
Frobenius funtions on translation quiversIstv�an �Agoston1, Erzs�ebet Luk�as2 and Claus Mihael RingelAbstrat. Frobenius funtions are integral valued funtions given on verties of trans-lation quivers and satisfying ertain subadditivity onditions. Typial examples are thelength funtion and the dimension funtion on the stable Auslander{Reiten quiver ofa �nite dimensional sel�njetive algebra. In our paper we study in detail Frobeniusfuntions on the translation quivers ZZA1, ZZA11 and some related ones. In partiularwe show that there is a one-to-one orrespondene between Frobenius funtions on thestable tube T (n) and Frobenius funtions on the wingW (n), and we lassify them usingertain related ombinatorial strutures.We denote by W (n) the wing of order n (it is the Auslander{Reiten quiver ofthe ring An(k) of upper triangular n � n-matries over a �eld k) and by T (n) =ZZA1=h�ni the stable tube of rank n (it is the Auslander{Reiten quiver of the loallynilpotent representations of the yli quiver with n verties). Note that T (n) hasn full subquivers isomorphi to W (n) whih ontain all verties of the mouth; weall them the maximal wings of T (n).Let � = (�0;�1; �) be a translation quiver (without multiple arrows) and letf : �0�!ZZ be a map. For any non-projetive vertex z of �, de�ne Æ(z) = Æf (z) =f(z) + f(�z) � Py! z f(y). A Frobenius funtion f on � is a map f : �0�!ZZ suhthat for any non-projetive vertex z of � with Æ(z) 6= 0, we have both f(z) < Æ(z)and f(�z) < Æ(z). Note that any non-negative Frobenius funtion is subadditive,that is, Æ(z) � 0 for any non-projetive vertex. In dealing with a Frobenius funtionf on �, and a non-projetive vertex z with Æ(z) 6= 0, we say that the mesh endingin z is an inomplete mesh. Typial examples of positive Frobenius funtions aregiven by the dimension funtion or the length funtion on the stable Auslander{Reiten quiver of a �nite dimensional sel�njetive algebra; the inomplete meshesbeing those, where an indeomposable projetive module has been removed.Our aim is a detailed study of positive Frobenius funtions on wings, stabletubes and the translation quivers ZZA1 and ZZA11. By using ertain ombinatorial1991 Mathematis Subjet Classi�ation. Primary 16G70, 16G20.1 Researh partially supported by Hungarian NFSR grant no. T42652 Researh partially supported by Hungarian NFSR grant no. T0164321



2 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELstrutures we give a lassi�ation of these funtions. In the forthoming seond partof the paper algebrai representations will be given for some of these results. Theresults were reported at the Sixth International Conferene on Representations ofAlgebras, held at Ottawa in 1992.We would like to mention that many of the ideas used here an be traed bakto [GR℄. For unexplained notation, we refer to [R℄.1. The main resultsThere is a strong interrelation between Frobenius funtions onW (n) and T (n).Theorem 1.1. If g is a positive Frobenius funtion on T (n), then there exists amaximal wing of T (n) whih ontains all inomplete meshes. Conversely, if U is amaximal wing of T (n) then any funtion f : U0�! IN1 = f1; 2; 3; : : :g has a uniqueextension to a funtion �f : T (n)0�! IN1 whih is additive on all meshes whih arenot ontained in U . Suh an extension �f is a positive Frobenius funtion if andonly if f is.Speial ases of this statement have been onsidered by Erdmann (see [E℄) inher study of tame symmetri algebras.A onsequene of the above theorem is that any positive Frobenius funtionon T (n) is uniquely determined by its restrition to an appropriate maximal wingW (n). Thus we may fous our attention to positive Frobenius funtions on wings.Let us denote the projetive verties of W (n) by p1, p2, : : :, pn, indexed sothat there are arrows p1!p2!