An extremal problem in the cyclic permutation

Xu Zhixuan
Eotovos Lorand University
Supervisor: Gyula O.H. Katona

(1) Introduction

- Background
- Main result
(2) Proof of the main result

(1) Introduction

- Background - Main result

(2) Proof of the main result

(1) Introduction

- Background - Main result

(2) Proof of the main result

Notations

Let n, k be positive integers and $[n]=\{1,2, \ldots, n\}$ denote the n-element set. Let $2^{[n]}$ be the power set of $[n]$ and a subset of $2^{[n]}$ is called a family of $[n]$. We denote the family of all k-elements subset of $[n]$ by $\binom{[n]}{k}$.

Inclusion-free families

A family \mathcal{F} is called inclusion-free if for any $F_{1}, F_{2} \in \mathcal{F}, F_{1} \subsetneq F_{2}$. As the first theorem in extremal finite set theory, Sperner determined the upper bound of $|\mathcal{F}|$ for inclusion-free families \mathcal{F}.

Inclusion-free families

A family \mathcal{F} is called inclusion-free if for any $F_{1}, F_{2} \in \mathcal{F}, F_{1} \subsetneq F_{2}$. As the first theorem in extremal finite set theory, Sperner determined the upper bound of $|\mathcal{F}|$ for inclusion-free families \mathcal{F}.

Theorem (Sperner theorem)

$\max |\mathcal{F}|=\binom{n}{\left\lfloor\frac{n}{2}\right\rfloor}$ where the max is taken over all inclusion-free families.

P-free families

For a poset P, we say that a subposet Q^{\prime} of Q is a (weak) copy of P, if there exists a bijection $f: P \rightarrow Q$, such that for any $p, p^{\prime} \in P$, the relation $p \prec_{P} p^{\prime}$ implies $f(p) \prec_{Q} f\left(p^{\prime}\right)$. If a poset Q does not contain a weak copy of P, then it is P-free.

P-free families

For a poset P, we say that a subposet Q^{\prime} of Q is a (weak) copy of P, if there exists a bijection $f: P \rightarrow Q$, such that for any $p, p^{\prime} \in P$, the relation $p \prec_{P} p^{\prime}$ implies $f(p) \prec_{Q} f\left(p^{\prime}\right)$. If a poset Q does not contain a weak copy of P, then it is P-free.

Specially, a inclusion-free family is a P_{2}-free poset, where P_{2} is the total order on 2 elements.

Intersecting families

A family \mathcal{F} is called intersecting if for any $F_{1}, F_{2} \in \mathcal{F}$ the intersection $F_{1} \cap F_{2} \neq \emptyset$. In 1961, Erdős, Ko and Rado gave the upper bound of $|\mathcal{F}|$ for any intersecting family \mathcal{F}.

Theorem (Erdős-Ko-Rado, 1961)

$\max |\mathcal{F}|=2^{n-1}$, where the max is taken over all intersecting families \mathcal{F}.

Theorem (Erdős-Ko-Rado, 1961)

Let \mathcal{F} be an intersecting family. There is another intersecting family \mathcal{G} such that $\mathcal{F} \subset \mathcal{G}$ and $|\mathcal{G}|=2^{n-1}$.

Theorem (Erdős-Ko-Rado, 1961)

Let \mathcal{F} be an intersecting family. There is another intersecting family \mathcal{G} such that $\mathcal{F} \subset \mathcal{G}$ and $|\mathcal{G}|=2^{n-1}$.

Theorem (Erdős-Ko-Rado Theorem)

Let $k\left(1 \leq k \leq \frac{n}{2}\right)$ be a fixed integer. Then $\max |\mathcal{F}|=\binom{n-1}{k-1}$ over all intersecting families $\mathcal{F} \subset\binom{[n]}{k}$

Cyclic permutation

A cyclic permutation π of the elements of $[n]$ is an ordering of the elements along a cycle. A subset A of $[n]$ is called an interval (along π) if its element are consecutive along π. The following statements are well-known.

