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3. TAMÁS KELETI (ELTE)

The Kakeya problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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PREFACE

The first international summer school in mathematics, organized by the Institute of
Mathematics at Eötvös Loránd Universty in Budapest, Hungary, took place in 2013. Since
then a series of similar one week events was organized each year (with the exception of the
two COVID-years, i.e. 2020 and 2021). Starting from the second year the schools were
concentrating on one particlular topic (general discrete mathematics, algorithms, graph
limits, algebraic geometry and topology, number theory etc.) A large portion of related
materials of these schools can be found at the archives of the website of the series:

http://www.math.elte.hu/summerschool/?page=download

The summer school organized in 2023 was the 9th in this series. It took place at the
Lágymányos Campus of Eötvös Loránd University in Budapest between July 10 and 14,
2023. The title of the school was Paradoxical decompositions, fractals and dynamics. Many
of the lectures were related to questions about unusual geometrical decompositions like
the ones appearing in the 100 years old Banach–Tarski paradox, cutting and rearranging
3 dimensional objects or the deocmpositions in the result of Laczkovich from the end of
1980’s, rearranging finitely many pieces of a circle to make a square. Besides these topics,
many other wonders of analysis – like fractals, ergodic theory, dynamical systems and Borel
combinatorics – appeared in the lectures.

The lecturers were Zoltán Buczolich (Eötvös Loránd University), Márton Elekes (Ré-
nyi Institute and (Eötvös Loránd University), Tamás Keleti (Eötvös Loránd University),
Miklós Laczkovich (Eötvös Loránd University), Adrás Máthé (University of Warwick)
and Zoltán Vidnyánszky (Eötvös Loránd University). The practice classes were led by
Richárd Balka (Rényi Institute), Márton Borbényi (Eötvös Loránd University), Tamás
Kátay (Eötvös Loránd University) and Máté Pálfy (Eötvös Loránd University).

Course notes were made available to the participants for some of the lectures, either
before or after the lectures. The present booklet is a somewhat brushed up version of
these notes, put together into one volume. They appear together with the set of exercises
discussed in the practice classes. Of course it is no way complete: for some of the lectures
where easily accessible literature exists, only the abstract is inserted as a reminder of the
topic. This volume can be downloaded from the same website as the notes of the previous
schools.

We wish to thank Eötvös Loránd University and the Alfréd Rényi Mathematical Ins-
titute for financial support. We would also like to express our gratitude to all lecturers
and contributors of this volume but also to the audience whose active participation makes
the whole series of summerschools meaningful.

Budapest, August 20, 2023

István Ágoston
organizer
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July 2023 ELTE

Introduction to Dynamical Systems,
Fractals and Ergodic Theory

PART 1

Zoltán Buczolich

Eötvös University

Budapest, Hungary,

1

f(x) =
√
x

f(2) =
√

2 = 1.41421356...

f ◦ f(2) = f2(2) =
√√

2 = 21/4 = 1.189207...

f3(2) = 1.090507...

f4(2) = 1.04427...

...

f100(2) = 1.0000...+ ε

fn(2) = 21/2n → 1, and f(1) =
√

1 = 1,

1 is a fixed point of f .

2



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 5 ELTE BUDAPEST



ZOLTÁN BUCZOLICH

SSM 2023 6 ELTE BUDAPEST



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 7 ELTE BUDAPEST



ZOLTÁN BUCZOLICH

SSM 2023 8 ELTE BUDAPEST



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 9 ELTE BUDAPEST



ZOLTÁN BUCZOLICH

SSM 2023 10 ELTE BUDAPEST



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 11 ELTE BUDAPEST



ZOLTÁN BUCZOLICH

SSM 2023 12 ELTE BUDAPEST



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 13 ELTE BUDAPEST



ZOLTÁN BUCZOLICH

SSM 2023 14 ELTE BUDAPEST



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 15 ELTE BUDAPEST



ZOLTÁN BUCZOLICH

SSM 2023 16 ELTE BUDAPEST



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 17 ELTE BUDAPEST



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 18 ELTE BUDAPEST

July 2023 ELTE
Introduction to Dynamical Systems,

Fractals and Ergodic Theory
PART 2, DYNAMICAL SYSTEMS AND FRACTALS

Zoltán Buczolich

(this file contains some embedded videos, the pdf reader should be enabled to play them)

1

The rings of Saturn (NASA photos):

2
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Let f(x) =

3x if x ≤ 1
2

3(x− 1
2) + 3

2 if x ≥ 1
2.

Set f2(x) = f(f(x)), fk(x) = f(fk−1x).

Then for x ∈ (1
3,

2
3) we have f(x) 6∈ [0,1]2.

These points leave [0,1] for good ∀k ≥ 1, fk(x) 6∈ [0,1].

5

Which are the points which stay in [0,1] forever?

For the points of the ternary Cantor set, C3 we have

∀x ∈ C3, ∀k, fk(x) ∈ C3 ⊂ [0,1].

This is the repeller of our “dynamical system”.

6

https://www.math.elte.hu/summerschool/2023/video/proceedings/cantorset.mp4
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We can color the complement of the repelling Cantor set according to the

number of steps a certain point leaves [0,1] for good.

The colored figure is the complement of C3.

While the “leftover” is the fractal.

7

Consider in the complex plane for the mapping

fc(z) = z2 + c the orbit of 0:

i.e., the sequence fc(0), f2
c (0), f3

c (0), ....

If c = 0, then it is a fixed point ∀k fk0(0) = 0.

If c = 10, then f1
10(0) = 10 and if |z| ≥ 10, then |f10(z)| = |z2 + 10| ≥

10|z| − |z| > 2|z|, therefore 0 goes to infinity.

The Mandelbrot set consists of those c for which the sequence

fc(0), f2
c (0), f3

c (0), ... is bounded.

8



INTRODUCTION TO DYNAMICAL SYSTEMS, FRACTALS AND ERGODIC THEORY

SSM 2023 22 ELTE BUDAPEST

https://www.math.elte.hu/summerschool/2023/video/proceedings/vm2.mp4
https://www.math.elte.hu/summerschool/2023/video/proceedings/mandel2.mp4
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If we apply similarities of ratio 0 < λ < 1 in R3

then the lengths are scaled by a factor of λ, the areas are scaled by a

factor of λ2, the volumes are scaled by a factor of λ3.

If a set H is “visible” according to the n-dimensional measure, i.e. 0 <

µn(H) <∞, then µn(λ ·H) = λnµn(H).

Based on this scaling property one can prove the Pythagorean theorem:

We have H = H1 ∪H2. µ2(H1 ∩H2) = 0.

H1 is similar to H.

The similarity ratio equals a
c.

Likewise H2 is similar to H.

The similarity ratio equals b
c.

Hence µ2(H) = µ2(H1) + µ2(H2) =

µ2

(
a
cH

)
+ µ2

(
b
cH

)
=
(
a
c

)2
µ2(H) +

(
b
c

)2
µ2(H).

If 0 < µ2(H) < ∞ (that is, we can divide by

it) ⇒ 1 =

(
a

c

)2

+

(
b

c

)2

⇒ c2 = a2 + b2.

12

http://www.math.elte.hu/summerschool/2023/video/proceedings/mandel345.mp4
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A similar argument applies to the Cantor set.

Suppose that for a suitable “s-dimensional

measure”, µs we have:

µs(λA) = λsµs(A) for all Borel sets A, and

0 < µs(C) <∞.

Then according to the figure:

C = 1
3C ∪ (1

3C + 2
3) = C1 ∪ C2.

µs(C) = µs(C1) + µs(C2) =

=
(

1
3

)s
µs(C) +

(
1
3

)s
µs(C),

this implies 1 = 2 1
3s. Hence s = log 2

log 3.

We have a good reason to think that C’s

“measure theoretical dimension” s = log 2
log 3.

Hence C’s dimension is not an integer, C is a fractal.

(Mandelbrot: Latin fractus=”broken” or ”fractured.”)

