1. Consider the setup of the 3×3 lemma, i.e. a commutative diagram

$$
\begin{aligned}
& \begin{array}{ccccccc}
& & & & & & \\
& & & & & & \\
& & & \downarrow & & \downarrow & \\
\\
0 & \rightarrow & X^{\prime} & \rightarrow & Y^{\prime} & \rightarrow & Z^{\prime}
\end{array} \rightarrow 0 \\
& 0 \rightarrow \stackrel{\downarrow}{X} \rightarrow \stackrel{\downarrow}{Y} \rightarrow \stackrel{\downarrow}{Z} \rightarrow 0
\end{aligned}
$$

with exact rows. Show that the exactness of the first and third column does not imply the exactness of the middle column.

Solution. Let us consider the following diagram:

$$
\begin{aligned}
& \downarrow \alpha^{\prime} \quad \downarrow \beta^{\prime} \quad \downarrow \gamma^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \rightarrow \begin{array}{ccccccc}
X^{\prime \prime} & \xrightarrow{\varphi^{\prime \prime}} & Y^{\prime \prime} & \xrightarrow{\psi^{\prime \prime}} & Z^{\prime \prime} & \rightarrow & 0 \\
& \downarrow & & \downarrow & & \downarrow \\
& & & & & & \\
& & & & & &
\end{array}
\end{aligned}
$$

A simple diagram chasing shows that under the assumptions β^{\prime} is injective and $\beta^{\prime \prime}$ is surjective. For example, if $\beta^{\prime}\left(y^{\prime}\right)=0$ for some $y^{\prime} \in Y$ then $\psi \beta^{\prime}\left(y^{\prime}\right)=\gamma^{\prime} \psi^{\prime}\left(y^{\prime}\right)=0$. Since γ^{\prime} is injective, this gives that $\psi^{\prime}\left(y^{\prime}\right)=0$, hence $y^{\prime} \in \operatorname{Ker} \Psi^{\prime}=\operatorname{Im} \varphi^{\prime}$. Thus there exists $x^{\prime} \in X^{\prime}$ such that $y^{\prime}=\varphi^{\prime}\left(x^{\prime}\right)$. But then $\varphi \alpha^{\prime}\left(x^{\prime}\right)=\beta^{\prime} \varphi^{\prime}\left(x^{\prime}\right)=\beta^{\prime}\left(y^{\prime}\right)=0$ and since both φ and α^{\prime} are injective, we get that $x^{\prime}=0$. But this implies that $y^{\prime}=\varphi\left(x^{\prime}\right)=0$, giving that β^{\prime} is injective. (The proof that $\beta^{\prime \prime}$ is surjective is similar.) One should also observe that if the middle column would be half exact at Y then we would have a short exact sequence of complexes (the vertical columns) where the homologies would be everywhere 0 with one possible exception, the homology at Y. But taking the long exact sequence of homologies would imply that the homology at Y is also 0 . Thus, if we want to construct a counterexample, we really need a diagram where $\operatorname{Im} \beta^{\prime} \nsubseteq \operatorname{Ker} \beta^{\prime \prime}$. The following diagram provides such a counterexample in the category of K vector spaces:
2. Consider the chain map $f_{\bullet}: X_{\bullet} \longrightarrow Y_{\bullet}$:

$$
\begin{array}{llllccccccccc}
\cdots & \longrightarrow & 0 & \longrightarrow & \mathbb{Z}_{4} & \xrightarrow{1 \mapsto 4} & \mathbb{Z}_{8} & \xrightarrow{1 \mapsto 1} & \mathbb{Z}_{2} & \longrightarrow & 0 & \longrightarrow & \cdots \\
& \downarrow & & \downarrow & & \downarrow & & \downarrow & & & & \\
\cdots & 0 & \longrightarrow & \mathbb{Z}_{8} & \xrightarrow{1 \mapsto 2} & \mathbb{Z}_{8} & \xrightarrow{1 \mapsto 4} & \mathbb{Z}_{8} & \longrightarrow & 0 & \longrightarrow & \cdots
\end{array}
$$

http://agostoni.web.elte.hu/bboard/fg24tav/gyakorlat.html

Here the vertical maps are the natural embeddings. Compute the long exact sequence of homologies obtained from the short exact sequence of complexes

$$
0_{\bullet} \longrightarrow X_{\bullet} \xrightarrow{f_{\bullet}} Y_{\bullet} \longrightarrow \text { Coker } f_{\bullet} \longrightarrow 0
$$

Solution. Here is the complete diagram, completed with the cokernel terms.

