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Abstract

In this semester, I have read the book “Gauge Fields, Knots and Gravity” by John Baez and Javier P. Muniain
[1], which is mainly concerned about the formalism of quantum gravity. During this process I became familiar
with concepts like deRham cohomology, Chern-Simons theory, Chern classes, knot theory, Palatini formalism,
the Wheeler-deWitt equation and many more. The current report only gives an overview, hence it does not
provide proof for every statement and avoids deeper, more detailed explanations.

1 Electromagnetism

1.1 deRham cohomology

The set of p-forms on a manifold M is denoted by Ωp(M), and the exterior derivative is denoted by d : Ωp(M) →
Ωp+1(M).

Definition 1.1 (Closed forms). A form ω ∈ Ωp(M) is closed, when dω = 0. The set of closed forms is denoted as
Zp(M).

Definition 1.2 (Exact forms). A form ω ∈ Ωp(M) is exact, when ∃ξ ∈ Ωp−1(M) : dξ = ω. The set of exact forms
is denoted as Bp(M).

Proposition 1.0.1. Zp(M) and Bp(M) are both vector spaces.

Proposition 1.0.2. All exact forms are closed, but the opposite is not necessarily true, and hence Bp(M) ⊆ Zp(M).
Moreover, d2 = 0.

Definition 1.3. The vector space
Hp(M) = Bp(M)/Zp(M) (1)

is called the p-th deRham cohomology group of M .

Definition 1.4 (Cohomologous forms). Two forms are cohomologous, if they differ by an exact form.

1.2 Maxwell equations

Let M be a 4-dimensional manifold with a semi-Riemannian metric g. The Maxwell equations are

dF = 0, (2)

⋆d ⋆ F = J, (3)

where F is a 2-form, J is a 1-form, ⋆ : Ωk(M) → Ω4−k(M) is the Hodge star operator. Note, that if F is exact,
i.e. there is a one-form A ∈ Ω1(M) (called vector potential) such that F = dA, dF = 0 is automatically satisfied.
Choosing local coordinates x0, x1, x2, x3, one can split F as

F = B + E ∧ dx0, (4)

where B ∈ Ω2(M) corresponds to the magnetic field and E ∈ Ω1(M) corresponds to the electric field.
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2 Gauge fields

2.1 Gauge groups and gauge transformations

Let E
π→M be a vector bundle. Let {Uα} be a cover of the base manifold M by open sets. By definition of a vector

bundle the fibers of the bundle are isomorphic to a single vector space V . Let G a group and ρ : G → End(V )
be a representation of the group G. One can “glue” together trivial bundles of the form Uα × V using transition
functions

gαβ : Uα ∩ Uβ → G, (5)

via the mapping
v(α) = ρ(gαβ)v(β), (6)

where (p, v(α)) ∈ Uα × V and (p, v(β)) ∈ Uβ × V . This construction is called a G-bundle and V is called the
standard fiber.

Definition 2.1 (Living in a group). Let G be a group. A linear transformation T : Ep → Ep lives in G, if it is of
the form

T : [p, v]α 7→ [p, ρ(g)v]α, (7)

for some g ∈ G.

Definition 2.2 (Living in a Lie algebra). Let g be a Lie algebra. A linear transformation T : Ep → Ep lives in g,
if it is of the form

T : [p, v]α 7→ [p, dρ(g)v]α, (8)

for some g ∈ G.

Remark. If T ∈ End(E) for a vector bundle E, we say that T lives in a Lie algebra g if it lives in the same Lie
algebra g in each point.

Definition 2.3 (Gauge invariance). Let s ∈ Γ(M) be a section of a G-bundle E
π→ M . Suppose that s satisfies

a differential equation. If ρ(g)s is also a solution for all g ∈ G, then the differential equation is called gauge
invariant.