13

We need to define the suitable µs = Hs Hausdorff-measure:

The diameter of the set U ⊂ Rn is given by: |U | = sup{||x− y|| : x, y ∈ U}.
If δ > 0 is given and F is a set in Rn, then the sets Ui form a δ-cover of F ,

if F ⊂
⋃
i

Ui and |Ui| < δ, (i = 1,2, ...).

Suppose F ⊂ Rn, s ≥ 0, and

Hsδ(F ) = inf{
∞∑
i=1

|Ui|s : {Ui} is a δ cover of F }.

(Using only convex, closed or open Ui we get the same value for Hsδ(F ).)

Obviously δ1 > δ2 > 0 ⇒ Hsδ1
(F ) ≤ Hsδ2

(F )

Hs(F )
def
= limδ→0+Hsδ(F ) = supδ>0Hsδ(F )

is the s-dimensional Hausdorff outer measure of F

(Hs is an outer measure: Hs(∅) = 0, Hs(F ) ∈ [0,+∞] and

F ⊂
∞⋃
i=1

Fi ⇒ Hs(F ) ≤
∞∑
i=1

Hs(Fi) (this needs proof).)

Moreover, Hs, is a metric outer measure:

(dist(F1, F2) > 0 ⇒ Hs(F1 ∪ F2) = Hs(F1) +Hs(F2).)

⇒ Borel sets are Hs-measurable.

14
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The scaling property holds for this outer measure:
T.: If F ⊂ Rn & λ > 0 then Hs(λF ) = λsHs(F ), where λF = {λx : x ∈ F}.
Proof.: We omit it due to lack of time. �
L.: If Hs(F ) <∞ and s < t then Ht(F ) = 0.
Proof.: By s− t < 0 we have |Ui| ≤ δ ⇒ |Ui|s−t ≥ δs−t.

Hsδ(F ) = inf{
∞∑
i=1

|Ui|s : {Ui} is a δ cover of F} =

inf{
∞∑
i=1

|Ui|s−t|Ui|t : {Ui} is a δ cover of F} ≥

inf{
∞∑
i=1

δs−t|Ui|t : {Ui} is a δ cover of F} = δs−tHtδ(F ).

Thus Hs(F ) ≥ Hsδ(F ) ≥ δs−tHtδ(F ) ⇒
Htδ(F ) ≤ Hs(F )δt−s → 0 if δ → 0 + 0, Ht(F ) = 0. �
Therefore Hs(F ) <∞ ⇒ Ht(F ) = 0 ∀t > s.

Hence Ht(F ) > 0 ⇒ Hr(F ) =∞ ∀r < t.

D.: The Hausdorff dimension of F
dimH(F )

def
= inf{t > 0 : Ht(F ) = 0} = sup{r ≥ 0 : Hr(F ) =∞}

(where sup ∅def
= 0).

15

The (two dimensional) area of the Mandelbrot set:
1.506 591 77 ± 0.000 000 08.
Mandelbrot first thought that it is not connected, but
Douady and Hubbard showed that it is connected.
(There is a conformal isomorphism between its complement and the com-
plement of the closed unit disk.)
The set and its boundary are both of Hausdorff dimension 2 (Mitsuhiro
Shishikura, 1994).
It is not known whether its boundary is of positive (2 dim.) Lebesgue
measure.

16
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Consider the curve staisfying the differential equation:

x′(t) = −y(t)

y′(t) = x(t).

The scalar product of the vectors (x′(t), y′(t)) · (x(t), y(t)) =

(−y(t), x(t)) · (x(t), y(t)) = −x(t)y(t) + x(t)y(t) = 0

The velocity is perpendicular to the position vector.

17

By the Poincaré-Bendixson Theorem if we have a C1 autonomous dynam-

ical system in the plane (R2) then the solutions curves are “attracted” to

sets, which are either periodic cycles, or contain equilibrium points. So we

need to move to higher dimensions. We add one more equation:

x′(t) = −y(t)

y′(t) = x(t)

z′(t) = 0.3.

18

http://www.math.elte.hu/summerschool/2023/video/proceedings/koranimx.mp4
http://www.math.elte.hu/summerschool/2023/video/proceedings/spiral3.mp4
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More complicated curves.

19

More complicated curves on the torus.

20

http://www.math.elte.hu/summerschool/2023/video/proceedings/toruszgyorsa.mp4
http://www.math.elte.hu/summerschool/2023/video/proceedings/torusz3gyorsa.mp4
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One can obtain the previous curves on the torus by taking the solution

lines of the linear system:

x′(t) = a

y′(t) = b.

Modulo one. If a/b is rational the solution curve is not dense on the torus.

If a/b is irrational then it is.

21

The Lorenz attractor:
Edward Lorenz (1963) studied a simplified model of con-
vection rolls arising in the equations describing the at-
mosphere.
The solutions of this system of differential equations for
the choice of parameters (ρ = 28, σ = 10, β = 8/3)
“converge towards” a “fractal attractor”. By an esti-
mate of Grassberger (1983) the Hausdorff dimension of
the attractor is 2.06± 0.01.

22

http://www.math.elte.hu/summerschool/2023/video/proceedings/siktorusz.mp4
http://www.math.elte.hu/summerschool/2023/video/proceedings/lorenz2.mp4
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A few more fractals from the “real world” (Source: Wikipedia):
Coastline of Great Britain: “estimated dimension”: 1.24
Coastline of Norway: “estimated dimension”: 1.52
Cauliflower: log 13

log 3 ≈ 2.3347
(on each branch there are 13 branches 3 times smaller)
Balls of crumpled paper: “estimated dimension”: 2.5
Broccoli: “estimated dimension”: 2.66
Surface of human brain: “estimated dimension”: 2.79
Lung surface: “estimated dimension”: 2.97.

23

Iterated function systems (IFS) and self-similar sets

Suppose X ⊂ Rn, X 6= ∅, is closed (can be Rn).

An IFS consists of a family of contractions {F1, ..., Fm}, (m ≥ 2) defined

on X.

∀ i, Fi : X → X, ri < 1 and ∀ x, y ∈ X
|Fi(x)− Fi(y)| ≤ ri|x− y|. rmax = maxi ri < 1.

E.g.: F1, F2 : R→ R, F1(x) = 1
3x, F2(x) = 1

3x+ 2
3, then

C3 = F1(C3) ∪ F2(C3), where C3 is the trenary Cantor set.

24
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X ⊂ Rn, X 6= ∅, closed. Denote by S the system of non-empty compact K

subsets of X.

Let Aδ
def
= {x ∈ Rn : dist(x,A) < δ}, the “δ-sausage” around A.

The Hausdorff distance: of the sets A,B ⊂ Rn

dHau(A,B)
def
= inf{δ : A ⊂ Bδ and B ⊂ Aδ}

(S,dHau) is a complete metric space.

T.: If {F1, ..., Fm} is a given IFS on X ⊂ Rn then ∃! compact set E ⊂ X,

E 6= ∅ such that E =
m⋃
i=1

Fi(E). If we define the map F : S → S for

∀ A ∈ S by F (A) =
m⋃
i=1

Fi(A) then ∀ A ⊂ S in the Hausdorff metric

F k(A) → E. If A ∈ S and ∀ i, Fi(A) ⊂ A, (e.g. A = X, if X is compact)

then E =
∞⋂
k=0

F k(A).

Proof.: (idea) F is a contraction on (S,dHau) hence one can apply the

Banach fixed point theorem. �

E is the attractor, or invariant set of the IFS.

25

Legyen f(x) =

3x if x ≤ 1
2

3(x− 1
2) + 3

2 if x ≥ 1
2.

We encountered C3 first as the repeller of a dynamical system f : R → R.

Since f is not invertible if we want to travel backwards in time we need to

use the inverse branches

F1(x) = (f |[0,1/3])
−1(x) =

1

3
x and F2(x) = (f |[2/3,1])

−1(x) = 1−
1

3
x

This way we obtain an IFS and the attractor of this IFS is C3, the repeller

of the original system. (C3 = f(C3) = F1(C3) ∪ F2(C3).)

26
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One can define “nonlinear” Cantor sets:

Take f(x) = 5x(1− x) as our dynamical system.

The inverse {F1, F2} IFS is a nonlinear system.

