p-adic analysis and zeta functions

Institute of Mathematics, Eötvös
Loránd Tudományegyetem
Ritoprovo Roy
January 9, 2024

A Little Bit of History

We begin with a little bit of history in order to spark up the interest

A Little Bit of History

We begin with a little bit of history in order to spark up the interest

- In the year of 1897, Hensel came up with the concept of p-adic numbers.

A Little Bit of History

We begin with a little bit of history in order to spark up the interest

- In the year of 1897, Hensel came up with the concept of p-adic numbers.
- A formalisation was done by Ostrowski, and he classified the norm on \mathbb{Q}. His theorem, upgraded the view of p-adic's from a mere subset of rationals to a subset of topological spectrum over rationals.

A Little Bit of History

We begin with a little bit of history in order to spark up the interest

- In the year of 1897, Hensel came up with the concept of p-adic numbers.
- A formalisation was done by Ostrowski, and he classified the norm on \mathbb{Q}. His theorem, upgraded the view of p-adic's from a mere subset of rationals to a subset of topological spectrum over rationals.
- In the later part of $20^{\text {th }}$ century a much more wider spectrum from Kubota and Leopoldt was established bringing out it's importance in number theory.

A Little Bit of History

We begin with a little bit of history in order to spark up the interest

- In the year of 1897, Hensel came up with the concept of p-adic numbers.
- A formalisation was done by Ostrowski, and he classified the norm on \mathbb{Q}. His theorem, upgraded the view of p-adic's from a mere subset of rationals to a subset of topological spectrum over rationals.
- In the later part of $20^{\text {th }}$ century a much more wider spectrum from Kubota and Leopoldt was established bringing out it's importance in number theory.
- Formally, given a prime number p, a p-adic number can be defined as a series (for $k \in \mathbb{Z}$ and $0<a_{i}<p$)

$$
s=\sum_{i=k}^{\infty} a_{i} p^{i}
$$

Introduction to p-adic numbers

Motivation, An overview of p adic numbers and metric formulation on \mathbb{Q} and \mathbb{Q}_{p}

Motivation

We use two different directions to motivate us to go into p-adic numbers,

Motivation

We use two different directions to motivate us to go into p-adic numbers,

- Solving Polynomial Equations.

Motivation

We use two different directions to motivate us to go into p-adic numbers,

- Solving Polynomial Equations.
- Completing the number system i.e, finding limits to all Cauchy Sequences.

Motivation

We use two different directions to motivate us to go into p-adic numbers,

- Solving Polynomial Equations.
- Completing the number system i.e, finding limits to all Cauchy Sequences.

Let us recall the construction of \mathbb{R},

Motivation

We use two different directions to motivate us to go into p-adic numbers,

- Solving Polynomial Equations.
- Completing the number system i.e, finding limits to all Cauchy Sequences.

Let us recall the construction of \mathbb{R},

Solving Equations

Linear Equations
$x+a=0, a x=b$
Quadratic Equations
$x^{2}-a=0$

Motivation

We use two different directions to motivate us to go into p-adic numbers,

- Solving Polynomial Equations.
- Completing the number system i.e, finding limits to all Cauchy Sequences.

Let us recall the construction of \mathbb{R},

Solving Equations

Linear Equations
$x+a=0, a x=b$
Quadratic Equations
$x^{2}-a=0$

Cauchy Sequences via completion

Let S be the set of all Cauchy Sequences of rational numbers. We say two sequence $\left\{a_{i}\right\}$ and $\left\{b_{i}\right\}$ are equivalent (\sim) iff $\left|a_{i}-b_{i}\right| \rightarrow 0$ as $i \rightarrow \infty$. This is an equivalent relation. One can observe that $\mathbb{R}=S / \sim$ i.e set of all equivalence classes of S.

Motivation (Contd.....)

- But still we are not done. Going by approach of algebraically closeness we still don't have answer to $x^{2}+2=0$.

Motivation (Contd.....)

- But still we are not done. Going by approach of algebraically closeness we still don't have answer to $x^{2}+2=0$.
- So we define $\mathbb{C}=\{a+i b \mid a, b \in \mathbb{R}\}$, and by fundamental theorem of algebra \mathbb{C} is algebraically closed.

Motivation (Contd.....)

