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Introduction

The objective of this presentation is the mathematical analysis of a
model of production and regulation of blood cells in the bone marrow
called hematopoiesis.
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Introduction

The objective of this presentation is the mathematical analysis of a
model of production and regulation of blood cells in the bone marrow
called hematopoiesis. The modeling of these populations is carried
out using a system of delay differential equations.

M.Labair (Eötvös loránd university) DDL & Applications December 17, 2021 3 / 11



here

DDL &
Applications

M.Labair

Introduction
A blood cell production
model

Mathematical
analysis of the
model
Existence and stability

Introduction A blood cell production model

Frame Title
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(Source:
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A blood cell production model

This model explains the interaction between proliferating cells (P) and non-proliferating cells (N) in a
tumor.

(Source: Alila Medical Images-Fotolia.com)

Cells in the proliferating phase can divide and grow, but cells in the non proliferation grow without dividing.

Cells in the non-proliferating phase can leave this phase either by mortality with a rate δ > 0 which considers
the differentiation, or by entering into proliferation phase with a rate β > 0 .In the proliferating phase, the cells are allowed to stay only for a finite time. We note τ > 0 the time
duration of the proliferating phase. In this compartment, the cells are eliminated by apoptosis (programmed
death) with a rate of γ > 0.At the end of the proliferating phase, all the cells divide and each one gives two daughter cells. The latter
directly access the non- proliferating phase.We assume, for the sake of simplicity, that proliferating and non-proliferating cells die at the same rate, i.e.
δ = γ.
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Mathematical model

Then the populations P and N satisfy the following evolution equations (see M. Adimy [3] or [4]),
Ṗ = −γP(t) + βN(t) − e−δτβN(t − τ),
Ṅ = −δN(t) − βN(t) + 2e−δτβN(t − τ).

(1)

we assume that the rate of reintroduction β = β(S(t)) depends on the total population of
hematopoietic stem cells denoted by S i.e. S(t) = N(t) + P(t). The function β is naturally assumed
to be decreasing and positive with lim

S→∞
β(S) = 0.

The populations N and S satisfy the following nonlinear system with delay τ ,
Ṡ = −δS(t) + e−δτβ(S(t − τ))N(t − τ),
Ṅ = −δN(t) − β(S(t))N(t) + 2e−δτβ(S(t − τ)N(t − τ).

(2)
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Existence of solutions

Theorem
For any initial condition (φ, ψ) ∈ C([−τ, 0],R+) × C([−τ, 0],R+) the system (2) admits a unique
positive solution in [0,+∞[.
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The existence of steady states

The equilibrium point of (2) is a solution (S(t),N(t)) satisfying

Ṡ(t) = Ṅ(t) = 0.

The existence of steady states

If β0 ≤ δ

Equilibrium τ ⩾ 0
X0 Exists

β0 > δ

Equilibrium 0 ⩽ τ < τ̄ τ ⩾ τ̄
X0 Exists Exists
X1 Exists Do not exists

β0 = β(0)

τ̄ := 1
δ

ln
( 2β0

δ + β0

)
,

X0 = (0, 0),
X1 = (S∗,N∗). Where

S∗ = θ
(

β0(2e−δτ −1)
δ − 1

) 1
n and

N∗ =
(

(2e−δτ −1)β0
δ − 1

) 1
n
θ
(

(2e−δτ −1)
e−δτ

)
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The characteristic equation

Let f (S,N) = −δS(t) + e−δτβ(S(t − τ))N(t − τ),
and g(S,N) = - δN(t) − β(S(t))N(t) + 2e−δτβ(S(t − τ)N(t − τ).
The characteristic equation of system (2) is defined by

det(λI − A1 − e−λτA2) = 0
Where

A1 =
 ∂f

∂S (t) ∂f
∂N (t)

∂g
∂S (t) ∂g

∂N (t)

 and A2 =
 ∂f

∂S (t − τ) ∂f
∂N (t − τ)

∂g
∂S (t − τ) ∂g

∂N (t − τ)



Theorem

If sup{Reλ : det(λI − A1 − e−λτA2) = 0} < 0 then the equilibrium point is locally asymptotically
stable.
If Reλ > 0 for some λ satisfying det(λI − A1 − e−λτA2) = 0 then the equilibrium point is
unstable.
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The stability of X0

The stability of the X0 steady state

β0 ≤ δ

Equilibrium τ ⩾ 0
X0 Stable

β0 > δ

Equilibrium 0 ⩽ τ < τ̄ τ ⩾ τ̄
X0 Unstable Stable
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