THe Lefschetz Theory and Hodge Theory of Smooth Projective Varieties

Gergely Jakovác

December 17, 2021

Lefschetz Theory - Setting

- X : smooth projective variety over $\mathbb{C}, \operatorname{dim} X=n$ (over \mathbb{C}).
- Pencil: $G \subseteq\left(\mathbb{C P}^{N}\right)^{*}, \operatorname{dim} G=1 . b \in G \leftrightarrow H_{b}$. $\operatorname{dim}\left(\bigcap_{b \in G} H_{b}\right)=N-2 . \quad \rightarrow$ axis
- X^{*} : $\{$ hyperlanes tangent to $X\}$. \rightarrow class
- For $b \in G$: we look at $H_{k}\left(X_{b}\right), X_{b} \stackrel{\text { def }}{=} H_{b} \cap X$.
- Blowing up X along the axis: $Y=\left\{(x, t) \in X \times G \mid x \in H_{t}\right\}$. \rightarrow smooth projective (irreducible) variety.

The Lefschetz Theorem

Theorem (Lefschetz)
$H_{q}\left(X, X_{b}\right)=0$ for all $q \leq \operatorname{dim} X-1$

Decomposing G

- $G \simeq S^{2}$.
- $G:=D^{+} \cup D^{-}, \operatorname{crit} \subset \operatorname{int} D^{+}$.
- $Y^{+} \stackrel{\text { def }}{=} f^{-1}\left(D^{+}\right)$.
- For $b \in G, Y_{b} \stackrel{\text { def }}{=} f^{-} 1(b)$.

Theorem (Main Lemma)
$H_{q}\left(Y_{+}, Y_{b}\right)=0$ if $q \neq \operatorname{dim} X$, and $H_{n}\left(Y_{+}, Y_{b}\right)$ is free of rank $r=$ class X.

Hard Lefschetz I.

- We look at the $n-1$ th homology, with choose field coefficients.

Theorem (Hard Lefschetz I.)

$$
H_{n-1}\left(X_{b}\right)=I \oplus V
$$

Hard Lefschetz II.

$-X^{\prime} \stackrel{\text { def }}{=} X \cap$ axis. $X^{\prime} \subset X_{b} \subset X \longrightarrow$

$$
\begin{aligned}
& 0=X_{n+1} \subset X_{n} \subset \ldots \subset X_{3} \subset X_{2}=X^{\prime} \subset X_{1}=X_{b} \subset X_{0}=X \\
& \Longrightarrow \operatorname{dim} X_{i}=n-i
\end{aligned}
$$

- $u \in H^{2}(X)$: Poincaré dual of the fundamental class $\left[X_{b}\right] \in H_{2 n-2}(X)$.

Theorem (Hard Lefschetz II.)
For all $q=1, \ldots n$, we have

$$
H_{n+q}(X) \simeq H_{n-q}(X), x \mapsto u^{q} \cap x
$$

Hard Lefschetz III.

Theorem (Hard Lefschetz III. - Primitive Decomposition)
$\forall x \in H_{n+q} \exists!x_{0}, x_{1}, \ldots$ s.t. $x=x_{0}+u \cap x_{1}+u^{2} \cap x_{2}+\ldots$, and $\forall x \in H_{n-q} \exists!x_{0}, x_{1}$,. s.t. $x=u^{q} \cap x_{0}+u^{q-1} \cap x_{1}+\ldots$, where the above x_{i} are all primitive elements, i.e $u^{q+1} \cap x=0$ (note that $q+1$ is the smallest such index j for which a nonzero \times can have the property that $u^{j} \cap x=0$).

Hard Lefchetz IV. - $s l_{2}$-module

The last form of the Hard Lefschetz theorem considers the Lie-algebra sl_{2} of 2×2 matrices with trace $0 . \mathrm{sl}_{2}$ is 3 -dimensional, with the following basis elements:

$$
e=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad f=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad h=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

satisfying the Lie-bracket relations:

$$
[e h]=-2 e, \quad[f h]=2 f, \quad[e f]=h
$$

Theorem (Hard Lefschetz $4-\mathrm{sl}_{2}$-module) $H_{*}(X)$ is an sl_{2}-module.
Here

$$
\begin{array}{r}
f: H_{j}(X) \rightarrow H_{j-2}(X), \quad x \mapsto u \cap x \\
h: H_{j}(X) \rightarrow H_{j}(X), \quad x \mapsto(j-n) x .
\end{array}
$$

e can be defined using the primitive decomposition.

Lefschetz - Monodromy

The Setti Theorem

1. $f: Y \rightarrow G$ has class X critical values.
2. For a generic G, f is Morse.

- $G^{*} \stackrel{\text { def }}{=} G \backslash\{$ critical values $\}$.
- $Y^{*} \stackrel{\text { def }}{=} f^{-} 1\left(G^{*}\right)$ is a fibre bundle (locally trivial), with fibres Y_{b}.

- $\Longrightarrow \pi_{1}\left(G^{*}, b\right)$ acts on the homology of Y_{b}
\rightarrow monodromy.

Lefschetz - Monodromy

Mondoromy Action

- I_{i} can be contracted, $\pi_{1}\left(G^{*}, b\right)$ is generated by $\left[w_{1}\right],\left[w_{2}\right], \ldots\left[w_{r}\right]$.