� � �!pn. Given a funtion f : W (n)�!ZZ, takefi = f(pi) and onsider the vetor (f1; : : : ; fn). We all a vetor (f1; : : : ; fn) withentries in IN1 binary if whenever fi = fj for some i < j, then there exists anindex ` suh that i < ` < j and f` < fi. A binary vetor f = (f1; : : : ; fn) yields anembedded rooted binary tree B(f) with n verties as follows. The empty vetor (forn = 0) will orrespond to the empty tree. Given a binary vetor f = (f1; : : : ; fn),let ft be the minimal oordinate (by de�nition of a binary vetor, t is uniquelyde�ned). Let g = (f1 � ft; : : : ; ft�1� ft), and h = (ft+1� ft; : : : ; fn� ft). We takethe vertex with index t as root, and, in ase g or h are non-empty, we attah tot the trees B(g) and B(h) so that the root of B(g) is the upper left neighbor andthe root of B(h) is the upper right neighbor of t. Note that any embedded rootedbinary tree an be obtained in this way. Binary vetors f and f 0 with B(f) = B(f 0)will be said to be equivalent. For example, the binary vetors (7; 3; 5; 4; 5; 7) and(2; 1; 3; 2; 3; 4) are equivalent, the orresponding binary tree is:6�3 5� �1 4� �2



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 3We an now formulate the following theorem about the onnetion of binaryvetors and Frobenius funtions on wings.Theorem 1.2. Let f be a positive Frobenius funtion on the wing W (n), and fi =f(pi). Then (f1; : : : ; fn) is a binary vetor, and every binary vetor ours in thisway. Two positive Frobenius funtions f and g on W (n) have the same inompletemeshes if and only if the binary vetors (f1; : : : ; fn) and (g1; : : : ; gn) are equivalent.The binary vetors of length n are just the dimension vetors of (not neessarilybasi) tilting modules for An(k), see [HR℄, and therefore part of the previous result,namely that every binary vetor arises from Frobenius funtions on W (n), followsfrom [HW℄. Here we shall give a diret ombinatorial proof.As one an see from Theorem 1.2, Frobenius funtions on W (n) with the samebinary tree an be haraterized by the set of their inomplete meshes. Atually,not every on�guration of meshes inW (n) an our as the set of inomplete meshesof a Frobenius funtion. We all two meshes independent if the subwings of W (n)generated by these meshes either have at most one vertex in ommon or one ofthe subwings ontains the other one in its interior. (For a preise de�nition seeSetion 4.) A set of meshes is independent if any two meshes in it are independent.We an now state the following theorem.Theorem 1.3. A set S of meshes in the wing W (n) an be obtained as the full setof inomplete meshes of a positive Frobenius funtion on W (n) if and only if S isindependent.Similar haraterizations will also be given for the sets of inomplete meshesof Frobenius funtions de�ned on the translation quivers ZZA1 and ZZA11.2. Wings and stable tubesIt seems to be onvenient to onsider instead of T (n) or W (n) the translationquivers ZZA1 and ZZA11.We shall use the following oordinatization. By de�nition, the set of vertiesof ZZA11 is the set ZZ � ZZ of integral lattie points in the plane. There are arrows(a1; a2)!(a1 + 1; a2) and (a1; a2)!(a1; a2 + 1), and the translation is de�ned by�(a1; a2) = (a1 � 1; a2 � 1), for any (a1; a2) 2 ZZ� ZZ.