- But still we are not done. Going by approach of algebraically closeness we still don't have answer to $x^{2}+2=0$.
- So we define $\mathbb{C}=\{a+i b \mid a, b \in \mathbb{R}\}$, and by fundamental theorem of algebra \mathbb{C} is algebraically closed.
- We also see that with respect to \mathbb{C} is also closed with respect to the norm, $|a+i b|=a^{2}+b^{2}$.

Motivation (Contd.....)

- But still we are not done. Going by approach of algebraically closeness we still don't have answer to $x^{2}+2=0$.
- So we define $\mathbb{C}=\{a+i b \mid a, b \in \mathbb{R}\}$, and by fundamental theorem of algebra \mathbb{C} is algebraically closed.
- We also see that with respect to \mathbb{C} is also closed with respect to the norm, $|a+i b|=a^{2}+b^{2}$.
As a result \mathbb{C} is our finish point.

Motivation (Contd.....)

- We follow a similar approach for defining a metric on \mathbb{Q}.

Approach

$$
\begin{gathered}
\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \\
\mathbb{Q} \subset \mathbb{Q}_{p} \subset \overline{\mathbb{Q}}_{p} \subset \mathbb{C}_{p}
\end{gathered}
$$

Introduction

Norm/Valuation

A norm or valuation of a field \mathbb{F} is a map $\|\cdot\|: \mathbb{F} \rightarrow \mathbb{R}^{+} \cup\{0\}$ that satisfies

- $\|x\|=0$ iff $x=0$
- $\|x y\|=\|x\|\|y\|$
- $\|x+y\| \leq\|x\|+\|y\|$ (Triangle Inequality)

Introduction

Norm/Valuation

A norm or valuation of a field \mathbb{F} is a map $\|\cdot\|: \mathbb{F} \rightarrow \mathbb{R}^{+} \cup\{0\}$ that satisfies

- $\|x\|=0$ iff $x=0$
- $\|x y\|=\|x\|\|y\|$
- $\|x+y\| \leq\|x\|+\|y\|$ (Triangle Inequality)
- The pair $(F,\|\cdot\|)$ is called a valued field.

Introduction

Norm/Valuation

A norm or valuation of a field \mathbb{F} is a map $\|\cdot\|: \mathbb{F} \rightarrow \mathbb{R}^{+} \cup\{0\}$ that satisfies

- $\|x\|=0$ iff $x=0$
- $\|x y\|=\|x\|\|y\|$
- $\|x+y\| \leq\|x\|+\|y\|$ (Triangle Inequality)
- The pair $(F,\|\cdot\|)$ is called a valued field.
- We can use norms to induce metric by setting

$$
d(x, y)=\|x-y\|
$$

Introduction (Contd......)

- The usual absolute value is a norm on \mathbb{Q} with the usual distance metric induced by the absolute value norm.

Introduction (Contd......)

- The usual absolute value is a norm on \mathbb{Q} with the usual distance metric induced by the absolute value norm.
- We try to construct a new norm in the following way: Let p be a prime number and for each $x \in \mathbb{Q}$ we write x in the following way

$$
x=p^{v_{p}(x)} x_{1}
$$

where v_{p} is the highest power of p dividing x and x_{1} is a rational number co-prime to p.

The Ultrametric Property

- One says that a valuation satisfies the ultrametric property, if it also satisfies the property,

$$
|x+y| \leq \max (|x|,|y|)
$$

The Ultrametric Property

- One says that a valuation satisfies the ultrametric property, if it also satisfies the property,

$$
|x+y| \leq \max (|x|,|y|)
$$

For example:

Defining the metric

Let ρ be any real number. We can now define the metric on $\mathbb{R}[X]$

$$
|f|= \begin{cases}0 & f=0 \\ \rho^{d(f)} & f \neq 0\end{cases}
$$

$$
d(f)= \begin{cases}n & f(x)=a_{0}+a_{1} x+\ldots a_{n} x^{n}, \quad a_{i} \neq 0 \quad \forall i \\ -\infty & f(x)=0\end{cases}
$$

The Topology and Arithmetic in \mathbb{Q}_{p}

The geometry, arithmetic and the Hensel's lemma

The Metric Structure

- We induce a metric structure on \mathbb{Q}_{p},

$$
d(x, y)=|x-y|_{p}
$$

The Metric Structure

- We induce a metric structure on \mathbb{Q}_{p},

$$
d(x, y)=|x-y|_{p}
$$

- We can check that this does satisfies the property of metrics.

