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1 Introduction
This semester I studied two main topics: firstly, I read about singularity theory
of complex analytic hypersurfaces in general, the theory of links and Milnor
fibration/monodromy. In the second part of the semester I focused on singular-
ities of normal complex surfaces, in particular their resolution graphs and links.
There is a canonical way to attach a divisorial filtration to any (well behaved)
normal surface singularity, from which we get a Poincar/Hilbert series. I studied
certain special kinds of singularities, in which case the resolution corresponds
to a combinatorial construction (a so called cyclic covering) of the embedded
resolution graph.

In this summary, I mostly focus on the theory of cyclic coverings, the con-
struction of the divisorial filtration and the Poincaré/Hilbert series.

The reason why I focus primarily on these two topics is that
1. Writing about everything would result in a summary exceeding the allowed

length.
2. Why these two topics? The long-term goal would be to calculate the

Poincarés series of certain divisorial filtrations. In the particular cases of
interest, we have cyclic (or more generally Abelian) coverings, and under-
standing the combinatorial structure of the graphs behind such resolutions
is essential in order to calculate the Poincaré series.

The main goal is to calulate the Poincaré series of surfaces of the form f(x, y)+
z2 = 0. While work on these calculations has begun, there are no results to
show (yet, hopefully).

2 Normal Surface Singularities
This section is based on [1]. An analytic space is a space that locally behaves
like an analytic set, i.e. the common zero set of analytic functions (simlarly to
the notion of a scheme, which is an object that locally behaves like an affine
scheme).

We can turn complex varieties into complex analytic spaces. Hence, by
studying complex analytic singularities, we actually obtain information about
complex varieties as well.

A normal surface, is just like for schemes, by definition an (analytic) surface,
for which each local ring is an integrally closed integral domain. For any complex
analytic space X we can assign a normal analytic space Xn (again, with an
algebraic method similarly to that of schemes). This fact implies that normal
singularities "explain" any singularities in some sense.
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Definition 2.1. Let X be a normal surface, i.e. a 2-dimensional normal analytic
space (or, analytic set, since we are only interested in the local behaviour). Let
o be a singularity on X. The local data of o is described by the analytic set
germ (X, o).

Now a local modification of the normal surface singularity (X, o) is by def-
inition a proper analytic map X̃

φ−→ X such that X̃ \ φ−1(o) is dense in X̃,
and it is an isomorphism on the complement of an analytic subset of X̃ that
contains φ−1(o). The preimage φ−1(o) is called the exceptional set of X̃, and it
is denoted E. A resolution is a modification such that X̃ is a smooth analytic
manifold.

Notice that in particular, modifications and resolutions are maps between
analytic sets of the same dimension.

Theorem 2.2 (Zariski’s Main Theorem). If (X, o) is a normal surface singu-
larity, X̃ → X a fixed modification, then E is

1. Compact,
2. Connected,
3. One-dimensional.

Now the irreducible components of the analytic curve E will be denoted
{Eν}sν=1, and their genera gν . Now we can assign a matrix I, called the in-
tersection matrix to the singularity o, which contains the intersection numbers
(Eν , Eµ)ν,µ. Furthermore, let f : (X, o) → (C, 0) be the germ of a holomorphic
function. Then the divisor div(f◦φ) on X decomposes into divE(f◦φ)+S(f◦φ),
abbreviated as divE(f)+S(f), where divE(f) is the part supported on E, while
S(f) is the strict transform of the divisor of f, i.e. it is supported on the closure
of φ−1({f = 0} \ {o}).

Proposition 2.3. If φ is a resolution of a normal surface singularity (X, o),
then the intersection matrix I assigned to o is negative definite.

The Lattice Associated with a Resolution
Let L = H2(X̃,Z). It can be proven that X̃ has the same homology type as E;
hence L is freely generated by the cohomology classes {Eν}sν=1. We have that
L is basically a lattice Zs, with an intersection form I (it acts on the basis of L,
hence on L). We also define L′ = H2(X̃, ∂X̃,Z), it is dual to L. This relative
homology group is generated by disks Dν such that each Dν is a transversal
small disk at a generic point of Eν . Then the duality map L × L′ → Z is
(Eν , Dµ) 7→ δν,µ, and the homological map L → L′ is given by the matrix
I. Since I is negative difinite, in particular nondegenerate, we have that L is
embedded into L′. We further have that H = L′/L satisfies |H| = |det(I)|.

