EXT-ALGEBRAS

ISTVÁN ÁGOSTON¹, VLASTIMIL DLAB² AND ERZSÉBET LUKÁCS^{1,2}

ABSTRACT. The Ext-algebra A^* of a finite dimensional associative K-algebra A is studied with a motivation to establish conditions under which (i) the species of A and $A^{*\,op}$ coincide and (ii) the quasi-heredity of A (or A^*) yields the quasi-heredity of A^* (or A, respectively). These questions are closely related to the Kazhdan-Lusztig Theory as presented by [CPS2].

1. Introduction

Throughout the paper A will denote a finite dimensional basic algebra over an arbitrary field K. Let us recall that the K-species $\mathcal{S}(A)$ of A is the system $(D_i:i\in I;iW_j:i,j\in I)$ of finitely many division algebras D_i and D_i - D_j -bimodules ${}_iW_j$ so that $A/\operatorname{rad} A\simeq\prod_{i\in I}D_i$ and $\operatorname{rad} A/\operatorname{rad}^2 A\simeq\sum_{i,j\in I}{}_iW_j$. Thus, if $\{e_i\mid i\in I\}$ is a complete set of primitive orthogonal idempotents in A, and \bar{e}_i denotes the image of e_i in $A/\operatorname{rad} A$, then $D_i=\bar{e}_i\big(A/\operatorname{rad} A\big)\bar{e}_i$ and ${}_iW_j=\bar{e}_i\big(\operatorname{rad} A/\operatorname{rad}^2A\big)\bar{e}_j$. Notice that if S(i) is the simple right A-module $e_iA/e_i\operatorname{rad} A$ then $D_i\simeq\operatorname{End}_A\big(S(i)\big)$ and ${}_iW_j\simeq\operatorname{Ext}_A^1\big(S^\circ(j),S^\circ(i)\big)$. If the field K is algebraically closed then one may speak about the quiver of the algebra A. For, all the division algebras are equal to K and the bimodules ${}_iW_j$ are just direct sums of copies of the regular bimodule K; hence, the complete information is contained in an oriented graph having I as its vertex set and $\dim_{K} {}_iW_j$ arrows from i to j.

Given an algebra A one may define the so-called Ext-algebra of A, denoted by A^* . This is a K-algebra whose underlying vector space is

$$\bigoplus_{k>0} \bigoplus_{i,j \in I} \operatorname{Ext}_{A}^{k} \left(S(i), S(j) \right),$$

with the multiplication defined via the Yoneda-product of exact sequences. Observe that A^* is finite dimensional if and only if $gl.dim A < \infty$; moreover the identity element of A^* is the sum of the primitive orthogonal idempotents

¹⁹⁹¹ Mathematics Subject Classification. Primary 16E99. Secondary 16S99, 17B10

¹ Research partially supported by Hungarian NFSR grant no. T4265

² Research partially supported by NSERC of Canada

 $f_i = \operatorname{id}_{S(i)}, i \in I$. In analogy to S(i) and $P(i) = e_i A$, denote by $S^{*\circ}(i)$ and $P^{*\circ}(i)$ the corresponding simple and indecomposable projective left A^* -modules.

Our principal objective is to study the connection between some of the properties of A and A^* , respectively. Some of our results are parallel to those of [CPS2] although our approach is somewhat different.

Most results presented here were reported by the authors on several occasions (Sherbrooke: May 1994, Prague: June 1994, Mexico City: August 1994). The proofs of the statements, together with some examples and further references to the graded situation will appear in a more detailed version elsewhere.

2. The species of Ext-algebras

First we will be dealing with the question of the species of A^* (more precisely, of A^{*op}). It is easy to see, that $\mathcal{S}(A) \subseteq \mathcal{S}(A^{*op})$. We will show that the fact that the species of these two algebras coincide is equivalent to some easy-to-describe property of the projective resolutions of the simple A-modules.

To this end we recall that a submodule X of Y is a top submodule (denoted by $X \subseteq Y$) if $\operatorname{rad} X = X \cap \operatorname{rad} Y$, i. e. the embedding of X into Y induces an embedding of $\operatorname{top} X$ into $\operatorname{top} Y$ (see [ADL1]). A filtration $X = X_1 \supseteq X_2 \supseteq \ldots \supseteq X_m$ of a module X is called a top filtration if $X_i \subseteq X$ for $1 \le i \le m$.

We shall also use the following notation. For an arbitrary module $X \in \operatorname{mod-}A$

$$\cdots \stackrel{d_{j+1}}{\to} \mathcal{P}_j(X) \stackrel{d_i}{\to} \cdots \stackrel{d_2}{\to} \mathcal{P}_1(X) \stackrel{d_1}{\to} \mathcal{P}_0(X) \stackrel{d_0}{\to} X \to 0$$

will denote a minimal projective resolution of X, with the corresponding syzygies $\Omega_{j+1}(X) = \operatorname{Ker} d_j$ for $j = 0, 1, \ldots$

Now we may introduce the following subcategory of the category of finitely generated right A-modules mod-A.