Cyclic permutation

A cyclic permutation π of the elements of $[n]$ is an ordering of the elements along a cycle. A subset A of $[n]$ is called an interval (along π) if its element are consecutive along π. The following statements are well-known.

Theorem

An inclusion-free family \mathcal{A} of intervals along π has at most n elements. If \mathcal{A} has n elements, then all of its elements have same size.

Theorem

For some $1 \leq k \leq \frac{n}{2}$, if \mathcal{A} is an intersecting family of k-element intervals along π, then $|\mathcal{A}| \leq k$.

(1) Introduction

- Background
- Main result

(2) Proof of the main result

An extremal problem in cyclic permutation

In this report, we determine the largest size of a intersecting V-free family of intervals along a fixed permutation π, where the poset $V=\{x, y, z\}$ such that $x \prec y$ and $x \prec z$.

It is clear that $|\mathcal{A}| \leq n$ if $n \in\{1,2\}$ and $|\mathcal{A}| \leq n+1$ if $n \in\{3,4\}$, where the upper bound is tight. Thus, we only consider the case $n \geq 5$.

It is clear that $|\mathcal{A}| \leq n$ if $n \in\{1,2\}$ and $|\mathcal{A}| \leq n+1$ if $n \in\{3,4\}$, where the upper bound is tight. Thus, we only consider the case $n \geq 5$.

Besides, we can assume that π is actually the identity permutation without loss of generality. For general permutaion π, the proof is similar.

Main result

Theorem

For a intersecting V-free family \mathcal{A} of intervals along a fixed permutation π, if $n \geq 5$, then $|\mathcal{A}| \leq\left\lfloor\frac{3}{2} n\right\rfloor$. In particular, if $|\mathcal{A}|=\left\lfloor\frac{3}{2} n\right\rfloor$, then $|A|>\frac{n}{2}$ for any $A \in \mathcal{A}$.

Main result

Theorem

For a intersecting V-free family \mathcal{A} of intervals along a fixed permutation π, if $n \geq 5$, then $|\mathcal{A}| \leq\left\lfloor\frac{3}{2} n\right\rfloor$. In particular, if $|\mathcal{A}|=\left\lfloor\frac{3}{2} n\right\rfloor$, then $|A|>\frac{n}{2}$ for any $A \in \mathcal{A}$.

Further, let \mathcal{A} be the union of a set of all intervals with size $\left\lfloor\frac{n}{2}\right\rfloor+1$ and a set of all intervals with size $\left\lfloor\frac{n}{2}\right\rfloor+2$ and starting point $2 i\left(1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor\right)$. Then we have $|\mathcal{A}|=\left\lfloor\frac{3}{2} n\right\rfloor$. Thus, the upper bound of the theorem is tight.

(1) Introduction

- Background
- Main result
(2) Proof of the main result

Defination of $\mathcal{M}_{\mathcal{A}}$

Since \mathcal{A} is V-free, each chain of A contain at most two elemnts. Let $\mathcal{M}_{\mathcal{A}}$ be the set such that $\mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$ is the set of all maximal elements in each chain with length two in the poset \mathcal{A} with inclusion order.

Defination of $\mathcal{M}_{\mathcal{A}}$

Since \mathcal{A} is V-free, each chain of A contain at most two elemnts. Let $\mathcal{M}_{\mathcal{A}}$ be the set such that $\mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$ is the set of all maximal elements in each chain with length two in the poset \mathcal{A} with inclusion order.

It should be noted that for each $A \in \mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$, there eixsts $M \in \mathcal{M}_{\mathcal{A}}$ such that $M \subset A$. Also, $\mathcal{M}_{\mathcal{A}}$ is an inclusion-free and intersecting family. Since \mathcal{A} is V-free, for any $M \in \mathcal{M}_{\mathcal{A}}$, there exists at most one element $A \in \mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$ such that $M \subset A$.

Lemmas

First, we claim that $\max |\mathcal{A}| \geq n+1$. For example, a set of all intervals with length at least $n-1$ is an intersecting V-free family with $|\mathcal{A}|=n+1$. So we only need to consider the case $|\mathcal{A}| \geq n+1$.

