An extremal problem in the cyclic permutation

Xu Zhixuan

Eotovos Lorand University Supervisor: Gyula O.H. Katona

Xu Zhixuan

An extremal problem in the cyclic permutati

1 Introduction

- Background
- Main result

Proof of the main result

< 行

문 문 문

1 Introduction

- Background
- Main result

Proof of the main result

- ∢ ⊒ →

æ

- Background
- Main result

Proof of the main result

< ∃⇒

Image: A math

æ

Notations

Let n, k be positive integers and $[n] = \{1, 2, ..., n\}$ denote the *n*-element set. Let $2^{[n]}$ be the power set of [n] and a subset of $2^{[n]}$ is called a *family* of [n]. We denote the family of all *k*-elements subset of [n] by $\binom{[n]}{k}$.

Inclusion-free families

A family \mathcal{F} is called *inclusion-free* if for any $F_1, F_2 \in \mathcal{F}, F_1 \subsetneq F_2$. As the first theorem in extremal finite set theory, Sperner determined the upper bound of $|\mathcal{F}|$ for inclusion-free families \mathcal{F} .

Inclusion-free families

A family \mathcal{F} is called *inclusion-free* if for any $F_1, F_2 \in \mathcal{F}, F_1 \subsetneq F_2$. As the first theorem in extremal finite set theory, Sperner determined the upper bound of $|\mathcal{F}|$ for inclusion-free families \mathcal{F} .

Theorem (Sperner theorem)

 $\max|\mathcal{F}| = \binom{n}{\lfloor \frac{n}{2} \rfloor}$ where the max is taken over all inclusion-free families.

6 / 25

P-free families

For a poset P, we say that a subposet Q' of Q is a (weak) copy of P, if there exists a bijection $f: P \to Q$, such that for any $p, p' \in P$, the relation $p \prec_P p'$ implies $f(p) \prec_Q f(p')$. If a poset Q does not contain a weak copy of P, then it is *P*-free.

P-free families

For a poset P, we say that a subposet Q' of Q is a (weak) copy of P, if there exists a bijection $f : P \to Q$, such that for any $p, p' \in P$, the relation $p \prec_P p'$ implies $f(p) \prec_Q f(p')$. If a poset Q does not contain a weak copy of P, then it is P-free.

Specially, a inclusion-free family is a P_2 -free poset, where P_2 is the total order on 2 elements.

2024.01.16

Intersecting families

A family \mathcal{F} is called *intersecting* if for any $F_1, F_2 \in \mathcal{F}$ the intersection $F_1 \cap F_2 \neq \emptyset$. In 1961, Erdős, Ko and Rado gave the upper bound of $|\mathcal{F}|$ for any intersecting family \mathcal{F} .

Theorem (Erdős-Ko-Rado, 1961)

 $\max |\mathcal{F}| = 2^{n-1}$, where the max is taken over all intersecting families \mathcal{F} .

Theorem (Erdős-Ko-Rado, 1961)

Let \mathcal{F} be an intersecting family. There is another intersecting family \mathcal{G} such that $\mathcal{F} \subset \mathcal{G}$ and $|\mathcal{G}| = 2^{n-1}$.

< A > <

Theorem (Erdős-Ko-Rado, 1961)

Let \mathcal{F} be an intersecting family. There is another intersecting family \mathcal{G} such that $\mathcal{F} \subset \mathcal{G}$ and $|\mathcal{G}| = 2^{n-1}$.

Theorem (Erdős-Ko-Rado Theorem)

Let $k \ (1 \le k \le \frac{n}{2})$ be a fixed integer. Then $\max |\mathcal{F}| = \binom{n-1}{k-1}$ over all intersecting families $\mathcal{F} \subset \binom{[n]}{k}$

く 目 ト く ヨ ト く ヨ ト

Cyclic permutation

A cyclic permutation π of the elements of [n] is an ordering of the elements along a cycle. A subset A of [n] is called an *interval* (along π) if its element are consecutive along π . The following statements are well-known.

Cyclic permutation

A cyclic permutation π of the elements of [n] is an ordering of the elements along a cycle. A subset A of [n] is called an *interval* (along π) if its element are consecutive along π . The following statements are well-known.

Theorem

An inclusion-free family A of intervals along π has at most n elements. If A has n elements, then all of its elements have same size.

Theorem

For some $1 \le k \le \frac{n}{2}$, if A is an intersecting family of k-element intervals along π , then $|A| \le k$.

2024.01.16

- Background
- Main result

Proof of the main result

æ

An extremal problem in cyclic permutation

In this report, we determine the largest size of a intersecting V-free family of intervals along a fixed permutation π , where the poset $V = \{x, y, z\}$ such that $x \prec y$ and $x \prec z$.

It is clear that $|\mathcal{A}| \leq n$ if $n \in \{1, 2\}$ and $|\mathcal{A}| \leq n + 1$ if $n \in \{3, 4\}$, where the upper bound is tight. Thus, we only consider the case $n \geq 5$.

