1. Consider the setup of the 3×3 lemma, i.e. a commutative diagram
with exact rows. Show that the exactness of the first and third column does not imply the exactness of the middle column.
2. Consider the chain map $f_{\bullet}: X_{\bullet} \longrightarrow Y_{\bullet}$:

$$
\begin{array}{cccccccccc}
\cdots & \longrightarrow & \mathbb{Z}_{4} & \xrightarrow{1 \mapsto 4} & \mathbb{Z}_{8} & \xrightarrow{1 \mapsto 1} & \mathbb{Z}_{2} & 0 & \longrightarrow & \cdots \\
\downarrow & \downarrow & \downarrow & & \downarrow & & & \\
\cdots & \longrightarrow & \mathbb{Z}_{8} & \xrightarrow{1 \mapsto 2} & \mathbb{Z}_{8} & \xrightarrow{1 \mapsto 4} & \mathbb{Z}_{8} & 0 & \longrightarrow & \cdots
\end{array}
$$

Here the vertical maps are the natural embeddings. Compute the long exact sequence of homologies obtained from the short exact sequence of complexes

$$
0_{\bullet} \longrightarrow X_{\bullet} \xrightarrow{f_{\bullet}} Y_{\bullet} \longrightarrow \operatorname{Coker} f_{\bullet} \longrightarrow 0 .
$$

3. Let A be a K-algebra, M and $N A$-modules, and let \mathcal{E} and \mathcal{E}^{\prime} be two non-split extensions in the K-space $\operatorname{Ext}_{A}^{1}(M, N)$. Suppose that \mathcal{E} and \mathcal{E}^{\prime} are linearly dependent. Show that the middle terms in \mathcal{E} and \mathcal{E}^{\prime} are isomorphic.
4. a) Consider the algebra given by $A_{A}=\stackrel{1}{2}{ }_{1} \oplus{ }_{1}^{2}{ }_{3} \oplus 3$. Find the projective resolutions of the modules $X=\frac{1}{2}$ and of $Y=2$.
b) Consider the algebra given by $B_{B}=\underset{2}{1} \oplus \underset{2}{2}$. Compute the projective resolution of the module $Z=1_{2}{ }^{1}$.
5. Take the deleted projective resolution of the module X from the previous problem and apply to it the contravariant functor $\operatorname{Hom}\left(-,{ }_{2}^{1}\right)$. Compute the dimension of the cohomologies of this new complex.
6. Consider the algebra $A_{A}=1 \oplus 2 \oplus{ }_{1}{ }^{3}{ }_{2}$ and take the short exact sequence $\mathcal{E}: 0 \longrightarrow 1 \oplus$ $2 \longrightarrow{ }_{1}{ }_{2}{ }_{2} \longrightarrow 3 \longrightarrow 0$. Find the (pullback) sequence $E \mu$ if $\mu:{ }_{2}^{3} \longrightarrow 3$ is the natural epimorphism.
