DIRECTED STUDIES 1

Superlinear convergence of the conjugate gradient method for elliptic partial differential equations with unbounded reaction coefficient

Author:
Sebastián Josue Castillo
Adviser:
Dr. Karátson János

Budapest - May 16, 2022

1 Summary

We consider a self-adjoint second order elliptic boundary value problem with variable zeroth order coefficient and its finite element discretization. In this project, we study the mesh-independent superlinear convergence of the preconditioned conjugate gradient method (CGM) for this type of problem. Our goal is to find an eigenvalue-based estimation of the rate of the superlinear convergence when the reaction coefficient of the elliptic boundary value problem belongs to a general Sobolev space. This work extends the results done in [1] where the coefficient was assumed to be continuous.

2 General framework

Let H be a separable Hilbert space and let us consider a linear operator equation

$$
\begin{equation*}
B u=g \tag{1}
\end{equation*}
$$

with some $g \in H$, under the following assumptions
(i) The operator B is decomposed as $B=S+Q$ where S is a self-adjoint operator in H with dense domain D and Q is a compact self-adjoint operator defined on the domain H.
(ii) There exists $k>0$ such that $\langle S u, u\rangle \geq k\|u\|^{2}, u \in D$.
(iii) $\langle Q u, u\rangle \geq 0, u \in D$.

We recall that the energy space H_{S} is the completion of D under the energy inner product $\langle u, v\rangle_{S}=\langle S u, v\rangle$, and the corresponding norm is denoted by $\|\cdot\|_{S}$. Assumptions (ii) implies $H_{S} \subset H$. Moreover, assumptions $(i)-(i i)$ on S imply that $\mathrm{R}(S)=H$, hence $S^{-1} Q$ makes sense.

We replace equation (1) by its preconditioned form $\left(I+S^{-1} Q\right) u=S^{-1} g$. This is equivalent to the weak formulation

$$
\begin{equation*}
\langle u, v\rangle_{S}+\langle Q u, v\rangle=\langle g, v\rangle, \quad \forall v \in H_{s} . \tag{2}
\end{equation*}
$$

Since by assumption (iii) the bilinear form on the left is coercive on H_{S}, by the Lax-Milgram theorem, there exists a unique solution $u \in H_{S}$ of (2).

Now equation (2) is solved numerically using a Galerkin discretization.
Construction of the discretization. Let $V=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{k}\right\} \subset H_{S}$ be a given finite-dimensional subspace,

$$
\mathbf{S}=\left\{\left\langle\varphi_{i}, \varphi_{j}\right\rangle_{S}\right\}_{i, j=1}^{k} \quad \text { and } \mathbf{Q}=\left\{\left\langle Q \varphi_{i}, \varphi_{j}\right\rangle\right\}_{i, j=1}^{k}
$$

the Gram matrices corresponding to S and Q. We look for the numerical solution $u_{V} \in V$ of equation (2) in V, i.e., for which

$$
\begin{equation*}
\left\langle u_{V}, v\right\rangle_{S}+\langle Q u, v\rangle=\langle g, v\rangle, \quad \forall v \in V . \tag{3}
\end{equation*}
$$

Then $u_{V}=\sum_{i, j=1}^{k} c_{j} \varphi_{j}$, where $\mathbf{c}=\left(c_{1}, \ldots, c_{k}\right) \in \mathbb{R}^{k}$ is the solution of the system

$$
\begin{equation*}
(\mathbf{S}+\mathbf{Q}) \mathbf{c}=\mathbf{b} \tag{4}
\end{equation*}
$$

with $\mathbf{b}=\left\{\left\langle g, \varphi_{j}\right\rangle\right\}_{j=1}^{k}$ depending on V. The matrix $\mathbf{S}+\mathbf{Q}$ is SPD.
By using matrix S as the preconditioner for the system (4), we shall work with the preconditioned system

$$
\begin{equation*}
\left(\mathbf{I}+\mathbf{S}^{-1} \mathbf{Q}\right) \mathbf{c}=\tilde{\mathbf{b}}, \tag{5}
\end{equation*}
$$

where $\tilde{\mathbf{b}}=\mathbf{S}^{-1} \mathbf{b}$ and \mathbf{I} is the identity matrix in \mathbb{R}^{k}. Then we apply the CGM for the solution of this new system.