Definition 2.4 (Holonomy). Let λ : [0, T ] →M be a smooth path from p to q on the manifold M . Let E
π→M be

a vector bundle with connection D. Then the operator which parallel transports any vector v ∈ Ep to Eq is called
holonomy:

H(λ,D) : Ep → Eq (9)

Remark. The holonomy H(λ,D) is a linear transformation.

Definition 2.5 (Wilson loop). Let D be a connection on a bundle E
π→M . Then the Wilson loop is defined as

W (λ,D) := tr(H(λ,D)), (10)

where H is the holonomy and λ : [0, t] →M is a loop, i.e. λ(0) = λ(t).

Lemma 2.1. The Wilson loop is gauge invariant.

Proof. Let γ : [0, T ] → M be a loop and let u : im γ → E be a vector field over γ. Let D,D′ be connections on

the bundle E
π→ M where D′ differs from D by a gauge transformation g ∈ G. The holonomy H(γ,D) is sending

u(0) to u(T ), and the holonomy with the other connection H(γ,D) is sending g(γ(0))u(0) to g(γ(T ))u(T ). We also
know that the holonomy is linear, hence

H(γ,D′) = g(γ(T ))H(γ,D)g(γ(0))−1. (11)

Since γ is a loop, g(γ(T )) = g(γ(0)), therefore

trH(γ,D′) = tr
(
g(γ(0))H(γ,D)g(γ(0))−1

)
= trH(γ,D), (12)

by cyclicity of the trace.
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Definition 2.6 (Curvature). Let v, w be vector fields on a manifold M . The curvature tensor is a End(E)-valued
2-form

F (v, w) = [Dv, Dw]−D[v,w]. (13)

Remark. A connection with vanishing curvature F (v, w)s = 0 for all vector fields v, w, s are called flat.

Definition 2.7 (Exterior covariant derivative). Let E
π→M a vector bundle. The exterior covariant derivative

is defined as

• dDs(v) = Dvs for s section on E,

• dD(s⊗ ω) = Dvs ∧ ω + s⊗ dω for s section on E and ω ∈ Ω(M).

Theorem 2.2 (Bianchi identity). The Bianchi identity states that

dDF = 0, (14)

where F is the curvature tensor and dD is the exterior covariant derivative.

2.2 Yang-Mills theory

Definition 2.8 (Yang-Mills Lagrangian). The Yang-Mills Lagrangian is defined as

LYM =
1

2
tr(F ∧ ⋆F ). (15)

Definition 2.9 (Yang-Mills action). The Yang-Mills action is defined as

SYM =
1

2

∫
M

tr(F ∧ ⋆F ). (16)

Proposition 2.2.1. The action principle δSYM = 0 recovers the Yang-Mills equations.

2.3 Chern classes

In contrast to the Yang-Mills action, we are trying to write down a metric-independent action. In 4 dimensions, it
could look something like

S(A) =

∫
M

tr(F ∧ F ) (17)

This motivates the following definition:

Definition 2.10 (Chern form). Let M be a 2n-dimensional manifold. Then the Chern form is defined as

tr(Fn). (18)

Proposition 2.2.2. The action

S(A) =

∫
M

tr(Fn) (19)

does not depend on the connection A, and it only depends on the bundle E
π→M .

Proof. We show this by varying S. Let n = dimM and write

δS =

∫
M

δ tr(Fn) (20)

= n

∫
M

δ tr(δF ∧ Fn−1) (21)

= n

∫
M

δ tr(dDδA ∧ Fn−1) (22)

= n

∫
M

δ tr(δA ∧ dDFn−1) = 0, (23)

since dDF
n−1 = 0 by the Bianchi identity.
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Proposition 2.2.3 (Chern forms are closed).

Proof.
d trF k = tr(dDF ∧ F k−1 . . . ) = 0, (24)

since dDF = 0 by Theorem 2.2.

Proposition 2.2.4 (Chern forms changes by an exact form). By varying the connection A, the Chern form changes
by an exact form.