The Metric Structure

- We induce a metric structure on \mathbb{Q}_{p},

$$
d(x, y)=|x-y|_{p}
$$

- We can check that this does satisfies the property of metrics.
- We also have a stronger property than triangle inequality,

$$
d(x, y) \leq \max (d(x, y), d(x, z))
$$

The Metric Structure

- We induce a metric structure on \mathbb{Q}_{p},

$$
d(x, y)=|x-y|_{p}
$$

- We can check that this does satisfies the property of metrics.
- We also have a stronger property than triangle inequality,

$$
d(x, y) \leq \max (d(x, y), d(x, z))
$$

The Geometry

- The structure of \mathbb{Q}_{p}, becomes interesting and counter-intuitive in some eyes.
- One can show that all triangles in this system are isoceles.
- Yet another interesting property, lies with topological concepts of open and closed balls

Structure of balls

Let K be a field with a non-archimedian absolute value then

- Every point that is contained in an open(closed) ball is the center of that ball.
- Every ball is both open and closed.
- Any two open(closed) balls are either disjoint or one is contained in another.

Arithmetic in \mathbb{Q}_{p}

The general arithmetic in \mathbb{Q}_{p}, is very usual as in our normal arithmetic except for the fact that, "carrying", "borrowing" and "long multiplication" go from left to right, rather than right to left.

$$
\begin{array}{r}
3+6 \times 7+2 \times 7^{2}+\cdots \\
\times 4+5 \times 7+1 \times 7^{2}+\cdots \\
\hline 5+4 \times 7+4 \times 7^{2}+\cdots \\
1 \times 7+4 \times 7^{2}+\cdots \\
3 \times 7^{2}+\cdots \\
\hline 5+5 \times 7+4 \times 7^{2}+\cdots
\end{array}
$$

Figure: Arithmetic in \mathbb{Q}_{p}

Finding $n^{\text {th }}$ roots in \mathbb{Q}_{p}

- A rather interesting topic is to find $n^{\text {th }}$ roots in \mathbb{Q}_{p}.

Finding $n^{\text {th }}$ roots in \mathbb{Q}_{p}

- A rather interesting topic is to find $n^{\text {th }}$ roots in \mathbb{Q}_{p}.
- For example $\sqrt{6}$ in \mathbb{Q}_{5} is given by,

$$
\sqrt{6}=1+3 \times 5+0 \times 5^{2}+4 \times 5^{3}+\ldots
$$

Finding $n^{\text {th }}$ roots in \mathbb{Q}_{p}

- A rather interesting topic is to find $n^{\text {th }}$ roots in \mathbb{Q}_{p}.
- For example $\sqrt{6}$ in \mathbb{Q}_{5} is given by,

$$
\sqrt{6}=1+3 \times 5+0 \times 5^{2}+4 \times 5^{3}+\ldots
$$

- In general our method, is based as follows, let
$a_{0}+a_{1} \times 5+a_{2} \times 5^{2}+a_{3} \times 5^{3}+\ldots$ be the square root. Then we have,

$$
\left(a_{0}+a_{1} \times 5+a_{2} \times 5^{2}+a_{3} \times 5^{3}+\ldots\right)^{2}=1+1 \times 5
$$

Finding $n^{\text {th }}$ roots in \mathbb{Q}_{p}

- A rather interesting topic is to find $n^{\text {th }}$ roots in \mathbb{Q}_{p}.
- For example $\sqrt{6}$ in \mathbb{Q}_{5} is given by,

$$
\sqrt{6}=1+3 \times 5+0 \times 5^{2}+4 \times 5^{3}+\ldots
$$

- In general our method, is based as follows, let
$a_{0}+a_{1} \times 5+a_{2} \times 5^{2}+a_{3} \times 5^{3}+\ldots$ be the square root. Then we have,

$$
\left(a_{0}+a_{1} \times 5+a_{2} \times 5^{2}+a_{3} \times 5^{3}+\ldots\right)^{2}=1+1 \times 5
$$

- Comparing the coefficients(modulo 5) on both sides we get the result.

Hensel's Lemma

- The above method is placed as a generalised lemma formulated by Hensel.