The next step is to find superlinear convergence rates for the CGM. Let $\mathbf{A}=\left(\mathbf{I}+\mathbf{S}^{-1} \mathbf{Q}\right)$ and $\mathbf{E}=\mathbf{S}^{-1} \mathbf{Q}$. Assume that $\lambda_{j}=\lambda_{j}(\mathbf{A})$ are ordered according to $\left|\lambda_{1}-1\right| \geq\left|\lambda_{2}-1\right| \geq \cdots \geq\left|\lambda_{k}-1\right|$. Then $\lambda_{j}(\mathbf{E})=\lambda_{j}-1$ and the error vectors $e_{k}=c_{k}-c$ satisfy [2]

$$
\begin{equation*}
\left(\frac{\left\|e_{k}\right\|_{A}}{\left\|e_{0}\right\|_{A}}\right)^{1 / k} \leq \frac{2\left\|\mathbf{A}^{-1}\right\|}{k} \sum_{j=1}^{k}\left|\lambda_{j}\left(\mathbf{S}^{-1} \mathbf{Q}\right)\right|, \quad k=1,2, \ldots, n \tag{6}
\end{equation*}
$$

The next result allows us to give a convergence rate for the upper bound of (6) through the eigenvalues of the operator $Q_{S}=S^{-1} Q$.

Theorem 1. For any $k=1,2, \ldots, n$

$$
\begin{equation*}
\sum_{j=1}^{k}\left|\lambda_{j}\left(\mathbf{S}^{-1} \mathbf{Q}\right)\right| \leq \sum_{j=1}^{k} \lambda_{j}\left(S^{-1} Q\right) \tag{7}
\end{equation*}
$$

Proof. Let $\lambda_{m}=\lambda_{m}\left(\mathbf{S}^{-1} \mathbf{Q}\right)$. Let $\mathbf{c}^{m}=\left(c_{1}^{m}, \ldots, c_{k}^{m}\right) \in \mathbb{R}^{k}$ be the corresponding eigenvectors. Then

$$
\begin{equation*}
\mathbf{Q c}^{m}=\lambda_{m} \mathbf{S c} \tag{8}
\end{equation*}
$$

for all m. Since $\mathbf{Q}_{\boldsymbol{S}}=\mathbf{S}^{-1} \mathbf{Q}$ is self-adjoint with respect to the \mathbf{S}-inner product, therefore all eigenvalues are $\lambda_{1}, \ldots, \lambda_{k}$, counting with multiplicity. Furthermore, the corresponding eigevectors are orthogonal in \mathbb{R}^{k} with respect to the \mathbf{S}-inner product. Let us choose them such that they are also orthonormal:

$$
\mathbf{S} c^{m} \cdot c^{l}=\delta_{m l}, \quad m, l=1, \ldots, k
$$

where $\delta_{m l}$ is the Kronecker delta.
Let $u_{m}=\sum_{i=1}^{k} c_{i}^{m} \varphi_{i} \in V, m=1, \ldots, k$. Then for all $m, l=1, \ldots, k$ we have that

$$
\begin{equation*}
\left\langle u_{m}, u_{l}\right\rangle_{S}=\sum_{i, j=1}^{k}\left\langle\varphi_{i}, \varphi_{j}\right\rangle_{S} c_{i}^{m} c_{j}^{l}=\mathbf{S} c^{m} \cdot c^{l} \tag{9}
\end{equation*}
$$

hence (8) implies that u_{1}, \ldots, u_{k} form an orthonormal basis in $V \subset H_{S}$ with respect to the H_{S}-inner product. Then (8), (9) yield

$$
\mathbf{Q} c^{m} \cdot c^{l}=\lambda_{m} \delta_{m l}, \quad m, l=1, \ldots, k
$$

Hence, we obtain

$$
\begin{equation*}
\left\langle Q_{S} u_{m}, u_{l}\right\rangle_{S}=\lambda_{m} \delta_{m l}, \quad m, l=1, \ldots, k \tag{10}
\end{equation*}
$$

Using Corollary 3.3 of [3] and since $Q_{S}=S^{-1} Q$ is a compact self-adjoint operator on the Hilbert space H_{S}, we have that

$$
\begin{equation*}
\sum_{m=1}^{k}\left|\left\langle Q_{S} u_{m}, u_{m}\right\rangle_{S}\right| \leq \sum_{m=1}^{k} s_{j}\left(Q_{S}\right)=\sum_{m=1}^{k} \lambda_{j}\left(Q_{S}\right) \tag{11}
\end{equation*}
$$

where $s_{j}\left(S^{-1} Q\right)$ are the singular values of $S^{-1} Q$. Then, by (10) and we arrive at

$$
\sum_{m=1}^{k}\left|\lambda_{m}\right|=\sum_{m=1}^{k}\left|\left\langle Q_{S} u_{m}, u_{m}\right\rangle_{S}\right| \leq \sum_{m=1}^{k} \lambda_{j}\left(Q_{S}\right)
$$