Proof.
δ trF k = k tr(δF ∧ F k−1) = k tr(dDδA ∧ F k−1) = kd tr(δA ∧ F k−1). (25)

When integrating this and using Stokes’ theorem, it can be easily shown that the difference of two Chern forms
corresponding to different A vector potentials is exact.

Definition 2.11 (Chern class). Since the Chern forms are closed and their difference is exact by changing the
vector potential, the Chern form defines a cohomology class in H2k(M), called the Chern class.

Remark. In a special case, we will construct the form whose exterior derivative is the Chern form, which is called
the Chern-Simons form in Theorem 2.3, i.e. the Chern class is 0.

Proposition 2.2.5 (Integrality of the Chern class). If E
π→M is a complex vector bundle. Then

ik

(2π)kk!
trF k (26)

is an integral class, meaning that
ik

(2π)kk!

∫
M

trF k (27)

is an integer if M is compact and oriented.

Consider the case of electromagnetism, and let A be the vector potential on a U(1)-bundle E. When E is trivial,
it can be shown that trF = iB, where B is the 2-form from electromagnetism corresponding to the magnetic field.
For non-trivial bundles, by the integrality of the Chern class, we must have that∫

S2

B = 2πN, (28)

for some integer N ∈ Z and where B is now a generalization of the magnetic field for non-trivial bundles. This is
interesting because this seemingly predicts magnetic monopoles to exist, though these have not yet been observed
in Nature.

2.4 Chern-Simons theory

Theorem 2.3 (Chern-Simons form). Let E
π→ M be a trival vector bundle with connection D. The Chern form

tr(F ∧ F ) is exact, and

tr(F ∧ F ) = d tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(29)

Proof. Let As = sA. Then let us denote Fs := F (As) = dDAs = sdA + s2A ∧ A the curvature of the connection

As. We also know that dFs

ds = ddDAs

ds = d(sdDA)
ds = dDA. Then we can calculate

tr(F ∧ F ) =
∫ 1

0

d

ds
tr(Fs ∧ Fs)ds = 2

∫ 1

0

tr

(
dFs

ds
∧ Fs

)
ds = 2d

∫ 1

0

tr (A ∧ Fs) ds (30)

= 2d

∫ 1

0

tr
(
sA ∧ dA+ s2A ∧A ∧A

)
ds = d tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
(31)
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Figure 1: Local scenes of the link diagrams. The dashed line represents a boundary of a small disk on the plane
where the link is projected.

Definition 2.12 (Chern-Simons action). Let M ∼= R× S. The Chern-Simons action is defined as

SCS(A) =

∫
S

tr

(
A ∧ dSA+

2

3
A ∧A ∧A

)
(32)

This action is invariant under small gauge transformations, i.e. gauge transformations connected to the
identity e ∈ G. Under large gauge transformations, it changes by an integer multiple of 8π2, which is the
consequence of the integrality of the second Chern class.

2.5 Link invariants

Definition 2.13 (Knot). A knot is a submanifold of R3 diffeomorphic to S1.

Definition 2.14 (Link). A link L is a submanifold of R3 which is diffeomorphic to disjoint union of circles.

Definition 2.15. Two links are said to be ambient isotopic, if there is a smooth map

α : [0, 1]× R3 → R3, (33)

such that

• ∀t ∈ [0, 1] : αt := α(t, ·) : R3 → R3 is a diffeomorphism,

• α0 is the identity,

• α1 maps L to L′.

In order to investigate links, one usually investigates 2-dimensional projections of the links. On these diagrams
the overlapping of crossings are also denoted. The diagram should consist of certain so-called “local scenes” to
properly encode the information encoded in the link, demonstrated by Figure 1.

Theorem 2.4. In local frames, ambient isotopy corresponds to so-called Reidemeister moves given by

• 0: Deformation,

• I: Twisting and untwisting a string,

• II: Moving a string under another string, creating 2 crossings,

• III: Moving a string completely over or under a crossing.

