Problem set # 3

1. Consider the setup of the 3×3 lemma, i.e. a commutative diagram

with exact rows. Show that the exactness of the first and third column does not imply the exactness of the middle column.

2. Consider the chain map $f_{\bullet}: X_{\bullet} \longrightarrow Y_{\bullet}$:

Here the vertical maps are the natural embeddings. Compute the long exact sequence of homologies obtained from the short exact sequence of complexes

$$0_{\bullet} \longrightarrow X_{\bullet} \xrightarrow{f_{\bullet}} Y_{\bullet} \longrightarrow \operatorname{Coker} f_{\bullet} \longrightarrow 0_{\bullet}.$$

- **3.** Let A be a K-algebra, M and N A-modules, and let \mathcal{E} and \mathcal{E}' be two non-split extensions in the K-space $\operatorname{Ext}^1_A(M, N)$. Suppose that \mathcal{E} and \mathcal{E}' are linearly dependent. Show that the middle terms in \mathcal{E} and \mathcal{E}' are isomorphic.
- 4. a) Consider the algebra given by $A_A = \frac{1}{2} \oplus \frac{2}{1^3} \oplus \frac{3}{3}$. Find the projective resolutions of the modules $X = \frac{1}{2}$ and of Y = 2.
 - b) Consider the algebra given by $B_B = \frac{1}{2} \oplus \frac{2}{2}$. Compute the projective resolution of the module $Z = \frac{1}{2} \frac{2^1}{2}$.
- 5. Take the deleted projective resolution of the module X from the previous problem and apply to it the contravariant functor $\text{Hom}(-, \frac{1}{2})$. Compute the dimension of the cohomologies of this new complex.
- **6.** Consider the algebra $A_A = 1 \oplus 2 \oplus \frac{3}{12}$ and take the short exact sequence $\mathcal{E} : 0 \longrightarrow 1 \oplus 2 \longrightarrow \frac{3}{12} \longrightarrow 3 \longrightarrow 0$. Find the (pullback) sequence $E\mu$ if $\mu : \frac{3}{2} \longrightarrow 3$ is the natural epimorphism.