An immediate consequence of this theorem is the following mesh-independent bound.
Corollary 1. For any $k=1,2, \ldots, n$

$$
\begin{equation*}
\left(\frac{\left\|e_{k}\right\|_{A}}{\left\|e_{0}\right\|_{A}}\right)^{1 / k} \leq \frac{2\left\|A^{-1}\right\|}{k} \sum_{j=1}^{k} \lambda_{j}\left(S^{-1} Q\right), \quad k=1,2, \ldots, n . \tag{12}
\end{equation*}
$$

Proof. By [4, Prop. 4.1] we are able to estimate $\|\mathbf{A}\|$ to obtain

$$
\left\|\left(\mathbf{I}+\mathbf{S}^{-1} \mathbf{Q}\right)^{-1}\right\| \leq\left\|\left(I+S^{-1} Q\right)^{-1}\right\|
$$

This, together with the previous result and (6) completes the proof.
Since $\left|\lambda_{1}\left(S^{-1} Q\right)\right| \geq\left|\lambda_{2}\left(S^{-1} Q\right)\right| \geq \cdots \geq 0$ and the eigenvalues tend to 0 , the convergence factor is less than 1 for k sufficiently large. Hence the upper bound decreases as $k \rightarrow \infty$ and we obtain superlinear convergence rate.

3 Main result

Let $N \geq 2, p>2$ and $\Omega \subset \mathbb{R}^{N}$ be a bounded domain. We consider the elliptic problem

$$
\left\{\begin{array}{l}
-\operatorname{div}(G \nabla u)+\eta u=g \tag{13}\\
u_{\partial \Omega}=0
\end{array}\right.
$$

under the standard assumptions listed below. We shall focus in the case when the principal part has constant or separable coefficients, i.e.,

$$
G(x) \equiv G \in \mathbb{R}^{N} \times \mathbb{R}^{N} \quad \text { or } G(x) \equiv \operatorname{diag}\left\{G_{i}\left(x_{i}\right)\right\}_{i=1}^{N}
$$

whereas $\eta=\eta(x)$ is a general variable (i.e. nonconstant) coefficient. Let problem (13) satisfy the following assumptions:
(i) The symmetric matrix-valued function $G \in \mathrm{C}^{1}\left(\bar{\Omega}, \mathbb{R}^{N} \times \mathbb{R}^{N}\right)$ satisfies

$$
G(x) \xi \cdot \xi \geq m|\xi|^{2}
$$

for all $\xi \in \mathbb{R}^{N}, m$ independent of ξ.
(ii) $\eta \in \mathrm{L}^{p /(p-2)}(\Omega)$.
(iii) $\partial \Omega$ is piecewise C^{2} and Ω is locally convex at the corners.
(iv) $g \in \mathrm{~L}^{2}(\Omega)$.

Then problem (13) has a unique weak solution in $\mathrm{H}_{0}^{1}(\Omega)$.
Let $V_{h} \subset \mathrm{H}_{0}^{1}(\Omega)$ be a given FEM subspace. We look for the numerical solution u_{h} of (13) in V_{h} :

$$
\begin{equation*}
\int_{\Omega}\left(G \nabla u_{h} \cdot \nabla v+d u_{h} v\right)=\int_{\Omega} g v, \quad v \in V_{h} . \tag{14}
\end{equation*}
$$

The corresponding linear algebraic system has the form

$$
\left(\mathbf{G}_{h}+\mathbf{D}_{h}\right) \mathbf{c}=\mathbf{g}_{h},
$$

where \mathbf{G}_{h} and \mathbf{D}_{h} are the corresponding stiffness and mass matrices, respectively. We apply the matrix \mathbf{G}_{h} as preconditioner, thus the preconditioned form of (14) is given by

$$
\begin{equation*}
\left(\mathbf{I}_{h}+\mathbf{G}_{h}^{-1} \mathbf{D}_{h}\right) \mathbf{c}=\tilde{\mathbf{g}}_{h} \tag{15}
\end{equation*}
$$

with $\tilde{\mathbf{g}}_{h}=\mathbf{G}_{h}^{-1} \mathbf{g}_{h}$. Now, we apply the CGM for the system (15).
Theorem 2. Let $2<p<\frac{2 N}{N-2}$, and m the lower spectral bound of G given by assumption (i). Then there exists $\boldsymbol{C}>0$ such that for all $k \in \mathbb{N}$

$$
\begin{equation*}
\left(\frac{\left\|e_{k}\right\|_{A}}{\left\|e_{0}\right\|_{A}}\right)^{\frac{1}{k}} \leq \boldsymbol{C} k^{-\frac{1}{s}}, \tag{16}
\end{equation*}
$$