D.: If in the {F1, ...., Fm} IFS all contractions Fi, i = 1, ...,m are similarities,

then its attractor E satisfying E =
m⋃
i=1

Fi(E) is called a self-similar set.

27

The function f(x) = 5x(1− x) mentined above belongs to the

fc(x) = cx(1− x) logistic family.

For 0 ≤ c ≤ 4 the function fc maps [0,1] into [0,1].

For c > 4 some points leave [0,1] for good and the repellers will be (gen-

eralized) Cantor sets, which are not self-similar.

28

http://www.math.elte.hu/summerschool/2023/video/proceedings/logisticcantor.mp4
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Self-similar sets

Suppose that the {F1, ..., Fm} IFS consists of similarities

∀ i, 0 < ri < 1 and

∀ x, y ∈ Rn, |Fi(x)− Fi(y)| = ri|x− y|.

The attractor set E satisfies E =
m⋃
i=1

Fi(E).

Suppose that the sets Fi(E) are disjoint,

dimH(E) = s and 0 < Hs(E) < ∞, that is, E is an s-set (in fact, this

follows from general theorems).

Then Hs(E) =
∑m
i=1H

s(Fi(E)) =
∑m
i=1 r

s
iH

s(E)

⇒ 1 =
∑m
i=1 r

s
i and from this one can determine s.

In the Sierpinski triangle the sets Fi(E) are not disjoint, but they “do not

intersect too much”.

Open Set Condition, OSC:

∃ V 6= ∅ open such that V ⊃ ∪mi=1Fi(V ), and the sets Fi(V ) are disjoint.

(In the Sierp. tri. V can be the interior of the large triangle.)

29

T.: Suppose that the similarities Fi : Rn → Rn, (i = 1, ...,m) of ratio ri

satisfy the OSC and E =
m⋃
i=1

Fi(E). Then dimHE = dimBE = dimBE = s,

where

(*)
m∑
i=1

rsi = 1 and 0 < Hs(E) <∞.

The nonlinear case is much more difficult. To verify

the s-set property and

dimHE = dimBE = dimBE = s

one needs to use “implicit methods”.

Formula (*) can be generalized by the Thermody-

namical Formalism.

Using (*) for the Sierpinski triangle 3 · (1
2)s = 1,

that is, log 3 = s log 2 ⇒ s = log 3
log 2.

30
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The von Koch snowflake At each iteration its perimeter is increased by a

factor of 4
3. In the Hausdorff metric it converges to a fractal.

One can also define this fractal as the attractor of an IFS. Even OSC is

satisfied. Why?

The upper edge of the snowflake is the attractor of

4 similarities of ratio 1
3.

4 1
3s = 1 ⇒ dimHE = log 4

log 3 ≈ 1.2619.

Open Set Condition, OSC

∃ V 6= ∅ open set, such that V ⊃ ∪mi=1Fi(V ), and the Fi(V )’s are disjoint.
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The von Koch snowflake At each iteration its perimeter is increased by a

factor of 4
3. In the Hausdorff metric it converges to a fractal.

One can also define this fractal as the attractor of an IFS. Even OSC is

satisfied. Why?

The upper edge of the snowflake is the attractor of

4 similarities of ratio 1
3.

4 1
3s = 1 ⇒ dimHE = log 4

log 3 ≈ 1.2619.

Open Set Condition, OSC

∃ V 6= ∅ open set, such that V ⊃ ∪mi=1Fi(V ), and the Fi(V )’s are disjoint.
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Snowflake growing from Wikipedia

33

If f(x0) = x0 and |f ′(x0)| < 1, then x0 is a locally attracting fixed point

if x is sufficiently close to x0 then 1 > r >
|f(x)− f(x0)|
|x− x0|

=
|f(x)− x0|
|x− x0|

⇒ |f(x)− x0| < r|x− x0| and it can be repeated ⇒
|fk(x)− x0| < rk|x− x0| → 0

If f(x0) = x0 and |f ′(x0)| > 1, then x0 is a locally repelling fixed point.

if x is sufficiently close to x0, then 1 < r <
|f(x)− f(x0)|
|x− x0|

=
|f(x)− x0|
|x− x0|

⇒ |f(x)− x0| > r|x− x0| and this can be repeated for a while

⇒ |fk(x)− x0| > rk|x− x0| → ∞ ⇒ fk(x) leaves the neighborhood of x0.

34

http://www.math.elte.hu/summerschool/2023/video/proceedings/wikikochgif.mp4
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fc(x) = cx(1− x) the logistic family for c = 0,0.5, ...,5.

The biologist R. May studied a discrete time demographic model:

xn+1 = f(xn) = cxn(1− xn),

x0 = the initial population, xn the population after n many years.

If xn is small then 1− xn ≈ 1, hence xn+1 ≈ cxn ≈ cn+1x0

exponential growth.

For large x’s the factor (1− x) decr. the growth rate, (starvation factor).

c a combined rate for reproduction and starvation. If c < 1, then the

population will eventually die, for larger c’s it it stabilizes at a fixed point,

for even larger c’s it oscillates (period doubling), later it becomes chaotic,

unstable. If c > 4 for almost all initial values it diverges to −∞.

35

The effect of the change of c on fc(x) = cx(1− x) and f2
c , the birth of an

attracting fixed point and its evolution into a repelling one, bifurcation

36

http://www.math.elte.hu/summerschool/2023/video/proceedings/logisticfamily1.mp4
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The effect of the change of c on f4
c . Bifurcations. First the birth of an

attractiong period 2, then of an attracting period 4 orbit.

37

Animation from Wikipedia: the orbit of x = 0.2 for different parameter
values.

Connection with the Mandelbrot set: Take the restriction of PC(z) = z2+C
to the real axis and the logistic family fc(x) = cx(1− x). The intersection

of the Mandelbrot M with R equals [−2,0.25]. C = 1−(c−1)2

4 gives a
one-to-one parameter correspondence with the parameters of the logistic
family.

38

http://www.math.elte.hu/summerschool/2023/video/proceedings/logisticfamily2.mp4
http://www.math.elte.hu/summerschool/2023/video/proceedings/logistic02palya.mp4
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The bifurcation diagram of fc(x) = cx(1− x).

This is a fractal. Dimension= 0.4498??

The above figure is a rotated version of the usual image.

Each horizontal section corresponds to a parameter value c.

Starting with an almost arbitrary initial x the first few thousand terms of

f1001
c (x), f1002

c (x), ... are plotted. (If there is an attracting fixed point or

periodic orbit then these iterates are almost on it. Otherwise, a smeared

image corresponds to more chaotic behavior.

39

The bifurcation diagram of fc(x) = cx(1− x).

This is the usual view the x-axis is vertical and the

c parameter-axis is horizontal.

On the right there is a blow-up part of the diagram it is non-linearly similar

to the original.

40
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The bifurcation diagram of fc(x) = cx(1− x).

On the right we do not omit the first 1000 iterates

we plot f1
c (x), f2

c (x), ....

41

The bifurcation diagram of fc(x) = cx(1− x).

We do not omit the first 1000 iterates

we plot f1
c (x), f2

c (x), ....

We vary the initial value.

42
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The bifurcation diagram of fc(x) = cx(1− x).

We do not omit the first 1000 iterates

we plot f1
c (x), f2

c (x), ....

We vary the initial value.

Blow-ups of parts of the diagrams.

43

Bifurcation types in 1D. Saddle-node (tangent) bifurcation

Example: Ec(x) = cex, c > 0. We have a bifurcation at c0 = 1
e .

On the figures we have the graphs corresponding to
c = 0.6, c = c0, c = 0.3.
If c > c0 = 1

e then Ec(x) > x for ∀x ∈ R ⇒Enc (x) is monotone increasing.
We show that Enc (x)→∞.
Proof.: If not then Enc (x) is bounded and has a finite limit say x∞.
Since Ec is continuous Ec(x∞) = Ec(limn→∞Enc (x)) =
limn→∞Ec(Enc (x)) = limn→∞E

n+1
c (x) = x∞, but Ec does not have any fixed

points. �

44
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Example: Ec(x) = cex, c > 0. We have a bifurcation at c0 = 1
e .

