Throughout the problem sheet A will denote a finite dimensional K-algebra, and gl dim R will stand for the left global dimension of the ring R.

- **1.** Determine $gl \dim \mathbb{Z}_n$ for each n.
- 2. Prove that for finite dimensional algebras the left and right global dimensions coincide.
- **3.** Suppose that dim $J(A) = \dim A 1$. Show that for $M \in A$ -Mod we have: $pd M < \infty \Leftrightarrow pd M = 0$ hence the projectively defined finitistic dimension of A is 0.
- 4. Suppose $(J(A))^2 = 0$ and $gl \dim A = n$. Prove that $\dim A \ge 2n + 1$.
- 5. Suppose $(J(A))^2 = 0$. Prove that the finitistic dimension of A is finite.
- 6. Suppose $gl \dim A = n \neq 0, \infty$. Show that there exists a simple module ${}_{A}S$ for which pd S = n-1.
- **7.** For every $n \in \mathbb{N}$ construct a graph Γ_n and a set of relations I_n such that:
 - a) gl dim $K\Gamma_n/I_n = n$;
 - b) gl dim $K\Gamma_n/I_n = n$, and Γ_n has two vertices.
- 8. Let $I \triangleleft A$ and B = A/I. Suppose that ${}_{A}I$ is projective. Prove that for arbitrary $M \in B$ -Mod we have $pd_{A}M \leq pd_{B}M + 1$.
- **9.** Let $I \triangleleft A$ and B = A/I. Suppose that ${}_{A}I$ is projective and $I^2 = I$. Prove that for $M, N \in B$ -Mod and arbitrary $i \ge 0$ we have

$$\operatorname{Ext}^{i}_{B}(M, N) \simeq \operatorname{Ext}^{i}_{A}(M, N).$$

- 10. Let A be basic and write _AA = P(1) ⊕ · · · ⊕ P(n) where the modules P(i) are indecomposable projective modules, nonisomorphic for i ≠ j. Denote by S(i) the simple module corresponding to P(i), i. e. S(i) = P(i) / Rad P(i). For modules M with a composition series let us denote by [M : S] the multiplicity of a simple module S in this composition series. The Cartan matrix C(A) of the algebra A is defined as the n × n integer matrix where the i-th column consists of the composition multiplicities of the projective module P(i), i. e. c_{ji} = [P(i) : S(j)]. Prove that if gl dim A < ∞ then det C(A) = ±1. (A famous and longstanding conjecture the so-called Cartan determinant conjecture states that this determinant is always +1.)</p>
- **11*.** Prove that if $gl \dim A \leq 2$ then det C(A) = +1.
- 12*. Let $T \in A$ -Mod be a module with $pd T \leq 1$ and $\operatorname{Ext}_A^1(T,T) = 0$. Prove that there is a module $X \in A$ -Mod satisfying the following conditions: i) $pd X \leq 1$; ii) $\operatorname{Ext}_A^1(T \oplus X, T \oplus X) = 0$; iii) there exists an exact sequence $0 \to A \to Y_0 \to Y_1 \to 0$ with Y_i being direct sums of direct summands of T and X. (In such a situation the module $T \oplus X$ is called a *tilting module*.)