The result follows noting
that the sums g(x) = g0(x) + ∑∞

i=1 π
ipi(x) and h(x) = h0(x) + ∑∞

i=1 π
iqi(x) both

converge to polynomials by the bounds on the degree. For these polynomials we
have f(x) = g(x)h(x).

Corollary 10.4.2. If f(x) = a0 + a1x+ · · ·+ anx
n ∈ K[x] is irreducible then we

have |f | = max(|a0|, |an|).

Proof. We prove by contradiction and may assume without loss of generality that
|f | = 1 (ie. f(x) ∈ O[x] primitive). Let 0 < r < n be the smallest index such that
|ai| = 1. Then f(x) decomposes as xr(ar + · · · + anx

n−r) ≡ f(x) (mod p). We
obtain a contradiction using Hensel’s Lemma.

10.4.2 Extending valuations
Let K be a complete nonarchimedean field as above. Our goal in this section

is to prove the following

Theorem 10.4.3. Let L/K be a finite field extension. Then the valuation | · |
extends uniquely to an ultrametric valuation on L. The extension is given by
|α| = n

√
|NL/K(α)| for α ∈ L where n = |L : K| the degree and NL/K(α) is the

norm of α, ie. the determinant of the multiplication by α as a K-linear map L→ L.

Remark. Note that in case of the archimedean field R the extension of | · |∞ to
C is indeed given by |α|∞ =

√
|NC/R(α)|∞ =

√
|α · α|.

Proof. Let us show the uniqueness first assuming that n

√
|NL/K(·)| is a nonarchi-

medean absolute value. Suppose we have another extension | · |′ to L. Denote by
OL = {α ∈ L | |α| ≤ 1} and by O′L = {α ∈ L | |α|′ ≤ 1} the rings of integers
with respect to the two absolute values and by pL = {α ∈ L | |α| < 1} and by
p′L = {α ∈ L | |α|′ < 1} the maximal ideals. Assume that α lies in OL \ O′L and
let f(x) = xd + ad−1x

d−1 + · · · + a0 be α’s minimal polynomial. Note that the



114 Gergely Zábrádi: p-adic numbers and applications

norm NL/K(α) is a power of a0 (upto sign). Since α ∈ OL, we have |NL/K(α)| ≤ 1
therefore we also have |a0| ≤ 1. By Corollary 10.4.2 we deduce that ai is in
OK for all 0 ≤ i ≤ d − 1. On the other hand, α /∈ O′L whence |α|′ > 1 and
|1/α|′ < 1. This means that 1 = |1|′ = | − ad−1 alpha

−1 − · · · − a0α
−d|′ < 1

by the ultrametric inequality. This is a condradiction, so we obtain OL ⊆ O′L.
Moreover, p′L ∩ OL is a prime ideal in OL therefore it equals pL. Hence we have
pL ⊆ p′L. All in all we obtain |α| ≤ 1 ⇒ |α|′ ≤ 1 (by OL ⊆ O′L) and also
|α| > 1 ⇒ |1/α| < 1 ⇒ |1/α|′ < 1 ⇒ |α|′ > 1 (by pL ⊆ p′L) showing that | · | and
| · |′ are equivalent.

So it remains to show that α 7→ |α| = n

√
|NL/K(α)| is indeed a nonarchimedean

valuation on L. Axioms (1) and (2) are obviously satisfied, so we only need to
check (3′). Choose α, β ∈ L and assume (as we may) that |β| ≤ |α| ≤ 1. So
the statement of (3′) means that we also have |α + β| ≤ 1, in other words we
are reduced to proving that OL = {α ∈ L | NL/K(α) ∈ OK} is a subring (in
particular, closed under addition) in L. By Corollary 10.4.2 OL is exactly the set
of those elements in L whose monic minimal polynomial has coefficients in OK ,
ie. the integral closure of OK in L which is known to be a subring (this is the way
one proves that the algebraic integers form a ring). Since the proof is simple, we
include it here:

Lemma 10.4.4. Let B be an integral domain, A ≤ B be a subdomain, and
b1, . . . , bk ∈ B arbitrary. The elements bi (1 ≤ i ≤ k) all have monic mini-
mal polynomials over A (ie. they are integral over A) if and only if the subring
A[b1, . . . , bk] ≤ B generated by b1, . . . , bk over A is finitely generated as a module
over A.