Here the columns form short exact sequences (the endterms are omitted) and the other vertical maps are defined by $f_{2}: 1 \mapsto 2, \quad f_{1}: 1 \mapsto 1$ and $f_{0}: 1 \mapsto 4$, furthermore $g_{i}: 1 \mapsto 1(i=2,1,0)$. The homologies are the following:

$$
\begin{array}{ccccc}
0 & 2 \mathbb{Z}_{4} & 2 \mathbb{Z}_{8} / 4 \mathbb{Z}_{8} & \mathbb{Z}_{2} / \mathbb{Z}_{2} & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 4 \mathbb{Z}_{8} & 2 \mathbb{Z}_{8} / 2 \mathbb{Z}_{8} & \mathbb{Z}_{8} / 4 \mathbb{Z}_{8} & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \mathbb{Z}_{2} & 0 & \mathbb{Z}_{2} / 0 & 0
\end{array}
$$

Then we have: $H_{2}\left(f_{\bullet}\right):[2] \mapsto[4]$, that is the generating element of $2 \mathbb{Z}_{4} \cong \mathbb{Z}_{2}$ maps to the generating element of $4 \mathbb{Z}_{8} \cong \mathbb{Z}_{2}, \quad H_{2}\left(g_{\bullet}\right):[4] \mapsto[4]=[0], \quad \partial_{2}:[1] \leftarrow 1 \rightarrow 2 \leftarrow[2], \quad H_{0}\left(g_{\bullet}\right):[1] \mapsto[1]$, and the rest of the maps of the long exact sequence is obvioulsy 0 . Thus the long exact sequence of homologies is as follows:

3. Let A be a K-algebra, M and $N A$-modules, and let \mathcal{E} and \mathcal{E}^{\prime} be two non-split extensions in the K-space $\operatorname{Ext}_{A}^{1}(M, N)$. Suppose that \mathcal{E} and \mathcal{E}^{\prime} are linearly dependent. Show that the middle terms in \mathcal{E} and \mathcal{E}^{\prime} are isomorphic.

Solution. We may assume that $\mathcal{E}^{\prime}=\lambda \cdot \mathcal{E}=\left(\lambda \operatorname{id}_{N}\right) \mathcal{E}$ with $\lambda \in K$ nonzero. Then we get:

$$
\begin{array}{clcccccc}
0 & \rightarrow & N & \rightarrow & K & \rightarrow & M & \rightarrow \\
& & \downarrow \lambda \operatorname{id}_{N} & & \downarrow \kappa & & \downarrow \operatorname{id}_{M} & \\
\\
0 & \rightarrow & N & \rightarrow & \tilde{K} & \rightarrow & M & \rightarrow
\end{array}
$$

Since the first and third vertical map is an isomorphism, so is κ. Thus $K \simeq \tilde{K}$.
4. a) Consider the algebra given by $A_{A}=\underset{1}{1}{ }_{1}^{1}{ }_{1}{ }^{2}{ }_{3} \oplus 3$. Find the projective resolutions of the modules $X={ }_{2}^{1}$ and of $Y=2$.
b) Consider the algebra given by $B_{B}=\underset{2}{1} \oplus \underset{2}{2}$. Compute the projective resolution of the module $Z=1_{2}{ }^{1}$.
Solution. a)

$$
\begin{aligned}
& 0 \rightarrow 3 \rightarrow{ }_{1}^{2}{ }_{3}^{2} \rightarrow \stackrel{1}{2} \rightarrow \stackrel{1}{2} \underset{1}{2} \rightarrow \stackrel{1}{2} \rightarrow 0 \\
& 0 \rightarrow 3 \rightarrow \underset{1}{2} \mathbf{3} \rightarrow \stackrel{1}{\mathbf{2}} \oplus 3 \rightarrow \underset{1}{2}+\mathbf{3} \rightarrow \mathbf{2} \rightarrow 0,
\end{aligned}
$$

and here the image of a generating element of a projective module is inidicated by a bold face number in the next term. b)

