Throughout the problem sheet A will denote a finite dimensional K-algebra, and gl dim R will stand for the left global dimension of the ring R.

1. Determine $g l \operatorname{dim} \mathbb{Z}_{n}$ for each n.
2. Prove that for finite dimensional algebras the left and right global dimensions coincide.
3. Suppose that $\operatorname{dim} J(A)=\operatorname{dim} A-1$. Show that for $M \in A$-Mod we have: $p d M<\infty \Leftrightarrow$ $p d M=0$ hence the projectively defined finitistic dimension of A is 0 .
4. Suppose $(J(A))^{2}=0$ and $g l \operatorname{dim} A=n$. Prove that $\operatorname{dim} A \geq 2 n+1$.
5. Suppose $(J(A))^{2}=0$. Prove that the finitistic dimension of A is finite.
6. Suppose $g l \operatorname{dim} A=n \neq 0, \infty$. Show that there exists a simple module ${ }_{A} S$ for which $p d S=$ $n-1$.
7. For every $n \in \mathbb{N}$ construct a graph Γ_{n} and a set of relations I_{n} such that:
a) $g l \operatorname{dim} K \Gamma_{n} / I_{n}=n$;
b) $g l \operatorname{dim} K \Gamma_{n} / I_{n}=n$, and Γ_{n} has two vertices.
8. Let $I \triangleleft A$ and $B=A / I$. Suppose that ${ }_{A} I$ is projective. Prove that for arbitrary $M \in B$-Mod we have $p d_{A} M \leq p d_{B} M+1$.
9. Let $I \triangleleft A$ and $B=A / I$. Suppose that ${ }_{A} I$ is projective and $I^{2}=I$. Prove that for $M, N \in$ B-Mod and arbitrary $i \geq 0$ we have

$$
\operatorname{Ext}_{B}^{i}(M, N) \simeq \operatorname{Ext}_{A}^{i}(M, N)
$$

10. Let A be basic and write ${ }_{A} A=P(1) \oplus \cdots \oplus P(n)$ where the modules $P(i)$ are indecomposable projective modules, nonisomorphic for $i \neq j$. Denote by $S(i)$ the simple module corresponding to $P(i)$, i. e. $S(i)=P(i) / \operatorname{Rad} P(i)$. For modules M with a composition series let us denote by [$M: S$] the multiplicity of a simple module S in this composition series. The Cartan matrix $C(A)$ of the algebra A is defined as the $n \times n$ integer matrix where the i-th column consists of the composition multiplicities of the projective module $P(i)$, i. e. $c_{j i}=[P(i): S(j)]$. Prove that if $g l \operatorname{dim} A<\infty$ then $\operatorname{det} C(A)= \pm 1$. (A famous and longstanding conjecture - the so-called Cartan determinant conjecture - states that this determinant is always +1 .)
11*. Prove that if $g l \operatorname{dim} A \leq 2$ then $\operatorname{det} C(A)=+1$.
12*. Let $T \in A$-Mod be a module with $p d T \leq 1$ and $\operatorname{Ext}_{A}^{1}(T, T)=0$. Prove that there is a module $X \in A$-Mod satisfying the following conditions: i) $p d X \leq 1$; ii) $\operatorname{Ext}_{A}^{1}(T \oplus X, T \oplus X)=0$; iii) there exists an exact sequence $0 \rightarrow A \rightarrow Y_{0} \rightarrow Y_{1} \rightarrow 0$ with Y_{i} being direct sums of direct summands of T and X. (In such a situation the module $T \oplus X$ is called a tilting module.)