3 Resolution Graphs and Cyclic Coverings
This section is based on [2], [1].
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Let (X, o) be a normal surface singularity, f : (X, o) → (C, 0) a smooth
analytic map. We say that a (strong) resolution ϕ : X̃ → X is an embedded
resolution, if ϕ−1(V (f)) is a normal crossing divisor in X̃. Here V (f), as usual,
is the preimage of 0 by f . Under "normal crossing divisor" we mean that
the components of the reduced strict transform divisor intersect transversally.
We denote the components of E with {Eν}, and the components of the strict
transform divisor S(f) with {Sa}.

We can assign two graphs to the above setting: the embedded resolution
graph, and the dual embedded resolution graph.

Embedded Resolution Graphs
Γ(X, f) is a graph, constructed as follows. Its vertex set W = V

∐
A consists of

non-arrowhead vertices V , corresponding to Eν , and arrowhead vertices A that
correspond to the irreducible components Sa. The edges of Γ(X, f) are given
by the number of intersection points of two irreducible components (either Eν
or Sa).

We also decorate the graph Γ. We assign two labels to any vertex v ∈ V :
first the self-intersection number eν (the νth diagonal element of I),and the
genus gν (the label is written as [g]). The vertices w ∈ W are all labeled with
(mw), where mw is the multiplicity of f on the irreducible curve corresponding
to w.

Similarly to the above construction, we can take the embedded resolution
graph Γ(X). It is just the graph Γ(X, f) of any smooth f , with the arrowhead
verices A deleted from the graph, and the labels (mw) removed. Clearly, the
embedded resolution graph only contains information about the resolution ϕ,
and is independent of the choice of f .

Cyclic Coverings
Consider a normal surface singularity (X, o) and a germ of an analytic function
f : (X, o) → (C, 0). Let Xf,N be the (normalized) cyclic N–covering of (X, 0)
branched along ({f = 0}, o), defined as follows: it is the normalization Xf,N of
he fiber product (X, o) ×f,bN (C, 0), where bN : z 7→ zN . It can be shown that
there is a covering Xf,N → X that is branched along f = 0.

Our goal is to recover the resolution graph Γ(Xf,N ) from Γ(X, f), and N .
In general, this is not possible, but the difference is only in "global data" of the
resolution. In particular, the map induced by the Milnor fibration, arg∗ is not
determined by the resolution graph Γ(X, f), and in many situations, this is the
only "difference" in the information contained in these two graphs.

Cyclic Coverings of Graphs

We say that there is a Z-action on a graph G if Z acts on both the vertex-set
and the edge-set of G, such that the endpoints of e under the action of g ∈ G
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correspond to the vertices obtained by acting g on the endpoints of e.

Definition 3.1. We call a Z-equivariant morphism G → Γ a cyclic covering, if
Z acts trivially on Γ, and the restriction of the Z-action on G restricted to the
preimage of a vertex or edge is transitive. Two cyclic coverings pi : Gi → Γ are
called equivalent, if there exists a Z-equivariant isomorphism q : G1 → G2, such
that p2q = p1.

Now for any edge e = {u, v} of Γ, we have a "standard block" above e in G.
It consists of n1 vertices over u (denoted P 1

i ) and n2 vertices over v (denoted
P 2
j ), with d[n1, n2] edges between these vertices, where [a, b] is the least common

multiplier of a, b. The edges are denoted el, l ∈ {1, . . . d[n1, n2]. The endpoints
of ek are P 1

i(k) and P 2
j(k) with i(k) ≡ k (modn1) and j(k) ≡ k (modn2).

In particular, P 1
i and P 2

j are connected by exactly d edges. The group action
on such a standard block is given by the natural action of Z/d[n1, n2]Z on the
edges.

Definition 3.2. The data (n, d) = {{nv}v∈V , {de}e∈E} is called the covering
data of the cyclic covering.

