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A Little Bit of History
Placeholder

We begin with a little bit of history in order to spark up the interest

• In the year of 1897, Hensel came up with the concept of p-adic numbers.
• A formalisation was done by Ostrowski, and he classified the norm onQ. His
theorem, upgraded the view of p-adic’s from a mere subset of rationals to a subset
of topological spectrum over rationals.

• In the later part of 20th century a much more wider spectrum from Kubota and
Leopoldt was established bringing out it’s importance in number theory.

• Formally, given a prime number p, a p-adic number can be defined as a series (for
k ∈ Z and 0 < ai < p)

s =
∞∑
i=k

aipi
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Introduction to p-adic
numbers

Motivation, An overview of p-
adic numbers andmetric formu-
lation on Q and Qp



Motivation
Placeholder

We use two different directions to motivate us to go into p-adic numbers,

• Solving Polynomial Equations.

• Completing the number system i.e, finding limits to all Cauchy Sequences.

Let us recall the construction of R,

Solving Equations
• Linear Equations
x+ a = 0, ax = b

• Quadratic Equations
x2 − a = 0

Cauchy Sequences via completion
Let S be the set of all Cauchy Sequences of rational numbers.
We say two sequence {ai} and {bi} are equivalent(∼) iff
|ai − bi| → 0 as i→∞. This is an equivalent relation. One
can observe that R = S/ ∼ i.e set of all equivalence classes
of S.
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Motivation (Contd.....)
Placeholder

• But still we are not done. Going by approach of algebraically closeness we still
don’t have answer to x2 + 2 = 0.

• So we define C = {a+ ib|a, b ∈ R}, and by fundamental theorem of algebra C is
algebraically closed.

• We also see that with respect to C is also closed with respect to the norm,
|a+ ib| = a2 + b2.

As a result C is our finish point.

14



Motivation (Contd.....)
Placeholder

• But still we are not done. Going by approach of algebraically closeness we still
don’t have answer to x2 + 2 = 0.

• So we define C = {a+ ib|a, b ∈ R}, and by fundamental theorem of algebra C is
algebraically closed.

• We also see that with respect to C is also closed with respect to the norm,
|a+ ib| = a2 + b2.

As a result C is our finish point.

15



Motivation (Contd.....)
Placeholder

• But still we are not done. Going by approach of algebraically closeness we still
don’t have answer to x2 + 2 = 0.

• So we define C = {a+ ib|a, b ∈ R}, and by fundamental theorem of algebra C is
algebraically closed.

• We also see that with respect to C is also closed with respect to the norm,
|a+ ib| = a2 + b2.

As a result C is our finish point.

16



Motivation (Contd.....)
Placeholder

• But still we are not done. Going by approach of algebraically closeness we still
don’t have answer to x2 + 2 = 0.

• So we define C = {a+ ib|a, b ∈ R}, and by fundamental theorem of algebra C is
algebraically closed.

• We also see that with respect to C is also closed with respect to the norm,
|a+ ib| = a2 + b2.

As a result C is our finish point.

17



Motivation (Contd.....)
Placeholder

• We follow a similar approach for defining a metric onQ.

Approach

Q ⊂ R ⊂ C

Q ⊂ Qp ⊂ Q̄p ⊂ Cp

18



Introduction
Placeholder

Norm/Valuation
A norm or valuation of a field F is a map ∥.∥ : F→ R+ ∪ {0} that satisfies

• ∥x∥ = 0 iff x = 0

• ∥xy∥ = ∥x∥∥y∥
• ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (Triangle Inequality)

• The pair (F, ∥.∥) is called a valued field.

• We can use norms to induce metric by setting

d(x, y) = ∥x− y∥
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Introduction (Contd......)
Placeholder

• The usual absolute value is a norm onQ with the usual distance metric induced by
the absolute value norm.