Lemma

If $|M| \leq \frac{n}{2}$ for any $M \in \mathcal{M}_{\mathcal{A}}$, then $|\mathcal{A}| \leq n$.

Corollary

If $|\mathcal{A}| \geq n+1$, then there exists $A \in \mathcal{A}$ such that $|A|>\frac{n}{2}$.

Lemmas

Since each pair of two distinct elements of $\mathcal{M}_{\mathcal{A}}$ must have different starting points, $\left|\mathcal{M}_{\mathcal{A}}\right| \leq n$. In the following we consider two cases, $\left|\mathcal{M}_{\mathcal{A}}\right|=n$ and $\left|\mathcal{M}_{\mathcal{A}}\right| \leq n-1$, to prove $|\mathcal{A}| \leq\left\lfloor\frac{3}{2} n\right\rfloor$ provided $|\mathcal{A}| \geq n+1$.

The case of $\left|\mathcal{M}_{\mathcal{A}}\right|=n$

Lemma

If $|\mathcal{A}| \geq n+1$ and $\left|\mathcal{M}_{\mathcal{A}}\right|=n$, then $|\mathcal{A}| \leq\left\lfloor\frac{3}{2} n\right\rfloor$.
Proof. Let $\mathcal{M}_{\mathcal{A}}=\left\{M_{1}, M_{2}, \ldots, M_{n}\right\}$ and M_{i} has starting point i and endpoint b_{i}. Then we can find that $\left|M_{1}\right|=\left|M_{2}\right|=\cdots=\left|M_{n}\right|=\left|M_{1}\right|$. For each $A \in \mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$, there eixsts at least one i such that one of the following statements holds:

- $A \rightarrow M_{i}, M_{i-1}$;
- $A \rightarrow M_{i}, M_{i+1}$.

Besides, there exists at most one element $A^{\prime} \in \mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$ such that $M^{\prime} \subset A^{\prime}$ for any $M^{\prime} \in \mathcal{M}_{\mathcal{A}}$. Thus, $|\mathcal{A}|=\left|\mathcal{M}_{\mathcal{A}}\right|+\left|\mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}\right| \leq \frac{3}{2}\left|\mathcal{M}_{\mathcal{A}}\right|=\left\lfloor\frac{3}{2} n\right\rfloor$.

The case of $\left|\mathcal{M}_{\mathcal{A}}\right| \leq n-1$

Lemma

If $|\mathcal{A}| \geq n+1$ and $\left|\mathcal{M}_{\mathcal{A}}\right| \leq n-1$, then $|\mathcal{A}| \leq\left\lfloor\frac{3}{2} n\right\rfloor$ with equality holds if and only if $\left|\mathcal{M}_{\mathcal{A}}\right|=n-1$ and n is odd.

Proof. Denote $\left|\mathcal{M}_{\mathcal{A}}\right|=m$ and $\mathcal{M}_{\mathcal{A}}=\left\{M_{1}, M_{2}, \ldots, M_{m}\right\}$. Let a_{i} and b_{i} be the starting point and endpoint of M_{i} for $1 \leq i \leq m$, respectively. When $m<\frac{3}{4} n,|\mathcal{A}| \leq 2\left|\mathcal{M}_{\mathcal{A}}\right|<\frac{3}{2} n$, the result is trivial. We only need to consider $m \geq \frac{3}{4} n$.

First we discuss the case $a_{1} a_{2} a_{3} \ldots a_{m-1} a_{m}$ are consecutive and then extend the result to other cases.

First we discuss the case $a_{1} a_{2} a_{3} \ldots a_{m-1} a_{m}$ are consecutive and then extend the result to other cases.

If $a_{1} a_{2} a_{3} \ldots a_{m-1} a_{m}$ are consecutive, then we assume that $a_{i}=i$ without loss of generality. Then for any $A \in \mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$, exactly one element $M_{i} \in \mathcal{M}_{\mathcal{A}}$ such that $M_{i} \subset A$ is possible only if one of following statements holds:

- $i=1$;
- $2 \leq i \leq m-1$ and $b_{i+1}>b_{i}+1$;
- $i=m$ and $b_{1}>b_{m}+1$.