Theorem (Picard-Lefschetz)
If $q \neq n-1$ then $\pi_{1}\left(G^{*}, b\right)$ acts trivially on $H_{q}\left(Y_{b}\right)$. For
$q=n-1$, the elementary path
w_{i} acts by $\left(w_{i}\right)_{*}(x)=$
$x+(-1)^{(n-1) / 2}\left(x, \delta_{i}\right) \delta_{i}$.
w_{i}

Hodge Theory - Riemannian Manifolds

- Oriented $\mathrm{M} \rightarrow d v o l$
- Hodge-star operator: $\alpha \wedge * \beta=(\alpha, \beta) d v o l$. Here (., .) is induced by the metric:

$$
\left(d x_{i_{1}} \wedge \ldots \wedge d x_{i_{k}}, d x_{j_{1}} \wedge \ldots \wedge d x_{j_{k}}\right)=\operatorname{det}\left(g\left(d x_{i_{u}}, d x_{j_{v}}\right)_{u v}\right)
$$

- We get inner products: $\langle\alpha, \beta\rangle=\int_{X}(\alpha, \beta) d v o l=\int_{X} \alpha \wedge * \beta$.
- \Longrightarrow we have norms.

Theorem (The Hodge Theorem)

Every de Rham cohomology class has a unique representative that minimalizes the norm. This is called the harmonic representative. If d^{*} is the adjoint of d with respect to the above defined inner product, then a form is harmonic iff $d^{*} \alpha=d \alpha=0$. By defining the Hodge Laplacian $\Delta=d^{*} d+d d^{*}$, we get the further characterization: α is harmonic iff $\Delta \alpha=0$.

Forms on \mathbb{C} manifolds

- M compact \Longrightarrow holomorphic forms on M are constant.
- \mathcal{E}_{X}^{k} is the sheaf of complex-valued $\mathcal{C}^{\infty} k$-forms.
- Ω_{X}^{p} is the sheaf of holomorphic p-forms.
- $\mathcal{E}^{(p, 0)}$ is the \mathcal{C}^{∞}-submodule of \mathcal{E}_{X}^{p} generated by Ω_{X}^{p}. $\mathcal{E}^{(0, p)}=\overline{\mathcal{E}^{(p, 0)}}$, and $\mathcal{E}^{(p, q)}=\mathcal{E}^{(p, 0)} \wedge \mathcal{E}^{(0, q)}$.

Theorem (Dolbeault's theorem)

For any complex manifold X,

1. $0 \rightarrow \Omega_{X}^{p} \rightarrow \mathcal{E}^{(p, 0)} \xrightarrow{\bar{\sigma}} \mathcal{E}^{(p, 1)} \xrightarrow{\bar{\sigma}} \ldots$ is a soft resolution (i.e a resolution in which each element is a soft sheaf).
2.

$$
H^{q}\left(X, \Omega_{X}^{p}\right) \simeq \frac{\operatorname{ker}\left(\mathcal{E}^{(p, q)} \rightarrow \mathcal{E}^{(p, q+1)}\right)}{\operatorname{im}\left(\mathcal{E}^{(p, q-1)} \rightarrow \mathcal{E}^{(p, q)}\right)}
$$

Kähler Manifolds

- Strong results of Hodge theory for \mathbb{C} manifolds only hold for a subclass of manifolds.
- We call a Riemannian metric on a \mathbb{C}-manifold Hermitian, if the multiplication by $\sqrt{-1}$ is orthogonal.
- If $z_{i}=x_{i}+\sqrt{-1} y_{i}$ are local analytic coordinates, for a Hermitian metric H we have that $H=\sum h_{i j} d z_{i} \otimes \overline{d z_{j}}$, where $\left(h_{i j}\right)$ is a positive definite Hermitian matrix.
- A \mathbb{C}-manifold is Kähler, if it admits a Hermitian metric that is locally Euclidean up to second order, i. e. if for any point $p \in X$ there exist analytic local coordinates z_{1}, \ldots, z_{n} with $z_{i}=0$ at p , such that

$$
h_{i j} \equiv \delta_{i j} \quad \bmod \left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)^{2}
$$

Kähler Manifolds II.

- All smooth complex varieties are Kähler.
- By the Kodaira embedding theorem and Chow's theorem we in fact have that a compact complex manifold is a nonsingular projective algebraic variety iff it has a Kähler metric with rational Kähler class.
- We can extend the Hodge star to \mathcal{E}_{X}^{*}, and define $\bar{*}(\alpha)=\overline{* \alpha}$, to get two Hodge star operators on our complex manifold. We define additional operators on X :
- $\Delta_{\partial}=\partial^{*} \partial+\partial \partial^{*}$ with bidegree $(0,0)$
- $\Delta_{\bar{\partial}}=\bar{\partial}^{*} \bar{\partial}+\overline{\partial \partial}^{*}$ with bidegree $(0,0)$
- $L=\omega \wedge$ with bidegree $(1,1)$
- $\Lambda=-* L *$, with bidegree $(-1,-1)$.

Hodge Decomposition

Theorem
Suppose that X is a compact Kähler manifold.

- $H^{q}\left(X, \Omega_{X}^{p}\right)$ is isomorphic to the space of harmonic (p, q)-forms.
- As a corollary, $H^{p}\left(X, \Omega_{X}^{q}\right) \simeq H^{n-p}\left(X, \Omega_{X}^{n-q}\right)$

Theorem (Hodge decomposition)
If X is a compact Kähler manifold, then

- A form a is harmonic iff its (p, q)-components are.
- $H^{i}(X, \mathbb{C}) \simeq \bigoplus_{p+q=i} H^{q}\left(X, \Omega_{X}^{p}\right)$
- Complex conjugation induces an \mathbb{R}-linear isomorphisms between (p, q) and (q, p) forms. Therefore $H^{q}\left(X, \Omega_{X}^{p}\right) \simeq H^{p}\left(X, \Omega_{X}^{q}\right)$.

Hard Lefschetz with Hodge Theory

We have defined L, \wedge. H : multiplication by $(n-i)$.
Theorem

1. $[\Lambda, L]=H$
2. $[H, L]=-2 L$
3. $[H, \Lambda]=2 \Lambda$.
