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1 Introduction

Let n, k be positive integers and [n] = {1, 2, . . . , n} denote the n-element set. Let

2[n] be the power set of [n] and a subset of 2[n] is called a family of [n]. We denote the

family of all k-elements subset of [n] by
(
[n]
k

)
. A family F is called inclusion-free if for

any F1, F2 ∈ F , F1 ⊊ F2. As the first theorem in extremal finite set theory, Sperner

determined the upper bound of |F| for inclusion-free families F .

Theorem 1.1 (Sperner theorem). [3] max|F| =
(

n
⌊n
2
⌋

)
where the max is taken over all

inclusion-free families.

For a poset P , we say that a subposet Q′ of Q is a (weak) copy of P , if there exists a

bijection f : P → Q, such that for any p, p′ ∈ P , the relation p≺Pp
′ implies f(p)≺Qf(p

′).

If a poset Q does not contain a weak copy of P , then it is P -free. Specially, a inclusion-free

family is a P2-free poset, where P2 is the total order on 2 elements.

A family F is called intersecting if for any F1, F2 ∈ F the intersection F1 ∩F2 ̸= ∅. In
1961, Erdős, Ko and Rado gave the upper bound of |F| for any intersecting family F .

Theorem 1.2. [4] max |F| = 2n−1, where the max is taken over all intersecting families

F .

Theorem 1.3. [4] Let F be an intersecting family. There is another intersecting family

G such that F ⊂ G and |G| = 2n−1.
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Theorem 1.4 (Erdős-Ko-Rado Theorem). [4] Let k (1≤ k ≤ n
2
) be a fixed integer. Then

max |F| =
(
n−1
k−1

)
over all intersecting families F ⊂

(
[n]
k

)
A cyclic permutation π of the elements of [n] is an ordering of the elements along a

cycle. A subset A of [n] is called an interval (along π) if its element are consecutive along

π. The following statements are well-known.

Theorem 1.5. [2] An inclusion-free family A of intervals along π has at most n elements.

If A has n elements, then all of its elements have same size.

Theorem 1.6. [2] For some 1 ≤ k ≤ n
2
, if A is an intersecting family of k-element

intervals along π, then |A| ≤ k.

In this report, we determine the largest size of a intersecting V -free family of intervals

along a fixed permutation π, where the poset V = {x, y, z} such that x ≺ y and x ≺ z. It

is clear that |A| ≤ n if n ∈ {1, 2} and |A| ≤ n+1 if n ∈ {3, 4}, where the upper bound is

tight. Thus, we only consider the case n ≥ 5. Besides, we can assume that π is actually

the identity permutation without loss of generality. For general permutaion π, the proof

is similar.

Theorem 1.7. For a intersecting V -free family A of intervals along a fixed permutation

π, if n ≥ 5, then |A| ≤
⌊
3
2
n
⌋
. In particular, if |A| =

⌊
3
2
n
⌋
, then |A| > n

2
for any A ∈ A.

Further, let A be the union of a set of all intervals with size
⌊
n
2

⌋
+ 1 and a set of all

intervals with size
⌊
n
2

⌋
+2 and starting point 2i (1 ≤ i ≤

⌊
n
2

⌋
). Then we have |A| =

⌊
3
2
n
⌋
.

Thus, the upper bound of Theorem 1.7 is tight.

2 Proof of Theorem 1.7

Since A is V -free, each chain of A contain at most two elemnts. Let MA be the set

such that A\MA is the set of all maximal elements in each chain with length one in the

poset A with inclusion order. It should be noted that for each A ∈ A\MA, there eixsts

M ∈ MA such that M ⊂ A. Also, MA is an inclusion-free and intersecting family. Since

A is V -free, for any M ∈ MA, there exists at most one element A ∈ A\MA such that

M ⊂ A.

First, we claim that max |A| ≥ n+1. For example, a set of all intervals with length at

least n− 1 is an intersecting V -free family with |A| = n+1. So we only need to consider

the case |A| ≥ n+ 1.