Remark. Note that being finitely generated as a subring is much weaker than
being finitely generated as a module over A. In the former we may multiply
the generators together but in the latter we can only multiply the generators by
constants in A.

The proof of the Lemma: ⇒: Induction on k. The case k = 0 is trivial. Now by
induction, the ring R = A[b1, . . . , bk−1] is finitely generated as a module over A,
say by the generators x1, . . . , xt. We are going to show that the set {xjbik | 1 ≤
j ≤ t, 0 ≤ i ≤ d − 1} generate A[b1, . . . , bk] as a module over A where d denotes
the degree of the minimal polynomial f(x) = xd + ad−1x

d−1 + · · · + a0 ∈ A[x]
of bk over A. Indeed, any element in A[b1, . . . , bk] = R[bk] can be written as a
polynomial in bk with coefficients in R. The coefficients can be written as an
A-linear combination of x1, . . . , xt and the polynomial can be reduced to having
degree < d by euclidean division by f as f(bk) = 0 and f is monic.
⇐: Suppose that A[b1, . . . , bk] is finitely generated as a module over A, say by

generators x1, . . . xt. Then we may take the matrixMi ∈ At×t of the multiplication
by bi in the basis x1, . . . , xt. Note that the matrixMi is not unique as we may have
“relations” between the xj’s. However, it certainly exists since the x1, . . . , xt form
a generating system. By the theorem of Cayley and Hamilton, bi is the root of its
own characteristic polynomial which is monic and has coefficients in A. Therefore
the minimal polynomial of bi over A exists and is also monic as it divides the
characteristic polynomial.
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10.4.3 Newton polygons
Let f(x) = anx

n + an−1x
n−1 + · · · + a0 ∈ Qp[x] be a polynomial. The Newton

polygon of f is the (boundary of the) lower convex hull of the points

{(−n,− logp |an|), . . . , (−i,− logp |ai|), . . . , (0,− logp |a0|)} ⊂ Z2 ⊂ R2

on the euclidean plane. That is, take the intersection of all the closed half-planes
containing these points and lying above some nonvertical line. We say that the
multiplicity of the slope a/b ∈ Q is m if we have a segment in the Newton polygon
with slope a/b and horizontal width m. The polynomial f has exactly n slopes if
counted with multiplicities.

Example 10.4.5. The Newton polygon of the polynomial x3 + px2 + px + p3 has
vertices (−3, 0), (−1, 1), and (0, 3). It has slopes 1/2 with multiplicity 2 and 2 with
multiplicity 1.

The additive valuation of α ∈ Qp is by definition − logp |α|p. Note that α
belongs to a finite extension K of Qp and we extended | · |p to K in the previous
section.

Theorem 10.4.6. The multiset of slopes of the Newton polygon of f equals the
multiset of the additive valuations of the roots of f in Qp.

Proof. We introduce the ρ-norm (Gauss-norm) on Qp[x] for each real number ρ > 0
by putting ‖anxn + an−1x

n−1 + · · · + a0‖ρ := max1≤i≤n(|ai|pρi). The width of f
under the ρ-norm is the difference between the maximum and minimum values of
i for which maxi(|ai|pρi) is achieved. Note that the multiplicity of the slope a/b
in the Newton polygon of f is nothing else but the width of f under the ρ-norm
with ρ = p−a/b. The statement follows from the following
Lemma 10.4.7. For f(x), g(x) ∈ Qp[x] and ρ > 0 we have ‖fg‖ρ = ‖f‖ρ‖g‖ρ (ie.
‖ · ‖ρ is multiplicative). Moreover, the width of fg under the ρ-norm equals the
sum of the widths of f and g.
Proof. Denote by mf and Mf the minimum and maximum values of i for which
maxi(|ai|pρi) is achieved. The integersmg, mfg,Mg, andMfg are defined similarly.
If we write g(x) = bkx

k + · · ·+ b0 then we have

f(x)g(x) =
∑
i

 ∑
j+l=i

ajbl

xi .
In the sum ∑

j+l=i ajbl each summand has absolute value at most ‖f‖ρ‖g‖ρρ−i
with equality if and only if |aj| = ‖f‖ρρ−j and |bl| = ‖f‖ρρ−l. This cannot occur
for i < mf + mg and for i = mf + mg it occurs only for j = mf and l = mg.
So we have mfg = mf + mg and the multiplicativity of ‖ · ‖ρ also follows. The
equality Mfg = Mf +Mg is deduced the same way. Therefore the width is indeed
additive.

