1. (Hereditary rings revisited:) Prove that the following statements are equivalent for a ring R :
(i) every submodule of every projective left R-module is projective;
(ii) every left ideal of R is projective;
(iii) every homomorphic image of every injective left R-module is injective (i.e. R is left hereditary);
(iv) the left global dimension of R is at most 1 .
2. a) Let Γ be a graph for which the path algebra $K \Gamma$ is finite dimensional. Prove that $K \Gamma$ is (left and right) hereditary.
b^{*}) Prove the same statement without the assumption on the dimension of $K \Gamma$.
3. Consider the Ext ${ }^{3}$-spaces of problems $\# 2 / 6$ and $\# 2 / 7$. Represent a non-zero element of these spaces by an exact sequence of length 3 .
4. Decide whether the following exact sequence in $\operatorname{Ex}_{A}^{2}(1,3)$ is equivalent to the 0 element

$$
0 \rightarrow 3 \rightarrow{ }_{3}^{2} \rightarrow{ }_{2}^{1} \rightarrow 1 \rightarrow 0
$$

when the regular representation of the algebra can be described as follows:
(i) ${ }_{A} A={ }_{3}^{1} \oplus{ }_{3}^{2} \oplus 3 ;$
(ii) ${ }_{A} A={ }_{2}^{1} \oplus{ }_{3}^{2} \oplus 3$.
5. Let A be a finite dimensional (left) hereditary algebra and A^{*} its Yoneda-extension algebra: this means that if \hat{S} is a semisimple module which is the direct sum of all isomorphism types of simple modules over A, then $A^{*}=\underset{i \geq 0}{\oplus} \operatorname{Ext}_{A}^{i}(\hat{S}, \hat{S})$ as a vector space and the multiplication is defined via the Yoneda product. Show that in this case $J\left(A^{*}\right)^{2}=0$.
$6^{* * *}$. Suppose A is an abelian group for which $\operatorname{Ext}_{\mathbb{Z}}^{1}(A, \mathbb{Z})=0$. Is it true that A is necessarily free?
7. Prove that if A is a torsion abelian group, then $\operatorname{Ext}_{\mathbb{Z}}^{1}(A, \mathbb{Z}) \simeq \operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{R} / \mathbb{Z})$.
8. Let A be a finite dimensional K-algebra for which ${ }_{A} A$ is injective. (Such an algebra is also called a quasi-Frobenius algebra.) Prove that if for a module $M \in A$-Mod we have $p d M<\infty$ then $p d M=0$ i.e. M is projective.
9. Take the graph $1 \underset{\underset{\gamma}{\stackrel{\alpha}{\beta}}}{\stackrel{\alpha}{\leftrightarrows}} 2$ and take the path algebra modulo relations $K \Gamma / I$ where $I=(\alpha \gamma, \gamma \beta)$. Compute the (left) global dimension of A.
10. Prove that for an arbitrary ring R we have $l g l \operatorname{dim} R=l g l \operatorname{dim} M_{n}(R)$.