Lemma 2.1. [2] If |M | ≤ n
2
for any M ∈ MA, then |A| ≤ n.
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Proof. Denote |MA| = m and MA = {M1,M2, . . . ,Mm}. Let ai and bi be the starting

point and endpoint of Mi for 1 ≤ i ≤ m, respectively. Since each two distinct elements of

MA must have different starting points and endpoints, ai ̸= aj and bi ̸= bj for different

i and j. Without lose of generality, we assume M1 is a shortest interval of MA, which

implies exactly one of {ai, bi} belongs to M1 for any i ̸= 1.

Let I be the index of i with ai /∈ M1 and i ̸= 1. For i ∈ I, we denote the interval with

starting point bi + 1 and length |Mi| by M ′
i . Since MA is intersecting, M ′

i /∈ MA. Then

we consider the family M′
A obtained from MA by removing all Mi and adding M ′

i for any

i ∈ I. It is clear that M′
A is still an inclusion-free intersecting family and |M′

A| = |MA|.
Also, M1 is still a shortest interval in M′

A and the staring points of other intervals in M′
A

must be in M1. Thus, |MA| = |M′
A| ≤ |M1| ≤ n

2
.

Recall that for any M ∈ MA, there exists at most one element A ∈ A\MA such that

M ⊂ A. So |A\MA| ≤ |MA| and we can know that |A| ≤ 2|MA| ≤ n.

Corollary 2.2. If |A| ≥ n+ 1, then there exists A ∈ A such that |A| > n
2
.

Since each pair of two distinct elements of MA must have different starting points,

|MA| ≤ n. In the following we consider two cases, |MA| = n and |MA| ≤ n− 1, to prove

|A| ≤
⌊
3
2
n
⌋
provided |A| ≥ n+ 1.

Lemma 2.3. If |A| ≥ n+ 1 and |MA| = n, then |A| ≤
⌊
3
2
n
⌋
.

Proof. Let MA = {M1,M2, . . . ,Mn} and Mi has starting point i and endpoint bi. Since

MA is inclusion-free, bi < bi+1 for any 1 ≤ i ≤ n − 1, where the inequality is considered

modulo n. Then |Mi| = bi− i+1 ≤ bi+1−(i+1)+1 = |Mi+1|. In particular, |Mn| ≤ |M1|.
So |M1| = |M2| = · · · = |Mn| = |M1| = k. Combining with Corollary 2.2, k > n

2
. When

k = n, A = [n] and then |A| = 1, which contradicts with |A| ≥ n+1. When k = n−1, A
is either MA ∪ [n] or MA, and then |A| ≤ n+ 1 ≤

⌊
3
2
n
⌋
, where the last inequality holds

because n ≥ 5.

Recall that for each A ∈ A\MA, there eixsts Mi ∈ MA such that Mi ⊂ A. Also, since

|Mi∩Mi+1| = |Mi−1∩Mi| = k−1, at least one of {Mi−1,Mi+1} is included by A. Besides,

there exists at most one element A′ ∈ A\MA such that M ′ ⊂ A′ for any M ′ ∈ MA. This

implies that |A\MA| ≤ 1
2
|MA| = n

2
. Thus, |A| = |MA|+|A\MA| ≤

⌊
3
2
n
⌋
, as desired.

Lemma 2.4. If |A| ≥ n + 1 and |MA| ≤ n− 1, then |A| ≤
⌊
3
2
n
⌋
with equality holds if

and only if |MA| = n− 1 and n is odd.

Proof. Denote |MA| = m and MA = {M1,M2, . . . ,Mm}. Let ai and bi be the starting

point and endpoint of Mi for 1 ≤ i ≤ m, respectively. When m < 3
4
n, |A| ≤ 2|MA| < 3

2
n,

the result is trivial. We only need to consider m ≥ 3
4
n.
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First we discuss the case a1a2a3 . . . am−1am are consecutive and then extend the result

to other cases.

If a1a2a3 . . . am−1am are consecutive, then we assume that ai = i without loss of

generality. Then for any A ∈ A\MA, exactly one element Mi ∈ MA such that Mi ⊂ A

is possible only if one of following statements holds:

• i = 1;

• 2 ≤ i ≤ m− 1 and bi+1 > bi + 1;

• i = m and b1 > bm + 1.