Corollary 10.4.8. If the Newton polygon of a polynomial f(x) ∈ Q[x] wrt. some
prime p (ie. considered as a polynomial in Qp[x]) is just one line with the only
lattice points at the two ends then f(x) is irreducible.

Newton polygons have many more modern applications, too, e.g. in the theory
of p-adic differential equations. To read more have a look at [6].
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10.4.4 Exercises
Exercise 10.4.3. Show that all the p − 1st roots of unity are contained in Qp.
Hint: Try and factor the polynomial xp−1 − 1 using Hensel’s Lemma.

Problem 10.4.4. Compute |1 − εm|p for any positive integer m and prime p
where εm is a primitive mth root of unity. Hint: At first do it if (m, p) = 1 or m
is a power of p. For this compute the Newton polygon of a suitable polynomial
having 1− εm as a root. Finally, write εm = εphεj where (j, p) = 1 and 1− εm =
(1− εph) + εph(1− εj).

Exercise 10.4.5. Give more details of the proof of Theorem 10.4.6. Verify that
the width of f under the ρ-norm is equal to the multplicity of the slope − logp ρ in
the Newton polygon of f . What is the Newton polygon of the linear polynomial
x− α?

Exercise 10.4.6. Give a proof of Corollary 10.4.8.

Problem 10.4.7. Show that if Newton polygon of the polynomial f(x) ∈ Qp has
two different slopes then f cannot be irreducible. Hint: Use the uniqueness of the
extension of the absolute value to finite extensions of Qp in order to show that the
Galois group Gal(K/Qp) acts on any Galois-extension K via isometries. If all the
roots of f are Galois-conjugates then they have the same absolute value.

10.5 Applications, research directions, and fur-
ther reading

If you do not intend to become a number theorist, you may ask why learn the
p-adics as they are so different from the “real world”. This is, in fact, not quite
true. However, let us discuss the most important applications of p-adic methods in
Number Theory first, together with a view what the main research directions are.
The list below does not intend to be exhaustive—it certainly reflects the interest
and the (limited) knowledge of the author.

10.5.1 Hasse’s local-global principle
The most important application of the p-adics numbers are through the so-

called local-global (or Hasse) principle. Roughly speaking the idea is that—as you
may have noticed—it is easier to decide whether or not polynomial equations have
roots in the fields R and Qp for varying p than deciding it over Q. Clearly, if there
are no roots in Qp for some p or in R then there can be no roots in Q either. The
question is up to what extent is the converse true. Unfortunately, this is not always
the case. For example, the equation 3x3 +4y3 +5z3 = 0 has a solution in R and Qp

for all primes p, but not in Q. However, for homogeneous polynomials of degree 2
the local global principle holds. This is the theorem of Hasse and Minkowski (for
a detailed and elementary proof see the book [12] by Serre).

There exist certain methods how to “measure” the failure of the Hasse principle.
For elliptic curves this is done by the Tate-Shafarevich group which in this case
fully accounts for the failure of the principle. The Tate-Shafarevich conjecture
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asserts that this group is always finite over for elliptic curves over finite extensions
of Q. This is one of the most important open problems in arithmetic geometry.
The conjecture of Birch and Swinnerton-Dyer (a millenium prize problem) would
imply this and the conjecture has been tested for many numerical examples. There
is also some very important theoretical evidence in favour of this conjecture—for
instance, the known cases of the BSD conjecture. To read more about elliptic
curves Silverman’s book [13] is an excellent introduction.

10.5.2 Langlands programme
L-functions play a very important role in Number Theory. These are certain

generalizations of the Riemann ζ-function ζ(s) = ∑∞
n=1 1/ns (Re(s) > 1). For

example, the proof of Dirichlet’s Theorem on primes in arithmetic progression is
proven using L-functions. The Riemann ζ-function itself (especially the set of its
roots) is very much related to the distribution of primes in Z. Further, according
to the conjecture of Birch and Swinnerton-Dyer, the L-function of an elliptic curve
should vanish to the order of the rank of the curve.

L-functions play the role of the connection between Galois representations and
automorphic forms. One can attach L-functions to both types of objects. How-
ever, while on the Galois-side it is very natural to write the L-function as Euler
product over the primes (for example, we have ζ(s) = ∏

p prime
1

1−p−s ), this is not so
obvious on the automorphic side. On the other hand, the functional equation and
the analytic continuation of L-functions to the whole complex plane—note that
a priori ζ(s) is only defined if Re(s) > 1—is quite standard (well, this is Tate’s
thesis, in fact), but not at all on the Galois side. In fact, the only method known to
show the analytic continuation is via modularity, ie. showing that the L-function
in question is the L-function of some automorphic form. The Langlands program
is the philosophy that one should try to match Galois-representations to automor-
phic forms having the same L-function. There are not too many known results in
this direction. The case when the Galois representation is 1-dimensional, is com-
pletely understood via class field theory. The case of Galois-representations coming
from elliptic curves was settled by Wiles (and Taylor) when proving Fermat’s Last
Theorem. More recently, there are other modularity results using Serre’s conjec-
tures and the p-adic Langlands correspondence for GL2(Qp) by Colmez. So one
can—rather surprisingly—use p-adic methods to prove the analytic continuation
of certain complex functions!

If you are interested in this, you should start out by reading class field theory
first for which I recommend the books [11] and [9].

10.5.3 Algebraic geometry
It should be obvious by now that the p-adic numbers are useful when trying

to find (or proving that there are no) rational points on algebraic varieties. How-
ever, there are several other applications of the p-adics in algebraic geometry. For
instance, it is sometimes useful to complete the local ring of a variety at a point,
as complete discrete valuation rings have better properties than those that are
not complete. Another very important application is in étale cohomology. The
étale cohomology is a cohomology theory in algebraic geometry that has better
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properties if the coefficients are taken from a finite ring. However, for certain ap-
plications, it is necessary to have coefficients with characteristic zero. Therefore
one takes the projective limit with coefficients in Z/pnZ to obtain coefficients in
Zp. If you want to learn more on algebraic geometry the best reference is [5].

10.5.4 Group theory
Profinite groups are inverse limits of finite groups. They are naturally compact

topological spaces in the inverse limit topology of the finite sets equipped with the
discrete topology. For example infinite Galois groups are profinite, but profinite
groups also show up as automorphism groups of certain (infinite) rooted trees. The
additive group Zp ∼= lim←−Z/pnZ is a profinite group, moreover, it is a pro-p group,
ie. an inverse limit of finite p-groups. Moreover, it is the unique (upto isomorphism)
infinite pro-p group topologically generated by a single element. A pro-p group G is
said to have finite rank if all its closed subgroups can be topologically generated by
a bounded number of elements. All pro-p groups of finite rank are closed subgroups
of GLn(Zp) for n large enough. If you wish to learn more on pro-p groups, the
bible is the book [3].

Another application of the p-adic numbers is in modular representation theory
of finite groups. This is because the natural objects to which one can lift up
representations in characteristic p to characteristic 0 are complete local integral
domains, such as Zp. For more information on modular representation theory see
the book [10].

10.5.5 Dynamical systems
The main result of the groundbreaking paper [1] is the following. We say that

a complex number a ∈ C is preperiodic for the polynomial f(z) ∈ C[z] if the set

{a, f(a), f(f(a)), . . . , f(. . . (f(a)) . . . ), . . . }

is finite. Fix a positive integer d > 1 and complex numbers a, b ∈ C. The set
of parameters c ∈ C such that both a and b are preperiodic for f(z) = zd + c is
infinite if and only if ad = bd. Note that the statement is completely elementary
and only concerns complex polynomials. However, the proof requires non-trivial
methods in non-archimedean analytic geometry (in the sense of Berkovich [2]).

10.5.6 Algebraic topology
The (still open) Hilbert-Smith conjecture states that if a locally compact group

G acts effectively (ie. faithfully) on a topological manifoldM then G is a Lie-group.
Because of known structural results on locally compact groups the conjecture can
be reduced to the case G ∼= Zp the additive group of the p-adic integers. In other
words it would be enough to show that Zp cannot act faithfully on a topological
manifold M .

