EÖTVÖS Loránd University

Faculty of Science

Belfedal Chaima Djouhina

Numerical solution of a nonlinear plate EQUATION

Directed Studies 1

Supervisor:
János Karátson

Budapest, 2020

Abstract :

In this report we will discuss in the first part the PDE model which is the equation of elasto-plastic bending of clamped plates and try to understand the weak form of this equation. We will prove that it has a unique weak solution.

The second part is about theory for the numerical solution, it revolves around construction and proof of convergence, It consists of finite element discretization and inner-outer iterations.

1.1 The PDE :

Elasto-plastic bending of a clamped thin plane plate $\Omega \in \mathbb{R}^{2}$ is described by a fourth order nonlinear Dirichlet boundary value problem.
The formulation of the problem is the following :

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial x^{2}}\left(\bar{g}\left(E\left(D^{2} u\right)\right)\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{1}{2} \frac{\partial^{2} u}{\partial y^{2}}\right)\right)+\frac{\partial^{2}}{\partial x \partial y}\left(\bar{g}\left(E\left(D^{2} u\right)\right)\left(\frac{\partial^{2} u}{\partial x \partial y}\right)\right) \\
\quad+\frac{\partial^{2}}{\partial y^{2}}\left(\bar{g}\left(E\left(D^{2} u\right)\right)\left(\frac{\partial^{2} u}{\partial y^{2}}+\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}\right)\right)=\alpha(x) \\
u_{\mid \partial \Omega}=\left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=0
\end{array}\right.
$$

This problem is written briefly as

$$
\left\{\begin{array}{c}
\operatorname{Div}^{2}\left(\bar{g}\left(E\left(D^{2} u\right)\right) \widetilde{D}^{2} u\right)=\alpha(x) \\
u_{\mid \partial \Omega}=\left.\frac{\partial u}{\partial v}\right|_{\partial \Omega}=0
\end{array}\right.
$$

where the scalar function $\bar{g} \in C^{1}\left(\mathbb{R}^{+}\right)$satisfies the condition

$$
\begin{gathered}
0<\mu_{1} \leq \bar{g}(r) \leq \mu_{2} \\
0<\mu_{1} \leq\left(\bar{g}\left(r^{2}\right) r\right)^{\prime} \leq \mu_{2}
\end{gathered}
$$

with suitable constants $\mu_{1}, \mu_{2}>0$ independent of the variable $r>0$.

$$
E\left(D^{2} u\right)=\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}+\frac{\partial^{2} u}{\partial x^{2}} \frac{\partial^{2} u}{\partial y^{2}}+\left(\frac{\partial^{2} u}{\partial y^{2}}\right)^{2}+\left(\frac{\partial^{2} u}{\partial x \partial y}\right)^{2}
$$

where $D^{2} u=\left(\begin{array}{cc}\frac{\partial^{2} u}{\partial x^{2}} & \frac{\partial^{2} u}{\partial x \partial y} \\ \frac{\partial^{2} u}{\partial x \partial y} & \frac{\partial^{2} u}{\partial y^{2}}\end{array}\right)$

1.2 The weak formulation of problem :

The weak formulation of the problem : find $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
\frac{1}{2} \int_{\Omega} \bar{g}\left(E\left(D^{2} u\right)\right)\left(D^{2} u \cdot D^{2} v+\Delta \mathrm{u} \Delta \mathrm{v}\right)=\int_{\Omega} \alpha v \quad\left(v \in H_{0}^{2}(\Omega)\right) \tag{1.2.1}
\end{equation*}
$$

For regular functions $u \in H^{4}(\Omega) \cap H_{0}^{2}(\Omega)$, the weak formulation is obtained via multiplying our problem by $v \in H_{0}^{2}(\Omega)$, integration and the divergence theorem. In this way we have

$$
\begin{equation*}
\int_{\Omega} \bar{g}\left(E\left(D^{2} u\right)\right) \widetilde{D}^{2} u \cdot D^{2} v=\int_{\Omega} \alpha v \quad\left(v \in H_{0}^{2}(\Omega)\right) \tag{1.2.2}
\end{equation*}
$$

Instead of (1). The latter can be obtained form here by defining

$$
\widetilde{D}^{2} u=\frac{1}{2}\left(D^{2} u .+\Delta u . I_{2 \times 2}\right)
$$

And $I_{2 \times 2} \cdot D^{2} v=\Delta \mathrm{v}$, which yields that

$$
\widetilde{D}^{2} u \cdot D^{2} v=\frac{1}{2}\left(D^{2} u \cdot D^{2} v+\Delta \mathrm{u} \Delta \mathrm{v}\right)
$$

