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1 Introduction

In this work, a mathematical model for the dynamics of leukemic cells during treatment
is introduced. The process of the evolution of leukemic pluripotent short-term cells and
of multipotent progenitor cells (all these are assembled under the name of stem-like cells)
will be modeled by a delay differential equation. Treatment is included in the model
through two state variables: D, the amount of drug in the absorbtion compartment and
P, the amount of drug in the plasmatic compartment,(see [1],[2] et [4]). Let Q denote
the density of stem-cells population. A percentage η1 of these ones are supposed to
undergo asymmetric division with one daughter cell identical to the mother cell and
the other one committed to differentiation. A percentage η2 of the stem-like population
differentiate symmetrically and go to the line of mature cells. The rest of them, a
percentage (1 − η1 − η2), is supposed to self-renew: both cells that result from mitosis
are identical to the cell that entered the cell cycle. The same duration τ of the cell cycle
is supposed for all types of division. The equations that describe the evolution are:

Q̇(t) = −γQQ(t)− η1k0Q(t)− η2k0Q(t)− (1− η1 − η2)β(Q)Q(t)+

+2(1− η1 − η2)e
−γQτβ(Q(t− τ))Q(t− τ) + η1k0e

−γQτQ(t− τ)− r(P (t))Q,

Ḋ(t) = −κD(t) +K,

Ṗ (t) = −vP (t) + κD(t).

(⋆)

where Qτ (t) = Q(t− τ), β(Q) = β0
θn

θn +Qn
, n > 1, is the rate of self-renewal, γQ is the

instant mortality rate, k0 is the rate of differentiation and of asymmetric division that
usually depends on different exogen factors but is taken to be constant in this model.
The function modeling treatment effect (including resistance) is

r(P ) =
Pm

Pm + Pm
0

x0 −R0

x0
> 0

where P0 is the half maximum activity concentration, m is a Hil coefficient(see [1]), x0

is the number of infected cells, R0 is the number of cells resistant to treatment, κ is the
first order absorption rate, v is the total plasma clearance of drug divided by the volume
of distribution of the drug and K is the dose of drug administrated in a unit of time
that is taken to be constant.

2 Existence and Uniqueness of solutions

Consider the system (⋆) with initial conditions,

Q(t) = φ(t) t ∈ [−τ, 0], D(0) = D0 and P (0) = P0.
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If the system (⋆) admits, for all non-negative initial conditions, a unique solution, then
this solution remains non-negative for t ≥ 0. In fact for a solution (Q(t), D(t), P (t)) of
the system (⋆) we have that D and P positive for any positive initial condition.
Suppose that t0 > 0 is the first time such that Q(t0) = 0, then Q(t) > 0 for t < t0 and
Q(t0) ≤ 0. From (⋆) we have

Q̇(t0) = 2(1− η1 − η2)e
−γQτβ(Q(t− τ))Q(t− τ) + η1k0e

−γQτQ(t− τ) > 0,

which is impossible. Then , Q(t) > 0 for all t > 0 .

Proposition 2.1. For all initial conditions (φ,D0, P0) ∈ C([−τ, 0],R+)×R2
+ the system

(⋆) has a unique positive solution in [0,+∞[.

Proof. From [3], for any continuous initial condition, the system (⋆) admits a maximal
continuous solution (Q(t), D(t), P (t)), well defined for t ∈ [0, T ) and this solution is
bounded.
In fact, D and P are bounded. It remains to prove that Q is bounded.
For t ∈ [0, T [,

Q(t) =e−γtQ(0)− (1− η1 − η2)

∫ t

0

e−γ(t−s)β(Q(s))Q(s) ds

+ 2(1− η1 − η2)e
−γQτ

∫ t

0

e−γ(t−s)β(Q(s− τ))Q(s− τ) ds

+ η1 k0 e
−γQτ

∫ t

0

e−γ(t−s)Q(s− τ)ds−
∫ t

0

e−γ(t−s)r̃(P )Qds

≤e−γtQ(0) + 2(1− η1 − η2)e
−γQτ

∫ t

0

e−γ(t−s)β(Q(s− τ))Q(s− τ) ds

+η1 k0 e
−γQτ

∫ t

0

e−γ(t−s)Q(s− τ) ds.