If c = c0 = 1
e then Ec(1) = 1.

If x < 1 then by strict monotonicity Ec(x) < Ec(1) = 1. Ec(x) > x implies
that Enc (x) is str. monotone incr. and bded ⇒converges to an x∞ ≤ 1.
Arguing as before x∞ is the only fixed point of Ec in (−∞,1] ⇒x∞ = 1.
If x > 1 then Ec(x) > x implies that Enc (x) is str. monotone incr., it could
not converge to a finite x∞ > 1 since it would be a fixed point of Ec.
⇒Enc (x)→∞.
The fixed point 1 is attracting from the left, and repelling from the right.

45

Example: Ec(x) = cex. If 0 < c < 1
e then

there exist two fixed points p < q.

|E′c(p)| < 1 (attracting) and

|E′c(q)| > 1 (repelling).

If x < p then by strict monotonicity Ec(x) <

Ec(p) = p. Ec(x) > x implies that Enc (x) is

str. monotone incr. and bded

⇒converges to x∞ = p.

If p < x < q then by strict monotonicity

Ec(p) = p < Ec(x) < Ec(q) = q.

Ec(x) < x implies that Enc (x) is

str. monotone decr. and bded

⇒converges to x∞ = p.

If x > q then Ec(x) > x implies that Enc (x)

is str. monotone incr., it could not converge

to a finite x∞ > 1 since it would be a fixed

point of Ec. ⇒Enc (x)→∞.

46
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The bifurcation diagram

we plot the location of the fixed (or periodic points

agains the parameter).

In our case c is on the horizontal, x is on the

vertical axis.

For Ec(x) = cex, c > 0 we have a bifurcation

at c0 = 1
e .

During this bifurcation as the parameter c de-

creases “out of nowhere” an attracting and a

repelling fixed point is “born”.

47

Bifurcation types in 1D. Period doubling (flip) bifurcation

Example: Ec(x) = cex, c < 0. We have a bifurcation at c1 = −e.
To the left there is Ec for several parameter values, to the right there is E2

c .

48
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Example: Ec(x) = cex.

If 0 > c > −e then there is one fixed point at p,

0 > E′c(p) > −1, attractive fixed point.

49

Example: Ec(x) = cex.

If c = c1 = −e then Ec1(−1) = (−e) · e−1 = −1 fixed point.

E′c1(−1) = (−e)(e−1) = −1.

We still have a (weakly) attracting fixed point.

50
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Example: Ec(x) = cex, c < 0.
If c < −e then there is a fixed point at p. E′c(p) < −1.
The fixed point becomes repelling.
But, at least for parameter values not much smaller than −e,
an attractive period two cycle is “born”.

51

The bifurcation diagram

we plot the location of the fixed (or

periodic points agains the parame-

ter).

In our case c is on the horizon-

tal, x is on the vertical axis.

For Ec(x) = cex, c < 0 we have

a bifurcation at c1 = −e.

During this bifurcation as the

parameter c decreases the attractive

fixed point becomes repelling and a

new attractive period 2 cycle is born.
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EXERCISES

ZOLTÁN BUCZOLICH:

Introduction to Dynamical Systems, Fractals and Ergodic Theory

Exercise set #1.

1. For the Greek method of computing
√
2 we used f(x) =

x+ 2

x

2
.

a) Prove that f(x) ≥
√
2 for ∀x > 0.

b) Prove that if x ≥
√
2 then f(x) ≤ x.

c) Show that f is not a contraction on (0,+∞).

d) Show that if I = [1, 2] then f(I) ⊂ I and f is a contraction on I.

e) Prove that fn(x) →
√
2 for any x > 0.

2. Suppose (X,B, µ, T ) is a given dynamical system. Suppose f : X → R is measurable.

Show that f̄ = lim supn→∞

1

n

n−1∑

k=0

f(T kx) is T -invariant, that is f̄ ◦ T = f̄ .

3. Prove that for Lebesgue almost every x ∈ T the orbit En
2 (x) = {2nx} is dense in T.

Further problems:

4. Suppose (X,B, µ, T ) is a given dynamical system. Without using Birkhoff’s ergodic the-

orem try to give a proof (as elementary as possible) of the fact, that if f ∈ L1(µ) then
f(T kx)

k
→ 0 for µ a.e. x ∈ X .

5. Suppose that (X,B, µ, T ) is a given invertible dynamical system. Suppose A ∈ B is invari-

ant in the “almost everywhere” sense, that is µ(T−1A△A) = 0. Show that there is A′ ∈ B
such that µ(A′△A) = 0 and A′ is invariant in the stricter sense, that is, T−1A′ = A′.

Exercise set #2.

6. Give a “real analysis” proof (without using Fourier analysis) of the ergodicity of the irra-

tional rotation Tα in T.

7. a) Give an example of a homeomorphism T of a complete metric space X which has a

dense orbit (∃x ∈ X s.t. OT (x) = {Tnx : n ∈ Z} is dense) but there is no x with a

dense positive semiorbit (∀x ∈ X, O+

T (x) = Tn : n ∈ Z≥0} is not dense).

b) Give an example of a homeomrphism T of a compact metric space X which has a

dense orbit but there is no x with a positive dense semiorbit.

8. Prove that (X,B, µ, T ) is ergodic if and only if lim
n→∞

1

n

n−1∑

k=0

µ(T−kA ∩B) → µ(A)µ(B) for

any A,B ∈ B.
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Further problems:

9. (Koopman–von Neumann) A set S ⊂ N is of zero density if lim
n→∞

1

n

n−1∑

k=0

χS(k) = 0, where

χS(k) = 1 if k ∈ S, otherwise χS(k) = 0. Suppose f : N → [0,M ], with M ∈ (0,+∞).

Prove that lim
n→∞

1

n

n−1∑

k=0

f(k) = 0 iff ∃S ⊂ N of denisity zero such that lim
n→∞, n6∈S

f(n) = 0.

10. (Kakutani–Rokhlin lemma) Suppose that (X,B, µ) is non-atomic (no sets A ∈ B such that

for any B ⊂ A, B ∈ B we have µ(B) = 0 or µ(B) = µ(A)). Suppose that T : X → X is

invertible, ergodic and measure preserving, morover n ∈ N and ε > 0 are given. Show that

∃A ⊂ X , A ∈ B such thatA, TA, . . . , Tn−1A are pairwise disjoint and µ(X\
n−1⋃
k=0

T kA) < ε.

(Hint: Take B ∈ B with very small measure and consider every n’th level of the Kakutani

skyscraper above B.)
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MÁRTON ELEKES:

INTRODUCTION TO MEASURE THEORY,

GEOMETRIC MEASURE THEORY,

GEOMETRIC DECOMPOSITIONS AND

DESCRIPTIVE SET THEORY

The goal of this course is to introduce some basic notions, and discuss their basic

properties that are needed in the later, more advanced courses of the Summer School.

The topics covered are measure theory, geometric measure theory, Hausdorff measures,

Hausdorff dimension, box dimension, groups of isometries, geometric decompositions, Borel

sets and Baire category.
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EXERCISES

MÁRTON ELEKES:

Introduction to measure theory, geometric measure theory,

geometric decompositions and descriptive set theory

Core problems

1. a) Prove that [a, b]× [c, d] is a Borel set.

b) Prove that the set of irrational numbers is a Borel set.

2. Prove that λ∗ is an outer measure on R
d.

3. Prove that Hs is a metric outer measure on R
d for every s.

4. a) dims(C × C) = ?

b) dimb

({

1
k
: k = 1, 2, . . .

})

= ?

5. Prove that H
log 2

log 3 (C) < ∞, and conclude that dimH(C) ≤ log 2

log 3
.

6. Show that A ⊂ R
d is nowhere dense iff Ac contains a dense open set.

Extra problems

7. Prove that the Borel sets are exactly the σ-algebra generated by the open sets.

8. Prove that dimb(A×B) ≤ dimb(A) + dimb(B).

9. Let A ⊂ R
d1 and f : A → R

d2 be a Lipschitz function. Prove that dimH(f(A)) ≤ dimH(A).