where $\alpha=\frac{1}{N}-\frac{1}{2}+\frac{1}{p}$ and $s>\frac{1}{\alpha}$.
Proof. Let us consider the Hilbert space $L^{2}(\Omega)$ endowed with the usual inner product. Let $D=\mathrm{H}_{0}^{1}(\Omega) \cap \mathrm{H}^{2}(\Omega)$. We define the operators

$$
S u \equiv-\operatorname{div}(G \nabla u), \quad u \in D \quad \text { and } \quad Q u \equiv d u, \quad u \in \mathrm{H}_{0}^{1}(\Omega)
$$

and since $p<2^{*}=\frac{2 N}{N-2}$, the embedding $I: \mathrm{H}_{0}^{1}(\Omega) \rightarrow \mathrm{L}^{p}(\Omega)$ is compact, in particular, there exists $c>0$ such that for all $u \in \mathrm{H}_{0}^{1}(\Omega)$

$$
\|u\|_{L^{p}(\Omega)} \leq c\|u\|_{\mathrm{H}_{0}^{1}(\Omega)} .
$$

Then

$$
\langle S u, u\rangle \geq m \int_{\Omega}|\nabla u|^{2} \geq m v \int_{\Omega} u^{2}, \quad u \in D,
$$

where v is the Sobolev constant. By assumption (iii) the symmetric operator S maps onto $L^{2}(\Omega)$. Furthermore,

$$
\begin{align*}
\left\|Q_{S} v\right\|_{H_{S}}=\sup _{\|u\|_{S}=1}\left|\left\langle Q_{S} v, u\right\rangle_{S}\right| & =\sup _{\|u\|_{S}=1}\langle Q v, u\rangle \\
& =\sup _{\|u\|_{S}=1} \int_{\Omega} \eta v u \\
& \leq \sup _{\|u\|_{S}=1}\left(\int_{\Omega}|\eta|^{\frac{p}{p-2}}\right)^{\frac{p-2}{p}}\left(\int_{\Omega}|v|^{p}\right)^{\frac{1}{p}}\left(\int_{\Omega}|u|^{p}\right)^{\frac{1}{p}} \tag{17}\\
& \leq c \sup _{\|u\|_{S}=1}\|\eta\|_{L^{p /(p-2)}(\Omega)}\|v\|_{L^{p}(\Omega)}\|u\|_{S} \\
& =C\|v\|_{L^{p}(\Omega)}
\end{align*}
$$

where $C=c\|\eta\|_{L^{p /(p-2)}(\Omega)}$. Here we apply the extension of Hölder's inequality ([5, Th. 4.6]) with

$$
1=\frac{1}{p}+\frac{1}{p}+\left(\frac{p-2}{p}\right)
$$

Hence $Q_{S}=S^{-1} Q$ is compact and self-adjoint in $H_{S}=\mathrm{H}_{0}^{1}(\Omega)$ with $\langle u, v\rangle_{S}=\int_{\Omega} G \nabla u \cdot \nabla v$.
Let $\lambda_{n}=\lambda_{n}\left(S^{-1} Q\right)$. Since $S^{-1} Q$ is a compact self-adjoint operator in H_{S}, by [3, Ch.6, Th.1.5] we have the following characterization of the eigenvalues of Q_{S} :

$$
\forall n \in \mathbb{N}: \quad \lambda_{n}\left(Q_{S}\right)=\min \left\{\left\|Q_{S}-L_{n-1}\right\| / L_{n-1} \in \mathcal{L}\left(H_{S}\right), \operatorname{rank}\left(L_{n-1}\right) \leq n-1\right\} .
$$

By taking the minimum over a smaller subset of finite rank operators, we obtain

$$
\begin{equation*}
\lambda_{n}\left(Q_{S}\right) \leq \min \left\{\left\|Q_{S}-Q_{S} L_{n-1}\right\| / L_{n-1} \in \mathcal{L}\left(H_{S}\right), \operatorname{rank}\left(L_{n-1}\right) \leq n-1\right\} \tag{18}
\end{equation*}
$$