Then,

Q(t) ≤Q(0) + 2(1− η1 − η2)e
(−γQ+γ)τβ(0)

∫ t−τ

−τ

eγθQ(z)dz + η1k0e
−(γQ+γ)τ

∫ t−τ

−τ

eγθQ(z)dz

≤Q(0) +

∫ t

−τ

UeγθQ(z)dz.

Where U = [2(1 − η1 − η2)e
(−γQ+γ)τβ(0) + η1k0e

−(γQ+γ)τ ]. By virtue of Gronwall’s

lemma, we deduce that Q(t) ≤ Q(0) exp(
∫ t

−τ
U eγθdθ). Therefore, we have

Q(t) ≤ Q(0) exp

[
U(eγT − e−γτ )

γ

]
. Thus, (⋆) has a unique solution in R+.

3 Existence of equilibrium point

Let Q = θx. The system (⋆) is written as follows,

ẋ = −γQx− η1k0x− η2k0x− (1− η1 − η2)β0
x

1 + xn
+

+e−γQτ [2(1− η1 − η2)β0
1

1 + xn
τ

+ k0η1]xτ − r(P )x

Ḋ = −κD +K

Ṗ = −vP + κD

(1)

Let γ = γQ + k0η1 + k0η2. Then γ + r(P )− k0η1 > 0.

A solution (x∗, D∗, P ∗) ∈ R3
+ is an equilibrium point of (1) if

dx∗

dt
=

dD∗

dt
=

dP ∗

dt
=

0. The equilibrium point X0 =
(
0,

K

κ
,
K

v

)
is called the trivial equilibrium point of (1),it
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exists for all τ ≥ 0.

Let
(
x∗,

K

κ
,
K

v

)
be a non-trivial equilibrium point of (1) i.e. x∗ ̸= 0. Then, x∗ satisfies

β∗
0(2e

−γQτ − 1)

1 + x∗n = r(P ∗) + γ − k0η1e
−γQτ where β∗

0 = (1− η1 − η2)β0. (2)

Remark 1. Since r(P ∗) > 0 and γ − k0η1e
−γQτ > 0, then a necessary condition, for

the existence of the solutions of (2), is 2e−γQτ > 1.

The system (1) has two equilibrium points X0 and X1 =

(
x∗
1,

K

κ
,
K

v

)
where

(x∗
1)

n =
[2β∗

0 + k0η1] e
−γQτ − β∗

0 − γ − r(P ∗)

γ + r(P ∗)− k0η1e−γQτ
(3)

which exists for any τ such that τ < τ̄ :=
−1

γQ
ln

(
β∗
0 + γ + r(P ∗)

2β∗
0 + k0η1

)
.

Remark 2. τ̄ > 0 if and only if β∗
0 > γ + r(P ∗)− k0η1.

We have the following result.

Theorem 3.1. 1. If β∗
0 ≤ γ + r(P ∗) − k0η1, then (1) admits a unique equilibrium

point, denoted by X0 for all τ ≥ 0.

2. If β∗
0 > γ + r(P ∗) − k0η1, then (1) has two equilibrium points X0 and X1 =

(x∗
1,

K

κ
,
K

v
) which exists for all τ in [0, τ̄ [.

In addition, X1 → X0 when τ → τ̄ .

4 Stability of the trivial equilibrium point X0

Let h(x) :=
x

1 + xn
, then h′(0) = 1.

The linearized system of (1) with respect to (0, D∗, P ∗) is given by
ẋ = −γx− β∗

0x− r(P ∗)x+ e−γQτ [2β∗
0 + k0η1].xτ ,

ẏ = −κy,

ż = −vz + κy.

The characteristic equation is given by

Det(λI −M − e−λτN) = 0, (4)

where M =

−γ − β∗
0 − r(P ∗) 0 0
0 −κ 0
0 κ −v

 , N =

e−γQτ [2β∗
0 + k0η1] 0 0
0 0 0
0 0 0

 .

Thus, (4) becomes

(λ+ κ)(λ+ v)[λ+ γ + β∗
0 + r(P ∗)− e−γQτ (2β∗

0 + k0η1)e
−λτ ] = 0. (5)

Let κ > 0 and v > 0, then the stability depends on the third term on the left-hand side
(5).
Let A0 := γ + β∗

0 + r(P ∗) and B0(τ) := e−γQτ (2β∗
0 + k0η1). Then we obtain

λ+A0 −B0(τ)e
−λτ = 0. (6)

The objective is to examine the solutions of the equation

f(λ) := λ+A(τ)−B(τ)e−λτ = 0, for λ ∈ C. (7)

Proposition 4.1. Let B(τ) ≥ 0 for τ ≥ 0.