10. Prove that A ⊂ R
d is comeagre iff A contains a dense Gδ set.
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TAMÁS KELETI:

THE KAKEYA PROBLEM

How large area is needed to rotate a needle? How small a hedgehog can be? Are

lines much bigger than line segments? What do these questions have to do with the

Kakeya conjecture, which claims that if a compact set in R
n has unit line segments in

every direction then the set must have Hausdorff / Minkowski dimension n? Why is this

conjecture so important to some of the leading mathematicians? What partial results

could they prove?
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EXERCISES

TAMÁS KELETI:

The Kakeya problem

1. a) Prove that if B ⊂ R
2 has (2-dimensional) Lebesgue measure zero then B × [0, 1] has

(3-dimensional) Lebesgue measure zero.

b) Recall that a Besicovitch set in R
n is a set B ⊂ R

n that contains a unit line segment

in every direction. Using that there exists a Besicovitch set of Lebesgue measure zero

in R
2, show that there exists a Besicovitch set of Lebesgue measure zero in R

3 as well.

2. a) Prove that there exists a sequence a0, a1, a2, . . . ∈ [0, 1] such that a0 = 0, εn =

|an+1−an| ց 0 and the intervals [an−εn, an+εn] cover every point of [0, 1] infinitely

many times.

b) Let {x} = x− ⌊x⌋ denote the fractional part of x. Let

f(t) =
∞∑

n=1

an−1 − an

2n
{2nt},

where (an) is the sequence obtained in (a). Check that the above infinite sum converges

for any t ∈ [0, 1].

c) Prove that the set

K = {(x, tx+ f(t)) : x, t ∈ [0, 1]} ⊂ R
2

contains unit line segments of all slopes in [0, 1].

d)* Show that every vertical line intersects K in a set of (1-dimensional Lebesgue) measure

zero.

e) Prove that a suitable union of four rotated copies of K is a Besicovitch set of zero

measure in R
2.
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MIKLÓS LACZKOVICH:

THE BANACH–TARSKI PARADOX

The Banach–Tarski paradox is one of the most surprising results of pure mathematics.

It states that a three dimensional ball can be decomposed into a finite number of pieces

such that a suitable rearrangement of the pieces constitutes a decomposition of a larger

ball, or, more generally, of an arbitrary bounded set with a nonempty interior. In this

course we show how the result emerged from the problem of invariant measures, and cover

the preliminaries needed for the proof including some geometry (isometries of the Euclidean

space), and group theory (free groups). Then we prove the Banach–Tarski paradox, and

discuss some improvements and generalizations.

Further reading:

[1] S. Wagon: The Banach-Tarski paradox. Cambridge Univ. Press, 1986. First paper-

back edition, 1993.

[2] G. Tomkowicz and S. Wagon: The Banach-Tarski paradox. Second edition. Encyc-

lopedia Math. Appl., 163, Cambridge University Press, New York, 2016.

[3] M. Laczkovich: Conjecture and Proof. The Mathematical Association of America,

2001.

[4] M. Laczkovich: Paradoxes in measure theory. In: Handbook of Measure Theory

(editor: E. Pap), Elsevier, 2002. Vol. I, 83-123.
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Banach–Tarski, Hall’s marriage and circle sqaring
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University of Warwick
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Dissecting polygons
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Dissecting polygons and polyhedra

Bolyai–Gerwien–Wallace theorem
Given any two polygons of the same area,
it is possible to cut the first into finitely
many polygons which can be reassembled
to yield the second.

https://en.wikipedia.org/wiki/File:Triangledissection.svg

Hilbert’s third problem
Given any two polyhedra of equal volume, is it always possible to cut the first into
finitely many polyhedral pieces which can be reassembled to yield the second?

Theorem (Dehn)
No.
Dehn invariant. For example, cube and regular tetrahedron.

András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 3 / 58
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Banach–Tarski paradox (1924)

The unit ball in R3 can be divided into finitely many pieces that can be rearranged to
obtain the union of two disjoint unit balls.

Definition
We say that two sets A,B ⇢ Rd are equidecomposable if there exist finite partitions
A = A1 [⇤ . . . [⇤

An

B = B1 [⇤ . . . [⇤
Bn

where Bi = �i(Ai) for some isometry �i.

Banach–Tarski paradox
Any two bounded sets in Rd, d � 3, with non-empty interiors are equidecomposable.

Remark
Not true in R2.

Isometries of R2 form an amenable group.

András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 4 / 58

•
-

Pea
Sun

Hausdorff paradox (1914)
Hausdorff paradox
The unit sphere S

2 is equidecomposable to the disjoint union of two unit spheres
modulo countable sets.

by David Benbennick
https://commons.wikimedia.org/wiki/File:Paradoxical decomposition F2.png

There exist two rotations in
SO(3) generating the free
group F2.

F2 = {e} [ S(a) [ S(b) [
S(a�1) [ S(b�1)

F2 = S(a) [ aS(a�1)

F2 = S(b) [ bS(b�1)

do this in all orbits

András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 5 / 58
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No such paradox in R2.

András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 6 / 58

Tarski’s circle squaring problem (1925)

Question
Is the disc equidecomposable to a square?
(Is it possible to cut a disc into finitely many pieces and rearrange them to obtain a
square of the same area?)

Answer (Laczkovich, 1990)
Yes.
And only translations needed.

András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 8 / 58



TARSKI’S CIRCLE SQUARING PROBLEM

SSM 2023 59 ELTE BUDAPEST

How not to look for equidecompositions

Dividing one set into
pieces and then trying to
reassemble to yield the
other usually does not
work.

András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 9 / 58
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reassemble to yield the
other usually does not
work.
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The right way to find equidecompositions

Take a lot of isometries and then find the partitions that work.

András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 11 / 58

In graph theoretic language
Fix isometries/translations �1, . . . , �n.
We are trying to find an equidecomposition between (disjoint) sets A, B using these
isometries.

Bipartite graph G
Vertices: A [ B.
Edges: {(a, b) 2 A ⇥ B : 9 i b = �i(a)}.

Perfect matching
A set of edges covering every vertex exactly once.
A bijection f : A ! B such that 8x 9i f (x) = �i(x).

Claim
There exists a perfect matching in G () A is equidecomposable to B using
�1, . . . , �n.

Proof. If f : A ! B is a bijection, let
Ai = {x 2 A : f (x) = �i(x) and there is no smaller i with the same property}.
...András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 12 / 58
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In graph theoretic language
Fix isometries/translations �1, . . . , �n.
We are trying to find an equidecomposition between (disjoint) sets A, B using these
isometries.

Bipartite graph G
Vertices: A [ B.
Edges: {(a, b) 2 A ⇥ B : 9 i b = �i(a)}.

Perfect matching
A set of edges covering every vertex exactly once.
A bijection f : A ! B such that 8x 9i f (x) = �i(x).

Claim
There exists a perfect matching in G () A is equidecomposable to B using
�1, . . . , �n.

Proof. If f : A ! B is a bijection, let
Ai = {x 2 A : f (x) = �i(x) and there is no smaller i with the same property}.
...András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 12 / 58
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Building up (partial) equidecompositions 1
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Building up (partial) equidecompositions 1 v2
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In graph theoretic language 2
Fix isometries/translations �1, . . . , �n.
We are trying to find an equidecomposition between (disjoint) sets A, B using these
isometries.

Bipartite graph G
Vertices: A [ B.
Edges: {(a, b) 2 A ⇥ B : 9 i b = �i(a)}.

Perfect matching
A set of edges covering every vertex exactly once.
A bijection f : A ! B such that 8x 9i f (x) = �i(x).

Claim
There exists a perfect matching in G () A is equidecomposable to B using
�1, . . . , �n.