2. Prove the existence and uniqueness of the weak

solution:

2.1 Theorem:

Let H be a real Hilbert space and let the operator $F: H \rightarrow \mathrm{H}$ have the following properties:
(i) F has a bihemicontinuous symmetric Gateaux derivative
(ii) there exists a constant $m>0$ such that

$$
\begin{equation*}
\left\langle F^{\prime}(u) h, h\right\rangle \geq m\|h\|^{2} \quad(u, v \in H) \tag{2.1.1}
\end{equation*}
$$

Then for any $\mathrm{b} \in H$ the equation $F(u)=b$ has a unique solution $u^{*} \in H$.

2.2 Remark:

Let F have the form :

$$
\begin{equation*}
\langle F(u), v\rangle_{H_{0}^{2}(\Omega)}=\int_{\Omega} a([u, u])[u, v] \quad\left(u, v \in H_{0}^{2}(\Omega)^{r}\right), \tag{2.2.1}
\end{equation*}
$$

where the scalar C^{1} function $a: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$satisfies the condition

$$
\begin{gathered}
0<\lambda_{1} \leq a(r) \leq \lambda_{2} \\
0<\lambda_{1} \leq\left(a\left(r^{2}\right) r\right)^{\prime} \leq \lambda_{2}
\end{gathered}
$$

Then (2.2.1) defines an operator $F: H_{0}^{2}(\Omega) \rightarrow H_{0}^{2}(\Omega)$ which has a bihemicontinuous symmetric Gateaux derivative satisfying

$$
\begin{aligned}
& \lambda_{1}\|h\|_{H_{0}^{2}(\Omega)}^{2} \leq\left\langle F^{\prime}(u) h, h\right\rangle_{H_{0}^{2}(\Omega)} \leq \lambda_{2}\|h\|_{H_{0}^{2}(\Omega)}^{2} \\
& \lambda_{1} \int_{\Omega}[h, h] \leq\left\langle F^{\prime}(u) h, h\right\rangle_{H_{0}^{2}(\Omega)} \leq \lambda_{2} \int_{\Omega}[h, h]
\end{aligned}
$$

2.3 Proposition: The elasto-plastic bending problem of a clamped plate has a unique weak solution $u^{*} \in H_{0}^{2}(\Omega)$.

Proof:

For any matrices $B, C \in \mathbb{R}^{2 \times 2}$ let us introduce the following notations:

$$
\tilde{B}=\frac{1}{2}\left(B+\operatorname{tr} B \cdot I_{2}\right) \quad,\{B, C\}=\frac{1}{2}(B \cdot C+\operatorname{tr} B \operatorname{tr} C), \quad E(C)=\{C, C\}
$$

we verify directly via Remark (2.1) for the operator

$$
\begin{aligned}
\langle F(u), v\rangle_{H_{0}^{2}} & =\int_{\Omega} f\left(x, D^{2} u\right) \cdot D^{2} v \\
& =\int_{\Omega} \bar{g}\left(E\left(D^{2} u\right)\right) \widetilde{D}^{2} u \cdot D^{2} v \quad\left(u, v \in H_{0}^{2}(\Omega)\right)
\end{aligned}
$$

where $f: \Omega \times \mathbb{R}^{N \times N} \rightarrow \mathbb{R}^{N \times N}, A(x, \eta):=\bar{g}(E(\eta)) \cdot \tilde{\eta}$
Using the weak form and previously notations, we have

$$
\begin{aligned}
\langle F(u), v\rangle_{H_{0}^{2}} & =\frac{1}{2} \int_{\Omega} \bar{g}\left(E\left(D^{2} u\right)\right)\left(D^{2} u \cdot D^{2} v+\Delta \mathrm{u} \Delta \mathrm{v}\right) \\
& =\int_{\Omega} \bar{g}\left(\left\{D^{2} u, D^{2} u\right\}\right)\left\{D^{2} u \cdot D^{2} v\right\} \quad\left(u, v \in H_{0}^{2}(\Omega)\right)
\end{aligned}
$$

The obtained form of F is a special case of (2.2.1) with

$$
a(r)=\bar{g}(r) \quad \text { and }[u, v]=\left\{D^{2} u, D^{2} v\right\}
$$

hence Theorem (2.1) can be applied.