< 1 k

It is clear that $|A| \le n$ if $n \in \{1, 2\}$ and $|A| \le n + 1$ if $n \in \{3, 4\}$, where the upper bound is tight. Thus, we only consider the case $n \ge 5$.

Besides, we can assume that π is actually the identity permutation without loss of generality. For general permutaion π , the proof is similar.

Main result

Theorem

For a intersecting V-free family A of intervals along a fixed permutation π , if $n \ge 5$, then $|A| \le \lfloor \frac{3}{2}n \rfloor$. In particular, if $|A| = \lfloor \frac{3}{2}n \rfloor$, then $|A| > \frac{n}{2}$ for any $A \in A$.

< A > <

∃ ⇒

э

Main result

Theorem

For a intersecting V-free family A of intervals along a fixed permutation π , if $n \ge 5$, then $|A| \le \lfloor \frac{3}{2}n \rfloor$. In particular, if $|A| = \lfloor \frac{3}{2}n \rfloor$, then $|A| > \frac{n}{2}$ for any $A \in A$.

Further, let \mathcal{A} be the union of a set of all intervals with size $\lfloor \frac{n}{2} \rfloor + 1$ and a set of all intervals with size $\lfloor \frac{n}{2} \rfloor + 2$ and starting point 2i $(1 \le i \le \lfloor \frac{n}{2} \rfloor)$. Then we have $|\mathcal{A}| = \lfloor \frac{3}{2}n \rfloor$. Thus, the upper bound of the theorem is tight.

1 Introduction

- Background
- Main result

Proof of the main result

Image: A matrix

æ

Defination of $\mathcal{M}_\mathcal{A}$

Since \mathcal{A} is V-free, each chain of A contain at most two elemnts. Let $\mathcal{M}_{\mathcal{A}}$ be the set such that $\mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$ is the set of all maximal elements in each chain with length two in the poset \mathcal{A} with inclusion order.

Defination of $\mathcal{M}_\mathcal{A}$

Since \mathcal{A} is V-free, each chain of A contain at most two elemnts. Let $\mathcal{M}_{\mathcal{A}}$ be the set such that $\mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$ is the set of all maximal elements in each chain with length two in the poset \mathcal{A} with inclusion order.

It should be noted that for each $A \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$, there eixsts $M \in \mathcal{M}_{\mathcal{A}}$ such that $M \subset A$. Also, $\mathcal{M}_{\mathcal{A}}$ is an inclusion-free and intersecting family. Since \mathcal{A} is V-free, for any $M \in \mathcal{M}_{\mathcal{A}}$, there exists at most one element $A \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$ such that $M \subset A$.

Lemmas

First, we claim that $\max |\mathcal{A}| \ge n + 1$. For example, a set of all intervals with length at least n - 1 is an intersecting V-free family with $|\mathcal{A}| = n + 1$. So we only need to consider the case $|\mathcal{A}| \ge n + 1$.

Lemma

If
$$|M| \leq \frac{n}{2}$$
 for any $M \in \mathcal{M}_{\mathcal{A}}$, then $|\mathcal{A}| \leq n$.

Corollary

If $|\mathcal{A}| \ge n+1$, then there exists $A \in \mathcal{A}$ such that $|A| > \frac{n}{2}$.

э

く 同 ト く ヨ ト く ヨ ト

Lemmas

Since each pair of two distinct elements of $\mathcal{M}_{\mathcal{A}}$ must have different starting points, $|\mathcal{M}_{\mathcal{A}}| \leq n$. In the following we consider two cases, $|\mathcal{M}_{\mathcal{A}}| = n$ and $|\mathcal{M}_{\mathcal{A}}| \leq n-1$, to prove $|\mathcal{A}| \leq \lfloor \frac{3}{2}n \rfloor$ provided $|\mathcal{A}| \geq n+1$.

The case of $|\mathcal{M}_{\mathcal{A}}| = n$

Lemma

If
$$|\mathcal{A}| \ge n+1$$
 and $|\mathcal{M}_{\mathcal{A}}| = n$, then $|\mathcal{A}| \le \lfloor \frac{3}{2}n \rfloor$.

Proof. Let $\mathcal{M}_{\mathcal{A}} = \{M_1, M_2, \dots, M_n\}$ and M_i has starting point *i* and endpoint b_i . Then we can find that $|M_1| = |M_2| = \cdots = |M_n| = |M_1|$. For each $A \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$, there eixsts at least one *i* such that one of the following statements holds:

- $A \rightarrow M_i, M_{i-1};$
- $A \rightarrow M_i, M_{i+1}$.

Besides, there exists at most one element $A' \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$ such that $M' \subset A'$ for any $M' \in \mathcal{M}_{\mathcal{A}}$. Thus, $|\mathcal{A}| = |\mathcal{M}_{\mathcal{A}}| + |\mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}| \leq \frac{3}{2}|\mathcal{M}_{\mathcal{A}}| = \lfloor \frac{3}{2}n \rfloor$. \Box

The case of $|\mathcal{M}_{\mathcal{A}}| \leq n-1$

Lemma

If $|\mathcal{A}| \ge n+1$ and $|\mathcal{M}_{\mathcal{A}}| \le n-1$, then $|\mathcal{A}| \le \lfloor \frac{3}{2}n \rfloor$ with equality holds if and only if $|\mathcal{M}_{\mathcal{A}}| = n-1$ and n is odd.