Hensel's Lemma

Let $F(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots a_{n} x^{n}$ be a polynomial in p-adic integers. Let $F^{\prime}(x)$ be the natural derivative of F. Let a_{0} be the p-adic integer $F\left(a_{0}\right) \equiv 0(\bmod p)$ and $F\left(a_{0}\right) \not \equiv 0(\bmod p)$ then there exists a unique p-adic integer a such that

$$
F(a)=0, \quad a \equiv a_{0}(\bmod p)
$$

- For our case with 6 and \mathbb{Q}_{5}, we have $F(x)=x^{2}-6, F^{\prime}(x)=2 x$ and $a_{0}=1$.

p-adic measures,

 distributions and Iwasawa Algebras

Power Series Rings, p-adic measures and Iwasawa Algebras

Setup and Introduction

- Let K / \mathbb{Q}_{p} be a finite extension.
- Let O_{K} be the valuation K and π be the uniformizer of O_{K}.
- Let $k=O_{K} /(\pi)$ be the residue field of O_{K}, which is finite extension of $\mathbb{Z}_{p} / p \mathbb{Z}_{p} \simeq \mathbb{F}_{p}$ Our main goal of this chapter is to understand the following,

Power Series Ring in p-adics

We begin with an important lemma,

Division Lemma

Suppose

$$
f=a_{0}+a_{1} T+a_{2} T^{2}+\cdots \in O_{K}[|T|]
$$

but π Xf, i.e, $\mathrm{f} \notin O_{K}[|T|]$. Let $n=\min \left\{i: a_{i} \notin(\pi)\right\}$. Then any $g \in O_{K}[|T|]$ can be uniquely written as $q=q f+r$ where $q \in O_{K}[|T|]$, and $r \in O_{K}[T]$ is a polynomial of degree atmost $n-1$.

- If $\pi \not \backslash f \in O_{K}[|T|]$, then $O_{K}[|T|] /(f)$ is a free O_{K} module of rank $n=\left\{\inf i: a_{i} \notin(\pi)\right\}$, with the basis $\left\{T^{i} \mid i<n\right\}$.

Power Series Ring in p-adics

- We define the notion of a distinguished polynomial,

Distinguished Polynomial

A distinguished polynomial $F(T) \in O_{K}[T]$ is a polynomial of the form

$$
F(T)=T^{n}+a_{n-1} T^{n-1}+\ldots a_{0}, \quad a_{i} \in(\pi)
$$

- We allow $\pi^{2} \mid a_{0}$ as to avoid for any irreducibility case due to Eisenstein criterion.
- An important implication from the theorem is, if F is a distinguished polynomial, then

$$
O_{K}[T] /_{F} O_{K}[T] \simeq O_{K}[|T|] /_{F} O_{K}[|T|]
$$

Power Series Ring in p-adics

- We begin with a rather important theorem,

p-adic Weirestrass Preperation Theorem

Let $f \in O_{K}[|T|]$, then f can be uniquely written as

$$
f=\pi^{\mu} P(T) U(T)
$$

is a distinguished polynomial of degree $n=\left\{\inf i: \operatorname{ord}_{\pi}\left(a_{i}\right)=\mu\right\}, U(T)$ is unit in $O_{K}[|T|]$. As a consequence, $O_{K}[|T|]$ is a factorial domain.

- As an important corollary, Let $f(T) \in O_{K}[|T|]$, be non-zero. Then there can only be finitely many $x \in C_{p},|x|<1$ with $f(x)=0$.

Iwasawa Algebras - The Setup

- The theory of commutative Iwasawa algebras were first introduced by the Japanese mathematician Kenkichi Iwasawa.
- Let $\Gamma=\mathbb{Z}_{p}=\lim \mathbb{Z} / p^{n} \mathbb{Z}$, where the inverse limit is taken on n, where Γ is compact and pro-cyclic as a profinite group.
- Let γ be a topological generator of Γ and hence $\Gamma=<\bar{\gamma}>$.
- Let Γ_{n} be generated by $\gamma^{p^{n}}$, and this be the unique closed group of index p^{n} of Γ, then Γ / Γ_{n}, is cyclic of order p^{n} generated by $r+\Gamma_{n}$.