Now, by (17) we get

$$
\begin{aligned}
\left\|Q_{S}-Q_{S} L_{n-1}\right\| & =\sup _{u \in H_{S}} \frac{\left\|\left(Q_{S}-Q_{S} L_{n-1}\right) u\right\|_{H_{S}}}{\|u\|_{H_{S}}} \\
& =\sup _{u \in H_{S}} \frac{\left\|Q_{S}\left(u-L_{n-1} u\right)\right\|_{H_{S}}}{\|u\|_{H_{S}}} \\
& \leq c \sup _{u \in H_{S}} \frac{\left\|u-L_{n-1} u\right\|_{L^{p}(\Omega)}}{\|u\|_{H_{S}}} \\
& \leq \frac{c}{\sqrt{m}} \sup _{u \in \mathrm{H}_{0}^{1}(\Omega)} \frac{\left\|u-L_{n-1} u\right\|_{\mathrm{L}^{p}(\Omega)}}{\|u\|_{\mathrm{H}_{0}^{1}(\Omega)}}
\end{aligned}
$$

where in the last step we use the inequality $\sqrt{m}\|u\|_{\mathrm{H}_{0}^{1}(\Omega)} \leq\|u\|_{H_{S}}$. This, together with 18) yields

$$
\begin{equation*}
\lambda_{n}\left(Q_{S}\right) \leq \frac{C}{\sqrt{m}} \min \left\{\left\|\mathcal{I}-L_{n-1}\right\| / L_{n-1} \in \mathcal{L}\left(\mathrm{H}_{0}^{1}(\Omega), \mathrm{L}^{p}(\Omega)\right), \operatorname{rank}\left(L_{n-1}\right) \leq n-1\right\}:=a_{n}(\mathcal{I}), \tag{19}
\end{equation*}
$$

where $a_{n}(\mathcal{I})$ denotes the approximation numbers of the compact embedding $\mathcal{I}: \mathrm{H}_{0}^{1}(\Omega) \mapsto$ $\mathrm{L}^{p}(\Omega), ~[6]$. Furthermore, we have the estimation [7]

$$
a_{n}(\mathcal{I}) \leq \hat{C} n^{-\alpha}, \quad \alpha=\frac{1}{N}-\frac{1}{2}+\frac{1}{p}
$$

for some constant $\hat{C}>0$. Therefore, we arrive at the inequality

$$
s_{n}\left(Q_{S}\right) \leq \frac{C \hat{C}}{\sqrt{m}} n^{-\alpha}
$$

Now, taking the arithmetic mean on both sides and by Hölder's inequality, we obtain

$$
\begin{equation*}
\frac{1}{k} \sum_{n=1}^{k} s_{n}\left(Q_{S}\right) \leq \frac{C \hat{C}}{\sqrt{m}} \frac{1}{k}\left(\sum_{n=1}^{k} \frac{1}{n^{\alpha s}}\right)^{\frac{1}{s}} k^{\frac{1}{t}}=\frac{C \hat{C}}{\sqrt{m}}\left(\sum_{n=1}^{k} \frac{1}{n^{\alpha s}}\right)^{\frac{1}{s}} \frac{1}{k^{\frac{1}{s}}} \tag{20}
\end{equation*}
$$

where $\frac{1}{t}+\frac{1}{s}=1$. Let $s \alpha>1$, then we obtain

$$
\frac{1}{k} \sum_{n=1}^{k} s_{n}\left(Q_{S}\right) \leq \frac{C \hat{C}}{\sqrt{m}}\left(\sum_{n=1}^{\infty} \frac{1}{n^{s \alpha}}\right)^{\frac{1}{s}} \frac{1}{k^{\frac{1}{s}}}=\frac{\boldsymbol{C}}{k^{\frac{1}{s}}}
$$

Then, by (12), we conclude.

4 Bibliography

References

[1] J. Karatson, "Mesh independent superlinear convergence estimates of the conjugate gradient method for some equivalent self-adjoint operators," Applications of Mathematics, vol. 50, no. 3, pp. 277-290, 2005.
[2] O. Axelsson and J. Karátson, "Equivalent operator preconditioning for elliptic problems," Numerical Algorithms, vol. 50, no. 3, pp. 297-380, 2009.
[3] I. Gohberg, S. Goldberg, and M. A. Kaashoek, "Operator theory: Advances and applications," Classes of Linear Operators, vol. 49, 1992.
[4] O. Axelsson and J. Karátson, "Mesh independent superlinear PCG rates via compactequivalent operators," SIAM Journal on Numerical Analysis, vol. 45, no. 4, pp. 14951516, 2007.
[5] H. Brezis and H. Brézis, Functional analysis, Sobolev spaces and partial differential equations. Springer, 2011, vol. 2, no. 3.
[6] J. Vybíral, "Widths of embeddings in function spaces," Journal of Complexity, vol. 24, no. 4, pp. 545-570, 2008.
[7] D. E. Edmunds and H. Triebel, "Entropy numbers and approximation numbers in function spacess," Proceedings of the London Mathematical Society, vol. 3, no. 1, pp. 137-152, 1989.