Proof. If f : A ! B is a bijection, let
Ai = {x 2 A : f (x) = �i(x) and there is no smaller i with the same property}.
...András Máthé (A.Mathe@warwick.ac.uk)Tour of maths 24 / 58

Finding maximum matchings in finite bipartite graphs

Maximum matching algorithm
1 Start with empty matching.
2 Find an augmenting path.
3 Increase the size of the matching by flipping edges along the augmenting path.
4 Iterate if we can still find augmenting paths.
5 The algorithm finishes in finite time: we obtain a maximum matching.
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Finding measurable maximum matchings in infinite bipartite graphs?

1 Start with empty matching.
2 Find a large family of disjoint augmenting paths. (Elek–Lippner)
3 Increase the size of the matching by flipping edges along the augmenting path.
4 Iterate.
5 The algorithm does not finish in finite time. The matchings might or might not

converge.
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What a local rule sees – 1 neighbourhood

d = 2; v1, v2; 9 transl.
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What a local rule sees – 2 neighbourhood

d = 2; v1, v2; 25 transl.
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What a local rule sees – 3 neighbourhood

d = 2; v1, v2; 49 transl.
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Measurable circle squaring

Experiments suggest: 5 translations on the torus, 16 on the plane, may be enough.
(torus size: 580)
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Measurable circle squaring

Experiments suggest: 5 translations on the torus, 16 on the plane, may be enough.
(torus size: 580)
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Measurable circle squaring

Experiments suggest: 5 translations on the torus, 16 on the plane, may be enough.
(torus size: 1531)
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Stability – torus size: 580
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Stability – torus size: 1501
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Stability – torus size: 1521
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Stability – torus size: 1531
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EXERCISES

ANDRÁS MÁTHÉ:

Tarski’s circle squaring problem

1. (Required background: the union of countable many sets of Lebesgue measure zero is still

of Lebesgue measure zero.)

Show that if there is a measurable equidecomposition modulo nullsets, and there is an

equidecomposition, then there is a measurable equidecomposition. That is:

Let A,B ⊂ R
d be measurable sets, and let λ denote Lebesgue measure (or let A,B ⊂

Sd−1, and let λ be the surface area on the sphere).

• Assume that there are isometries γ1, . . . , γn, disjoint measurable sets A1, . . . ,

An, NA, disjoint measurable sets B1, . . . , Bn, NB such that λ(NA) = 0, λ(NB) =

0, and

A = A1 ∪ . . . ∪An ∪NA

B = B1 ∪ . . . ∪Bn ∪NB

where Bi = γi(Ai) for each i = 1, . . . , n.

• Also assume that there are isometries γ′

1
, . . . , γ′

m, disjoint (arbitrary) sets A′

1
, . . . ,

A′

m, disjoint (arbitrary) sets B′

1
, . . . , B′

m such that

A = A′

1
∪ . . . ∪A′

m

B = B′

1
∪ . . . ∪B′

m

where B′

i = γ′

i(A
′

i) for each i = 1, . . . , m.

Show that there are isometries γ′′

1
, . . . , γ′′

k and disjoint measurable sets A′′

1
, . . . , A′′

k ,

and disjoint measurable sets B′′

1
, . . . , B′′

k , such that

A = A′′

1
∪ . . . ∪ A′′

m

B = B′′

1
∪ . . . ∪B′′

m

where B′′

i = γ′′(A′′

i ) for each i = 1, . . . , k.

Hint. Consider the group Γ generated by the isometries γi, γ
′

i. This group has countable

many elements. Let N = ∪γ∈Γγ(NA ∪NB). Then λ(N) = 0. Use the measurable equide-

composition on the complement of N , and use the (non-measurable) equidecomposition

on N . (Check that they can be ‘glued’ together.)

Corollary. If d ≥ 3 and A,B ⊂ R
d are measurable, bounded, and have non-empty

interior and equal measure λ(A) = λ(B), then assumption 1 was covered in the lectures;

assumption 2 is the Banach–Tarski paradox, so the conclusion holds as well: there is a

measurable equidecomposition.
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2. (Required background: familiarity with the L2 norm.)

This exercise explains what it means for an averaging operator to have a spectral gap

and asks you to prove that spectral gap implies the ‘expansion property’ that we used in

lectures.

Let γ1, . . . , γn be rotations of the sphere S2, let µ denote the normalized surface area, so

µ(S2) = 1. Consider the space L2(S2, µ), this is the space of square-integrable measurable

functions, so f ∈ L2(S2, µ) if f is measurable and

∫

|f |2dµ < ∞.

This is a Hilbert space with norm ‖f‖2 =
(∫

|f |2
)1/2

. Let T : L2(S2, µ) → L2(S2, µ) be

the associated averaging operator defined by

(Tf)(x) =
1

n

n
∑

i=1

f(γ−1

i (x))

for x ∈ S2 and f ∈ L2(S2, µ). We say that T has a spectral gap if there is a constant c > 0

such that

‖Tf‖2 ≤ (1− c)‖f‖2 whenever

∫

f = 0.

(Why is it called spectral gap? Clearly, Tf = f for constant functions, so 1 is an eigenvalue

and it is not hard to see that it is the largest eigenvalue. The subspace in L2 that is

orthogonal to the constant functions is exactly the space of functions with integral zero.

So the inequality means that “all other eigenvalues are at most 1− c”. We could assume

that T is self-adjoint by insisting that if a rotation is in the list, its inverse is also in the

list.)

Drinfeld showed that one can find rotations such that T has this spectral gap. Show that

this implies that for every ε > 0, there is cε > 0 such that for every measurable set X ⊂ S2

we have

µ(∪iγi(X)) ≥ min
(

(1 + cε)µ(X), 1− ε
)

.

Then verify (as indicated in the lectures) that by choosing more rotations we can improve

this to the following statement: For every ε > 0 and for every C > 0, there are finitely

many rotations γi , such that for every measurable set X ⊂ S2 we have

µ(∪iγi(X)) ≥ min
(

(Cµ(X), 1− ε
)

.

Hint (for the first statement). Given a measurable set X , consider

f(x) = 1X(x)− µ(X).

Then
∫

f = 0. The rest is calculations.



ZOLTÁN VIDNYÁNSZKY: FINITE AND INFINITE: CONNECTIONS BETWEEN...

SSM 2023 76 ELTE BUDAPEST

BOREL COMBINATORICS AND DISTRIBUTED ALGORITHMS

ZOLTÁN VIDNYÁNSZKY

These are notes of the summer school lectures at ELTE, 2023.

1. Borel Combinatorics

As we have seen, the most straightforward generalizations of finite combinato-
rial objects often have counter-intuitive behavior: for example, the Banach-Tarski
paradox relies on the existence of a perfect matching in the appropriate graph.
To eliminate this kind of behavior, one can investigate instead definable (i.e.,
Borel/measurable/Baire measurable) generalizations of combinatorial objects. This
is the main idea behind the field of Borel combinatorics.

A graph G on a set X, is a symmetric subset of X2. In this case X = V (G)
is called the vertex set and G is called the edge set. We will call x and y adja-
cent/connected/neighbors if (x, y) ∈ G.

If G is a graph, the chromatic number of G, χ(G) is the minimal n, such that G
admits an n-coloring, that is a map c : V (G)→ n with

∀x, y ∈ V (G) ((x, y) ∈ G =⇒ c(x) 6= c(y)).

If V (G) is a Borel space1, we can define the Borel chromatic number of G, χB(G)
to be the minimal n, such that G admits an Borel n-coloring, that is a Borel map
c : V (G)→ n with

∀x, y ∈ V (G) ((x, y) ∈ G =⇒ c(x) 6= c(y)),

here n is endowed with the trivial Borel structure.2

If G is a graph, a set S ⊆ V (G) is G-independent, if it contains no edges, or
formally, if S2 ∩G = ∅.

Claim 1.1. G admits a Borel n-coloring iff V (G) can be covered with n-many
G-independent sets.

Recall that a connected component of a vertex v of a graph G is the collection of
vertices w, such that there is a path from v to w in G, i.e., a sequence of vertices
v0, . . . , vn with v0 = v, w = vn and (vi, vi+1) ∈ G. A cycle is an injective sequence
of vertices v0, . . . , vn with n > 1, such that (vn, v0), (vi, vi+1) ∈ G for all i. A graph
is acylcic if it contains no cycles. A graph is d-regular, if every vertex has exactly
d neighbors.