The ring Zp of p-adic integers is one of the easiest examples of a complete
discrete valuation ring (the other one being k[[t]], k field). These are very important
in the theory of formal groups which not only show up in algebraic geometry and
number theory, but also in algebraic topology. The book [8] is a good introduction
to the theory of formal groups.
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10.5.7 Physics
The geometry of space-time at small distances seems to be non-archimedean—

at least according to some physisists. For instance, the p-adic numbers show up
in quantum mechanics, quantum field theory, and string theory, too. I am not an
expert on this, so if you are interested, you should consult the book [14] for a start.
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Chapter 11

András Zempléni: Extreme Value
Modelling

11.1 Introduction
We hear a lot about financial crisis or climate changes, but how can one math-

ematically tackle the problem of estimating the severity of possible extreme losses
or heat waves? Extreme values are in the focus of attention at different areas, like
environmental or financial data analysis. We shall overview the classical univari-
ate approaches of block-maxima and peaks-over-threshold and give an introduc-
tion to the more recent multivariate approaches and copula methods. Besides the
probabilistic background, emphasis will be given to the most important statistical
methods, like maximum likelihood estimation or confidence interval construction.
Methods for assessing the goodness-of-fit for the chosen models will also be pre-
sented, including recently developed bootstrap approaches. The theory will be
illu

11.2 Extreme Value Theory

11.2.1 Univariate Extreme Value Theory
First we outline the main probabilistic results providing the basis of parametric

modeling of univariate extremes.
To reveal the motivation behind extreme value theory (EVT), let X1, ..., Xn be

a sequence of independent random variables with common distribution function F .
In addition let Mn = max (X1, X2, . . . , Xn) be the maximum of the sequence. The
variablesXi often represent hourly or daily values of a process and soMn represents
the maximum of the process over n time units. The distribution function of Mn

can be computed in a very elementary way as

P (Mn ≤ z) = P (X1 ≤, ..., Xn ≤ z) =
n∏
i=1

P (Xi ≤ z) = F n(z). (11.2.1)

However Equation 11.2.1 is not very useful in practice if F is unknown. Of course,
one may suggest to estimate F from the measurements in some way and use this
as a plug-in estimate in F̂ n(z). Unfortunately by doing this, even small differences
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between F and F̂ might be multiplied up, leading to large error in the final esti-
mate of F n. An alternative solution is proposed by EVT, suggesting to look for
approximate distribution families for F n directly, based on the extreme measure-
ments only. Central limit theory for extreme values (without proofs) is provided
below.

Limit for Maxima

For the maximum of univariate i.i.d. variables the theory is well-elaborated.
Since analogous statements follow for the minimum as

min (X1, X2, . . . , Xn) = −max (−X1,−X2, . . . ,−Xn) ,

we can limit our attention to the case of maximum. Let

z+ = sup{z : F (z) < 1}

denote the upper endpoint of the support of the distribution F (x). It is clear that
Mn → z+ a.s. as n→∞. Thus, in order to get a non-degenerate limit for Mn, we
must consider normalized maxima

M∗
n = Mn − an

bn
,

for some sequences of constants {an} and {bn} > 0. The Gnedenko-Fisher-Tippett
theorem states that the limit distribution, if exists, is in the class of the so-called
extreme value distributions (EVD).

Definition 11.2.1. The extreme value distribution with shape parameter ξ has
the following distribution function.
If ξ 6= 0,

Gξ (x) = exp
[
− (1 + ξx)−1/ξ

]
for 1 + ξx > 0 (otherwise 0 if ξ > 0 and 1 if ξ < 0).
If ξ = 0,

Gξ (x) = exp
[
−e−x

]
.

The ξ = 0 case can also be obtained from the ξ 6= 0 case by letting ξ → 0. The
limit distribution is called Fréchet for ξ > 0, Gumbel or double exponential for
ξ = 0 and Weibull for ξ < 0.

One may also define the corresponding location-scale family Gξ,µ,σ by replacing
x above by (x− µ) /σ for µ ∈ R and σ > 0 and changing the support accordingly.
It is straightforward to check that Gumbel, Fréchet and Weibull families can be
combined into a single family as follows.

Definition 11.2.2. The generalized extreme value (GEV) distribution is defined
as

Gξ,µ,σ(x) = exp

−
(

1 + ξ
x− µ
σ

)− 1
ξ

, (11.2.2)

where 1 + ξ x−µ
σ

> 0, µ ∈ R is called the location parameter, σ > 0 the scale
parameter and ξ ∈ R the shape parameter.
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Theorem 11.2.3. [Fisher and Tippett (1928), Gnedenko (1943)]
If there exist {an} and {bn} > 0 sequences such that

P (M∗
n ≤ z) = P

(
Mn − an

bn
≤ z

)
→ G(z) as n→∞ (11.2.3)

where G is a non-degenerate distribution function, then G necessarily belongs to the
GEV family, defined in Equation 11.2.2. In this case we say that the distribution
of Xi belongs to the max-domain of attraction of the GEV distribution G.