Proof. Denote $|\mathcal{M}_{\mathcal{A}}| = m$ and $\mathcal{M}_{\mathcal{A}} = \{M_1, M_2, \dots, M_m\}$. Let a_i and b_i be the starting point and endpoint of M_i for $1 \le i \le m$, respectively. When $m < \frac{3}{4}n$, $|\mathcal{A}| \le 2|\mathcal{M}_{\mathcal{A}}| < \frac{3}{2}n$, the result is trivial. We only need to consider $m \ge \frac{3}{4}n$.

э

2024.01.16

First we discuss the case $a_1a_2a_3...a_{m-1}a_m$ are consecutive and then extend the result to other cases.

∃ >

< 47 ▶

э

First we discuss the case $a_1a_2a_3...a_{m-1}a_m$ are consecutive and then extend the result to other cases.

If $a_1a_2a_3...a_{m-1}a_m$ are consecutive, then we assume that $a_i = i$ without loss of generality. Then for any $A \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$, exactly one element $M_i \in \mathcal{M}_{\mathcal{A}}$ such that $M_i \subset A$ is possible only if one of following statements holds:

- i = 1;
- $2 \le i \le m 1$ and $b_{i+1} > b_i + 1$;
- i = m and $b_1 > b_m + 1$.

Let *t* be the largest number of such *A* among $\mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$ and $|\mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}| = I$. Since there exists at most one element $A' \in \mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}$ such that $M' \subset A'$ for any $M' \in \mathcal{M}_{\mathcal{A}}$, we have $m = |\mathcal{M}_{\mathcal{A}}| \leq 2(l-t) + t = 2l - t$ and $l \leq \frac{m+t}{2}$. Also, up to modulo n, $b_1 = n + |\mathcal{M}_1| > b_m \geq m - 1 + |\mathcal{M}_1| + t - 1$, which implies $t \leq n - m + 1$. Thus, $|\mathcal{A}| = m + l \leq m + \frac{n+1}{2} \leq \frac{3}{2}n - \frac{1}{2} \leq \lfloor \frac{3n}{2} \rfloor$, where $|\mathcal{A}| = \lfloor \frac{3n}{2} \rfloor$ holds if and only if m = n - 1 and n is odd.

э

22 / 25

Similarly, consider the permutation is constructed by *d* segments: $a_1^j a_2^j \dots a_{m_j}^j j = 1, 2, \dots, d$. Without loss of generality, assume that $a_1^1 = 1$ and $a_{m_d}^d < n$. Similarly, consider the permutation is constructed by d segments: $a_1^j a_2^j \dots a_{m_j}^j j = 1, 2, \dots, d$. Without loss of generality, assume that $a_1^1 = 1$ and $a_{m_j}^d < n$.

For each j = 1, 2, ..., d and $1 \le i \le m_j$, let M_i^j be the interval with starting point a_i^j . Let k_i^j be the length of M_i^j . Then

$$t_j + a_1^j + k_1^j + m_j - 1 \le a_1^{j+1} + k_1^{j+1}.$$
 (1)

Similarly, consider the permutation is constructed by *d* segments: $a_1^j a_2^j \dots a_{m_j}^j j = 1, 2, \dots, d$. Without loss of generality, assume that $a_1^1 = 1$ and $a_{m_d}^d < n$.

For each j = 1, 2, ..., d and $1 \le i \le m_j$, let M_i^j be the interval with starting point a_i^j . Let k_i^j be the length of M_i^j . Then

$$t_j + a_1^j + k_1^j + m_j - 1 \le a_1^{j+1} + k_1^{j+1}.$$
 (1)

Sum (1) over all j, up to modulo n, we have

$$\sum_{j=1}^d \left(t_j + a_1^j + k_1^j + m_j - 1 \right) \leq \sum_{j=1}^d \left(a_1^{j+1} + k_1^{j+1} \right).$$

Therefore, $t + m - d \le n$ and similarly, $|\mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}| \le \frac{m+t}{2} \le \frac{n+d}{2}$. Then $|\mathcal{A}| = |\mathcal{M}_{\mathcal{A}}| + |\mathcal{A} \setminus \mathcal{M}_{\mathcal{A}}| \le (n - d) + \frac{n+d}{2} = \frac{3}{2}n - \frac{d}{2} < \lfloor \frac{3}{2}n \rfloor$.

2024.01.16

Observation

Observation

If
$$|\mathcal{A}| = \lfloor \frac{3}{2}n \rfloor$$
, then $|\mathcal{A}| > \frac{n}{2}$ for any $\mathcal{A} \in \mathcal{A}$.

Xu Zhixuan

An extremal problem in the cyclic permutati

2024.01.16

- ∢ ⊒ →

• • • • • • • •

24 / 25

æ

Thank you for listening!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで