Helly-type theorems and boxes

Damján Péter Tárkányi
Supervisor: Márton Naszódi

Eötvös Lóránd University
2024.01.09.

Introduction

- If property A holds for any subfamily of a family of sets \mathcal{F} that is of a given finite size h and property, then some property B holds for the whole family \mathcal{F} of arbitrary finite size n
- Equivalent statement: If property B doesn't hold for \mathcal{F}, then A doesn't hold for some subfamily of size h.
- Helly number: h (minimal)

Helly-type theorems

Helly-type theorems

- Helly's original statement
- convex sets
- non-empty intersection
- Helly number: $d+1$

Helly-type theorems

- Helly's original statement
- convex sets
- non-empty intersection
- Helly number: $d+1$
- Colorful Helly Theorem

Helly-type theorems

- Helly's original statement
- convex sets
- non-empty intersection
- Helly number: $d+1$
- Colorful Helly Theorem
- Quantitative Volume Theorem
- convex sets
- lower bound on volume of intersection
- Helly number: $2 d$

Piercing Boxes

Definition: A set P pierces a family of sets \mathcal{F} if for any set
$S \in \mathcal{F}$ there is an element $p \in P$ such that $p \in S$. If $|P|=n$, then
\mathcal{F} is n-pierceable

Figure: 2-piercing a family of 2-dimensional boxes

Piercing Boxes

- All Helly-type statements are proven!

Piercing Boxes

- All Helly-type statements are proven!
- Theorem (Danzer, Grünbaum). If $h=h(d, n)$ is the smallest positive integer such that for any finite family \mathcal{F} of axis-parallel boxes in \mathbb{R}^{d} every h-tuple from \mathcal{F} is n-pierceable implies that \mathcal{F} is n-pierceable then following are the values of h :

$$
\begin{aligned}
& h(d, 1)=2 \\
& h(1, n)=n+1 \\
& h(d, 2)= \begin{cases}3 d: & 2 \mid d \\
3 d-1: & 2 \nmid d\end{cases} \\
& h(2,3)=16 \\
& h(d, n)=\aleph_{0} \quad n \geq 3,(d, n) \neq(2,3)
\end{aligned}
$$

Punching holes into boxes

piercing and volume \rightarrow punching holes

n-punching

Family of d-dimensional boxes \mathcal{F} is n-punchable:

- $\exists A_{1}, A_{2}, \ldots, A_{n}$ boxes of volume 1 each
- Any box from \mathcal{F} contains some A_{i}

Figure: 2-punching a family of 2-dimensional boxes (A and B have area 1)

Question

parameters	Piercing	Punching
1-dimension, n	\checkmark	$?$
d-dimenion, 2	\checkmark	$?$
2-dimension, 3	\checkmark	$?$

Any h-tuple is k-punchable \Longrightarrow the whole set is k-punchable Helly-number h ?

Results

parameters	Piercing	Punching
1-dimension, n	\checkmark	\checkmark
d-dimenion, 2	\checkmark	\checkmark
2-dimension, 3	\checkmark	$?$

Any h-tuple is k-punchable \Longrightarrow the whole set is k-punchable Helly-number h ?

Results

- 1-dimensional n-punching
- Proposition 1: $h=n+1$
- d-dimensional 2-punching
- lower bound
- Proposition 2: (4d - 2)-tuples are not enough.
- Corollary 2.1: $h \geq 4 d-1$
- upper bound
- Conjecture: $h \leq 4 d$

Results

Parameters	Piercing	Punching
1-dimension, n	$n+1$	$n+1$
d-dimension, 2	$3 d, 3 d-1$	$4 d-1 \leq$

Table: Helly numbers for different settings

Proof of Proposition 1

Minkowski difference

Figure: Minkowski addition, difference

Problem reduces to n-piercing intervals

Proof of Proposition 2

Figure: Construction for $d=2$. Punching pairs are of the same color.

Proof of Proposition 2

Figure: Any 6 -tuple can be punched by 2 big boxes.

Discussion

Upper bound:

- 1-punching: $h=2 d$
- 1 box: $2 d$ facets
- The facets of the punching box are determined by a subfamily of size at most $2 d$

Conjecture: $h \leq 4 d$ for 2-punching

- 2 boxes: $4 d$ facets in total

Upper bound problems

Figure: The highlithted boxes are bordered by the boxes of given color

Upper bound problems

Regrouping the tuples is a problem

Figure: The highlighted boxes are the maximal punching boxes of this tuple

References

R Damásdi, G., Viktória Földvári, V. \& Naszódi,M. (2020). Colorful Helly-type theorems for the volume of intersections of convex bodies. Journal of Combinatorial Theory.

囦 Chakraborty. S., Ghosh, A. \& Nandi, S. (2022). Coloful Helly Theorem for Piercing Boxes with Two Points.

