- **1.** A reminder: a ring R is *(left) hereditary* if and only if every homomorphic image of every injective (left) module is injective (for example, \mathbb{Z} is hereditary). (Note that it can be shown that this is equivalent to the fact that submodules of projective modules are projective.) Prove that if R is hereditary then for every $M, N \in R$ -Mod left R-module $\operatorname{Ext}_R^k(M, N) = 0$ for all k > 1.
- a) Let A, B be cyclic abelian groups. Determine the groups $\operatorname{Ext}^1_{\mathbb{Z}}(A, B)$. 2.
 - b) Do the same when A and B are arbitrary finite abelian groups.
- **3.** Let $0 \to K_n \to P_{n-1} \to \cdots \to P_1 \to P_0 \to M \to 0$ be exact and suppose that P_i is projective for all *i*. Prove that $\operatorname{Ext}_R^k(M, N) \simeq \operatorname{Ext}_R^{k-n}(K_n, N)$ for every k > n.
- 4. Suppose that the resolution in the previous problem is minimal and N is simple. Prove that $\operatorname{Ext}_{R}^{n}(M, N) \simeq \operatorname{Hom}_{R}(K_{n}, N).$
- 5. Let $A_A = \frac{1}{2} \oplus \frac{1}{3} \oplus \frac{1}{4} \oplus \frac{3}{4} \oplus \frac{4}{1}$. a) Draw a graph Γ and admissible ideal I of relations, so that $A \simeq K\Gamma/I$.
 - b) Determine the dimension of $\operatorname{Ext}_A^3(1, 1)$.
- **6.** Let $A_A = {1 \atop 1 \atop 3} \oplus {1 \atop 3}^2 \oplus {3 \atop 4} \oplus {4 \atop 1} \oplus {4 \atop 1}$.
 - a) Describe A as a path algebra modulo some relations.
 - b) Compute dim $\operatorname{Ext}_{A}^{3}(1, \frac{2}{1})$.
 - c) Show that for every $n \in \mathbb{N}$ there exists k > n, such that dim $\operatorname{Ext}_{A}^{k}(1, \frac{2}{1}) \neq 0$.
- 7. Give a new proof for the fact that every projective module is flat.
- 8. Give a short exact sequence of Abelian groups $0 \to \mathbb{Z}_4 \to M \to \mathbb{Z}_4 \to 0$ which is not split, but the middle term M is not indecomposable.
- **9.** Let us take the graph Γ : $1 \to 2 \leftarrow 3 \to 4$ and the path algebra $A = K\Gamma$.
 - a) Find an indecomposable (right) A module M of composition length 4 (there is only one such module).
 - b) Let N be the simple module corresponding to vertex 3. Show that $\dim(\operatorname{Ext}_{A}^{1}(N, M)) = 1$, and describe the middle term of the nonzero elements in this extension space.
 - c) Find as many indecomposable A-modules as you can.
- 10. Give a characterization of the fact that a short exact sequence is split in terms of homomorphisms, hence conclude that any additive functor preserves split exact sequences.