Current progress on the single-coordinate translation-invariant of product measure problem

Author: Nicha Khenkhok
Supervisor: Gábor Sági, PhD.
December 23, 2022

Introduction

PRODUCT MEASURE SPACE

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces.
A product measure space is the space $X \times Y$ equipped with

- the σ-algebra $\mathcal{A} \otimes \mathcal{B}$ generated by the $\operatorname{set}\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
- a product measure $\lambda: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathbb{R}_{0}^{+}$.

Product measure

A measure $\lambda: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathbb{R}_{0}^{+}$is a product measure of μ and ν if for all $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$,

$$
\lambda(A \times B)=\mu(A) \nu(B) .
$$

DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Disclaimer: product measure is not necessarily unique. Let
$E \in \mathcal{A} \otimes \mathcal{B}$, we define
The primitive product measure:

$$
\pi(E)=\inf \left\{\sum_{n=1}^{\infty} \mu\left(A_{n}\right) \nu\left(B_{n}\right): \mathcal{A}_{n} \in \mathcal{A}, B_{n} \in \mathcal{B}, E \subseteq \bigcup_{n=1}^{\infty} A_{n} \times B_{n}\right\} .
$$

The completely locally determined (c.l.d) product measure:

$$
\rho(E)=\sup \{\pi(E \cap(A \times B)): \mathcal{A} \in \mathcal{A}, B \in \mathcal{B} ; \mu(A), \nu(B)<\infty\} .
$$

DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Suppose that

- $X, Y=[0,1]$;
- $\mathcal{A}=$ Lebesgue σ-algebra, $\mathcal{B}=\mathcal{P}([0,1])$;
- $\mu=$ Lebesgue measure, $\nu=$ counting measure.

Consider the set $\Delta=\{(x, x): x \in[0,1]\}$ in $\mathcal{A} \otimes \mathcal{B}$

$$
\Delta=\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty}\left[\frac{k}{n}, \frac{k+1}{n}\right] \times\left[\frac{k}{n}, \frac{k+1}{n}\right]
$$

Then, the primitive product measure gives $\pi(\Delta)=+\infty$ and the c.l.d measure gives $\rho(\Delta)=0$.

INTRODUCTION

Preliminary check

PRELIMINARY CHECK

We need that any vertical translate $B+c$ of B is in the product σ-algebra $\mathcal{A} \otimes \mathcal{B}$. Its proof utilises ideas from ...

Construction of a generated σ-ALGebra

Let X be a set and $\{\emptyset, X\} \subseteq \mathcal{C} \subseteq \mathcal{P}(X)$ be a family of (generating) sets. Let α be an ordinal and λ be a limit ordinal. Define

1. $\mathcal{F}_{0}:=\mathcal{C}$;
2. $\mathcal{F}_{\alpha+1}:=\mathcal{F}_{\alpha} \cup\left\{\bar{F}: A \in \mathcal{F}_{\alpha}\right\} \cup\left\{\bigcup_{n \in \mathbb{N}} F_{n}: F_{n} \in \mathcal{F}_{\alpha}\right\}$ and
3. $\mathcal{F}_{\lambda}:=\bigcup_{\alpha<\lambda} F_{\alpha}$.

Then, $\mathcal{F}_{\omega_{1}}$ is the generated by \mathcal{C}.

Ultraproduct construction

ULTRAFILTER AND ULTRAPRODUCT

Ultrafilter

Let X be a non-empty set and $\mathcal{P}(X)$ be its power set. Then, the non-empty family $\mathcal{F} \subsetneq \mathcal{P}(X)$ is called an ultrafilter on X if

- $\emptyset \notin \mathcal{F}$;
- for every sets $A, B \in \mathcal{F}, A \cap B \in \mathcal{F}$;
- for every $B \in \mathcal{P}(X)$ and $A \in \mathcal{F}$, if $A \subseteq B$ then $B \in \mathcal{F}$, and
- for any $A \in \mathcal{P}(X)$, we have that either $A \in \mathcal{F}$ or $X \backslash A \in \mathcal{F}$.

Our ultrafilter \mathcal{F} will be built from the family of finite measure sets in the product measure space.