1.1. Examples.

(1) (The Example) Let α ∈ [0, π] be such that α
π is irrational. Denote by Tα

the irrational rotation of the circle, S1 by α. For x, y ∈ S1 define

xGy ⇐⇒ Tα(x) = y ∨ Tα(y) = x.

1for the sake of this note, Borel space will be identified with Borel subsets of [0, 1]
2the reader, not familiar with Borel measurability should take the below claim as a definition.

1
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Clearly, G is an acyclic 2-regular graph.

Proposition 1.2. 2 = χ(G) < χB(G) = 3.

Proof. To show χ(G) = 2 just notice that connected components of G are
bi-infinite lines, hence they admit a 2-coloring.

To see χB(G) ≤ 3 fix some interval I on S1 with diameter less than α.
Clearly I is G-independent. Since α/π is irrational, for every x 6∈ I, there
is some n > 0 with Tn(x) ∈ I. Then let c(x) = 2 ⇐⇒ x ∈ I and c(x) be
the parity of the minimal n with Tn(x) ∈ I.

Now, for χB(G) > 2 assume that B0 ∪ B1 = S1 is a Borel 2-coloring.
Then, there is an i and a nonempty open interval U with the property that
U \ Bi is meager. But then (as 2α/π is also irrational), there is an odd
n with Tnα (U) ∩ U 6= ∅. Now, Tnα (U) ∩ Bi is not meager, as it contains
Tnα (U) ∩ U ∩ Bi. On the other hand Tnα (U) ∩ Bi must be meager, as we
started with a coloring and Tα is category preserving. �

(2) (Group actions) Let Γ be a countable group and S ⊆ Γ be a generating
set. Assume that Γ y X is an action of Γ on the set X. As there is no
danger of confusion we always denote the action with the symbol ·. The
Schreier graph Sch(Γ, S,X) of such an action is a graph on the set X such
that x 6= x′ are adjacent iff for some γ ∈ S ∪ S−1 we have that γ · x = x′.

Probably the most important example of a Schreier graph is the (right)
Cayley graph, Cay(Γ, S) that comes from the right multiplication action of
Γ on itself. That is, g, h ∈ Γ form an edge in Cay(Γ, S) if there is σ ∈ S
such that g · σ = h. Another example is the graph of the left-shift action
of Γ on the space 2Γ: the left-shift action is defined by

γ · x(δ) = x(γ−1 · δ)

for γ ∈ Γ and x ∈ 2Γ. Observe that the Schreier graph of this actions is a
Borel graph, where we endow the space AΓ with the product topology.

Let Free(Sch(Γ, S,X)) = {x : ∀γ ∈ Γ(γ · x = x =⇒ γ = 1)}, the free
part of the action.

Claim 1.3. • For x ∈ Free(Sch(Γ, S, 2Γ)) the connected component of
x is isomorphic to Cay(Γ, S).
Proof. The first statement is obvious, while the second is HW. �
Thus, the typical connected component looks like the Cayley graph of
the graph.

Proof. The first statement is obvious, while the second is HW. �

Thus, the typical connected component looks like the Cayley graph of
the graph.

(3) Let [N]N denote the collection of the infinite subsets of the natural numbers.
The shift-graph, GS on [N]N is defined as the symmetrization of the graph
of the shift-map S, that is,

S(x) = x \ {minx}.

Clearly GS is acyclic, and locally finite, that is, every vertex has finitely
many neighbors.
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2. The LOCAL model

Now we turn to the investigation of a model of distributed computing by Linial.

Definition 2.1. A t-round local algorithm is defined as follows. Given a finite
graph/digraph G with |V (G)| = N , the vertices of which are imagined to be com-
puters. At the beginning, the computers have no information about the graph, ex-
cept for knowing their own unique label/identifier, that is, a number ∈ {1, . . . , N}.
The computation is divided into rounds; in each round, a node can perform a
computation and send some information to its neighbors. The nodes must run
the same algorithm. After t rounds, each computer must output the solution to a
graph-theoretic problem (e.g., vertex or edge coloring, perfect matching, etc.).

We encode the solution of such a problem by a map f : V (G)→ k. In this note
we will only talk about coloring problems.

Since no constraints are imposed on the length of the computation or messages
sent, it is easy to see the following.

Claim 2.2. A t-round LOCAL algorithm gives rise to a map from labelled t neigh-
borhoods of points to k. Conversely, every such a map corresponds to a t-round
local algorithm.

Thus, the only objective becomes to minimize the number of rounds required
to perform the given task. Observe that any coloring problem can be solved on
an N -sized graph can be solved by an N -round local algorithm (in fact, by a d-
round algorithm, where d is the diameter of the graph). Hence, we are interested in
algorithms, which work in significantly less rounds than the diameter of the graph.

Now we consider a very concrete example.

Claim 2.3. There is no local algorithm to 2-color an N -long path in N
5 -many

rounds.

Proof. Otherwise, if A was such an algorithm, there were sequences of labels such
that A(q0, . . . , qk) = A(q′0, . . . , q

′
k) and {qi : i ≤ k} ∩ {q′i : i ≤ k} = ∅. But then

there is a labeling of the path such that the middle vertices corresponding to the
sequences above have odd distance. �

The situation with 3-coloring is dramatically different. Define the log∗ function
by recursion as follows: let log∗(x) = 0 if x ≤ 1, and 1 + log∗(log2 x) if x > 1.

Theorem 2.4. There is a log∗N + C round algorithm to 3-color the path.

Proof. For the sake of simplicity, we will assume that the path is directed towards
one end, the general case will follow from Proposition ???.

The observation is that the labels already give an N -coloring, and we will step-
by-step improve this coloring.

We first need a combinatorial object, which is interesting on its own.

Lemma 2.5. (Sperner families) Let k ≥ C0 be even. There is a family F of subsets
{0, 1, . . . , k − 1} such that

• |F| ≥ 2k

k .
• every A,B ∈ F distinct, we have A \B 6= ∅.

Proof. Take F to be the k/2 sized subsets of k. �
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Now, in one round we reduce the number of colors exponentially.

Lemma 2.6. There exists some constant C, such that given a k-coloring of the
path with k ≥ C, in one round we can output a k′− coloring, where k′ ≤ log2 k +
log2 log2 k + 2.

Proof. Take the minimal k′ even with 2k
′
/k′ ≥ k, then k′ satisfies the inequality

above, fix a family F as in the above lemma.
Now, there is an injection b : k → F . Let c be the k-coloring, and for a vertex v

define its new color to be any element of b(c(v)) \ b(c(w)), where the (v, w) edge is
directed towards w. Note that this is possible, by the choice of the family F , and
this is going to be a k′-coloring, as the new color of a vertex v comes from the set
b(c(v)), which is avoided by the color of its neighbor. �

Thus, applying this improvement log∗N -many times, we can get to a coloring
with k-colors, where k is already too small to use the reduction again (observe that
this threshold does not depend on N). To deal with this, we use another technique.

Lemma 2.7. Let k ≥ 4. Assume that we are given a k-coloring of the path. Then
there is a 1-round algorithm for a k − 1-coloring.

Proof. Let c be the k-coloring. Now, for every vertex that has color k − 1, choose
a color not used by its neighbors. �

Hence, the overall algorithm goes as follows: we apply the logarithmic color
reduction log∗N -many times, and once we are stuck, we apply the above lemma a
constant number of times, until we get a 3-coloring. �

Theorem 2.8. The bound log∗N is asymptotically optimal.

Proof. HW. �

A rooted directed tree is a directed, connected acyclic graph with a distinguished
vertex, the root, so that every edge is directed towards it.

Theorem 2.9. There is a log∗N +C local algorithm to 3-color an N sized rooted
directed tree.

Proof. HW. �

With more sophisticated versions of Sperner families, one can dramatically gen-
eralize Theorem 2.4. Let ∆(G) be the maximal degree (i.e., number of neighbors)
in the graph G.

Theorem 2.10. There exists a C∆(G) log∗N round local algorithm to ∆(G) + 1-
color a graph G of size N .