DEFINITION 2.1. We say that a module $X \in \text{mod-}A$ belongs to $\mathcal{C}^{(i)} = \mathcal{C}_A^{(i)}$ for some $i \in \mathbb{N}$ if $\Omega_j(X) \subseteq \text{rad} \mathcal{P}_{j-1}(X)$ for $j = 1, 2, \dots, i$. We may also define $\mathcal{C}^{(0)} = \text{mod-}A$. The intersection of these subcategories will be denoted by \mathcal{C} ; thus $\mathcal{C} = \mathcal{C}_A = \bigcap\limits_{i=0}^{\infty} \mathcal{C}^{(i)}$. – Similarly, one may define the subcategory $\mathcal{C}_A^{\circ} \subset A$ -mod of left A-modules.

It is easy to see, that the definition does not depend on which particular minimal projective resolution of X was chosen.

The following proposition gives an important homological property of the elements of $\mathcal{C}^{(i)}$.

PROPOSITION 2.2. If $X \in \mathcal{C}^{(i)}$ then the natural maps $\operatorname{Ext}_A^k(\operatorname{top} X, S) \to \operatorname{Ext}_A^k(X, S)$ are surjective for every $0 \le k \le i$ and every simple module S.

It turns out that with the addition of an easy necessary assumption, this property fully characterizes the elements of $C^{(i)}$.

PROPOSITION 2.3. Assume that every simple A-module S is in \mathcal{C}_A . Then a module X is an element of $\mathcal{C}_A^{(i)}$ if and only if the natural maps $\operatorname{Ext}_A^k(\operatorname{top} X,S) \to \operatorname{Ext}_A^k(X,S)$ are surjective for every $0 \le k \le i$ and S simple module.

Proposition 2.2 leads to a full answer as to when the species of A and A^{*op} coincide.

Theorem 2.4. The following are equivalent for an algebra A.

- (a) $S \in \mathcal{C}_A$ for every simple right module S;
- (b) $S^{\circ} \in \mathcal{C}_{A}^{\circ}$ for every simple left module S° ;
- (c) $S(A) = S(A^{*op}).$

3. The functor $Ext^* : mod-A \rightarrow A^* - mod$

We shall assume in this section that the Ext-algebra A^* of the finite dimensional algebra A is itself finite dimensional, i. e. $gl.dim A < \infty$.

Let \hat{S} denote the direct sum of all simple right A-modules, i. e. $\hat{S} = \bigoplus_{i \in I} S(i)$. Then we may define a contravariant functor $\operatorname{Ext}^* : \operatorname{mod-}A \to A^*$ -mod by taking the direct sum of the functors $\operatorname{Ext}^k(-,\hat{S})$ for $k \geq 0$. Actually, the modules $\operatorname{Ext}^*(X)$ will have a natural grading, with the morphisms $\operatorname{Ext}^*(f)$ preserving this grading, hence we have a functor into A^* -mod_{gr}. For a module $X \in A^*$ -mod_{gr}, let X[j] denote the shifted graded module, i. e. $X[j]_i = X_{i-j}$. We have the following exactness properties of Ext^* .

LEMMA 3.1. Let $0 \to X \to Y \to Z \to 0$ be a short exact sequence in mod-A.

- (a) Assume $X \subseteq Y$. If $X \in \mathcal{C}_A$ then the sequence $0 \to \operatorname{Ext}^*(Z) \to \operatorname{Ext}^*(Y) \to \operatorname{Ext}^*(X) \to 0$ is exact; if in addition $Z \in \mathcal{C}_A$, then $\operatorname{Ext}^*(Z) \subseteq \operatorname{Ext}^*(Y)$.
- (b) Assume $X \subseteq \operatorname{rad} Y$. If $Y \in \mathcal{C}_A$ then the sequence $0 \to \operatorname{Ext}^*(X)[1] \to \operatorname{Ext}^*(Z) \to \operatorname{Ext}^*(Y) \to 0$ is exact; if in addition $Z \in \mathcal{C}_A$, then $\operatorname{Ext}^*(X)[1] \subseteq \operatorname{rad} \operatorname{Ext}^*(Z)$.

Based on this lemma, we get the following propositions.

PROPOSITION 3.2. If X, rad $X \in \mathcal{C}_A$ then $\operatorname{Ext}^*(X) \in \mathcal{C}_{A^*}^{(1)^{\circ}}$. Thus if rad $X \in \mathcal{C}_A$ for every i then $\operatorname{Ext}^*(X) \in \mathcal{C}_{A^*}^{\circ}$.