1. If A(τ)−B(τ) > 0, then any solution λ ∈ C of (7) satisfies Re(λ) < 0.
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2. If A(τ)−B(τ) < 0, then (7) admits a real solution λ0 > 0.

Proof. Consider f as a function of reel λ, which is increasing from −∞ to + ∞. From
this, we can deduce the existence of a unique real solution λ0 of (7). Then, we have
λ0 = −A(τ) +B(τ)e−λ0τ . If λ is a solution of (7) such that λ = µ+ iω ̸= λ0 and ω ̸= 0,
then

µ− λ0 = B(τ)[e−µτ cos(ωτ)− e−λ0τ ] ≤ B(τ)(e−µτ − e−λ0τ ). (8)

Thus µ ≤ λ0. If µ = λ0 then (8) implies that cos(ωτ) = 1, for τ ≥ 0. It follows that
sin(ωτ) = 0. The imaginary part in (7) gives ω +B(τ)e−µτ sin(ωτ) = 0. from which we
obtain ω = 0, which is impossible. Then, µ < λ0. Hence, any eventual solution λ ̸= λ0

of (7) satisfies Re(λ) < λ0. Since f(0) = A(τ)−B(τ), then λ0 < 0 for A(τ)−B(τ) > 0.
In this case any solution of (7) has a negative real part. For A(τ)−B(τ) < 0, we have
λ0 > 0.

We obtain the following result.

Theorem 4.1. The trivial equilibrium point X0 of (1) is locally asymptotically stable
for τ > τ̄ and unstable for τ < τ̄ .

Proof. If τ > τ̄ then A(τ) − B(τ) = A0 − B0(τ) > 0, then from the Proposition 4.1,
all solution λ ∈ C of (6) satisfies Re(λ) < 0. In addition, X0 is locally asymptotically
stable for τ > τ̄ . And if τ < τ̄ then A0−B0(τ) < 0. Hence (6) has a real solution λ0 > 0.
Therefore, X0 is unstable for τ < τ̄ .

5 Stability of non-trivial equilibrium point X1

X1 exists for τ ∈ [0, τ̄ [ if the inequality β∗
0 > γ + r(P ∗)− k0η1 is satisfied.

Let β1 := h′(x∗
1). The linearization around (x∗

1, D
∗, P ∗) is given by

ẋ = −[γ + β∗
0β1 + r(P ∗)]x+ e−γQτ [2β∗

0β1 + k0η1].xτ − r′(P ∗)x∗
1z,

ẏ = −κy,

ż = −vz + κy.

Therefore, the characteristic equation is given by

∆0
1(λ, τ) := Det(λI −M1 − e−λτN1) = 0 (9)

withM1 =

−γ − β∗
0β1 − r(P ∗) 0 −r′(P ∗)x∗

1

0 −κ 0
0 κ −v

 , N1 =

e−γQτ [2β∗
0β1 + k0η1] 0 0
0 0 0
0 0 0

 .

Then, (9) becomes

(λ+ κ)(λ+ v)[λ+ γ + β∗
0β1 + r(P ∗)− e−γQτ (2β∗β1 + k0η1)e

−λτ ] = 0.

Then, the stability of X1 depends on the following equation,

λ+A1(τ)−B1(τ)e
−λτ = 0, (10)

where A1(τ) := γ + β∗
0β1 + r(P ∗) and B1(τ) := e−γQτ [2β∗

0β1 + k0η1].

Proposition 5.1. For τ in [0, τ̄ [, we have A1(τ)−B1(τ) > 0.

Proof.

A1(τ)−B1(τ) = γ + r(P ∗) + β∗
0β1 − e−γQτ [2β∗

0β1 + k0η1],

= γ + r(P ∗)− k0η1e
−γQτ − β∗

0(2e
−γQτ − 1)

1 + x∗n
1

+
nx∗n

1 β∗
0(2e

−γQτ − 1)

(1 + x∗n
1 )2

,

=
nx∗n

1 β∗
0(2e

−γQτ − 1)

(1 + x∗n
1 )2

> 0.
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Remark 3. From the Propositions 4.1 and 5.1, we deduce that the stability of X1 is
satisfied for B1(τ) ≥ 0, for 0 ⩽ τ < τ̄ .