This theorem is usually used in practical applications for modeling the max-
ima of observations appearing in consecutive blocks of time (block maxima), as
e.g. annual/ monthly/ weekly maxima.

Remark 11.2.4. >From the statistical point of view the apparent difficulty is
that the normalizing constants are unknown. This can be easily solved in practice,
as the distribution of the non-normalized maxima can be approximated by GEV
distribution with different location and scale parameters:

P (Mn ≤ z) ∼ G
(
z − an
bn

)
= G†(z).

Limit for Threshold Exceedances

Modeling only the block maxima can be inefficient. As EVT is basically con-
cerned with modeling the tail of an unknown distribution, a natural idea is to
model all of those observations Xi, whose values are larger than a considerably
high threshold. Due to the results of Balkema and de Haan (1974) it is well-
known that if the distribution of Xi lies within the max-domain of attraction of a
GEV distribution, then the distribution of the threshold exceedances has a similar
limiting representation. The results are summarized in the following theorem.

Theorem 11.2.5. Let X1, ..., Xn be a sequence of independent random variables
with common distribution function F . Suppose that F belongs to the max-domain
of attraction of a GEV distribution for some ξ, µ and σ > 0. Then for high
thresholds u

P (Xi − u ≤ z|Xi > u)→ H(z) = 1−
(

1 + ξz

σ̃

)− 1
ξ

as u→ z+, (11.2.4)

where σ̃ = σ + ξ(u− µ).

The family defined in Equation 11.2.4 is called generalized Pareto distribution
(GPD).

Remark 11.2.6. Note, that both of the above limit results are strongly linked in
the sense that, as the threshold tends to the right endpoint of the underlying dis-
tribution, the conditional distribution of the exceedances converges to GPD if and
only if the distribution of the normalized maxima converges to GEV distribution.
For graphical illustrations see Figure 11.2.1.
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Figure 11.2.1: Distribution and density functions of GEV distribution (Equa-
tion 11.2.2) and GPD (Equation 11.2.4).

Conditions for the Limit Theorems

The EVT-based statistical procedures implicitly assume that most distributions
of practical interest lie within the max-domain of attraction of a GEV distribution
(or equivalently, within a GPD). Therefore, a natural question arises: how general
is the class of distributions for which the above limit results hold? Although it is
not difficult to find counterexamples (e.g. among discrete distributions), the most
well-known continuous distributions belong to this class.

Definition 11.2.7. We say that a distribution tail F̄ is regularly varying with
index −α for some α ≥ 0 if for every x > 0

lim
t→∞

F̄ (tx)
F̄ (x)

= tα.

In addition if α = 0, the function F̄ is said to be slowly varying.

Theorem 11.2.8 (Max-domain of attraction of the Fréchet distribution). A dis-
tribution function F belongs to the max-domain of attraction of a GEV distribution
with ξ > 0 (Fréchet-type) if and only if the distribution tail F̄ is regularly varying
with index −ξ.

This condition is satisfied by e.g. the Pareto, the Cauchy and the stable (for
α < 2) distributions.

Theorem 11.2.9 (Max-domain of attraction of the Weibull distribution). A dis-
tribution function F belongs to the max-domain of attraction of a GEV distribution
with ξ < 0 (Weibull-type) if and only if the support of F is bounded to the right
(with x+ < ∞ is the right endpoint) and F̄ (x+ − x−1) is regularly varying with
index −ξ.
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In contrast to the heavy-tailed distributions, the Weibull case contains distri-
butions which have a finite right endpoint including e.g. the uniform and the beta
distributions.

The ξ = 0 (Gumbel-type) case is more complicated. Although there exist
necessary and sufficient conditions here as well, they are hardly used in practice. It
can be shown that the max-domain of attraction of the Gumbel distribution covers
quite a wide range of families of distribution functions. It contains distributions
from heavy-tailed distributions whose all moments are finite (e.g. the lognormal
distribution) to light-tailed distributions (e.g. the normal, the exponential or the
gamma distribution) and even some distributions whose support is bounded to the
right are possible. More details and further references can be found about the three
above cases e.g. in Section 2.3,2.4 and 2.5 in Beirlant et al. (2004), respectively.
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11.2.2 Modeling Multivariate Maxima
Comparing the multivariate problem with the univariate case the new issue