Let t be the largest number of such A among $\mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$ and $\left|\mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}\right|=I$. Since there exists at most one element $A^{\prime} \in \mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}$ such that $M^{\prime} \subset A^{\prime}$ for any $M^{\prime} \in \mathcal{M}_{\mathcal{A}}$, we have $m=\left|\mathcal{M}_{\mathcal{A}}\right| \leq 2(I-t)+t=2 I-t$ and $I \leq \frac{m+t}{2}$. Also, up to modulo $n, b_{1}=n+\left|M_{1}\right|>b_{m} \geq m-1+\left|M_{1}\right|+t-1$, which implies $t \leq n-m+1$.
Thus, $|\mathcal{A}|=m+I \leq m+\frac{n+1}{2} \leq \frac{3}{2} n-\frac{1}{2} \leq\left\lfloor\frac{3 n}{2}\right\rfloor$, where $|\mathcal{A}|=\left\lfloor\frac{3 n}{2}\right\rfloor$ holds if and only if $m=n-1$ and n is odd.

Similarly, consider the permutation is constructed by d segments:
$a_{1}^{j} a_{2}^{j} \ldots a_{m_{j}}^{j} j=1,2, \ldots, d$. Without loss of generality, assume that $a_{1}^{1}=1$ and $a_{m_{d}}^{d}<n$.

Similarly, consider the permutation is constructed by d segments: $a_{1}^{j} a_{2}^{j} \ldots a_{m_{j}}^{j} j=1,2, \ldots, d$. Without loss of generality, assume that $a_{1}^{1}=1$ and $a_{m_{d}}^{d}<n$.
For each $j=1,2, \ldots, d$ and $1 \leq i \leq m_{j}$, let M_{i}^{j} be the interval with starting point a_{i}^{j}. Let k_{i}^{j} be the length of M_{i}^{j}. Then

$$
\begin{equation*}
t_{j}+a_{1}^{j}+k_{1}^{j}+m_{j}-1 \leq a_{1}^{j+1}+k_{1}^{j+1} . \tag{1}
\end{equation*}
$$

Similarly, consider the permutation is constructed by d segments:
$a_{1}^{j} a_{2}^{j} \ldots a_{m_{j}}^{j} j=1,2, \ldots, d$. Without loss of generality, assume that $a_{1}^{1}=1$ and $a_{m_{d}}^{d}<n$.
For each $j=1,2, \ldots, d$ and $1 \leq i \leq m_{j}$, let M_{i}^{j} be the interval with starting point a_{i}^{j}. Let k_{i}^{j} be the length of M_{i}^{j}. Then

$$
\begin{equation*}
t_{j}+a_{1}^{j}+k_{1}^{j}+m_{j}-1 \leq a_{1}^{j+1}+k_{1}^{j+1} . \tag{1}
\end{equation*}
$$

Sum (1) over all j, up to modulo n, we have

$$
\sum_{j=1}^{d}\left(t_{j}+a_{1}^{j}+k_{1}^{j}+m_{j}-1\right) \leq \sum_{j=1}^{d}\left(a_{1}^{j+1}+k_{1}^{j+1}\right)
$$

Therefore, $t+m-d \leq n$ and similarly, $\left|\mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}\right| \leq \frac{m+t}{2} \leq \frac{n+d}{2}$. Then $|\mathcal{A}|=\left|\mathcal{M}_{\mathcal{A}}\right|+\left|\mathcal{A} \backslash \mathcal{M}_{\mathcal{A}}\right| \leq(n-d)+\frac{n+d}{2}=\frac{3}{2} n-\frac{d}{2}<\left\lfloor\frac{3}{2} n\right\rfloor$.

Observation

Observation

If $|\mathcal{A}|=\left\lfloor\frac{3}{2} n\right\rfloor$, then $|A|>\frac{n}{2}$ for any $A \in \mathcal{A}$.

Thank you for listening!