We suppose the following assumptions

(H0): β⋆
0 > γ + r(P ⋆)− k0η1,

(H1): (γ + r(P ∗)) >
nk0η1
n− 1

and
2nk0η1
(n− 1)2

< β∗
0 <

2n(γ + r(P ∗)− k0η1)
2

2(γ + r(P ∗))(n− 1)− (2n− 1)k0η1
.

Lemma 5.1. If (H0) or (H1) are satisfied, then B1(τ) ≥ 0 for all τ ∈ [0, τ̄ [.

Proof. The signs of B1(τ) and 2β∗
0β1 + k0η1 are the same.

We have 2β∗
0β1 + k0η1 = 2β∗

0

1 + (x∗
1)

n(1− n)

(1 + (x∗
1)

n)2
+ k0η1. Then,

2β∗
0β1 + k0η1 =

1

(1 + (x∗
1)

n)2
[k0η1(x

∗
1)

2n + [2k0η1 + 2β∗
0(1− n)](x∗

1)
n + k0η1 + 2β∗

0 ]

.

The term k0η1(x
∗
1)

2n + [2k0η1 +2β∗
0(1−n)](x∗

1)
n + k0η1 +2β∗

0 is a polynomial of the
second degree in (x∗

1)
n, with discriminant ∆ = β∗

0 [β
∗
0(n− 1)2 − 2nk0η1]. From (H0) we

have ∆ ≤ 0 therefore B1(τ) ≥ 0 for all τ ∈ [0, τ̄ [. From (H1) we have β∗
0 >

2nk0η1
(n− 1)2

,

then ∆ > 0. Therefore, the polynomial considered has roots s1, s2 such that

s1 =
−k0η1 + β∗(n− 1) +

√
∆

k0η1
, s2 =

−k0η1 + β∗(n− 1)−
√
∆

k0η1
and s1 > s2.

Since β∗
0 >

2nk0η1
(n− 1)2

, we have β∗
0 >

k0η1
n− 1

. Then s1 and s2 are positive.

From (3) we must have si = (x∗
1)

n =
[2β∗

0 + k0η1]e
−γQτ − β∗

0 − γ − r(P ∗)

γ + r(P ∗)− k0η1e−γQτ
=: g(τ).

Since g′(τ) =
−γQβ

∗
0e

−γQτ [2(γ + r(P ∗))− k0η1]

[r(P ∗) + γ − k0η1e−γQτ ]
2 < 0, then g is a decreasing function

on ]−1
γQ

ln(γ+r(P∗)
k0η1

),+∞[. So there are τ1 τ2, such that si = g(τi), i = 1, 2, where

τ1 = − 1

γQ
ln

[
β∗
0k0η1 + (γ + r(P ∗))β∗

0(n− 1) + (γ + r(P ∗))
√
∆

k0η1β∗
0(n+ 1) + k0η1

√
∆

]
and

τ2 = − 1

γQ
ln

[
β∗
0k0η1 + (γ + r(P ∗))β∗

0(n− 1)− (γ + r(P ∗))
√
∆

k0η1β∗
0(n+ 1)− k0η1

√
∆

]
.

Since s1 > s2 > 0, then g(τ1) > g(τ2) > 0 = g(τ̄) thus τ1 < τ2 < τ̄. Then, B1(τ) < 0
for τ ∈]τ1, τ2[ and B1(τ) > 0 for τ < τ1 or τ ∈]τ2, τ̄ [. From (H1) we have τ2 < 0. Then
B1(τ) > 0 for τ ∈ [0, τ̄ [.

We deduce the following result.

Theorem 5.1. If (H0) or (H1) is satisfied, then X1 is locally asymptotically stable for
τ ∈ [0, τ̄ .[

Proof. From the lemma 5.1, the Propositions 5.1 and 4.1, all solution of (10) have a
negative real part. Then, X1 is locally asymptotically stable for τ ∈ [0, τ̄ [.
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[4] I.R. Rădulescu, D. Cândea and A. Halanay, Stability and bifurcation in a model
for the dynamic of stem-like cells in leukemia under treatment AIP Cdansf. Proc,
1493 (2012) 758-763.

6