3.Finite element discretization :

3.1 Galerkin's method for nonlinear operator equations :

Let H be a real Hilbert space and $A: H \rightarrow H$ a given operator, which is uniformly monotone and Lipschitz continuous. Consider the operator equation $A(u)=b$
where $b \in H$. The equation (3.1.1) admits a unique solution $u^{*} \in H$. Let us write the equation (3.1.1) in its equivalent variational forms involving test functions:

$$
\left\langle A\left(u^{*}\right), v\right\rangle=\langle b, v\rangle \quad(\forall v \in H)
$$

Let $V_{h}=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{n}\right\} \subset \mathrm{H}$, The approximate solution $u^{h} \in V_{h}$ is defined by the subspace equation

$$
\begin{equation*}
\left\langle A\left(u^{h}\right), v^{h}\right\rangle=\left\langle b, v^{h}\right\rangle \quad\left(\forall v^{h} \in V_{h}\right) \tag{3.1.2}
\end{equation*}
$$

The equation (3.1.2) admits a unique solution $u^{h} \in V_{h}$.
The coefficients of the expansion $u^{h}=\sum_{i=1}^{n} c_{i} \varphi_{i}$, can be obtained as follows. We set $v^{h}:=\varphi_{k}$

$$
\left\langle A\left(\sum_{i=1}^{n} c_{i} \varphi_{i}\right), \varphi_{k}\right\rangle=\left\langle b, \varphi_{k}\right\rangle \mathrm{k}=(1, \ldots, \mathrm{n})
$$

Let us introduce the real functions
$\mathcal{A}_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathcal{A}_{K}\left(c_{1}, \ldots, c_{n}\right):=\left\langle A\left(\sum_{i=1}^{n} c_{i} \varphi_{i}\right), \varphi_{k}\right\rangle$
and let $\mathcal{B}_{k}:=\left\langle b, \varphi_{k}\right\rangle \mathrm{k}=(1, \ldots, \mathrm{n}) \in \mathbb{R}^{n}$, Now put these functions together in $\mathcal{A}_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ so the coefficients u^{h} of can be obtained by solving the nonlinear algebraic system of equations $\boldsymbol{\mathcal { A }}_{K}(\mathrm{c})=\boldsymbol{B}_{k}$

3.2 Nonlinear Céa's lemma:

For the Galerkin solution $u^{h} \in V_{h}$, the quasi-optimality relation $\left\|u^{*}-u^{h}\right\| \leq \frac{M}{m} \min \left\{\left\|u^{*}-v^{h}\right\|: v^{h} \in V_{h}\right\}$, holds true
3.3 Example : Consider the problem : $\left\{\begin{array}{c}\operatorname{div}^{2} f\left(x, D^{2} u\right)=\alpha(x) \\ u_{\mid \partial \Omega}=\partial_{v} u_{\mid \partial \Omega}=0\end{array}\right.$ where $f: \Omega \times \mathbb{R}^{N \times N} \rightarrow \mathbb{R}^{N \times N}, f(x, \eta):=\bar{g}(E(\eta)) \cdot \tilde{\eta}$ and due to the assumptions on \bar{g} there exists a unique weak solution u^{*}, that is,

$$
\int_{\Omega} f\left(x, D^{2} u^{*}\right) \cdot D^{2} v=\int_{\Omega} \alpha v \quad \forall v \in H_{0}^{2}(\Omega)
$$

Let $V_{h} \in H_{0}^{2}(\Omega)$ be some finite element subspace, Then the approximate solution,$u^{h} \in V_{h}$ satisfies the subspace equation :
$\int_{\Omega} f\left(x, D^{2} u^{h}\right) \cdot D^{2} v^{h}=\int_{\Omega} \alpha v^{h} \quad \forall v^{h} \in V_{h}$
and the coefficients can be obtained by solving the nonlinear system of algebraic equations : $\mathcal{A}(c)=\boldsymbol{B}$
where $\boldsymbol{\mathcal { A }}_{k}(c)=\int_{\Omega} f\left(x, \sum_{i=1}^{n} c_{i} D^{2} \varphi_{i}\right) \cdot D^{2} \varphi_{K}$ and $\mathcal{B}_{k}:=\int_{\Omega} \alpha \varphi_{K}(k=\overline{1, n})$ Here, \mathcal{A} inherits the uniform monotonicity and Lipschitz continuity of f , so unique solvability of this system follows from the theorem on the Galerkin method. Further, the nonlinear Céa's lemma holds true

$$
\left|u^{*}-u^{h}\right|_{2} \leq \frac{M}{m}\left|u^{*}-\prod_{h} u^{*}\right|_{2} \leq \frac{M}{m} c h^{k-1}\left|u^{*}\right|_{k+1} \quad\left(u^{*} \in H_{0}^{k+1}(\Omega)\right)
$$

4 .Inner-outer iterations:

4.1 Asumptions:

Let $f \in C^{1}\left(\bar{\Omega} \times \mathbb{R}^{n \times n}, \mathbb{R}^{n \times n}\right)$ and the Jacobians $\frac{\partial f(x, \eta)}{\partial \eta}$ are symmetric and there are $\mathrm{M} \geq m>0$, such that :

$$
m|\varepsilon|^{2} \leq \frac{\partial f(x, \eta)}{\partial \eta} \varepsilon . \varepsilon \leq M|\varepsilon|^{2}\left(x \in \Omega, \varepsilon, \eta \in \mathbb{R}^{n \times n}\right)
$$

hold. Let $V \in H_{0}^{2}(\Omega)$ be a finite dimensional subspace with the inner product and let $F: V \rightarrow \mathrm{~V}$

$$
\begin{array}{cc}
\langle F(u), v\rangle_{H_{0}^{2}}=\int_{\Omega} f\left(x, D^{2} u\right) \cdot D^{2} v & (v \in V) \\
\langle b, v\rangle_{H_{0}^{2}}=\int_{\Omega} g v & (v \in V)
\end{array}
$$

and $b \in V$
Denote by $u^{*} \in V$ the solution of : $\left\langle F\left(u^{*}\right), v\right\rangle_{H_{0}^{2}}=\langle b, v\rangle_{H_{0}^{2}}$
The operator F is Gâteaux differentiable and its derivative is given by

$$
\left\langle F^{\prime}(u) v, z\right\rangle_{H_{0}^{2}}=\int_{\Omega} \frac{\partial f}{\partial \theta}\left(x, D^{2} u\right) D^{2} v \cdot D^{2} z
$$

The operator F^{\prime} inherits the Lipschitz continuity of $\frac{\partial f}{\partial \theta}$, Let L denote the Lipschitz constant of F^{\prime}.

4.2 Construction :

Let $u_{0} \in V$ and define the sequence $\left(u_{n}\right) \subset V$ as follows :
(a) The outer iteration defines the sequence

$$
\begin{equation*}
u_{n+1}=u_{n}+\tau_{n} p_{n} \quad(n \in \mathbb{N}) \tag{4.2.1}
\end{equation*}
$$

where $p_{n} \in V$ is the numerical solution of :

$$
\begin{equation*}
\left\langle F^{\prime}\left(u_{n}\right) p_{n}, v\right\rangle_{H_{0}^{2}}=-\left\langle F\left(u_{n}\right)-b, v\right\rangle_{H_{0}^{2}} \quad(v \in V) \tag{4.2.2}
\end{equation*}
$$

Further, $\delta_{n}>0$ is constant satisfying $0<\delta_{n} \leq \delta_{0}<1$

$$
\begin{equation*}
\tau_{n}=\min \left\{1, \frac{\left(1-\delta_{n}\right)}{\left(1+\delta_{n}\right)} \frac{\mu_{1}}{L\left\|p_{n}\right\|_{H_{0}^{2}}}\right\} \in(0,1] \tag{4.2.3}
\end{equation*}
$$

(b) To determine p_{n} in (4.2.2), the inner iteration defines a sequence

$$
\left(p_{n}^{(k)}\right) \subset V \quad(k \in \mathbb{N})
$$

using a preconditioned conjugate gradient method . Here we have :

$$
\mu_{1}|\varepsilon|_{F}^{2} \leq\left\langle\frac{\partial f}{\partial \theta}\left(x, D^{2} u_{n}(x)\right) \varepsilon, \varepsilon\right\rangle \leq \mu_{2}|\varepsilon|_{F}^{2} \quad \forall x \in \Omega, \varepsilon \in \mathbb{R}^{N}
$$

Let $B: V \rightarrow \mathrm{~V}$
$\langle B h, v\rangle_{H_{0}^{2}}=\int_{\Omega} D^{2} h . D^{2} v$
Then we consider the preconditioned form of (4.2.2) :

$$
B^{-1} F^{\prime}\left(u_{n}\right) p_{n}=-B^{-1}\left(F\left(u_{n}\right)-b\right)
$$

Finally, $p_{n}:=p_{n}^{\left(k_{n}\right)} \in V$ for which

$$
\begin{aligned}
& \left\|F^{\prime}\left(u_{n}\right) p_{n}^{\left(k_{n}\right)}+\left(F\left(u_{n}\right)-b\right)\right\|_{B_{n}^{-1}} \leq \rho_{n}\left\|F\left(u_{n}\right)-b\right\|_{B^{-1}} \\
& \text { with } \rho_{n}=\left({ }^{\mu_{1}} / \mu_{2}\right)^{1 / 2} \delta_{n} \text { and } \delta_{n}>0
\end{aligned}
$$