Proposition 3.3. (a) $\operatorname{Ext}^*(S(i)) = P^{*\circ}(i)$.

- (b) Ext* $(P(i)) = S^{*\circ}(i)$.
- (c) $\operatorname{Ext}^* (\operatorname{rad} P(i))[1] = \operatorname{rad} P^{*\circ}(i)$.

4. Ext-algebras and quasi-heredity

To speak about the quasi-heredity of an algebra A, one must impose a (partial) order on the set $\{S(i) | i \in I\}$ of simple right A-modules (or equivalently, on the given complete set of primitive orthogonal idempotents). Actually, without loss of generality we may assume that we have a total order on the index set I. Thus assume that $I = \{1, 2, ..., n\}$ with the natural order. We shall write $\mathbf{e} = (e_1, e_2, ..., e_n)$ for the corresponding ordered set of primitive orthogonal idempotents and we define $\varepsilon_i = e_i + e_{i+1} + ... + e_n$, $\varepsilon_{n+1} = 0$. Recall that P(i) denotes the projective cover of the simple module S(i). Consider the trace filtration of A:

$$A = A\varepsilon_1 A \supset A\varepsilon_2 A \supset \ldots \supset A\varepsilon_n A \supset 0.$$

We say that A is quasi-hereditary with respect to I (or briefly, (A, \mathbf{e}) is quasi-hereditary) if each of the so called standard right modules $e_i A/e_i A \varepsilon_{i+1} A$, denoted by $\Delta(i)$ is Schurian (i. e. it has a semisimple endomorphism ring) and the quotients of the trace filtration $A\varepsilon_i A/A\varepsilon_{i+1} A$ as right modules are direct sums of the corresponding standard modules. In addition, we say that A is lean with respect to this order if $\Delta(i) \in \mathcal{C}_A^{(1)}$ and $\Delta^{\circ}(i) \in \mathcal{C}_A^{(1)}^{\circ}$ for all $i \in I$. (Here $\Delta^{\circ}(i)$ stands for the corresponding standard left module.) We consider the following canonical exact sequences:

$$0 \to V(i) \to P(i) \to \Delta(i) \to 0 \qquad \text{and} \qquad 0 \to U(i) \to \Delta(i) \to S(i) \to 0.$$

For the basic properties of quasi-hereditary algebras, we refer to [CPS1], [DR1], [DR2] or [DK] and of lean algebras to [ADL1], [ADL2]. Canonical constructions for the so-called *shallow*, *replete* and *medial algebras* are also described there.

We have already noticed that the simple types of (right) A-modules are in one-to-one correspondence with the simple types of (left) A^* -modules; the corresponding idempotent to the primitive idempotent $e_i \in A$ is the element $f_i = \mathrm{id}_{S(i)} \in A^*$. Having fixed the order $\mathbf{e} = (e_1, e_2, \ldots, e_n)$ for A we shall consider the reverse order $\mathbf{f} = (f_n, f_{n-1}, \ldots, f_1)$ for A^* ; write $\varphi = f_i + f_{i-1} + \ldots + f_1$ and $\varphi_0 = 0$.

One of the key observations in recognizing the quasi-heredity of A^* is the following lemma.

LEMMA 4.1. Assume that (A, \mathbf{e}) is quasi-hereditary with $\Delta(i) \in \mathcal{C}_A$ and $U(i) \in \mathcal{C}_A$ for $1 \leq i \leq n$. Then the left standard module $\Delta^{*\circ}(i)$ of (A^*, \mathbf{f}) is Schurian and $\Delta^{*\circ}(i) \simeq \operatorname{Ext}^*(\Delta(i))$. Furthermore, with similar notation, $\operatorname{Ext}^*(U(i))[1] \simeq V^{*\circ}(i)$ and $\operatorname{Ext}^*(V(i))[1] \simeq U^{*\circ}(i)$.

We can now state the following sufficient condition for a quasi-hereditary algebra to have a quasi-hereditary Ext-algebra.

DEFINITION 4.2. An algebra (A, \mathbf{e}) is said to be solid, if the following conditions are satisfied:

- (1) $\Delta(i)$ is Schurian;
- (2) $V(i) \stackrel{t}{\subseteq} \operatorname{rad} P(i)$;
- (3) U(i) has a top filtration by S(j)'s and $\Delta(j)$'s for j < i;
- (4) V(i) has a top filtration by $\Delta(j)$'s and P(j)'s for j > i.

LEMMA 4.3. If (A, \mathbf{e}) is solid then it is a lean quasi-hereditary algebra with $S(i), \Delta(i), U(i) \in \mathcal{C}_A$ for $1 \leq i \leq n$.