A family of sets F is ∆-cover free, if for all A1, . . . , A∆+1 ∈ F distinct, we have

A1 \ ∪1<i≤∆+1Ai 6= ∅.

Theorem 2.11. For any large enough k, there exists a k sized ∆-cover free family
of subsets of the set C∆2k, where C∆ is an explicit constant depending on ∆.

Using this statement, it is not hard to give a proof of Theorem 2.10 similarly to
the proof of Theorem 2.4.
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3. Back to Borel

Now we turn our attention to the Borel realm. Recall Brooks’ theorem from
finite combinatorics: if a graph has degrees ≤ ∆ then its chromatic number is at
most ∆ + 1. This theorem has an analogue in the Borel context.

Remark 3.1. In what follows, we will not check that the objects defined are Borel.
In same cases it is a straightforward calculation in other cases it follows from the
Luzin-Novikov theorem, see [6].

Theorem 3.2. Assume that G is a Borel graph. Then χB(G) ≤ ∆(G) + 1.

Lemma 3.3. Assume that G is a Borel graph with finite degrees. Then χB(G) ≤
ℵ0.

Proof. Fix a basis (Un)n∈N of the underlying space. Color each x by the minimal
n such that for any y ∈ X with (x, y) ∈ G we have y 6∈ Un (such an n exists as all
x ∈ X has only finitely many neighbors). �

Proof of Theorem 3.2. Fix a Borel coloring c of G with countably many colors.
Color the elements of c−1(n) by induction on n, producing a coloring c′ : X → n. If⋃
i<n c

−1(i) has been already colored and c(x) = n let c′(x) be the minimal j < d+1

such that x has no neighbors already colored by j. Since the sets c−1(n) are G-
independent and the degrees of G are bounded by d, c′ is a Borel d+1-coloring. �

Theorem 3.4 (1, 2, 3,∞). Let Gf be an acyclic Borel graph arising from a sym-
metrization of a function f . Then χB(Gf ) ∈ {1, 2, 3,ℵ0}. Moreover, all these
chromatic numbers can be realized.

Proof. By Lemma 3.3 we have χB(Gf ) ≤ ℵ0.

Lemma 3.5. Assume that Gf admits a finite Borel coloring c : V (G) → k with
k ≥ 4. Then there Gf admits a Borel k − 1-coloring.

Proof. Define a new coloring c′0(x) by c′0(x) = c(f(x)). Note that for any x the
color of all preimages of x is the same. Clearly c′0 is also a Borel k-coloring. Now,
define c′(x) by letting c′(x) = c′0(x) in case this value is ≤ k − 2, and otherwise
choose a color not used by the neighbors of x (this is possible, as there are at most
two colors used). �

Iterating this lemma yields that if χB(Gf ) is finite, then χB(Gf ) ≤ 3.
In order to see the second statement, note that we have seen that χB(GTα) = 3,

restricting GTα to any connected component gives an example of a graph with Borel
chromatic number 2.

Finally, we claim that χB(GS) = ℵ0. This relies on the following generalization
of the infinite Ramsey theorem.

Theorem 3.6 (Galvin-Prikry). Let k, l ∈ N and c : [N]N → l be a Borel coloring.
There exists a set A ∈ [N]ℵ0 such that c � [A]N is constant.

To see our claim, towards contradiction, assume that there is Borel l-coloring c
of GS . Then, by the Galvin-Prikry Theorem there is a set A such that all subsets
of A are homogeneous. In particular, c(A) = c(S(A)), a contradiction. �

Problem 3.7. It is not known, what are the possible values of Borel chromatic
numbers of Borel graphs generated by k functions. Is it the case that they belong to
{1, 2, . . . , 2k + 1,ℵ0}?
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4. A transfer

We finish with a transfer theorem from the distributed world to the Borel one.
For the sake of simplicity we will first work with paths, for which the below state-
ment is vacuous, as we already now for which l such algorithms do exist. Never-
theless, the idea presented can be transferred to more meaningful contexts.

Proposition 4.1. Assume that there is some C such that on every path of length
N there is a local C log∗N round l-coloring algorithm. Then every Borel graph
such that all connected components are bi-infinite paths can be l-colored in a Borel
manner.

Proof sketch. LetG be a Borel graph whose all connected components are bi-infinite
lines.

We can choose an N large enough so that there is a t-round local algorithm for
l-coloring of N long paths, where t� N (to be specified later).

The idea is that we want to apply this algorithm on the Borel graph G, however,
we lack the input labels there. Now, consider the graph G4t on V (G), where x and
y are connected if their distance in G is ≤ 4t. Then ∆(G4t) ≤ 9t. In particular, by
Theorem 3.2, there is a Borel 9t+ 1 < N coloring c0 of G4t.

Claim 4.2. c0 assigns labels ∈ {1, 2, . . . , 9t+ 1} ⊂ {1, 2, . . . , N} such that in every
2t+ 2 neighborhood in G, the labels are pairwise distinct.

Now we run the local algorithm on the Borel graph G in the following way: at
every vertex, take its 2t+ 1 neighborhood, the coloring c0 yields a labeling of this
neighborhood by labels {1, 2, . . . , N}. Observe also that by the choice of the graph
G4t, there can be no two vertices in this neighborhood with the same c0 label.
Hence we can apply the local algorithm in the 2t+ 1-neighborhood.

Finally, observe that since the local algorithm outputs an l-coloring, this must
be a (proper) l-coloring of the graph G. Otherwise, two neighboring vertices would
get the same color. But this could have happened in the N -long path, contradicting
the correctness of the algorithm.

�

Using the same trick, one can show the following. Call a family of finite graphs
F nice, if it is closed under taking subgraphs and every graph in F has degree
bounded by d.

Theorem 4.3. Let F be a nice family. Assume that there is some C such that on
every element of F of size N there is a local C log∗N round l-coloring algorithm.
Then every Borel graph G such that all the finite neighborhoods of vertices of G are
in F admits a Borel l-coloring.

The reader interested in the rich theory of Borel combinatorics and its connec-
tions to the LOCAL model should consult [9, 8, 1, 2, 4, 3, 5, 10, 7].
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EXERCISES

ZOLTÁN VIDNNYÁNSZKY:

Finite and infinite: connections between distributed computing

and Borel combinatorics

Exercise set #1.

1. A set S ⊂ R is nowhere dense if for every open I there is a J ⊂ I open with J ∩ S = ∅.

Show that the ternary Cantor set is nowhere dense in R.

2. Prove the Baire Category Theorem on R: if (An)n∈N is a sequence of nowhere dense sets,

then ∪An 6= R.

3. A set is called meager, if it can be covered by the union of countable many nowhere dense

sets.

a) Show that the countable union of meager sets is meager.

b) Prove that if f : R → R is a homeomorphism and M is meager, then so is f−1(M).

c) Show that for any closed set F we have that F \ int(F ) is meager.

4. A set S is called Baire measurable if there exists an open set U such that S \ U ∪ U \ S is

meager.

a) Show that Baire measurable sets are closed under countable unions.

b) Show that Baire measurable sets are closed under complements using the last state-

ment in Problem 3.

c) Conclude that Borel sets are Baire measurable.

5. Complete the proof of the statement from the lecture: show that χB(GTα
) = 3.

Exercise set #2.

6. Assume that G is a rooted directed tree, k ≥ 4, and c is a k-coloring of G. Show that

using c, there is a 2-round local algorithm to k − 1-color G.

7. Show that there is a C log∗ N -round local algorithm to 3-color an N sized rooted directed

tree. Hint: Use problem 6.

8. Using the following statement as a black box, show that the bound logN is asymptotically

optimal for the 3-coloring of paths.

Theorem. There is some C > 0 such that for any large enough N and k < Clog∗ N

the following holds: assume that the k-tuples of the set {0, 1, . . . , N − 1} are colored by

3-colors. Then there is a k + 1-tuple such that all of its k-tuples have the same color.

9. Assuming the existence of ∆-cover free families of exponential size show that there exists

a C∆(G) log
∗ N round local algorithm to ∆(G) + 1-color a graph G of size N .
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