Iwasawa Algebras - The Setup

- One has isomorphism

$$
\begin{aligned}
O_{K}\left[\Gamma / \Gamma_{n}\right] & \cong O_{K}[\Gamma] /\left((1+T)^{p^{n}}-1\right) \\
\gamma \bmod \Gamma_{n} & \rightarrow(1+T) \bmod \left((1+T)^{p^{n}}-1\right)
\end{aligned}
$$

- Moreover, if $m \geq n \geq 0$, the natural map of $\Gamma / \Gamma_{m} \rightarrow \Gamma / \Gamma_{n}$ induces a natural map,

$$
\phi_{m, n}: O_{K}\left[\Gamma / \Gamma_{m}\right] \rightarrow O_{K}\left[\Gamma / \Gamma_{n}\right]
$$

- We let

$$
O_{K}[|\Gamma|]=\underset{\longleftarrow}{\lim } O_{K}\left[\Gamma / \Gamma_{n}\right]=\lim _{\longleftarrow} O_{K}[\Gamma] /\left((1+T)^{p^{n}}-1\right)
$$

where the limits are taken on n.

Iwasawa Algebras - The Setup

- We finally note that O_{K} is a topological ring which is compact and complete with the π-adic topology, so are $O_{K}\left[\Gamma / \Gamma_{n}\right]$ and thus $O_{K}[|\Gamma|]$ is the endowed with the product topology of π-adic topology. It is also compact and complete in this topology.
- We are now in a position to define what Iwasawa Algebras are,

Iwasawa Algebras

$$
\Lambda=\Lambda(\Gamma)=O_{K}[|\Gamma|]
$$

is called the Iwasawa Algebra over Γ.

Iwasawa Algebra

- An important thing to note is that,

Iwasawa Algebra on Profinite Group

Let G be a profinite abelian group, then Iwasawa algebra over G is given by,

$$
\Gamma(G)=\lim _{\Longleftarrow} O_{K}[G / H]
$$

when limit is taken over all $H \triangleleft G$.

- In fact we are able to identify the rings $O_{K}[|\Gamma|]$ and $O_{K}[|T|]$.

$$
\begin{aligned}
O_{K}[| | T \mid] & \cong O_{K}[|\Gamma|] \\
T & \rightarrow \gamma-1
\end{aligned}
$$

p-adic measures

- We begin with an important lemma,

Lemma

Any compact subset of \mathbb{Q}_{p}, can be expressed as a finite disjoint union of intervals $a+p^{N} \mathbb{Z}_{p}=\left\{x \in \mathbb{Q}_{p}:|x-a|_{p} \leq \frac{1}{p^{N}}\right\}$

p-adic distributions

p-adic distribution

Let X be a compact open subset of \mathbb{Q}_{p}. A p-adic distribution μ on X, is an additive map from the compact open set in X to \mathbb{Q}_{p}, i.e if U is compact open in X and is a finite disjoint union of compact open subsets $\left\{U_{i}\right\}_{i=1}^{n}$ then

$$
\mu(U)=\sum_{i=1}^{n} U_{i}
$$

A p-adic distribution μ on X is called a measure if there exists a positive real number M, such that $|\mu(U)| \leq M$ for all compact open sets in U in X.

p-adic distributions

- An important result in this direction is the following,

Theorem

Let μ be a map from the set of compact open subsets in X, to \mathbb{Q}_{p} such that

$$
\mu\left(a+p^{N}\right)=\sum_{b=0}^{p-1} \mu\left(a+b p^{N}+P^{N+1}\right)
$$

for any interval $a+p^{N}$ in X. Then μ extends uniquely to a p-adic distribution in X.

Interpolation and related results

Zeta function, p-adic interpolation of the zeta function, KubotaLeopoldt constructions for p adic analougues of zeta function, Kummer's congruence

The ζ function

- The Riemann-zeta function is defined as a function on $s \in \mathbb{C}$ by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}
$$

- The above series converges absolutely for $\operatorname{Re}(s)>1$.
- We can also show that it has a meromorphic continuation to all of \mathbb{C} with a simple pole at $s=-1$.

The Γ function

- For $s \in \mathbb{C}$ the gamma function is defined as

$$
\Gamma(s)=\int_{0}^{\infty} e^{-t} t^{s} \frac{d t}{t}
$$

- We have $\Gamma(s+1)=s \Gamma(s)$ for all $\operatorname{Re}(s)>0$
- $\Gamma(n)=(n-1)$!
- Using the fact that $\Gamma(s+1)=s \Gamma(s)$, we can extended it meromorphically to with simple poles at all negative integers.