• We try to construct a new norm in the following way:
Let p be a prime number and for each x ∈ Q we write x in the following way

x = pvp(x)x1

where vp is the highest power of p dividing x and x1 is a rational number co-prime
to p.
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The Ultrametric Property
Placeholder

• One says that a valuation satisfies the ultrametric property, if it also satisfies the
property,

|x+ y| ≤ max(|x|, |y|)

For example:

Defining the metric
Let ρ be any real number.
We can now define the
metric on R[X]

|f| =

{
0 f = 0

ρd(f) f ̸= 0

Degree of polynomial
For a non-zero polynomial f ∈ R[X], we set

d(f) =

{
n f(x) = a0 + a1x+ . . . anxn, ai ̸= 0 ∀i
−∞ f(x) = 0
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The Topology and
Arithmetic in Qp

The geometry, arithmetic and
the Hensel’s lemma



The Metric Structure
Placeholder

• We induce a metric structure on Qp,

d(x, y) = |x− y|p

• We can check that this does satisfies the property of metrics.

• We also have a stronger property than triangle inequality,

d(x, y) ≤ max(d(x, y), d(x, z))
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The Geometry
Placeholder

• The structure of Qp, becomes interesting and counter-intuitive in some eyes.

• One can show that all triangles in this system are isoceles.

• Yet another interesting property, lies with topological concepts of open and closed
balls

Structure of balls
Let K be a field with a non-archimedian absolute value then

— Every point that is contained in an open(closed) ball is the center of that ball.

— Every ball is both open and closed.

— Any two open(closed) balls are either disjoint or one is contained in another.

31



Arithmetic in Qp
Placeholder

The general arithmetic in Qp, is very usual as in our normal arithmetic except for the
fact that, ”carrying”, ”borrowing” and ”long multiplication” go from left to right, rather
than right to left.

Figure: Arithmetic in Qp
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Finding nth roots in Qp
Placeholder

• A rather interesting topic is to find nth roots in Qp.

• For example
√
6 in Q5 is given by,

√
6 = 1 + 3× 5 + 0× 52 + 4× 53 + . . .

• In general our method, is based as follows, let
a0 + a1 × 5 + a2 × 52 + a3 × 53 + . . . be the square root. Then we have,

(a0 + a1 × 5 + a2 × 52 + a3 × 53 + . . . )2 = 1 + 1× 5

• Comparing the coefficients(modulo 5) on both sides we get the result.

33



Finding nth roots in Qp
Placeholder

• A rather interesting topic is to find nth roots in Qp.
• For example

√
6 in Q5 is given by,

√
6 = 1 + 3× 5 + 0× 52 + 4× 53 + . . .

• In general our method, is based as follows, let
a0 + a1 × 5 + a2 × 52 + a3 × 53 + . . . be the square root. Then we have,

(a0 + a1 × 5 + a2 × 52 + a3 × 53 + . . . )2 = 1 + 1× 5

• Comparing the coefficients(modulo 5) on both sides we get the result.

34



Finding nth roots in Qp
Placeholder

• A rather interesting topic is to find nth roots in Qp.
• For example

√
6 in Q5 is given by,

√
6 = 1 + 3× 5 + 0× 52 + 4× 53 + . . .

• In general our method, is based as follows, let
a0 + a1 × 5 + a2 × 52 + a3 × 53 + . . . be the square root. Then we have,

(a0 + a1 × 5 + a2 × 52 + a3 × 53 + . . . )2 = 1 + 1× 5

• Comparing the coefficients(modulo 5) on both sides we get the result.

35



Finding nth roots in Qp
Placeholder

• A rather interesting topic is to find nth roots in Qp.
• For example

√
6 in Q5 is given by,

√
6 = 1 + 3× 5 + 0× 52 + 4× 53 + . . .

• In general our method, is based as follows, let
a0 + a1 × 5 + a2 × 52 + a3 × 53 + . . . be the square root. Then we have,

(a0 + a1 × 5 + a2 × 52 + a3 × 53 + . . . )2 = 1 + 1× 5

• Comparing the coefficients(modulo 5) on both sides we get the result.

36



Hensel’s Lemma
Placeholder

• The above method is placed as a generalised lemma formulated by Hensel.

