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Abstract :

In this report we will discuss in the first part the PDE model which is
the equation of elasto-plastic bending of clamped plates and try to
understand the weak form of this equation.We will prove that it has a
unique weak solution.

The second part is about theory for the numerical solution, it revolves
around construction and proof of convergence, It consists of finite
element discretization and inner-outer iterations.

1.1 The PDE :

Elasto-plastic bending of a clamped thin plane plate 2 € R? is
described by a fourth order nonlinear Dirichlet boundary value problem .

The formulation of the problem is the following :
52 (9(B(D*w)) (5 + 35%)) + avay (9(E(D*w) (23;))
+ 87 (9(E(D™) (5 +358)) = al@)

du
dv

Ujpn =

= ()

o2

This problem is written briefly as
Div?(g(E(D?*w))D%*u) = a(x)
ou
Yoo = 73— loo =0

where the scalar function g € C*(R*)satisfies the condition
0<u =90 =
0<u <@ <,
with suitable constants 4, 4, > 0 independent of the variable r > 0.
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where D*u = 32y 52y
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1.2 The weak formulation of problem :
The weak formulation of the problem : find u € H2(2) such that

%f g(E(D?*w)(D?*u.D?v + AuAv) = f av (veHE() (1.2.1)
0 Q

For regular functions u € H*(2) N H3(2) , the weak formulation is
obtained via multiplying our problem by v € HZ (), integration and the
divergence theorem. In this way we have

j g(E(D*u))D*u.D?*v = f av (v € H3()) (1.2.2)
Ingtead of (1) .The latter car!12 be obtained form here by defining
D?*u = %(Dzu. + Au. 5y 5)
And I,,,.D?v = Av , which yields that
D?u.D?*v = % (D?u.D?v + AuAv)

2. Prove the existence and uniqueness of the weak

solution :
2.1 Theorem:
Let H be a real Hilbert space and let the operator F: H —» H have the
following properties:
(i) F has a bihemicontinuous symmetric Gateaux derivative
(i) there exists a constant m > 0 such that
(F'(w)h, h) = m||h||? (w,v € H) (2.1.1)
Then for any b € H the equation F(u) = b has a unique solution u* € H.
2.2 Remark :
Let F have the form :

(F ), v) 0y = j a(wuDlw vl (wveHR@D,  (221)
n

where the scalar C1function a : R* - R* satisfies the condition
0< <a(r) <,
0< A <(a@rd)r) <2,
Then (2.2.1) defines an operator F: H2(2) —» HZ(2) which has a
bihemicontinuous symmetric Gateaux derivative satisfying

/’llllh”?{g(_(z) S (F,(u)h: h)yg(g) S Azllhllzg(g)

A jﬂ [h, h] < (F'®h, h)Hg(m <1, L [h, h]




2.3 Proposition: The elasto-plastic bending problem of a clamped plate
has a unique weak solution u* € HZ ().
Proof :
For any matrices B, C € R**?let us introduce the following notations:
B=>(B+trB.I)  {B,C}=>(B.C +trBtrC), E(C) = {C,C}
we verify directly via Remark (2.1) for the operator

(F(W), v)yz =f f(x,D?*u).D%*v
0

= f 9(E(D*u))D*u.D?*v (u,v € H} (1))
0

where f:02 x RN - RN A(x,n) =g(E(M)).7
Using the weak form and previously notations , we have

(F(W), v)yz= %fﬂ g(E(D*u))(D*u.D?v + AuAv)

= [, g({D*u,D*u}){D*u.D*v } (w,v € HZ(2))
The obtained form of F is a special case of (2.2.1) with
a(r) =g) and [u,v] = {D?u, D*v},

hence Theorem (2.1) can be applied.

3.Einite element discretization :
3.1 Galerkin’s method for nonlinear operator equations :

Let H be a real Hilbert space and A: H — H a given operator, which is
uniformly monotone and Lipschitz continuous. Consider the operator
equation A(u) =b (3.1.1)
where b € H. The equation (3.1.1) admits a unique solution u* € H.
Let us write the equation (3.1.1) in its equivalent variational forms
Involving test functions :

(A(u*),v) =(b,v) (Vv € H)
Let V,, = span{e,, ..., ¢,, } € H,The approximate solution u’e V, is
defined by the subspace equation
(A(u™),v™y = (b,v™) (v e V) (3.1.2)
The equation (3.1.2) admits a unique solution u" € ;.
The coefficients of the expansion u™® = ¥, c;p; ,can be obtained as
follows. We set v"* == ¢,

<A (Z CiPi >»<Pk> =(b,px) k=(1,...,n)

i=1




Let us introduce the real functions
‘AK :R™ > R ‘AK (ClJ "':Cn) (A(ZL 1CiPi ) (pk>
and let B, := (b, ;) k= (1, ...,n) € R™, Now put these functions together
in Ag:R" -» R" so the coefficients u”* of can be obtained by solving the
nonlinear algebraic system of equations Ay (c) = By
3.2 Nonlinear Céa’s lemma :

