1. Let \mathcal{P}^{∞} denote the subcategory of those left R-modules which have finite projective dimension. Suppose \mathcal{P}^{∞} contains all injective modules. Prove that:
$\left\{X \in R\right.$-Mod $\left.\mid \operatorname{Ext}_{R}^{1}(X, Y)=0 \forall Y \in \mathcal{P}^{\infty}\right\}=\left\{X \in R\right.$-Mod $\left.\mid \operatorname{Ext}_{R}^{i}(X, Y)=0 \forall Y \in \mathcal{P}^{\infty}, \forall i>0\right\}$.
2. Let A be a finite dimensional algebra, and A^{*} stand for the Yoneda extension algebra of A (cf. Problem \#4/5).
a) Prove that if $g l \operatorname{dim} A=n<\infty$ then $\left(J\left(A^{*}\right)\right)^{n+1}=0$.
b) For each $n \in \mathbb{N}$ construct an algebra A such that $g l \operatorname{dim} A=n$ and $\left(J\left(A^{*}\right)\right)^{n} \neq 0$.
c) For each $n \in \mathbb{N}$ construct an algebra A such that $g l \operatorname{dim} A=n$ and $\left(J\left(A^{*}\right)\right)^{2}=0$.
3. For arbitrary $T \in A$-Mod let us define $G e n T=\{X \in A$ - $\operatorname{Mod} \mid \exists \oplus T \rightarrow X$ an epimorphism $\}$. Suppose now that $p d T \leq 1$ and $\operatorname{Ext}^{1}(T, T)=0$.
a) Prove that Gen T is closed under extensions, direct sums and epimorphic images.
b) Show that $\operatorname{Ext}_{A}^{1}(T, Y)=0$ for each $Y \in G e n T$.
4. Suppose there is a ring homomorphism $R \rightarrow S$. In this way every S-module becomes an R-module. Prove that for arbitrary $M \in S$-Mod we have: $p d_{R} M \leq p d_{R} S+p d_{S} M$. (Cf. Theorem 3.18 from the lecture.)
5. Show that $l g l \operatorname{dim} A \leq 2$ if and only if for each $f \in \operatorname{Hom}\left(P_{1}, P_{2}\right)$ with P_{i} projective we have that $\operatorname{Ker} f$ is also projective.
6. Consider the following algebras, given by the structure of their projective decomposition:
a) $A_{A}={ }_{1}^{1}$;
b) $A_{A}=\stackrel{1}{2} \oplus \stackrel{2}{1}$;
c) $A_{A}=1{ }_{1}^{1}{ }_{2}{ }_{1}{ }_{1}^{2}$.

Check the global dimension of these algebras and for each of them find a corresponding algebra B of finite global dimension so that $A \simeq e B e$ for a suitable idempotent element $e \in B$.
7. Let A be a finite dimensional algebra over K and for arbitrary K-space X denote by X^{*} the K-dual of X, i. e. $X^{*}=\operatorname{Hom}_{K}(X, K)$. Note that if N is a left A-module then N^{*} carries a natural right A-module structure. Prove that for arbitrary right A-module M and arbitary left A-module N we have $\operatorname{Ext}_{A}^{n}\left(M, N^{*}\right) \simeq\left(\operatorname{Tor}_{n}^{A}(M, N)\right)^{*}$. (Thus computation of Tor can be reduced to the case of computing Ext.
8. Let A be a finite dimensional K-algebra of finite representation type, and let M be the direct sum of all isotypes of indecomposable modules in A-Mod. Denote by B the endomorphism algebra of M (acting on the opposite side to the scalars): $B=\operatorname{End}_{A}(M)$. (In this case B is called the Auslander-algebra of A.)
a) Prove that M_{B} is projective.
b) The functors $F: N \rightarrow \operatorname{Hom}_{A}(M, N)$ and $G: P \rightarrow P \otimes_{B} M$ give an equivalence between the category A-Mod and the category of projective right B-modules.

