### Helly-type theorems and boxes

#### Damján Péter Tárkányi Supervisor: Márton Naszódi

Eötvös Lóránd University

2024.01.09.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

### Introduction

- If property A holds for any subfamily of a family of sets F that is of a given finite size h and property, then some property B holds for the whole family F of arbitrary finite size n
- Equivalent statement: If property B doesn't hold for F, then A doesn't hold for some subfamily of size h.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Helly number: h (minimal)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 りへぐ

#### Helly's original statement

- convex sets
- non-empty intersection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• Helly number: d + 1

#### Helly's original statement

- convex sets
- non-empty intersection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▶ Helly number: *d* + 1

#### Colorful Helly Theorem

#### Helly's original statement

- convex sets
- non-empty intersection
- Helly number: d + 1
- Colorful Helly Theorem
- Quantitative Volume Theorem
  - convex sets
  - Iower bound on volume of intersection

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Helly number: 2d

# **Piercing Boxes**

**Definition:** A set *P* **pierces** a family of sets  $\mathcal{F}$  if for any set  $S \in \mathcal{F}$  there is an element  $p \in P$  such that  $p \in S$ . If |P| = n, then  $\mathcal{F}$  is *n*-pierceable



Figure: 2-piercing a family of 2-dimensional boxes

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## **Piercing Boxes**

All Helly-type statements are proven!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## **Piercing Boxes**

- All Helly-type statements are proven!
- ► Theorem (Danzer, Grünbaum). If h = h(d, n) is the smallest positive integer such that for any finite family *F* of axis-parallel boxes in ℝ<sup>d</sup> every h-tuple from *F* is n-pierceable implies that *F* is n-pierceable then following are the values of h:

$$h(d, 1) = 2$$
  

$$h(1, n) = n + 1$$
  

$$h(d, 2) = \begin{cases} 3d : 2 \mid d \\ 3d - 1 : 2 \nmid d \end{cases}$$
  

$$h(2, 3) = 16$$
  

$$h(d, n) = \aleph_0 \quad n \ge 3, (d, n) \ne (2, 3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Punching holes into boxes

 $\textbf{piercing} \text{ and } \textbf{volume} \rightarrow \textbf{punching holes}$ 



# *n*-punching

Family of *d*-dimensional boxes  $\mathcal{F}$  is *n*-punchable:

- ▶  $\exists A_1, A_2, ..., A_n$  boxes of volume 1 each
- Any box from  $\mathcal{F}$  contains some  $A_i$



Figure: 2-punching a family of 2-dimensional boxes (A and B have area 1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

## Question

| parameters     | Piercing     | Punching |
|----------------|--------------|----------|
| 1-dimension, n | $\checkmark$ | ?        |
| d-dimenion, 2  | $\checkmark$ | ?        |
| 2-dimension, 3 | $\checkmark$ | ?        |

Any *h*-tuple is *k*-punchable  $\implies$  the whole set is *k*-punchable **Helly-number** *h*?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Results

| parameters     | Piercing     | Punching     |
|----------------|--------------|--------------|
| 1-dimension, n | $\checkmark$ | $\checkmark$ |
| d-dimenion, 2  | $\checkmark$ | $\checkmark$ |
| 2-dimension, 3 | $\checkmark$ | ?            |

Any *h*-tuple is *k*-punchable  $\implies$  the whole set is *k*-punchable Helly-number *h*?

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

## Results

I-dimensional *n*-punching
 Proposition 1: h = n + 1
 d-dimensional 2-punching
 lower bound
 Proposition 2: (4d - 2)-tuples are not enough.
 Corollary 2.1: h ≥ 4d - 1
 upper bound
 Conjecture: h ≤ 4d

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Results

| Parameters     | Piercing   | Punching    |
|----------------|------------|-------------|
| 1-dimension, n | n+1        | n+1         |
| d-dimension, 2 | 3d, 3d – 1 | $4d-1 \leq$ |

Table: Helly numbers for different settings

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

# Proof of Proposition 1

Minkowski difference



Figure: Minkowski addition, difference

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Problem reduces to *n*-piercing intervals

## Proof of Proposition 2



Figure: Construction for d = 2. Punching pairs are of the same color.

## Proof of Proposition 2



Figure: Any 6-tuple can be punched by 2 big boxes.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

## Discussion

Upper bound:

- ▶ 1-punching: h = 2d
- 1 box: 2d facets
- The facets of the punching box are determined by a subfamily of size at most 2d

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

**Conjecture:**  $h \leq 4d$  for 2-punching

2 boxes : 4d facets in total

## Upper bound problems



Figure: The highlithted boxes are bordered by the boxes of given color

# Upper bound problems

Regrouping the tuples is a problem



Figure: The highlighted boxes are the maximal punching boxes of this tuple

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

#### References

- Damásdi, G., Viktória Földvári, V. & Naszódi, M. (2020). Colorful Helly-type theorems for the volume of intersections of convex bodies. Journal of Combinatorial Theory.
- Chakraborty. S., Ghosh, A. & Nandi, S. (2022). Coloful Helly Theorem for Piercing Boxes with Two Points.