that arises is the dependence structure. In such a case - beyond the marginal
distributions - we must be able to determine how the individual variables relate to
each other. The main question is describing the class of possible dependence struc-
tures and then to investigate how can we estimate them. Modeling multivariate
extremes typically consists of two distinct steps: modeling univariate margins and
then - after the suitable standardization of margins - modeling the dependence.
As the first step involves only applying the univariate models of the previous sec-
tion, here we focus on the second one, namely on characterizing the dependence
structures. Order relations on vectors are understood to be component-wise, i.e.
for d-dimensional vectors x = (x1, ..., xd) and y = (y1, ..., yd) the relation x ≤ y
is defined as xj ≤ yj for all j = 1, ..., d. In this case the maximum is defined by
taking the component-wise maxima, which is defined as

x ∨ y = (x1 ∨ y1, . . . , xd ∨ yd),

where ∨ stands for the maximum (analogously, a ∧ b = min(a, b)). By using this
notation the maximum of a sample of d-dimensional observations
Xi = (Xi,1, ..., Xi,d) for i = 1, ..., n is defined as

Mn = (Mn,1, ...,Mn,d) =
( n∨
i=1

Xi,1, ...,
n∨
i=1

Xi,d

)
.

Finally, it should be mentioned that again we can focus on maximum without loss
of generality, since the following relation allows us to get the minimum by the help
of the maximum of the negatives:

n∧
1

Xi = −
n∨
1

(−Xi).

Remark 11.2.10. The sample maximum is not necessarily a sample point. From
a practical point of view this means that the maxima we intend to model need not
be simultaneous.

Limit for Multivariate Maxima

Analogously to the univariate case we assume that X has distribution function
F and there exist an and bn > 0 sequences of normalizing vectors, such that

P
(Mn − an

bn
≤ z

)
= Fn(bnz + an)→ G(z), (11.2.5)

where the Gi margins of the limit distribution G are non-degenerate distributions.
If Equation 11.2.5 holds then F is said to be in the domain of attraction of G
and G itself is said to be a multivariate extreme value distribution (MEVD). Since
Equation 11.2.3 holds for each margin

P
(
Mn,j − an,j

bn,j
≤ zj

)
→ Gj(zj) as n→∞ (11.2.6)
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for any j = 1, ..., d, where the d.f. Gj are non-degenerate by assumption. The mar-
gins are necessarily GEV distributions. Hence the essential part of the multivariate
extension reduces to handling the dependence structure among the margins. It can
be shown that the MEVD cannot be characterized as a parametric family indexed
by a finite dimensional parameter vector (in contrary to in the GEV case). Instead,
the family of MEVD is usually indexed by the class of the underlying dependence
structures.

A useful characterization of MEVD can be given by the next definition.
Definition 11.2.11. A multivariate distribution function G is called max-stable,
if for every positive integer k there exist αk and βk > 0 vectors such that

Gk(βkx + αk) = G(x), x ∈ R.

It is not difficult to see that the classes of extreme value and max-stable dis-
tribution functions coincide (see 8.2.1 in Beirlant et al., 2004).

Exponent Measure

A further consequence of the max-stability is that G1/k is a valid distribution
function for every positive integer k. In such a case we say that the distribution
function G is max-infinitely divisible (Balkema and Resnick, 1977). Specially,
there exist a (unique) measure µ on [q,∞) \ {q}, such that

G(x) = exp
(
−µ([q,∞) \ [q,x])

)
, (11.2.7)

where q = (q1, . . . , qd) and qi = inf{x ∈ R : Gi(x) > 0} is the lower end-point of
the ith margin. This µ measure is called the exponent measure. There are quite a
few equivalent representations, a few of them will be useful for statistical models.

Positive Association

The following properties show practical cases, where the MEVD may be useful.
An MEVD G is necessarily "positively quadrant dependent", namely

G(x) ≥ G1(x1) . . . Gd(xd), x ∈ Rd. (11.2.8)

In particular, a random variable Y with distribution function G as
in Equation 11.2.8 has cov[fi(Yi), fj(Yj)] ≥ 0 for any 1 ≤ i, j ≤ d and any pair of
non-decreasing functions fi and fj such that the relevant expectations exist.