Connecting ζ and Γ functions

- We let,

$$
\Lambda(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

- We observe by a simple computation that,

$$
\Lambda(s)=\Lambda(1-s)
$$

for all $s \in \mathbb{C}$ with $\operatorname{Re}(s)>1$.

- And as a consequence one gets that ζ, can be extended analytically onto \mathbb{C}, with a simple pole at $s=1$, with residue 1 .

Mellin Transform

Mellin Transform

Let $g: \mathbb{R}_{>0} \rightarrow \mathbb{C}$, be a function of rapid decay (i.e $|g(t)| \ll t^{-N}, N \geq 0$), then the Mellin transform of g is given by

$$
M(g)(s)=\int_{0}^{\infty} g(t) t \frac{d t}{t}
$$

We define the L-function as follows,

$$
L(f ; s)=\frac{1}{\Gamma(s)} M(f)
$$

for a function $f: \mathbb{R}_{>0} \rightarrow \mathbb{C}$, be a function of rapid decay

Connecting the ζ and Γ (contd...)

An useful proposition

$L(f ; s)$ converges and is holomorphic function for $\operatorname{Re}(s)>0$ and hans an analytic continuation to the whole of \mathbb{C} and

$$
L(f,-n)=(-1)^{n} \frac{d^{n}}{d t^{n}} f(0)
$$

Connecting the ζ and Γ (contd...)

We now recall what Bernoulli numbers are,

Bernoulli Numbers

The $k^{\text {th }}$ Bernoulli number, B_{k} is given by

$$
F(t)=\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!}
$$

- For our f as above we have

$$
(s-1) \zeta(s)=L(F, s-1)
$$

Connecting the ζ and Γ (contd...)

An important Corollary

For $n \geq 0$, we have $\zeta(-n)=-\frac{B_{n+1}}{n+1}$
$\zeta(-n)=0$, when $n \geq 2$ is an even integer.
For $k \geq 0$, we have $\zeta(2 k)=(-1)^{k-1} \frac{(2 \pi)^{2 k}}{2 \cdot(2 k)!} B_{2 k}$.

The p-adic analogue of the ζ-function

- From our previous results, the p-adic analogue can be constructed in two ways
- First way:

We observe that the set $\left\{-n: n \in \mathbb{Z}_{>0}\right\}$ is dense in \mathbb{Z}_{p}. We can exploit this fact and hope that if $1-n$ and $1-m$ are so called p-adically close, then so is $-\frac{B_{n}}{n}$ and $-\frac{B_{m}}{m}$ and hence would allow us to build the p -adic analogue via interpolation via measure. This is the method of Kubota-Leopoldt and Mazur.

- Second way:

A much more direct method is to directly give a explicit formulae of p-adic L-function, which agrees with $\zeta(s)$ at almost all places except some modification at the negative integers. Such a construction was given by Washington.

The Kubota-Leopoldt construction

p-adic Bernoulli Distribution

We have

- The usual analogue of Bernoulli Distribution

$$
\mu_{k}\left(a+p^{n} \mathbb{Z}_{p}\right)=p^{n(k-1)} B_{k}\left(\frac{a}{p^{n}}\right)
$$

- Regularized Bernoulli Distribution

$$
\mu_{k, \alpha}(U)=\mu(U)-\alpha^{k} \mu_{k}\left(\alpha^{-1} U\right)
$$

for any compact open set $U \subset \mathbb{Q}_{p}$ and $\alpha \in\left(\mathbb{Z}_{p}\right)^{\times}$.

The Kubota-Leopoldt construction (Contd.....)

We have two observations

- $\mu_{k, \alpha}$ is a p-adic measure.
- Let $d_{k}=$ least common denominator of the coefficient of $B_{k}(x)$, then

$$
d_{k} \mu_{k, \alpha}\left(a+p^{n} \mathbb{Z}_{p}\right) \equiv d_{k} k a^{k-1} \mu_{1, \alpha}\left(a+p^{n} \mathbb{Z}_{p}\right) \quad\left(\bmod p^{n}\right)
$$

An important theorem

If $f: \mathbb{Z}_{p} \rightarrow \mathbb{Q}_{p}$ is a continuous function, then

$$
\int_{\mathbb{Z}_{p}} f(x) d \mu_{k, \alpha}(x)=\int_{\mathbb{Z}_{p}} f(x) k x^{k-1} d \mu_{1, \alpha}(x)
$$

The Kubota-Leopoldt construction (Contd.....)

