- 1. (Hereditary rings revisited:) Prove that the following statements are equivalent for a ring R:
 - (i) every submodule of every projective left *R*-module is projective;
 - (ii) every left ideal of R is projective;
 - (iii) every homomorphic image of every injective left R-module is injective (i.e. R is left hereditary);
 - (iv) the left global dimension of R is at most 1.
- 2. a) Let Γ be a graph for which the path algebra $K\Gamma$ is finite dimensional. Prove that $K\Gamma$ is (left and right) hereditary.
 - b^{*}) Prove the same statement without the assumption on the dimension of $K\Gamma$.
- **3.** Consider the Ext³-spaces of problems #2/6 and #2/7. Represent a non-zero element of these spaces by an exact sequence of length 3.
- 4. Decide whether the following exact sequence in $Ex_A^2(1,3)$ is equivalent to the 0 element

$$0 \to 3 \to \frac{2}{3} \to \frac{1}{2} \to 1 \to 0$$

when the regular representation of the algebra can be described as follows:

(i)
$$_{A}A = \frac{1}{2} \oplus \frac{2}{3} \oplus 3;$$
 (ii) $_{A}A = \frac{1}{2} \oplus \frac{2}{3} \oplus 3.$

5. Let A be a finite dimensional (left) hereditary algebra and A^* its Yoneda-extension algebra: this means that if \hat{S} is a semisimple module which is the direct sum of all isomorphism types of simple modules over A, then $A^* = \bigoplus_{i \ge 0} \operatorname{Ext}_A^i(\hat{S}, \hat{S})$ as a vector space and the multiplication is defined via the Yoneda product. Show that in this case $J(A^*)^2 = 0$.

6*.** Suppose A is an abelian group for which $\operatorname{Ext}^{1}_{\mathbb{Z}}(A, \mathbb{Z}) = 0$. Is it true that A is necessarily free?

- 7. Prove that if A is a torsion abelian group, then $\operatorname{Ext}^1_{\mathbb{Z}}(A, \mathbb{Z}) \simeq \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{R}/\mathbb{Z}).$
- 8. Let A be a finite dimensional K-algebra for which ${}_{A}A$ is injective. (Such an algebra is also called a *quasi-Frobenius algebra*.) Prove that if for a module $M \in A$ -Mod we have $pd M < \infty$ then pd M = 0 i. e. M is projective.
- 9. Take the graph $1 \xrightarrow[]{\alpha}{\beta} 2$ and take the path algebra modulo relations $K\Gamma/I$ where $I = (\alpha\gamma, \gamma\beta)$. Compute the (left) global dimension of A.
- **10.** Prove that for an arbitrary ring R we have $l gl \dim R = l gl \dim M_n(R)$.