Hensel’s Lemma
Let F(x) = a0 + a1x+ a2x2 + a3x3 + . . . anxn be a polynomial in p-adic integers. Let
F′(x) be the natural derivative of F. Let a0 be the p-adic integer F(a0) ≡ 0 (mod p) and
F(a0) ̸≡ 0 (mod p) then there exists a unique p-adic integer a such that

F(a) = 0, a ≡ a0 (mod p)

• For our case with 6 and Q5, we have F(x) = x2 − 6, F′(x) = 2x and a0 = 1.
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p-adic measures,
distributions and Iwasawa
Algebras

Power Series Rings, p-adic mea-
sures and Iwasawa Algebras



Setup and Introduction
Placeholder

• Let K/Qp be a finite extension.
• Let OK be the valuation K and π be the uniformizer of OK.
• Let k = OK/(π) be the residue field of OK, which is finite extension of Zp/pZp ≃ Fp

Our main goal of this chapter is to understand the following,
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Power Series Ring in p-adics
Placeholder

We begin with an important lemma,

Division Lemma
Suppose

f = a0 + a1T+ a2T2 + · · · ∈ OK[|T|]

but π ̸ |f, i.e, f ̸∈ OK[|T|]. Let n = min{i : ai ̸∈ (π)}. Then any g ∈ OK[|T|] can be uniquely
written as q = qf+ r where q ∈ OK[|T|], and r ∈ OK[T] is a polynomial of degree atmost
n− 1.

• If π ̸ |f ∈ OK[|T|], then OK[|T|]/(f) is a free OK module of rank n = {inf i : ai ̸∈ (π)},
with the basis {Ti|i < n}.
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Power Series Ring in p-adics
Placeholder

• We define the notion of a distinguished polynomial,

Distinguished Polynomial
A distinguished polynomial F(T) ∈ OK[T] is a polynomial of the form

F(T) = Tn + an−1Tn−1 + . . . a0, ai ∈ (π)

• We allow π2|a0 as to avoid for any irreducibility case due to Eisenstein criterion.

• An important implication from the theorem is, if F is a distinguished polynomial,
then

OK[T]/FOK[T] ≃ OK[|T|]/FOK[|T|]
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Power Series Ring in p-adics
Placeholder

• We begin with a rather important theorem,

p-adic Weirestrass Preperation Theorem
Let f ∈ OK[|T|], then f can be uniquely written as

f = πµP(T)U(T)

is a distinguished polynomial of degree n = {inf i : ordπ(ai) = µ}, U(T) is unit in
OK[|T|]. As a consequence, OK[|T|] is a factorial domain.

• As an important corollary, Let f(T) ∈ OK[|T|], be non-zero. Then there can only be
finitely many x ∈ Cp, |x| < 1 with f(x) = 0.

42



Iwasawa Algebras - The Setup
Placeholder

• The theory of commutative Iwasawa algebras were first introduced by the
Japanese mathematician Kenkichi Iwasawa.

• Let Γ = Zp = lim←−Z/pnZ, where the inverse limit is taken on n, where Γ is compact
and pro-cyclic as a profinite group.

• Let γ be a topological generator of Γ and hence Γ =< γ̄ >.

• Let Γn be generated by γp
n
, and this be the unique closed group of index pn of Γ,

then Γ/Γn, is cyclic of order pn generated by r+ Γn.
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Iwasawa Algebras - The Setup
Placeholder

• One has isomorphism

OK[Γ/Γn] ∼= OK[Γ]/((1 + T)p
n − 1)

γ mod Γn → (1 + T) mod ((1 + T)p
n − 1)

• Moreover, if m ≥ n ≥ 0, the natural map of Γ/Γm → Γ/Γn induces a natural map,

φm,n : OK[Γ/Γm]→ OK[Γ/Γn]

• We let
OK[|Γ|] = lim←−OK[Γ/Γn] = lim←−OK[Γ]/((1 + T)p

n − 1)

where the limits are taken on n.
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Iwasawa Algebras - The Setup
Placeholder

• We finally note that OK is a topological ring which is compact and complete with
the π-adic topology, so are OK[Γ/Γn] and thus OK[|Γ|] is the endowed with the
product topology of π-adic topology. It is also compact and complete in this
topology.

• We are now in a position to define what Iwasawa Algebras are,

Iwasawa Algebras

Λ = Λ(Γ) = OK[|Γ|]

is called the Iwasawa Algebra over Γ.
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Iwasawa Algebra
Placeholder

• An important thing to note is that,

Iwasawa Algebra on Profinite Group
Let G be a profinite abelian group, then Iwasawa algebra over G is given by,

Γ(G) = lim←−OK[G/H]

when limit is taken over all H / G.

• In fact we are able to identify the rings OK[|Γ|] and OK[|T|].

OK[||T|] ∼= OK[|Γ|]
T → γ − 1
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p-adic measures
Placeholder

• We begin with an important lemma,

Lemma
Any compact subset of Qp, can be expressed as a finite disjoint union of intervals
a+ pNZp = {x ∈ Qp : |x− a|p ≤ 1

pN }
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p-adic distributions
Placeholder

p-adic distribution
• Let X be a compact open subset ofQp. A p-adic distribution µ on X, is an additive
map from the compact open set in X to Qp, i.e if U is compact open in X and is a
finite disjoint union of compact open subsets {Ui}ni=1 then

µ(U) =
n∑

i=1

Ui

• A p-adic distribution µ on X is called a measure if there exists a positive real
number M, such that |µ(U)| ≤ M for all compact open sets in U in X.
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p-adic distributions
Placeholder

• An important result in this direction is the following,

Theorem
Let µ be a map from the set of compact open subsets in X, to Qp such that

µ(a+ pN) =
p−1∑
b=0

µ(a+ bpN + PN+1)

for any interval a+ pN in X. Then µ extends uniquely to a p-adic distribution in X.
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Interpolation and related
results

Zeta function, p-adic interpola-
tion of the zeta function, Kubota-
Leopoldt constructions for p-
adic analougues of zeta func-
tion, Kummer’s congruence



The ζ function
Placeholder

• The Riemann-zeta function is defined as a function on s ∈ C by

ζ(s) =
∞∑
n=1

1

ns
=

∏
p

(1− 1

ps
)−1

• The above series converges absolutely for Re(s) > 1.

• We can also show that it has a meromorphic continuation to all of C with a simple
pole at s = −1.
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The Γ function
Placeholder

• For s ∈ C the gamma function is defined as

Γ(s) =
∫ ∞

0
e−tts

dt
t

• We have Γ(s+ 1) = sΓ(s) for all Re(s) > 0

• Γ(n) = (n− 1)!

• Using the fact that Γ(s+ 1) = sΓ(s), we can extended it meromorphically to with
simple poles at all negative integers.
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Connecting ζ and Γ functions
Placeholder

• We let,
Λ(s) = π− s

2Γ(
s
2
)ζ(s)

• We observe by a simple computation that,

Λ(s) = Λ(1− s)

for all s ∈ C with Re(s) > 1.

• And as a consequence one gets that ζ , can be extended analytically onto C, with a
simple pole at s = 1, with residue 1.
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Mellin Transform
Placeholder

Mellin Transform
Let g : R>0 → C, be a function of rapid decay (i.e |g(t)| << t−N, N ≥ 0), then the Mellin
transform of g is given by

M(g)(s) =
∫ ∞

0
g(t)ts

dt
t

We define the L-function as follows,

L(f; s) =
1

Γ(s)
M(f)

for a function f : R>0 → C, be a function of rapid decay
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Connecting the ζ and Γ (contd...)
Placeholder

An useful proposition
L(f; s) converges and is holomorphic function for Re(s) > 0 and hans an analytic
continuation to the whole of C and

L(f,−n) = (−1)n d
n

dtn
f(0)
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Connecting the ζ and Γ (contd...)
Placeholder

We now recall what Bernoulli numbers are,

Bernoulli Numbers
The kth Bernoulli number, Bk is given by

F(t) =
t

et − 1
=

∞∑
k=0

Bk
tk

k!

• For our f as above we have

(s− 1)ζ(s) = L(F, s− 1)
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Connecting the ζ and Γ (contd...)
Placeholder

An important Corollary

• For n ≥ 0, we have ζ(−n) = −Bn+1

n+1
ζ(−n) = 0, when n ≥ 2 is an even integer.

• For k ≥ 0, we have ζ(2k) = (−1)k−1 (2π)2k

2.(2k)!B2k.
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The p-adic analogue of the ζ-function
Placeholder

• From our previous results, the p-adic analogue can be constructed in two ways

• First way:
We observe that the set {−n : n ∈ Z>0} is dense in Zp. We can exploit this fact
and hope that if 1− n and 1−m are so called p-adically close, then so is−Bn

n and
−Bm

m and hence would allow us to build the p-adic analogue via interpolation via
measure. This is the method of Kubota-Leopoldt and Mazur.

• Second way:
A much more direct method is to directly give a explicit formulae of p-adic
L-function, which agrees with ζ(s) at almost all places except some modification at
the negative integers. Such a construction was given by Washington.
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The Kubota-Leopoldt construction
Placeholder

p-adic Bernoulli Distribution
We have

• The usual analogue of Bernoulli Distribution

µk(a+ pnZp) = pn(k−1)Bk(
a
pn

)

• Regularized Bernoulli Distribution

µk,α(U) = µ(U)− αkµk(α
−1U)

for any compact open set U ⊂ Qp and α ∈ (Zp)
×.
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The Kubota-Leopoldt construction (Contd.....)
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We have two observations

• µk,α is a p-adic measure.

• Let dk = least common denominator of the coefficient of Bk(x), then

dkµk,α(a+ pnZp) ≡ dkkak−1µ1,α(a+ pnZp) (mod pn)

An important theorem
If f : Zp → Qp is a continuous function, then∫

Zp

f(x)dµk,α(x) =
∫
Zp

f(x)kxk−1dµ1,α(x)
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The Kubota-Leopoldt construction (Contd.....)
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An important corollary
For each k ∈ N, and α ∈ (Zp)

× is not a root of unity then,

Bk =
k

1− αn

∫
Zp

xk−1dµ1,α(x)

• If p|n then f(s) = ns, does not extend to a continuous function of a p-adic variable,
hence our naive approach won’t work.

• We instead consider a much more constructive approach to get around it.

• We define:
Λs0 = {s ∈ Z>0 : s ≡ s0 mod p}
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The Kubota-Leopoldt construction (Contd.....)
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• We consider the natural embedding

Λs0 ↪→ Z
(p− 1)Z

× Zp

Z≥0 ↪→ Z
(p− 1)Z

× Zp

n → ([n]p−1, n)
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The Kubota-Leopoldt construction (Contd.....)
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An Important Lemma

If p ̸ |n, then f(s) = ns extends to a continuous analytic function on Z
(p−1)Z × Zp.

• So this suggest to shrink our domain to (Zp)
×.

Defining the analogue
Let α ̸= 1 be a rational number and not divisible by p, then for any positive integer k we
get,

ζp(1− k) =
1

α−k − 1

∫
(Zp)×

xk−1dµ1,α

• One can check this is well-defined
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The Kubota-Leopoldt construction (Contd.....)
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• With a little manipulation, we can observe that,

ζp(1− k) = (1− pk−1)− Bk
k

• We are almost done except the continuity, which can achieved by the Kummer’s
congruences,

Kummer’s Congruences
1. if (p− 1) ̸ |k then Bk

k , is a p-adic integer.

2. if (p− 1) ̸ |k and k ≡ k′ mod (p− 1)pN, then

(1− pk−1)
Bk
k
≡ (1− pk

′−1)
Bk
k′

mod pN+1
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Kubota-Leoplodt p-adic L functions
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We end our discussion with the Kubota-Leopoldt p-adic L functions.