Pickands’ Dependence Function

In two dimensions, all information on the dependence structure is covered by
another (equivalent) characterization. The joint survivor function with standard
exponential margins (denoted by ??, while ? is kept for unit Fréchet margins) Ḡ??

is given by

Ḡ??(z1, z2) = P (Z1 > z1, Z2 > z2) = exp

−(z1 + z2)A
 z2

z1 + z2

, (11.2.9)

where A(t), called the (Pickands) dependence function, is responsible to capture
the dependence structure between the margins. It can be shown that the depen-
dence function necessarily satisfies the following properties (P):
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1. (1− t) ∨ t ≤ A(t) ≤ 1 for t ∈ [0, 1] (⇒ A(0) = A(1) = 1);

2. A(t) is convex.

Remark 11.2.12. In the first property of (P) the lower and upper bounds corre-
spond to the following two limiting cases. If A(t) = (1− t)∨ t then we get complete
dependence and if A(t) = 1 then independence. For graphical illustration see the
left panel in Figure 11.2.2.

Of course, the representation using exponent measure function and unit Fréchet
margins can be written by the dependence function as well:

− logG?(y1, y2) = V?(y1, y2) =
 1
y1

+ 1
y2

A
 y1

y1 + y2

. (11.2.10)

Now define a W measure for any B Borel subset of the d dimensional unit simplex
by

W (B) = µ?

(
{y ∈ [0,∞) : ‖y‖1 ≥ 1,y/‖y‖1 ∈ B}

)
.

The measure W is called spectral measure. Furthermore, there is a connection
between the Pickands dependence function and this spectral measure:

A(t) = 1− t+
∫ t

0
W ([0, ω])dω, t ∈ [0, 1]

Conversely W can be computed from A as

W ([0, ω]) = 1 + A′(ω) if ω ∈ [0, 1),

and W ([0, 1]) = 2, where A′ is the derivative of A. The point masses in the
endpoints are

W ({0}) = 1 + A′(0) and W ({1}) = 1− A′(1). (11.2.11)

Remark 11.2.13. If A′ is absolutely continuous, then W is absolutely continuous
on the interior of the unit interval with density w = A′′.

For higher dimensions Equation 11.2.9 could be generalized as

Ḡ??(z) = exp

−
 d∑
i=1

zi

A
 z1∑d

i=1 zi
, ...,

zd−1∑d
i=1 zi

,
for some dependence function A, defined on the d-dimensional simplex.

11.3 Statistical inference

11.3.1 Parametric Estimation
In this section we summarize the most important results about maximum like-

lihood approaches. After the standard results we introduce a method known from
the area of spatial statistics providing a very useful tool for estimating models in
higher dimensions.
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Figure 11.2.2: Differentiable dependence functions, and their derivatives.

Statistical inference

In the univariate case, maximum likelihood method can be used to construct
estimation methods for the distribution of maxima or exceedances. It is pointed
out in Section 6.3.1 of Embrechts et al. (1997) that there is no explicit solution
to the maximum likelihood equations. However in regular cases, when ξ > −1/2,
there are reliable numerical procedures to find the maximum likelihood estimators.
These estimators are efficient, consistent and asymptotically normal. Full discus-
sion about the properties of the estimators, including non-regular (ξ ≤ −1/2) cases
can be found in Smith (1985).

Remark 11.3.1. For applications in insurance, finance or quite a few environ-
mental data sets the cases of non-negative shape parameter ξ ≥ 0 are the most
relevant, as these data can rarely be supposed to be bounded to the right.

As it was proven in Smith (1985), maximum likelihood estimators behave reg-
ularly in the multivariate case, if the above condition is fulfilled marginally, that
is ξi ≥ −1/2 for i = 1, . . . , d. In some cases estimators for the dependence pa-
rameters can be supperefficient. For more details, see Section 3.6 in Kotz and
Nadarajah (2000).

Model fit

In order to get information about the standard error of estimates, non-parametric
bootstrap methods may be applied, but the standard likelihood-based confidence
intervals are also possible to calculate. For goodness of fit tests (like the usual
Cramer-von Mises test or the Anderson Darling test) the null distribution under
estimated parameters is unkown, so we may use parametric bootstrap for critical
value calculation. This means that samples are repeatedly simulated from the
fitted distribution and the value of the statistics is computed for these samples.

Applications

The free statistical software package R and its add-on packages provide an
excellent machinery for applying the models above. The approaches are shown
in the books of Coles (2001) and Embrechts et al (1997). We shall investigate
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interesting financial and meteorologial data sets, where the extremes play indeed
a key role (what loss/gain or rain/extreme temperature can be expected to appear
within a given time period). Everybody will have the opportunity to experiment
with the data and the software in a computer lab.
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