4.3 Theorem :

Let Assumptions (4.1) be satisfied. Then construction yields the following convergence results :
(1) The outer iteration $\left(u_{n}\right)$ satisfies

$$
\left\|u_{n}-u^{*}\right\|_{H_{0}^{2}} \leq \mu_{1}^{-1}\left\|F\left(u_{n}\right)-b\right\|_{H_{0}^{2}} \rightarrow 0 \text { monotonically }
$$

with speed depending on the sequence $\left(\delta_{n}\right)$ up to locally quadratic order. Namely, if $\delta_{n} \equiv \delta_{0}<1$, then the convergence is linear.
Further, if $\delta_{n} \leq$ const. $\left\|F\left(u_{n}\right)-b\right\|_{H_{0}^{2}}^{\gamma}$
with some constant $0<\gamma \leq 1$, then the convergence is locally of order $1+\gamma:\left\|F\left(u_{n+1}\right)-b\right\|_{H_{0}^{2}} \leq c_{1}\left\|F\left(u_{n}\right)-b\right\|_{H_{0}^{2}}^{\gamma+1} \quad\left(n \geq n_{0}\right)$
yielding also the convergence estimate of weak order $1+\gamma$:

$$
\left\|F\left(u_{n}\right)-b\right\|_{H_{0}^{2}} \leq d_{1} q^{(1+\gamma)^{n}} \quad(n \in \mathbb{N})
$$

with suitable constants $0<q<1, d_{1}>0$
(2) there holds

$$
\operatorname{cond}\left(B^{-1} F^{\prime}\left(u_{n}\right)\right) \leq \frac{\lambda_{2}}{\lambda_{1}}
$$

And, accordingly, the inner iteration satisfies

$$
\left\|F^{\prime}\left(u_{n}\right) p_{n}^{\left(k_{n}\right)}+\left(F\left(u_{n}\right)-b\right)\right\|_{B^{-1}} \leq\left(\frac{\sqrt{\lambda_{2}}-\sqrt{\lambda_{1}}}{\sqrt{\lambda_{2}}+\sqrt{\lambda_{1}}}\right)^{k}\left\|F\left(u_{n}\right)-b\right\|_{B^{-1}}
$$

Therefore, the number of inner iterations for the nth outer step is at most $k_{n} \in \mathbb{N} \quad\left(\frac{\sqrt{\lambda_{2}}-\sqrt{\lambda_{1}}}{\sqrt{\lambda_{2}}+\sqrt{\lambda_{1}}}\right)^{k_{n}} \leq \rho_{n}$
with $\rho_{n}=\left(\mu_{1} / \mu_{2}\right)^{1 / 2} \delta_{n}$
Let \bar{g} be real function that is C^{2} in the variable r, and there exists $\lambda_{1}, \lambda_{2}, \lambda>0$ such that

$$
\begin{aligned}
& 0<\lambda_{1} \leq \bar{g}(r) \leq \lambda_{2} \\
& 0<\lambda_{1} \leq\left(\bar{g}\left(r^{2}\right) r\right)^{\prime} \leq \lambda_{2} \\
& \left\lvert\, \frac{\partial^{2}}{\partial r^{2}}\left(\bar{g}\left(r^{2}\right) r \mid \leq \lambda \quad(r \geq 0)\right.\right.
\end{aligned}
$$

If these conditions hold for " \bar{g} ", then the conditions of Theorem (4.3) are satisfied for the plate problem

$$
\left\{\begin{array}{c}
\operatorname{div}^{2}\left(\bar{g}\left(E\left(D^{2} u\right)\right) \widetilde{D}^{2} u\right)=\alpha(x) \\
u_{\mid \partial \Omega}=\left.\frac{\partial u}{\partial v}\right|_{\partial \Omega}=0
\end{array}\right.
$$

Hence the inner-outer method works for our model problem.

References :

[1] I. Faragó, J. Karátson. Numerical solution of nonlinear elliptic problems via preconditioning operators, Nova Science Publ., 2002.
[2] R. Horváth, F. Izsák, J. Karátson, Numerical Methods for Elliptic Partial Differential Equations, https://web.cs.elte.hu/~karatson/pdnmell-ang-2020.pdf. (Hungarian version: Eötvös Loránd University, 2013.)
[3] J. Karátson, On the Lipschitz continuity of derivatives for some scalar nonlinearities, J. Math. Anal. Appl. 346 : 1 pp. 170-176 (2008)

