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The problem

Let N ≥ 2, p > 2 and Ω ⊂ RN be a bounded domain. We consider the
elliptic problem {

−div(G∇u) + ηu = g,
u∂Ω = 0,

(1.1)

where η = η(x) is a general variable (i.e. nonconstant) coefficient.
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Objectives

• Study the mesh-independent superlinear convergence of the precon-
ditioned conjugate gradient method (CGM) applied to the discretiza-
tion of (1.1).

• Find an eigenvalue-based estimation of the rate of superlinear con-
vergence.

• Extend the results done in [6] from η ∈ C(Ω) to η ∈ Lq(Ω).
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Assumptions

(i) The symmetric matrix-valued function G ∈ C1(Ω,RN ×RN) sat-
isfies

G(x)ξ · ξ ≥ m|ξ|2

for all ξ ∈ RN , with some m > 0 independent of ξ.

(ii) There exists 2 < p < 2N
N−2 such that η ∈ Lp/(p−2)(Ω).

(iii) ∂Ω is piecewise C2 and Ω is locally convex at the corners.

(iv) g ∈ L2(Ω).

Then problem (1.1) has a unique weak solution in H1
0(Ω).
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Construction of the discretization

Let Vh ⊂ H1
0(Ω) be a given FEM subspace. We look for the numerical

solution uh of (1.1) in Vh:∫
Ω
(G∇uh · ∇v + ηuhv) =

∫
Ω

gv, v ∈ Vh. (1.2)

The corresponding linear algebraic system has the form

(Gh + Dh)c = gh.

We apply the matrix Gh as preconditioner,

(Ih + G−1
h Dh)c = g̃h (1.3)

with g̃h = G−1
h gh. Now, we apply the CGM for the system (1.3) and

study the error vectors ek = c − ck.
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Main result

Theorem 1

Let 2 < p < 2N
N−2 . Then there exists C > 0 such that for all k ∈ N

(
∥ek∥A

∥e0∥A

) 1
k

≤ C

k
1
s

→ 0, as k → ∞ (2.4)

where α = 1
N − 1

2 + 1
p and s > 1

α .
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Sketch of the proof

Let D = H1
0(Ω) ∩ H2(Ω). We define the operators

Su ≡ −div(G∇u), u ∈ D and Qu ≡ ηu, u ∈ H1
0(Ω)

and since p < 2∗ = 2N
N−2 , the embedding I : H1

0(Ω) → Lp(Ω) is
compact and by assumption (iii) the symmetric operator S maps onto
L2(Ω).
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We define the energy space HS as the completion of D under the energy
inner product

⟨u, v⟩S = ⟨Su, v⟩ =
∫
Ω

G∇u · ∇v,

and the corresponding norm is denoted by ∥ · ∥S. Then HS = H1
0(Ω).

Lemma 1

The operator QS = S−1Q is well defined and there exists C > 0 such
that

∥QSv∥HS ≤ C∥v∥Lp(Ω), v ∈ HS. (2.5)

Hence QS is compact and self-adjoint in HS.
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Let us consider (1.3):

(Ih + G−1
h Dh)c = g̃h

Let A = (Ih + G−1
h Dh). It is known [2] that(

∥ek∥A

∥e0∥A

)1/k

≤ 2∥A−1∥
k

k∑
j=1

|λj(G−1
h Dh)|, k = 1, 2, . . . , n. (2.6)

We want to find a mesh independent bound for (2.6).
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We have the following result

Proposition 1
For any k = 1, 2, . . . , n

k∑
j=1

|λj(G−1
h Dh)| ≤

k∑
j=1

λj(S−1Q). (2.7)

Moreover, (
∥ek∥A

∥e0∥A

)1/k

≤ 2∥A−1∥
k

k∑
j=1

λj(S−1Q). (2.8)

Now we wish to get a rate estimation from (2.8).
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• Let λn = λn(S−1Q). Since QS = S−1Q is a compact self-adjoint
operator in HS, by [5, Ch.6, Th.1.5] we have the following character-
ization of the eigenvalues of QS:

λn(QS) = min{∥QS −Ln−1∥ / Ln−1 ∈ L(HS), rank(Ln−1) ≤ n− 1},

for all n ∈ N.

• Let an(I) denote the approximation numbers of the compact embed-
ding I : H1

0(Ω) 7→ Lp(Ω), defined as

an(I) = min{∥I−Ln−1∥/ Ln−1 ∈ L(H1
0(Ω),Lp(Ω)), rank(Ln−1) ≤ n−1}.
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As a consequence of Lemma 1, we obtain the following result

Lemma 2
For all n ∈ N,

λn(QS) ≤
C√
m

an(I). (2.9)

Furthermore, from [4] we have the estimation

an(I) ≤ Ĉn−α, α =
1
N

− 1
2
+

1
p
,

for some constant Ĉ > 0. Hence

1
k

k∑
n=1

λn(QS) ≤
CĈ√

m

 ∞∑
n=1

1
nsα

 1
s

1

k
1
s

=
C

k
1
s

,

for any sα > 1. Then, by (2.8), the theorem is proved.
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