- 1. Give an example showing that the assumption in Gabriel's theorem on the base field being algebraically closed is indeed needed (i. e. for any field K which is not algebraically closed find a finite dimensional basic algebra over K which is not a path algebra modulo relations).
- **2.** Find the Gabriel quiver $\Gamma(A)$ and a suitable admissible relation ideal I for the following algebras A so that $A \simeq K\Gamma(A)/I$:

a)
$$A = \begin{pmatrix} K & 0 & 0 & 0 \\ K & K & 0 & 0 \\ K & 0 & K & 0 \\ K & 0 & 0 & K \end{pmatrix};$$
 b) $A = \left\{ \begin{pmatrix} a & b & c \\ 0 & d & f \\ 0 & 0 & a \end{pmatrix} | a, b, c, d, f \in K \right\}.$

3. Recall the algebras from Problem #6/6:

a) $A_A = \frac{1}{1}$; b) $A_A = \frac{1}{2} \oplus \frac{2}{1}$; c) $A_A = \frac{1}{2} \frac{2}{1} \oplus \frac{2}{1}$. Find the structure (i.e. the graph and relations) of the algebras B arising in Auslander's construction (i.e. where $B = \text{End}(\bigoplus_{i=0}^{n} A/J(A)^i)$).

- 4. Find the structure of the Yoneda extension algebras of the following algebras, given by the structure of their regular module:
 - a) $A_A = \frac{1}{2} \oplus \frac{2}{1} \oplus \frac{3}{2} \oplus \frac{3}{2};$ b) $A_A = 1 \oplus \frac{2}{1} \oplus \frac{3}{2} \oplus \frac{3}{1} \oplus \frac{3}{1} \oplus \frac{3}{1} \oplus \frac{5}{1};$ c) $A_A = \frac{1}{2} \oplus \frac{2}{1} \oplus \frac{3}{1} \oplus \frac{3}{1} \oplus \frac{3}{1};$ d) $A_A = \frac{1}{4} \oplus 2 \oplus \frac{3}{4} \oplus \frac{4}{2}.$
- 5. a) Prove that if R/J(R) is semisimple, then for any *R*-module Rad M = J(R)M.
 - b) Define the radical series of a module M by $M_0 = M$ and $M_i = \text{Rad } M_{i-1}$ for each $i \ge 1$. Similarly define the socle series of M by $M^0 = 0$ and define M^i as the full preimage of $\text{Soc}(M/M^{i-1})$. The length of the radical series is n if $M_{n-1} \ne 0$ and $M_n = 0$. Similarly one may define the length of the socle series. Prove that if R is semiprimary (i. e. R/J(R) is semisimple and J(R) nilpotent) then the lengths of the radical series and of the socle series are both finite and they coincide.
 - c) Define the Loewy length of a module as $L\ell M = \min \{k \in \mathbb{N} \mid J(R)^k M = 0\}$. Show that for semiprimary rings the Loewy length of a module coincides with the radical length and the socle length of the module.
- 6. a) An algebra A is *left (right) uniserial* if all indecomposable projective left (resp. right) modules are uniserial (i. e. they have a unique composition series). Give an example of an algebra which is left uniserial but not right uniserial.
 - b) Describe the quiver of those algebras which are both left and right uniserial (these are called *Nakayama algebras*).
- 7^{*}. Prove that a finite dimensional Nakayama algebra is representation finite and describe its indecomposable modules.
- 8*. Let A be a finite dimensional algebra with finite global dimension. Let $C \in M_n(\mathbb{Z})$ be the Cartan matrix of A. It is well known (cf. Problem #4/10) that C is invertible in $M_n(\mathbb{Z})$. Define the following (non-symmetric) bilinear form on $\mathbb{Z}^n \times \mathbb{Z}^n$:

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T (C^T)^{-1} \mathbf{y}.$$

(This is the so called *Euler-characteristic of A.*) Prove that if for a module X the dimension vector $\underline{\dim}X$ stands for the vector consisting of composition multiplicities of simple modules in X (i.e. $(\underline{\dim}X)_i = [X : S(i)]$) then the following equality holds for arbitrary $X, Y \in A$ -Mod:

$$\langle \underline{\dim} X, \underline{\dim} Y \rangle = \sum_{i>0} (-1)^i \dim \operatorname{Ext}_A^i(X, Y).$$