ULTRAFILTER AND ULTRAPRODUCT

Ultraproduct

Let I be a non-empty index set. Let X_{i} be sets, $i \in I$, and \mathcal{F} be an ultrafilter on I. Let $u, v: I \rightarrow \bigcup_{i \in I} X_{i}$ be elements of the space $\prod_{i \in I} X_{i}$. We define the ultraproduct of $\left\{X_{i}\right\}_{i \in I}$ under \mathcal{F} to be the space $\prod_{i \in I} X_{i}$ under the equivalence relation

$$
u \equiv v \Longleftrightarrow\{i: u(i)=v(i)\} \in \mathcal{F} .
$$

We denote the ultraproduct by $\prod_{i \in I} X_{i} / \mathcal{F}$.
Each X_{i} will be finite measure sets in $\mathcal{A} \otimes \mathcal{B}$ with the measure $(\mu \times \nu)_{i}$ obtained through the restriction of $\mu \times \nu$ to X_{i}.

The current progress via the ultraproduct structure

σ-ALGEBRA AND MEASURE

Question 1.
What is the copy of our σ-algebra in the embedded measure space?
Plan: work with decomposable sets and κ-regularity.

Decompoasble sets

Let $X \subseteq \prod_{i \in I} X_{i} / \mathcal{F}$ be a subset. We say that X is decomposable iff for all $i \in I$, there exists $A_{i} \subseteq X_{i}$ such that $X=\prod_{i \in I} A_{i} / \mathcal{F}$.

The family of decomposable sets are closed under complementation.

σ-ALGEBRA AND MEASURE

κ-REGULARITY

Let I a non-empty index set. Let κ be an infinite cardinal, and \mathcal{F} be an ultrafilter. We say \mathcal{F} is κ-regular iff there exists a subfamily $E \subseteq \mathcal{F}$ where $|E|=\kappa$ is such that for all $i \in I$ we have $\{e \in E: i \in e\}$ is finite.

If our ultrafilter is κ-regular, then we have strong control on the κ-complete Boolean algebra generated by the family of decomposable sets.

σ-ALGEBRA AND MEASURE

Question 2.
How can we define the measure within the ultraproduct construction?

Ultralimit

Let \mathcal{F} be an ultrafilter on I. Let $\left\{a_{i}\right\}_{i \in I} \subseteq \mathbb{R}$ be a sequence of real numbers. We say that a is the ultralimit, denoted by $a:=\lim _{\mathcal{F}} a_{i}$ if for every $\varepsilon>0$ we have

$$
\left\{i \in I:\left|a_{i}-a\right|<\varepsilon\right\} \in \mathcal{F} .
$$

Define the measure for any decomposable set $X=\prod_{i \in I} A_{i} / \mathcal{F}$ as

$$
\mu(X)=\lim _{\mathcal{F}}(\mu \times \nu)_{i}\left(A_{i}\right)
$$

Current progress

THE MEASURE IS INVARIANT UNDER TRANSLATION BY A CONSTANT
Let (X, \mathcal{A}, μ) be a measure space, and $(\mathbb{R}, \mathcal{B}, \nu)$ be a real measure space equipped with the Lebesgue measure.
Let $(X \times \mathbb{R}, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ be a product measure space.
Then, for any $c \in \mathbb{R}$ and $E \in \mathcal{A} \otimes \mathcal{B}$

$$
\mu \times \nu(E+c)=\mu \times \nu(E) .
$$

- The statement may be proven via the ultraproduct construction in case where (X, \mathcal{A}, μ) is a σ-finite measure space.

The next step

FUTURE WORK

The measure is invariant under translation by a constant Let (X, \mathcal{A}, μ) be a measure space containing an atom of infinite measure, and $(\mathbb{R}, \mathcal{B}, \nu)$ be a real measure space equipped with the Lebesgue measure.
Let $(X \times \mathbb{R}, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ be a product measure space.
Then, for any $c \in \mathbb{R}$ and $E \in \mathcal{A} \otimes \mathcal{B}$

$$
\mu \times \nu(E+c)=\mu \times \nu(E) .
$$

Thank you for your attention!

References

目 C.C. Chang and H.J. Keisler (1990) Model Theory, Dover Publications, 3rd ed.
T
David H. Fremlin. (2001) Measure Theory. Vol. 2. Colchester, UK: Torres Fremlin.
David Ross (2013) Lecture notes: Transfinite induction for measure theory, https://math.hawaii.edu/~ross/ Math671/lecnotes_tfinduction.pdf, Last visited: 16 December 2022.