The map $P_{1} \rightarrow P_{0}$ will take the generating element of $\begin{gathered}2 \\ 2 \\ 2\end{gathered}$ into the difference of the two basis elements, indicated by bold face letters.
5. Take the deleted projective resolution of the module X from the previous problem and apply to it the contravariant functor $\operatorname{Hom}\left(-, \frac{1}{2}\right)$. Compute the dimension of the cohomologies of this new complex.

Solution. The deleted projective resolution is the following:

$$
0 \rightarrow 3 \rightarrow \underset{1}{2}{ }_{3} \rightarrow \stackrel{1}{2} \underset{1}{2} \rightarrow \begin{aligned}
& 1 \\
& 2 \\
& \mathbf{1}
\end{aligned} \rightarrow 0
$$

and after applying the functor $\operatorname{Hom}\left(-, \begin{array}{l}1 \\ 2\end{array}\right)$ we get the following sequence:

$$
0 \rightarrow \operatorname{Hom}\left(\begin{array}{ll}
1 \\
2 & 1 \\
1
\end{array}\right) \xrightarrow{d^{0}} \operatorname{Hom}\left(\begin{array}{ll}
1 \\
2 & 1
\end{array}, \begin{array}{l}
1 \\
2
\end{array}\right) \xrightarrow{d^{1}} \operatorname{Hom}\left({\underset{1}{2}}_{1}^{2}, \begin{array}{l}
1 \\
2
\end{array}\right) \xrightarrow{d^{2}} \operatorname{Hom}\left(3, \begin{array}{l}
1 \\
2
\end{array}\right) \rightarrow 0
$$

$\operatorname{Here} \operatorname{Hom}\left(\begin{array}{ll}1 \\ 2 & 1 \\ 1\end{array}, 2 \begin{array}{l}2\end{array}\right)$ is one dimensional, generated by the natural homomorphism from $\begin{aligned} & 1 \\ & 2\end{aligned}$ to the quotient module obtained by factoring out with the simple socle. The image of this generating element under the action of d^{0} is 0 thus d^{0} is the zero map. The same element is taken by d^{1} into a nontrivial morphism in $\operatorname{Hom}\left(\begin{array}{cc}2 \\ 1 & 3\end{array}, \begin{array}{l}1 \\ 2\end{array}\right)$ which is also one dimensional. Hence it is an isomorphism. Finally $\operatorname{Hom}\left(3, \begin{array}{l}1 \\ 2\end{array}\right)=0$, hence $d^{2}=0$. This gives us that the 0 -th cohomology of the sequence is one dimensional, while the other cohomologies are 0 .
6. Consider the algebra $A_{A}=1 \oplus 2 \oplus{ }_{1}{ }_{2}$ and take the short exact sequence

$$
\mathcal{E}: 0 \longrightarrow 1 \oplus 2 \longrightarrow 1_{2}^{3} \longrightarrow 3 \longrightarrow 0
$$

Find the (pullback) sequence $\mathcal{E} \mu$ if $\mu:{ }_{2}^{3} \longrightarrow 3$ is the natural epimorphism.

Solution. The following is the required diagram:

$$
\left.\begin{array}{ccccccc}
\mathcal{E} \mu: & 0 & \longrightarrow & 1 \oplus 2 \\
& & \longrightarrow & { }^{3}{ }_{2} \oplus 2 & \longrightarrow & \begin{array}{l}
3 \\
2
\end{array} & \longrightarrow
\end{array}\right] 0
$$