Theorem 4.4. Let (A, \mathbf{e}) be a solid algebra. Then:

- (a) (A^{*op}, \mathbf{f}) is a solid algebra (hence quasi-hereditary), and
- (b) $S(A) = S(A^{*op})$, $\dim_K A^{**} = \dim_K A$, $(\varepsilon_i A \varepsilon_i)^* \simeq A^* / (A^* \varphi_{i-1} A^*)$ and $(A/(A \varepsilon_i A))^* \simeq \varphi_{i-1} A^* \varphi_{i-1}$.

COROLLARY 4.5. If the algebra (A, \mathbf{e}) is shallow (left medial, right medial or replete) then (A^{*op}, \mathbf{f}) is replete (left medial, right medial or shallow, respectively) on the same species.

5. Ext-algebras of monomial algebras

We can get a more complete picture of the situation in the case of monomial algebras. Here the principal tool in the understanding is the existence of a multiplicative basis for A^* , consisting of some paths in the quiver of A (see [GZ]). Thus we shall assume now that A is monomial, i. e. $A = K\Gamma/R$, where Γ is a quiver with R the set of relations which is generated by some paths of length at least 2. First, we have an extension of Theorem 2.4 about the quiver of A^{*op} .

Theorem 5.1. Let $A \simeq K\Gamma/R$ be a monomial algebra. Then the following are equivalent:

- (a) $S(i) \in \mathcal{C}_A$ for $1 \leq i \leq n$;
- (b) A and A^{*op} have the same quiver;
- (c) A is quadratic (i. e. the set of relations R is generated by paths of length 2);
- (d) $\operatorname{Ext}_A^2(\hat{S}, \hat{S}) \subseteq \operatorname{rad}^2(A^*)$.

If (A, \mathbf{e}) is in addition lean with Schurian standard modules, then conditions (a)-(d) are all equivalent to:

(e) $\Delta(i) \in \mathcal{C}$, $\Delta^{\circ}(i) \in \mathcal{C}^{\circ}$ for $1 \leq i \leq n$.

On the question of quasi-heredity we have the following results.

Theorem 5.2. Let $A = K\Gamma/R$ be a monomial algebra with $gl.dim A < \infty$. Then (A^*, \mathbf{f}) is quasi-hereditary if and only if (A, \mathbf{e}) is lean with Schurian standard modules. THEOREM 5.3. Let $A = K\Gamma/R$ be a monomial algebra. If (A, \mathbf{e}) is quasi-hereditary then either (A^*, \mathbf{f}) is lean with Schurian standard modules or the quiver of A^* has a loop.

Thus from the previous two theorems we get the following corollary.

COROLLARY 5.4. Let $A = K\Gamma/R$ be a monomial algebra. Then if (A, \mathbf{e}) is lean and quasi-hereditary, then so is (A^*, \mathbf{f}) .

References

- [ADL1] Ágoston, I., Dlab, V., Lukács, E., Lean quasi-hereditary algebras, in:

 *Representations of Algebras. Sixth International Conference, 1992,

 *Ottawa. CMS Conference Proceedings 14, 1–14.
- [ADL2] Ágoston, I., Dlab, V., Lukács, E., Homological characterization of lean algebras, Manuscripta Mathematica 81 (1993) 141–147
- [CPS1] Cline, E., Parshall, B.J., Scott, L.L., Finite dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99.
- [CPS2] Cline, E., Parshall, B.J., Scott, L.L., The homological dual of a highest weight category, Proc. London Math. Soc. 68 (1994), 294–316.
- [DR1] Dlab, V., Ringel, C.M., Quasi-hereditary algebras, Illinois J. of Math. **35** (1989), 280–291.
- [DR2] Dlab, V., Ringel, C.M., The module theoretical approach to quasihereditary algebras, in: *Representations of Algebras and Related Topics* London Math. Soc. Lecture Note Series **168**, Cambridge Univ. Press 1992, 200–224.
- [DK] Drozd, Yu.A., Kirichenko, V.V., Finite dimensional algebras, Appendix by V. Dlab, Springer-Verlag 1994.
- [GZ] Green, E., Zacharia, D., The cohomology ring of a monomial algebra, preprint

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, P.O.BOX 127, 1364 BUDAPEST, HUNGARY

 $E ext{-}mail\ address: agoston@konig.elte.hu}$

Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, K1S 5B6, Canada

E-mail address: vdlab@math.carleton.ca

DEPARTMENT OF MATHEMATICS, FACULTY OF TRANSPORT ENGINEERING, TECHNICAL UNIVERSITY OF BUDAPEST, 1111 BUDAPEST, HUNGARY *E-mail address:* lukacs@euromath.vma.bme.hu