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1 Introduction

Let n, k be positive integers and [n] = {1,2,...,n} denote the n-element set. Let
2["l be the power set of [n] and a subset of 2" is called a family of [n]. We denote the
family of all k-elements subset of [n] by ([Z]). A family F is called inclusion-free if for
any Iy, Fy € F, Fi C F;. As the first theorem in extremal finite set theory, Sperner

determined the upper bound of |F| for inclusion-free families F.

Theorem 1.1 (Sperner theorem). [3] maz|F| = (LZJ) where the maz is taken over all
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inclusion-free families.

For a poset P, we say that a subposet @) of @ is a (weak) copy of P, if there exists a
bijection f : P — @, such that for any p,p’ € P, the relation p<pp’ implies f(p)=<qf(p’).
If a poset Q does not contain a weak copy of P, then it is P-free. Specially, a inclusion-free

family is a P»-free poset, where P; is the total order on 2 elements.

A family F is called intersecting if for any Fy, Fy € F the intersection Fy N Fy # (. In
1961, Erdés, Ko and Rado gave the upper bound of |F| for any intersecting family F.

Theorem 1.2. [/] max |F| = 2""! where the max is taken over all intersecting families

F.

Theorem 1.3. [}/ Let F be an intersecting family. There is another intersecting family
G such that F C G and |G| = 2" 1.
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Theorem 1.4 (Erdés-Ko-Rado Theorem). [{] Let k (1< k < %) be a fized integer. Then

max | F| = (Zj) over all intersecting families F C ([Z])

A cyclic permutation w of the elements of [n] is an ordering of the elements along a
cycle. A subset A of [n] is called an interval (along ) if its element are consecutive along

7. The following statements are well-known.

Theorem 1.5. [2] An inclusion-free family A of intervals along m has at most n elements.

If A has n elements, then all of its elements have same size.

Theorem 1.6. [2] For some 1 < k < 4, if A is an intersecting family of k-element
intervals along m, then |A| < k.

In this report, we determine the largest size of a intersecting V-free family of intervals
along a fixed permutation 7, where the poset V' = {x,y, z} such that x < y and z < 2. It
is clear that |A| < nifn € {1,2} and |A| < n+1if n € {3,4}, where the upper bound is
tight. Thus, we only consider the case n > 5. Besides, we can assume that 7 is actually
the identity permutation without loss of generality. For general permutaion 7, the proof

is similar.

Theorem 1.7. For a intersecting V -free family A of intervals along a fived permutation
T, if n > 5, then |A| < |3n]|. In particular, if |A] = |3n|, then |A| > 2 for any A € A.

Further, let A be the union of a set of all intervals with size L%J + 1 and a set of all
intervals with size | 2| +2 and starting point 2i (1 <7 < |%]). Then we have |A| = |3n].
Thus, the upper bound of Theorem 1.7 is tight.

2 Proof of Theorem 1.7

Since A is V-free, each chain of A contain at most two elemnts. Let M 4 be the set
such that A\M 4 is the set of all maximal elements in each chain with length one in the
poset A with inclusion order. It should be noted that for each A € A\M 4, there eixsts
M € M 4 such that M C A. Also, M 4 is an inclusion-free and intersecting family. Since
A is V-free, for any M € My, there exists at most one element A € A\M 4 such that
M cC A.

First, we claim that max |.A| > n+ 1. For example, a set of all intervals with length at
least n — 1 is an intersecting V-free family with |A] = n+ 1. So we only need to consider
the case |A| > n+ 1.

Lemma 2.1. [2] If M| < % for any M € M4, then |A| < n.
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Proof. Denote |[M 4| = m and My = {M;y, Ms,..., M, }. Let a; and b; be the starting
point and endpoint of M; for 1 < i < m, respectively. Since each two distinct elements of
M 4 must have different starting points and endpoints, a; # a; and b; # b, for different
1 and j. Without lose of generality, we assume M; is a shortest interval of M 4, which
implies exactly one of {a;, b;} belongs to M; for any i # 1.

Let I be the index of i with a; ¢ M; and ¢ # 1. For i € I, we denote the interval with
starting point b; + 1 and length |M;| by M/. Since M 4 is intersecting, M ¢ M 4. Then
we consider the family M’ obtained from M 4 by removing all M; and adding M; for any
i € 1. It is clear that M, is still an inclusion-free intersecting family and |M/| = |M 4.
Also, M; is still a shortest interval in M’ and the staring points of other intervals in M,
must be in M. Thus, [My| = M| < [M| < 5.

Recall that for any M € M 4, there exists at most one element A € A\ M 4 such that
M C A. So |[AA\M 4] < | M| and we can know that |A| < 2|M 4| < n. O

Corollary 2.2. If |A] > n+ 1, then there exists A € A such that |A] > 3.

Since each pair of two distinct elements of M 4 must have different starting points,
|IM4| < n. In the following we consider two cases, |M 4| =n and |M4| < n—1, to prove
|A| < |2n] provided |A| > n+ 1.

Lemma 2.3. If [A| > n+1 and [My4| =n, then |A] < |3n].