The equivalence classes of coverings that correspond to the covering data
(n, d) are denoted G(n, d). It can be shown that G(n, d) is a group, and that it
does not depend on d.

The Milnor Fibration

If (X, o) is a normal surface singularity embedded into CN , 0. Then for suffi-
ciently small ϵ0 > 0, the spheres Sϵ = {z ∈ CN | ||z|| = ϵ} for ϵ < ϵ0 intersect
(X,x) transversally, and the differential manifold LX = S∩X does not depend
on the choice of ϵ. The manifold LX is called the link of (X,x). Now if we
take an analytic germ f : (X,x) → (C, 0), we can define the link of the germ
f , denoted Lf similarly; by taking Sϵ ∩ f−1(0). Again, the definition does not
depend on the choice of ϵ. Note that LX , Lf are topological in nature, and
completely determined by the graphs Γ(X),Γ(X, f) respectively (by a so called
plumbing construction).

If we fix f as above, we have the following map: arg = f
|f | : LX \ Lf → S1.

This map can be shown to be a C∞-fibration of manifolds. arg is called the
Milnor fibration of the germ f . This in turn induces a map arg∗ : H1(LX\Lf ) →
Z.

Proposition 3.3. The map arg∗ completely determines the Milnor fibration.

The Universal Covering Graph

Fix an embedded resolution with respect of a (fixed) germ f , and denote its
resolution graph by Γ(X, f). We do not give an explicit construction of the
graph G(X, f), instead list its properties. Note though, that the construction is
toppological in nature, and depends on the existence of a geometric monodromy
of the "nearby fiber" of X (a fiber close to the fiber of 0).
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Proposition 3.4. The number of connected components of the graph G(X, f)
equals the number of connected components of the Milnor fiber F of f .

The above statement implies that the number of connected components
G(X, f) has |coker(arg∗(f))|.

The Resolution Graphs of Cyclic Coverings

We have the N -fold covering Xf,N → X, with a natural Galois-action (x, z) 7→
(x, ξkz), where ξk is an Nth root of unity corresponding to k, when we identify
ZN with the group of Nth roots of unity. If we have a point P ∈ X \ f−1(0)
in the complement of the branch locus, then its preimage consists of exactly N
points, which are cyclically permuted by the Galois action of ZN . Note that we
have a monodromy representation of the (regular) covering Xf,N \ {z = 0} →
X \ {f = 0}: this representation is a map φN : π1(X \ {f = 0}) → ZN . In our
particular case, this representation does not depend on the choice of basepoint.

Proposition 3.5. If π1(arg) : π1(LX \Lf ) → π1(S
1) is the map induced by the

Milnor fibration on the fundamental groups, and modN : Z → ZN is the natural
projection map, we have that

φN = modN ◦ π1(arg).

Proposition 3.6. If the Milnor fiber F of f has k connected components, then
Xf,N has (N, k) connected components.

Remark 3.7. The number of singular points of Xf,N lying above o is not deter-
mined by the resolution graph Γ(X, f). It is, however determined by G(X, f).
This example shows the viability of the constuction of G.

Definition 3.8. The resolution graph Γ(Xf,N ) is defined to be the union of
resolution graphs of oi, where oi is the ith preimage of o by the covering map
Xf,N → X. Similarly, for a germ z : (Xf,N , {o1, . . . o(N,k)}) → (C, 0) the em-
bedded resolution graph of (Xf,N , z) is defined to be the union of the embedded
resolution graphs of z at each oi.

Now the main theorem we have is the following:

Theorem 3.9. Suppose that ϕ is en embedded resolution of (f−1(0), o) ⊆ (X, o)
and p : G(X, f) → Γ(X, f) is the universal covering of the graph G associated
with ϕ. Then the graphs Γ(Xf,N , z) and Γ(Xf,N ) can be determined from p and
the integer N .

For the constructions see [2], page 26.

4 Multigradings and Poincaré Series
Definition 4.1. If R is any ring, A an Abelian group. We say that R is A-
multigraded, if there is an Abelian-group isomorphism R ≃Ab

⊕
a∈ARa such

that Ra ×Rb ⊆ Ra+b
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We consider A-multigraded C-algebras, where the Ra are all C-vector spaces,
R0 = C and dimRa < ∞.

Definition 4.2. For an A-multigraded R ring, an M R-module is A-multigraded,
if M ≃Ab

⊕
a∈AMa such that RaMb ⊆ Ma+b.

We make the assumption that A is embedded in a Zs-lattice (or, at least we
have an Abelian group homomorphism from A to Zs). Now for an A-multigraded
R-module, where each Ma is a C-vector space (note that R is a C-algebra), we
can define a Poincaré series associated to M :

P (M, t) =
∑
a∈A

dim(Ma) · ta ∈ Z[[A]]

where t is an element of Cs; hence t
a can be evaluated at a point p = (p1, . . . ps)

as pa11 ·. . .·pass , where ai is the ith component of the image of a by the embedding
of A into Zs.

We will look at a particular filtration for which the Poincaré series can
be defined as above. Note that similar Poincaré series can be defined more
generally.

Divisorial Filtration & Poincaré Series

If we have a multigrading M ≃Ab

⊕
a∈AMa of the module M , we can associate a

filtration to it: F (a) =
⊕

a′≥aMa′ , which satisfies F (a) ⊆ F (a′) for any a ≥ a′.
The Hilbert-series associated to this filtration is H(t) =

∑
a∈Zs dim(M/F (a))ta.

We have that P (t) = −H(t)
∏s
i=1(1− ti)

−1.
There may be cases where we do have a filtration but we do not have a multi-

grading present. If the modules (vector spaces) M/F (a) are finite-dimensional,
a Hilbert series H can be assigned to the filtration. Then the Poincaré series P
can be defined as above from H.

Now suppose that we have an universal cyclic covering (more generally, the
same construction works for Abelian coverings). Then we have the following
diagram:

Z̃ Z (Xc, o)

(X̃, E) (X, o)

r

ϕc

p c̃

ψc

c

ϕ

where r is a resolution, Xc is the universal cyclic covering. Note that the curved
arrows are defined from the straight arrows in a way that makes the above
commutative (and not inherently obtained).

We have seen that for any resolution, the L group is a free abelian group
generated by the irreducible components of E.

6



We have a so called valuation on the local ring OXc,o, which in turn gives
us a filtration. The associated Poincaré series are the main points of interest.
The valuation is a function v : OXc,o → Z ∪ {∞}, that satisfies the following:

1. v(f1 + f2) ≥ min(v(f1), v(f2)).
2. v(f1 · f2) = v(f1) + v(f2).

Now if we have a collection of order functions {v1, . . . vs}, we obtain a Zs-filtation
by setting F (a) = {f ∈ OXc,o | vi(f) ≥ ai for all i }. (Note: this filtration also
satisfies F (a)∩F (b) = F (max(a, b)), with the maximum taken coordinate-wise).

The divisorial filtration is an L′ filtration of the local ring of holomorphic
functions OXc,o. For any l′ ∈ L′ we set F(l′) = {f ∈ OXc,o | div(f ◦ ϕc) ≥
p∗(l′)}. We could obtain a Hilbert series from this filtration, but it would contain
"redundant" information about the space. We have an action of H = L′/L on
(Xc, 0), which induces an action on OXc,o. This action keeps F (l′) invariant.
Therefore H acts on OXc,o/F (l′) as well. Now if we denote the Pontryagin
duality of L′ by θ. By the action defined above, we have a θ(l′) eigenspaces in
OXc,o/F (l′). The dimension of these spaces is denoted h(l′).

Now the Hilbert series of the divisorial filtration is defined as H(t) =∑
l′∈L′ h(l′)tl

′
. The Poincaré series, as mentioned above, is obtained from H

by We have that P (t) = −H(t)
∏s
i=1(1− ti)

−1.
Note that in general, the term

∏s
i=1(1− ti)

−1 is not invertible, which means
that the Hilbert series contains more information than the Poincaré series.

As mentioned in the introduction, an example where the series H is not
explicitly known to be determined by the graph Γ(X, f), is the case of surfaces
of the form g(x, y) + z2 = 0.
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