Let t be the largest number of such A among A\MA and |A\MA| = l. Since there

exists at most one element A′ ∈ A\MA such that M ′ ⊂ A′ for any M ′ ∈ MA, we have

m = |MA| ≤ 2(l − t) + t = 2l − t and l ≤ m+t
2
. Also, up to modulo n, b1 = n + |M1| >

bm ≥ m− 1 + |M1|+ t− 1, which implies t ≤ n−m+ 1.

Thus, |A| = m+ l ≤ m+ n+1
2

≤ 3
2
n− 1

2
≤

⌊
3n
2

⌋
, where |A| =

⌊
3n
2

⌋
holds if and only if

m = n− 1 and n is odd.

Now we extend the result in the case that a1a2a3 . . . am−1am are not consecutive. Note

that we can consider a1a2a3 . . . am−1am as a union of some consecutive segments.

Assume the permutation is constructed by d segments: aj1a
j
2
. . . ajmj

j = 1, 2, . . . , d.

Without loss of generality, assume that a11 = 1 and admd
< n. For each j = 1, 2, . . . , d and

1 ≤ i ≤ mj, let M j
i be the interval with starting point aji . Let kj

i be the length of M j
i

and bji be the endpoint of M
j
i . Then for any A ∈ A\MA, exactly one element M j

i ∈ MA

such that M j
i ⊂ A is possible only if one of following statements holds:

• i = 1;

• 2 ≤ i ≤ mj − 1 and bji+1 > bji + 1;

• i = mj and bjmj
+ 1 < bj+1

1 .

Let tj be the largest number of such A with respect to {M j
1 ,M

j
2 , . . . ,M

j
mj
}. One has

m = m1 +m2 + · · ·+md ≤ n− d, t = t1 + t2 + · · ·+ td and inequality

tj − 1 + bj1 +mj − 1 ≤ bjmj
≤ bj+1

1 − 1

Note that bj1 = aj1 − 1 + kj
1 and bj+1

1 = aj+1
1 − 1 + kj+1

1 . Thus,

tj + aj1 + kj
1 +mj − 1 ≤ aj+1

1 + kj+1
1 . (2.1)
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Sum (2.1) over all j, up to modulo n, we have

d∑
j=1

(
tj + aj1 + kj

1 +mj − 1
)
≤

d∑
j=1

(
aj+1
1 + kj+1

1

)
.

Therefore, t + m − d ≤ n and similarly, |A\MA| ≤ m+t
2

≤ n+d
2
. Then |A| = |MA| +

|A\MA| ≤ (n− d) + n+d
2

= 3
2
n− d

2
< ⌊3

2
n⌋, as desired.

Lemma 2.5. If |A| =
⌊
3
2
n
⌋
, then |A| > n

2
for any A ∈ A.

Proof. From Lemmas 2.3 and 2.4, we know |A| =
⌊
3
2
n
⌋
if and only if |MA| = n− 1 and

n is odd or |MA| = n, in particularly, when |MA| = n the result is trivial.

When |MA| = n − 1, n is odd, Let MA = {M1,M2, . . . ,Mn−1} and Mi has starting

point i and endpoint bi. Since MA is inclusion-free, bi < bi+1 for any 1 ≤ i ≤ n−2, where

the inequality is considered modulo n. Then |Mi| = bi− i+1 ≤ bi+1− (i+1)+1 = |Mi+1|.
So |M1| ≤ |M2| ≤ · · · ≤ |Mn−1| and bn−1 ≤ n+ |M1| − 1. Thus, |Mn−1| ≤ |M1|+ 1.

For odd n, suppose that |M1| = k < n
2
. Since MA is an intersecting family then

for Mk+1, we have bk+1 ≥ n + 1 which means |Mk+1| ≥ n + 1 − k. Combining with

|Mn−1| ≤ |M1|+ 1 = k + 1, we have n+ 1− k ≤ k + 1 which implies n ≤ 2k < n, which

is impossible.
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