This is demonstrated by Figure 2.

In order to classify knots, we need to find quantities which are invariant under ambient isotopy. Invariance under
ambient isotopy is equivalent to invariance under Reidemeister moves. This motivates the following definition:

Definition 2.16 (Link invariant). The link invariant is a function f : L →? which is invariant under ambient
isotopy, i.e. given any ambient isotopy α : [0, 1]× R3 → R3 we have

f(α(t, L)) = f(L) ∀t ∈ [0, 1]. (34)

There are some invariants, which are not invariant under the Reidemeister moves, but invariant under the
so-called framed Reidemeister moves. To define these, we need to define framed links.

5



0 I

II III

Figure 2: Reidemeister moves.

Figure 3: Modified first Reidemeister move I ′.

Definition 2.17 (Framed link). A framing on a link L is a vector field vp ∈ TpR3 on p ∈ L such that ∀p ∈ L : vp /∈
TpL.

Definition 2.18 (Ambient isotopy of framed links). Two framed links are isotopic if there is an ambient isotopy
taking the first link to the second link which also takes the framing from the first link to the second link’s framing.

In terms of framed links, the Reidemeister move I no longer corresponds to ambient isotopy, and one needs to
introduce a framed Reidemeister move labeled as I ′, seen in Figure 3. Hence, the framed Reidemeister links are 0,
I ′, II, III.

For defining several link invariants, we need to differentiate left-handed and right-handed crossings of oriented
links.

Definition 2.19 (Sign of a crossing). For an oriented link, we assign +1 to a crossing if it is right-handed, and −1
if it is left handed, and it will be denoted as sign(p) for a crossing p of L, and it is demonstrated by Figure 4.

Definition 2.20 (Writhe). Let L be a link. The writhe is simply equal to the sum of all signs of the crossing.

w(L) =
∑

crossing p

sign(p) (35)

Right-handed crossing
sign(p) = +1

Left-handed crossing
sign(p) = −1

Figure 4: Signs corresponding to crossings.
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Figure 5: Skein relations for defining the Kauffman bracket.

Proposition 2.4.1. The writhe is invariant under the framed Reidemeister moves.

Definition 2.21 (Kauffman bracket). The Kauffman bracket is a polynomial in variables A,B, d and written as

⟨L⟩ =: ⟨L⟩(A,B, d) :=
∑

states σ

d||σ||
∏

crossings p

σ(p), (36)

where σ is called the state and it is a possible final descendant after splicing the link with the Kauffman bracket
skein relations until we get to unknots as seen in Figure 5 The final number of unknots is ||σ|| and is called the
loop value.

Theorem 2.5. The Kauffman bracket is invariant under the framed Reidemeister moves if and only if

B = A−1, (37)

d = −(A2 +A−2), (38)

and by this choice the Kauffman bracket is also redefined to be a Laurent polynomial in A, and written as ⟨L⟩(A)
for any link L.

Using the Kauffman bracket, the Jones polynomial is relatively easy to define:

Definition 2.22 (Jones polynomial). The Jones polynomial for any link L is defined by the Laurent polynomial

VL(A) = (−A−3)w(L)⟨L⟩(A), (39)

where w(L) is the writhe of L.

To uncover the connection between the Kauffman bracket and Chern-Simons theory, we need to define vacuum
expectation values, which correspond to expectation values of physical observable quantities.

Definition 2.23 (Vacuum expectation value). Let A be the space of all G-connections, where G is the gauge group.
Let us consider a function f : A → R, which is called an observable. The vacuum expectation value of this
observable is

⟨f⟩ = 1

Z

∫
A
f(A)e

1
ℏSY M (A)DA, (40)

where

Z =

∫
A
e

1
ℏSY M (A)DA (41)

is called the partition function. 1

L(L) =
∫
A
W (γ̂1, A) . . .W (γ̂n, A)e

ik
4πSCS(A)DA (42)

and for the fundamental representation of U(1) one obtains

L(L) = ei
π
k ω(L), (43)

1The term DA does not necessarily correspond to a well-defined measure. However, in theoretical physics these kinds of “path
integrals” are frequently used.
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where ω(L) is the writhe of the link. When one considers the fundamental representation of SU(2), one obtains

L(L) = ⟨L⟩, (44)

where A = q
1
4 and q = ei

2π
k+2 .

3 Gravity

3.1 Einstein-Hilbert action

Definition 3.1 (Riemann curvature tensor). Let u, v be vector fields on M . Then

R(u, v) = ∇u∇v −∇v∇u −∇[u,v] (45)

.

The components of the Riemann curvature tensor can be written by

Ri
jkl = g(∂i, R(∂j , ∂k)∂l). (46)

Definition 3.2 (Ricci curvature tensor). The Ricci curvature tensor is defined2 as

Rij := Rk
ikj . (47)

Definition 3.3 (Ricci scalar). The Ricci scalar defined by

R := gijRij , (48)

where gij := (g−1)ij denotes the components of the inverse metric tensor.

Definition 3.4. The Einstein-Hilbert action S is defined as

S(g) =

∫
M

R vol . (49)

Proposition 3.0.1. If the variation on the metric tensor g vanishes outside a compact set, the following implication
is true:

δS = 0 =⇒ Rαβ − 1

2
Rgαβ = 0, (50)

which is called Einstein’s equations.

3.2 Palatini formalism

We aim to rewrite the Einstein-Hilbert action

S(g) =

∫
M

R vol, (51)

so that it is not a function of the metric, but a function of the connection and a “frame field”.

Definition 3.5 (Frame field). A frame field of the tangent bundle TM is a vector bundle isomorphism (or
trivialization)

e :M × Rn → TM (52)

sending each fiber {p} × Rn (where p ∈M) to the corresponding tangent space TpM .

Remark. If dimM = 4, e is also called a tetrad.

Remark. Since the frame field is a vector bundle isomorphism by definition, it has an inverse e−1 : TM →M ×Rn.

2For repated upper and lower indices, the Einstein summation convention is used.
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Lemma 3.1 (Basis of sections). Given a section s : M → Rn, there is a natural basis of sections ξ1, . . . , ξn :
M → Rn defined by

ξ1(p) = (1, 0, . . . , 0, 0), (53)

ξ2(p) = (0, 1, . . . , 0, 0), (54)

... (55)

ξn(p) = (0, 0, . . . , 0, 1), (56)

(57)

so that we can write the section s as
s = sIξI (58)

Remark. Here Rn is called the internal space, and we denote internal indices by latin upper-case letters starting
from I such as I, J,K,L.

Definition 3.6 (Canonical inner product on local sections). Given two sections s, s′ on the bundle M × Rn, we
define the canonical inner product as

η :M × Rn ×M × Rn → R (59)

η(s, s′) = ηIJs
Is′J , (60)

where ηIJ ∈ Rn×n is the Minkowski metric.

Definition 3.7 (Orthonormal frame field). A frame field e :M × Rn → TM is orthonormal, if

g(e(ξI), e(ξJ)) = ηIJ (61)

Proposition 3.1.1. For any s, s′ sections on the bundle M × Rn and orthonormal frame field e :M × Rn → TM
we have that

g(e(s), e(s′)) = η(s, s′). (62)

Definition 3.8 (Lorentz connection). Let s, s′ sections on the bundle M ×Rn and v vector field on M . A Lorentz
connection is any connection which satisfies

vη(s, s′) = η(Dvs, s
′) + η(s,Dvs

′). (63)

Let us transfer a Lorentz connection Dv from the trivial bundleM×Rn to the tangent bundle TM via the frame
field e. Then we get an “imitation connection” ∇̃. With this, we can define the “imitation Riemann curvature
tensor” as the following:

Definition 3.9 (Imitation Riemann curvature tensor).

R̃γ δ
αβ = F IJ

αβe
γ
I e

δ
J (64)

Definition 3.10 (Palatini action). The Palatini action is given by

S(A, e) =

∫
M

eαI e
β
j F

IJ
αβ vol (65)

Proposition 3.1.2. Varying the frame field e in the Palatini action we get that

δeS = 0 =⇒ R̃αβ − 1

2
R̃gαβ = 0. (66)

Proposition 3.1.3. Varying the Lorentz connection D in the Palatini action we get that

δDS = 0 =⇒ ∇̃ = ∇. (67)
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3.3 ADM formalism

Consider the case of Lorentzian manifolds which are diffeomorphic to R× S, where S is a 3-dimensional manifold
representing space and t ∈ R represents time, i.e.

ϕ :M → R× S. (68)

We could define a time coordinate on M by pulling back t, i.e.

τ = ϕ∗t. (69)

Σ ⊂ M is called a slice of M if it equals {τ = constant}. There are two choices for the normal vector field n for
which n ⊥ Σ, and from now on assume that this choice is fixed. One can derive formulas relating the manifold M
and the submanifold Σ, which are called the Gauss-Codazzi equations:

R(∂i, ∂j)∂k = (3∇iKjk − 3∇jKik)n+ (3Rm
ijk +KjkK

m
i −KikK

m
j )∂m, (70)

where 3∇ is the intrinsic connection on Σ, 3R is the Riemann curvature tensor on Σ and Kij := −g(∇i∂j , n) is the
extrinsic curvature. This means that the Gauss-Codazzi equation is a constraint on the metric.

Now we aim to rewrite the Einstein-Hilbert Lagrangian in terms of the intrinsic metric tensor 3gij . From now
on, denote 3gij = qij . We can simply split ∂τ as

∂τ = −g(∂τ , n)n+ (∂τ + g(∂τ , n)n) =: Nn+ N⃗ , (71)

where n ⊥ Σ, and where N := −g(∂τ , n) is called the lapse function and N⃗ = ∂τ + g(∂τ , n)n is the shift vector.
The Einstein-Hilbert Lagrangian density is given by

L = det(q)
1
2N(3R+ tr(K2)− tr(K)2). (72)

The conjugate momentum is defined by

pij =
∂L
∂qij

(73)

which we can use to define the Hamiltonian density by

H = pij q̇
ij − L = det(q)

1
2 (NC −N iCi), (74)

where

C = −3R+ det(q)−1

(
tr(p2)− 1

2
tr(p)2

)
= −2Gµνn

µnν (75)

Ci = −23∇j(det(q)−
1
2 pij) = −2Gµin

µ. (76)

This implies that for the Hamiltonian we get

H =

∫
Σ

Hd3x = 0, (77)

which sets a constraint on the metric tensor.

3.4 Wheeler-deWitt equation

Now we want to find a Hilbert space for the theory on which we could find counterparts to qij and pij which are
operators on this Hilbert space, and denoted by q̂ij and p̂

ij . This is called quantization, and it is a common procedure
in quantum theory in order to find predictions for quantum mechanical phenomena by classical mechanical analogy.
This is highly non-obvious, and the book even states that it is not even clear, what the Hilbert space should be, and
just pretends that we have a Hilbert space. Undeterred, let us denote Met(Σ) the set of all metric tensor fields on Σ,
let the Hilbert space H := L2(Met(Σ)) be the square-integrable functions on Met(Σ) (even if it is not well-defined)
and let ψ ∈ H and suppose

q̂ij(x)ψ(q) = gij(x)ψ(q), (78)

p̂ij(x)ψ(q) = −i ∂

∂qij(x)
ψ(q) (79)
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where gij ∈ Met(Σ), x ∈ Σ, and ∂
∂qij(x)

is a functional derivative. With these operators, we can quantize the

Hamiltonian, i.e. exchange all the qij , p
ij variables to q̂ij and p̂ij . It is not clear at all, why this should work.

The functions qij , p
ij are obviously commuting, while q̂ij and p̂ij do not commute. This yields operator ordering

ambiguities, but we will ignore dealing with these now. By quantizing the Hamiltonian with a certain operator
ordering, we acquire the Wheeler-DeWitt equation:

Ĥψ = 0, (80)

where Ĥ =
∫
Σ
NĈ + N iĈi det(q)

1
2 d3x and Ĉ, Ĉi are the quantized versions of C,Ci. There are several problems

regarding this equation

• In this form, no solution has been found to this equation.

• The Hilbert space is not well defined, and it is not clear at all that one has a well-defined inner product. This
is called the inner product problem.

• Any operator commutes with the quantized Hamiltonian H, which yields dynamics that is invariant under
time translation. This is called the problem of time.

3.5 Relation between Chern-Simons theory and the Wheeler-DeWitt equation

One can show that Chern-Simons theory is intimately related to the Wheeler-DeWitt equation in a sense that the
Chern-Simons action can be used to obtain a solution for the Wheeler-DeWitt equation. We begin by complexifying
the theory and introducing new variables, the so-called Ashtekar variables.

Definition 3.11 (Complexified tangent bundle). The complexified tangent bundle CTM →M is a vector bundle
whose fiber at each point p ∈M is C⊗ TpM .

As in the Palatini formalism, there is a complexified imitation tangent bundle M × C4 and a complex frame
field e : M × C4 → CTM . Moreover, we can define an internal metric η : M × C4 ×M × C4 → C. Furthermore,
this construction allows us to define a connection on the imitation tangent bundle as a End(C4)-valued 1-form.
Similarly to the Palatini formalism, we can define a Lorentz connection

Definition 3.12 (Lorentz connection). A Lorentz connection A is a End(C4)-valued 1-form if

AIJ
α = −AJI

α . (81)

Due to this property, we can think about a Lorentz connection as a Λ2C4-valued 1-form.

Analoguously to the Hodge star operator in the tangent bundle, one can define an internal Hodge star operator
on the imitation tangent bundle as

∗T IJ =
1

2
εIJKLT

KL. (82)

Using the internal Hodge star operator one can decompose a Lorentz connection A into self-dual (+A) and anti-
self-dual (−A) parts as

A = +A+ −A. (83)

Proposition 3.1.4. The curvature of a self-dual Lorentz-connection is self-dual.

By reformulating general relativity using these variables, one can rewrite the Einstein-Hilbert Lagrangian to
depend on the self-dual connection A and the complexified frame field, similarly to the Palatini formalism.

Definition 3.13 (Self-dual action). The self-dual action is defined as

SSD(+A, e) =

∫
M

eαI e
β
J
+F IJ

αβ vol (84)

Let us now work on the spacetime manifold M with a spacelike slice Σ, similarly to the ADM formalism. A self-
dual connection +AIJ

α on M can be restricted to Σ, where it is again self-dual, and is denoted by AIJ
i .3 Continuing

this, one eventually acquires a theory where the self-dual connections form the configuration space of the theory
(i.e. it corresponds to the “position” in the Lagrangian formalism) and its momentum conjugate is related to the
complexified frame field. Using these new Ashtekar variables, one can discover a surprising connection between
Chern-Simons theory and quantum gravity.

3The plus sign is deliberately dropped here, it is customary.
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Theorem 3.2. Let us define the Chern-Simons state as

ΨCS(A) = e−
6
ΛSCS(A), (85)

where A is the connection on the manifold Σ and Λ ∈ R\{0} is called the cosmological constant. The Chern-Simons
state satisfies the equation

ĈjΨCS(A) = ĈΨCS(A) = 0. (86)

Remark. The “measure” ΨCS(A)DA corresponds to the Kauffman bracket link invariant as seen in Section 2.5.
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