Proof. Let M4 = {M;, M,, ..., M,} and M; has starting point i and endpoint b;. Since
My is inclusion-free, b; < b;yq for any 1 <7 < n — 1, where the inequality is considered
modulo n. Then |M;| =b;—i+1 < b1 —(i+1)+1 = |M;;1|. In particular, |M,| < |M;|.
So |My| = |Ms| = --- = |M,| = |M;| = k. Combining with Corollary 2.2, k > %. When
k =n, A = [n] and then |A| = 1, which contradicts with [A4] > n+1. Whenk=n—1, A
is either M4 U [n] or M4, and then |A| <n+1 < |2n|, where the last inequality holds
because n > 5.

Recall that for each A € A\ M 4, there eixsts M; € M 4 such that M; C A. Also, since
|\ M; M, 1| = |M;—1NM;| = k—1, at least one of {M;_1, M1} is included by A. Besides,
there exists at most one element A’ € A\ M 4 such that M" C A’ for any M’ € M 4. This
implies that | A\ M| < M| = 2. Thus, |A| = [Ma]+][A\Mu| < |3n], as desired. O

Lemma 2.4. If |[A| > n+1 and |[My4| < n—1, then |A| < [2n| with equality holds if
and only if IM 4| =n —1 and n is odd.

Proof. Denote |[M 4| = m and My = {M;y, Ms,..., M, }. Let a; and b; be the starting
point and endpoint of M; for 1 < i < m, respectively. When m < 2n, |A| < 2|My| < 3n,

the result is trivial. We only need to consider m > %n.
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First we discuss the case ajasas . . . a,,—1a,, are consecutive and then extend the result

to other cases.

If aiasas...a,_1a,, are consecutive, then we assume that a; = ¢ without loss of
generality. Then for any A € A\ M 4, exactly one element M; € M 4 such that M; C A

is possible only if one of following statements holds:

o 1 =1;

02§i§m—1andbi+1>bi—l—1;

e i =mand by > b, + 1.

Let ¢ be the largest number of such A among A\M 4 and |A\M 4| = [. Since there
exists at most one element A’ € A\ M 4 such that M’ C A’ for any M’ € M 4, we have
m= Myl <2(0—t)+t=2—tandl <™ Also, up to modulo n, by =n+ |M;| >
by, > m — 1+ | M|+t — 1, which implies t <n —m + 1.

Thus, [Al =m+1<m+ 2 <3p— 1 <3| where |A] = |22] holds if and only if

m=mn— 1 and n is odd.

Now we extend the result in the case that ajasas . .. a,,—1a,, are not consecutive. Note

that we can consider ajasas . .. a,_1a,, as a union of some consecutive segments.

Assume the permutation is constructed by d segments: a{ag .. .af;lj g =12 ...,d.
Without loss of generality, assume that a} = 1 and afnd <n. Foreach j=1,2,...,d and
1 < i < my, let M7 be the interval with starting point a}. Let k/ be the length of M/
and bf be the endpoint of MZJ . Then for any A € A\ M4, exactly one element ]\4@‘7 e My
such that Mf C A is possible only if one of following statements holds:

o i =1;
02§i§mj—1andbg+l>bg+1;
e i=mjand b, +1<b"

Let ¢; be the largest number of such A with respect to (M M, ... ,M},'Lj}. One has
m=mi+mo+---+mg<n—d,t=1t; +1ty+ -+ 1ty and inequality

ti—1+b+m;—1<b), <b™ -1
Note that & = al — 1+ k) and b/ = a!™' — 1 4+ k™", Thus,

tital +kl+m;—1<al™ + KT (2.1)



Sum (2.1) over all j, up to modulo n, we have
d
]

d
D tj+al+k+mj—1) <> (a
j=1

Jj=1

j+1 + k]+1

Therefore, t +m — d < n and similarly, | A\M 4| < =t < 24 Then |A| = |[My| +
I A\MU| < (n—d) + 24 = 3n — 2 < |3n], as desired. O
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Lemma 2.5. If |A| = [2n], then |A| > 2 for any A € A.

Proof. From Lemmas 2.3 and 2.4, we know |A| = |3n] if and only if [M4] =n — 1 and
n is odd or | M 4| = n, in particularly, when |M 4| = n the result is trivial.

When |[My| =n —1, nis odd, Let My = {M;y, Ms,..., M,_1} and M; has starting
point ¢ and endpoint b;. Since M 4 is inclusion-free, b; < b; ;1 for any 1 < i < n—2, where
the inequality is considered modulo n. Then |M;| = b, —i+1 < b1 —(i+1)+1 = |M;1].
So | M| < |Ms| < --- < |M,_1| and b,,—1 < n -+ |M;| — 1. Thus, |M,_| < |M;|+ 1.

For odd n, suppose that [M;| = k < §. Since M4 is an intersecting family then

for Myyq1, we have bgy1 > n + 1 which means |My1| > n+ 1 — k. Combining with
|\Mp—1| < |M;|+1=Fk+1, we have n +1 — k < k + 1 which implies n < 2k < n, which
is impossible. [
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