An important corollary

For each $k \in \mathbb{N}$, and $\alpha \in\left(\mathbb{Z}_{p}\right)^{\times}$is not a root of unity then,

$$
B_{k}=\frac{k}{1-\alpha^{n}} \int_{\mathbb{Z}_{p}} x^{k-1} d \mu_{1, \alpha}(x)
$$

- If $p \mid n$ then $f(s)=n^{s}$, does not extend to a continuous function of a p-adic variable, hence our naive approach won't work.
- We instead consider a much more constructive approach to get around it.
- We define:

$$
\Lambda_{s_{0}}=\left\{s \in \mathbb{Z}_{>0}: s \equiv s_{0} \bmod p\right\}
$$

The Kubota-Leopoldt construction (Contd.....)

- We consider the natural embedding

$$
\begin{aligned}
\Lambda_{s_{0}} & \hookrightarrow \frac{\mathbb{Z}}{(p-1) \mathbb{Z}} \times \mathbb{Z}_{p} \\
\mathbb{Z}_{\geq 0} & \hookrightarrow \frac{\mathbb{Z}}{(p-1) \mathbb{Z}} \times \mathbb{Z}_{p} \\
n & \rightarrow\left([n]_{p-1}, n\right)
\end{aligned}
$$

The Kubota-Leopoldt construction (Contd.....)

An Important Lemma

If $p \nmid n$, then $f(s)=n^{s}$ extends to a continuous analytic function on $\frac{\mathbb{Z}}{(p-1) \mathbb{Z}} \times \mathbb{Z}_{p}$.

- So this suggest to shrink our domain to $\left(\mathbb{Z}_{p}\right)^{\times}$.

Defining the analogue

Let $\alpha \neq 1$ be a rational number and not divisible by p, then for any positive integer k we get,

$$
\zeta_{p}(1-k)=\frac{1}{\alpha^{-k}-1} \int_{\left(\mathbb{Z}_{p}\right)^{\times}} x^{k-1} d \mu_{1, \alpha}
$$

- One can check this is well-defined

The Kubota-Leopoldt construction (Contd.....)

- With a little manipulation, we can observe that,

$$
\zeta_{p}(1-k)=\left(1-p^{k-1}\right)-\frac{B_{k}}{k}
$$

- We are almost done except the continuity, which can achieved by the Kummer's congruences,

Kummer's Congruences

1. if $(p-1) \nless k$ then $\frac{B_{k}}{k}$, is a p-adic integer.
2. if $(p-1) \nmid k$ and $k \equiv k^{\prime} \bmod (p-1) p^{N}$, then

$$
\left(1-p^{k-1}\right) \frac{B_{k}}{k} \equiv\left(1-p^{k^{\prime}-1}\right) \frac{B_{k}}{k^{\prime}} \bmod p^{N+1}
$$

Kubota-Leoplodt p-adic L functions

We end our discussion with the Kubota-Leopoldt p-adic L functions.

Kubota-Leopoldt p-adic L functions

For any $\alpha \in \mathbb{Z}, \alpha \neq 1$ and $p \not X \alpha$ and for a fixed integer $s_{0} \in\{0,1,2, \ldots, p-2\}$, then

$$
\zeta_{p, s_{0}}=\frac{1}{\alpha^{-\left(s_{0}+(p-1) s\right)}-1} \int_{\left(\mathbb{Z}_{p}\right)^{\times}} x^{s_{0}+(p-1) s-1} d \mu_{1, \alpha}
$$

for any p-adic integer s except at $s=0$, in case of $s_{0}=0$.

Washington's Construction

Let χ be a Dirichlet character of conductor f, and let F be some multiple of q and f.

$$
L_{p}(s, \chi)=\frac{1}{F} \frac{1}{s-1} \sum_{a=1, p \backslash t}^{F} \chi(a)<a>^{1-s} \sum_{j=0}^{\infty}\binom{1-s}{j}\left(B_{j}\right)\left(\frac{F}{a}\right)^{j}
$$

Conclusion (Local and Global Class Field Theory)

Investigating into Local and Global Class Field Theories, Statement of the Iwasawa Main Conjecture

Summary of Local and Global Class Field Theory

- We have seen existence of a power series $g(T) \in \mathbb{Z}_{p}[|T|]$ (from the analytic side).
- Now we try to construct a similar set up from the algebraic set side.
- Our main goal in modern number theory is to study $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ or the same for any number field K.
- Standard method for gaining insight into the structure of G_{K}, on arithmetic objects related to K (Galois representations).
- Class Field Theory describes $G_{K}^{a b}=\max$ abelian quotient of G_{K} as a first step towards the understanding of G_{K}.

Summary of Local and Global Class Field Theory

- We know that for each integer $m>1$, the cyclotomic extension $\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}$ is an abelian extension with Galois group $G=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{m}\right) / \mathbb{Q}\right) \cong(\mathbb{Z} / m \mathbb{Z})^{\times}$.
- So we get a simple process to construct abelian extensions of \mathbb{Q}. We pick $m \geq 1$ and take any subfield of $\mathbb{Q}\left(\zeta_{m}\right)$.
- A remarkable result would in this direction is the Kronecker Weber theorem in 1853.
Kronecker Weber Theorem (Global)

Every finite abelian extension of \mathbb{Q} lies in $\mathbb{Q}\left(\zeta_{m}\right)$.

Summary of Local and Global Class Field Theory

Kronecker Weber Theorem (Local)

Every finite abelian extension of \mathbb{Q}_{p} lies in $\mathbb{Q}_{p}\left(\zeta_{m}\right)$.

- An interesting proposition is that, the global theorem is true iff the local theorem is true.
- Also if we let, K / \mathbb{Q}_{p} be a cyclic extension of l^{r}, for some prime $l \neq p$, then $K \subset \mathbb{Q}_{p}\left(\zeta_{m}\right)$ for some $m \in \mathbb{Z}_{\geq 1}$.
- If we let $l=p$ as above, then too it holds similarly, but the approach to proof is different.

Summary of Local and Global Class Field Theory

- Our main approach is to provide an analogue of the Kronecker-Weber theorem for any general number field.
- We head to the more general theorem,

Summary of Local and Global Class Field Theory

Local Class Field Theory

Let K / \mathbb{Q}_{p} be a finite extension, then there exists an unique isomorphism

$$
\varphi: \hat{K^{\times}} \rightarrow G_{K}^{a b}
$$

(called local Artin map), with the following propositions, for any uniformizer π of K, restriction of $\varphi(\pi)$ to the maximal unramified extension of K is the Frobenius element.
for any finite abelian extension L / K, we have an isomorphism,

$$
K^{\times} / N_{L / K}\left(L^{\times}\right) \rightarrow \operatorname{Gal}(L / K)
$$

Summary of Local and Global Class Field Theory

- A remarkable consequence of the Local Class Field Theory is as follows: if p and q are two primes such that $p \equiv q(\bmod n) \Longrightarrow \operatorname{Frob}_{p}=\mathrm{Frob}_{q}$ in $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ and conversely.
- Now the Global Kronecker Weber Theory implies that a similar thing holds for any abelian extension of \mathbb{Q}, i.e if K / \mathbb{Q} is finite abelian, then there exists n such that $\operatorname{Frob}_{p}=\operatorname{Frob}_{q}$, whenever $p \equiv q(\bmod n)$.
- This statement helps us get moving towards the global Class Field Theory.

Summary of Local and Global Class Field Theory

The Global Class Field Theory

(Reciprocity) L / K finite abelian and let $S=$ set of primes of K ramifying in L, then there exists a modulus m of K, prime to S, such that the Artin map induces a surjection

$$
c_{m} \rightarrow \operatorname{Gal}(L / K)
$$

Moreover it induces an isomorphism,

$$
I^{s} /\left(i\left(K^{m, 1}\right) \cdot N_{L / K} \cdot I_{L}^{S}\right) \rightarrow \operatorname{Gal}(L / K)
$$

(Existence) Given any modulus n of K there exists an abelian extension K_{m} / K (also known as the Ray Class Field), the Artin map induces an isomorphism.

THANK YOU

I thank everyone for their valuable attention!