For the Galerkin solution u” € v, ,the quasi-optimality relation

||u* - uh” < %min{”u* - vh”: v" € 1, },holds true
div?f(x,D?*u) = a(x)
Ujpn = avu|a[z =0
where f:02 x RV*N — RNV | £(x, 1) == g(E(n)).n and due to the
assumptions on g there exists a unique weak solution u*, that is,
f f(x,D?*u*).D%*v = j av Vv € HZ ()
0

N
Let V, € H5(22) be some finite element subspace ,Then the

approximate solution ,u” € V, satisfies the subspace equation :
|, fx,D*u").D?*v" = [ av" wv" eV,
and the coefficients can be obtained by solving the nonlinear system of
algebraic equations : A4 (c) =
where A (c) = [, f(x, X c:D?p; ). quox and By = [, agy (k =1,n)
Here, A inherits the uniform monotonicity and Lipschitz continuity of f,

so unique solvability of this system follows from the theorem on the
Galerkin method.Further, the nonlinear Céa’s lemma holds true

M M

u—ult| < —lur - 1_[ uw| < —ch* Nu*|y, (W€ HETY(2)
2 n m
4 .Inner-outer iterations :
4.1 Asumptions :
Let f € C1(2 x R™™, R™™) and the Jacobians f(n M are
symmetric and there are M > m > 0,such that :
f(xn)e e < Mle|? (x € 2,e,n € RVM)

hold. Let V € H3(2) be a flnlte dimensional subspace with the inner
productand let F:V -V

(F(u), vz = J, f(x,D?u).D%v wev)
and b €V (b,v)yz = [, gv (vev)
Denote by u* € V the solution of : (F(u®), v)yz = (b, V)2
The operator F is Géteaux differentiable and its derivative is given by
(F'(Wv,z)y; = fﬂ — (x D?*u)D?*v.D?%*z (u,v,z €V)

3.3 Example : Consider the problem : {

2

mle|? <

4



The operator F’ inherits the Lipschitz continuity of Z—g , Let L denote the

Lipschitz constant of F’ .
4.2 Construction :
Let u, € V and define the sequence (u,) < V as follows :
(a) The outer iteration defines the sequence
Upsy1 = Uy +Tupn (M EN) (4.2.1)
where p,, € V is the numerical solution of :
(F,(un)anU>Hg - _<F(un) — b, U)Hg (U EV) (4-2-2)
Further, 6, > 0 is constant satisfying 0 < §,, < 3§, <1
Ty, = min{l, 8+§:i Lllpillng} € (0,1] (4.2.3)
(b) To determine p, in (4.2.2) , the inner iteration defines a sequence

(p,(l")) cV (k€N)
using a preconditioned conjugate gradient method .Here we have :

pyleld < <Z—£ (x, D?u, (x))e, s> < u,lel? Vx €N, €RY

Let B:V -V (Bh, v}z = J, D*h.D*v (h,v eV)
Then we consider the preconditioned form of (4.2.2) :
B_lF,(un)pn = _B_I(F(un) - b)

Finally, p,, := p& € v for which

|F" Q™ + (F @) =) ||, < pallFatn) = bllg-s

with p, = *1/,,) 5, and &, > 0
4.3 Theorem :
Let Assumptions (4.1) be satisfied. Then construction yields the
following convergence results :
(1) The outer iteration (u,,) satisfies
lup — w*llyz < pitlIF(un) = bllyz — 0 monotonically
with speed depending on the sequence (6,,) up to locally quadratic order.
Namely, if §,, = §, < 1, then the convergence is linear.
Further, if §,, < const.||F (u,) — bllzg

with some constant 0 <y < 1, then the convergence is locally of order
1+ ¥ :IF (upsr) = bllgg < call F(wn) = bl (n = 1)

yielding also the convergence estimate of weak order 1 + y:
IF(un) = bllyz < dyq@+1" (n € N)
with suitable constants 0 < q < 1,d; >0



(2) there holds
cond(B™F'(u,)) < %
1
And, accordingly, the inner iteration satisfies

(kn) + (F(u,) — b) ||B_1 < (g \/\/:> |F(uy,) — b”B‘l
2

Therefore, the number of inner iterations for the nth outer step is at most

JA_JT)"
fn €N (m) <o

] 1/2
with p, = /) "6,

Let g be real function that is C? in the variable r , and there exists
Ay, A5, A > 0 such that
0<A <gr)<i,
0<A <@rHr) <4,

= @oor<a @=0

If these conditions hold for “ g ", then the conditions of Theorem (4.3)
are satisfied for the plate problem

div?(g(E(D*u))D?u) = a(x)
_Ou _ 0
Ujpn = P loq =

Hence the inner-outer method works for our model problem.
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