Kubota-Leopoldt p-adic L functions
For any α ∈ Z, α ̸= 1 and p ̸ |α and for a fixed integer s0 ∈ {0, 1, 2, . . . , p− 2}, then

ζp,s0 =
1

α−(s0+(p−1)s) − 1

∫
(Zp)×

xs0+(p−1)s−1dµ1,α

for any p-adic integer s except at s = 0, in case of s0 = 0.
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Washington’s Construction
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Let χ be a Dirichlet character of conductor f, and let F be some multiple of q and f.

Lp(s, χ) =
1

F
1

s− 1

F∑
a=1, p ̸|a

χ(a) < a >1−s
∞∑
j=0

(
1− s
j

)
(Bj)(

F
a
)j
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Conclusion (Local and
Global Class Field Theory)

Investigating into Local and
Global Class Field Theories,
Statement of the Iwasawa Main
Conjecture



Summary of Local and Global Class Field Theory
Placeholder

• We have seen existence of a power series g(T) ∈ Zp[|T|] (from the analytic side).

• Now we try to construct a similar set up from the algebraic set side.

• Our main goal in modern number theory is to study GQ = Gal(Q/Q) or the same
for any number field K.

• Standard method for gaining insight into the structure of GK, on arithmetic objects
related to K(Galois representations).

• Class Field Theory describes GabK =max abelian quotient of GK as a first step
towards the understanding of GK.
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Summary of Local and Global Class Field Theory
Placeholder

• We know that for each integer m > 1, the cyclotomic extension Q(ζm)/Q is an
abelian extension with Galois group G = Gal(Q(ζm)/Q) ∼= (Z/mZ)×.

• So we get a simple process to construct abelian extensions ofQ. We pick m ≥ 1
and take any subfield ofQ(ζm).

• A remarkable result would in this direction is the Kronecker Weber theorem in
1853.

Kronecker Weber Theorem (Global)
Every finite abelian extension ofQ lies in Q(ζm).
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Summary of Local and Global Class Field Theory
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Kronecker Weber Theorem (Local)
Every finite abelian extension ofQp lies in Qp(ζm).

• An interesting proposition is that, the global theorem is true iff the local theorem
is true.

• Also if we let, K/Qp be a cyclic extension of lr, for some prime l ̸= p, then
K ⊂ Qp(ζm) for some m ∈ Z≥1.

• If we let l = p as above, then too it holds similarly, but the approach to proof is
different.
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Summary of Local and Global Class Field Theory
Placeholder

• Our main approach is to provide an analogue of the Kronecker-Weber theorem
for any general number field.

• We head to the more general theorem,
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Summary of Local and Global Class Field Theory
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Local Class Field Theory
Let K/Qp be a finite extension, then there exists an unique isomorphism

ϕ : K̂× → GabK

(called local Artin map), with the following propositions,

• for any uniformizer π of K, restriction of ϕ(π) to the maximal unramified
extension of K is the Frobenius element.

• for any finite abelian extension L/K, we have an isomorphism,

K×/NL/K(L
×)→ Gal(L/K)
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Summary of Local and Global Class Field Theory
Placeholder

• A remarkable consequence of the Local Class Field Theory is as follows:
if p and q are two primes such that p ≡ q (mod n) =⇒ Frobp = Frobq in
Gal(Q(ζn)/Q) and conversely.

• Now the Global Kronecker Weber Theory implies that a similar thing holds for any
abelian extension of Q, i.e if K/Q is finite abelian, then there exists n such that
Frobp = Frobq, whenever p ≡ q (mod n).

• This statement helps us get moving towards the global Class Field Theory.
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Summary of Local and Global Class Field Theory
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The Global Class Field Theory
1. (Reciprocity) L/K finite abelian and let S =set of primes of K ramifying in L, then

there exists a modulus m of K, prime to S, such that the Artin map induces a
surjection

cm → Gal(L/K)

Moreover it induces an isomorphism,

Is/(i(Km,1).NL/K.I
S
L)→ Gal(L/K)

2. (Existence) Given any modulus n of K there exists an abelian extension Km/K (also
known as the Ray Class Field), the Artin map induces an isomorphism.
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I thank everyone for their valu-
able attention!