4 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGEL�� � � �� �� � � �� � �� �� �� � �� � �� �� �� � �� �� ��� �� �� �� �� �� �� �� ��� ��� �� �� �� x(0;1)(0;0) (1;0) ��� �� �� �� ��� �� ��� ��� ��� �� �� �� �� �� �� � �� �� �� � �� � �� �� �� � �� � � �� �� � � ��Given the lattie points a = (a1; a2), b = (a1; d2),  = (d1; a2) and d = (d1; d2)with a1 < d1 and a2 < d2, we de�ne the retangle }abd = f(i; j) 2 ZZ � ZZ j a1 �i � d1; a2 � j � d2 g. We shall say that the retangle }abd starts at a andends at d. A mesh is just a minimal retangle. The upper half plane is the set ofpoints f(i; j) 2 ZZ � ZZ j i � j g, while by the extended upper half plane we meanf(i; j) 2 ZZ � ZZ j i � j + 1 g. (Thus the extended upper half plane will ontainalso those meshes that have one vertex below the line x = f(i; i) j i 2 ZZ g.) Lattiepoints having the same �rst oordinate will be said to belong to the same ray . Ifa = (a1; a2) and b = (a1; b2) are lattie points on the same ray then (a;b) willdenote the set of lattie points  = (a1; 2) where 2 is an integer between a2 and b2and not equal to any of them. The notation for losed and half open intervals willbe also used aordingly. Dually, lattie points with the same seond oordinatewill be said to belong to the same o-ray ; we shall use the interval notation forsegments of o-rays as well.Let f be an integer valued funtion de�ned on a subset of ZZ� ZZ. We de�nethe defet Æ of the funtion f on an arbitrary retangle }abd in the domain of fby Æabd = f(a) + f(d) � f(b) � f(). For }abd a mesh, we shall also writeÆ(d) = Æabd. Given a subset U of ZZ�ZZ, the funtion f : U!ZZ is alled additive(or subadditive) if Æabd = 0 (or Æabd � 0, respetively) for every mesh }abd in U .A mesh is alled inomplete (with respet to f) if the defet of the mesh is non-zero.The funtion f is alled a Frobenius funtion if for every inomplete mesh }abdwe have Æabd > f(a) and Æabd > f(d). If U 0; U 00 are subsets of U , then we writef(U 0) < f(U 00), provided f(u0) < f(u00), for every u0 2 U 0;u00 2 U 00.We shall identify ZZA1 with the upper half plane, and we all the set of vertiesof the form (i; i), with i 2 ZZ the boundary of ZZA1. In order to take are ofthe boundary meshes of ZZA1, any funtion de�ned on the verties of ZZA1 willbe extended to the extended upper half plane by zero. By de�nition, a positiveFrobenius funtion on ZZA1 is a Frobenius funtion f on the extended upper halfplane suh that f(i; j) > 0 for i � j and f(j + 1; j) = 0. We shall onsiderZZA1 as the universal overing of T (n); in this way eah of the verties of T (n) willorrespond to in�nitely many lattie points on the upper half plane, and the verties



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 5on the mouth of T (n) orrespond to the points on the line x = f(i; i) j i 2 ZZ g. Notethat a Frobenius funtion on T (n) lifts to a Frobenius funtion on ZZA1.For the wingW (n), we shall �x a standard embedding, mapping the projetiveverties p1;p2; : : : ;pn to the points (1; 1); (1; 2); : : : ; (1; n); hene the ��1-orbit ofp1 will orrespond to the points (1; 1); (2; 2); : : : ; (n; n).Lemma 2.1. Given a funtion f on a retangle }abd, the defet of f on }abdis the sum of the defets of f on all meshes in }abd. Consequently a subadditivefuntion f is additive on }abd if and only if Æabd = 0.Proof. Straightforward. utLemma 2.2. Let f be a Frobenius funtion de�ned on the retangle }abd andassume f((a; ℄) � 0 and f(a) � f([a;b℄). Then f is additive on }abd.Proof. Suppose that f is not additive. Let }ab00d0 be a retangle in }abd suhthat it has an inomplete mesh ending at d0 and every other mesh in it is omplete.�b��b0�� ��� �� � �� ���d0 ��da �� �� �� � �� � ���� �0 � ����Let us de�ne the funtion f� by hanging the value of f only at d0 so that themesh ending at d0 beomes omplete. Clearly, f�(d0) = f(d0) � Æ(d0) < 0 beauseof the Frobenius property. Now f� is additive on the whole retangle }ab00d0 , onthe other hand the defet of f� is Æ�ab00d0 = f(a)� f(b0)� f(0)+ f�(d0) < 0, sinef(a)� f(b0) � 0 and �f(0) � 0. This ontradits Lemma 2.1. utNotie that the above lemma an be dualized, swithing the left and right sidesof the diagram: f([;d)) � 0 and f(d) � f([b;d℄) imply that f is additive on}abd. The onoming statements will also admit suh dualizations.Lemma 2.3. Let f be a positive Frobenius funtion on ZZA1. Assume that a andb are distint verties on the same ray. If f(a) = f(b) then there exists a point b0in (a;b) suh that f(b0) < f(a).Proof. We may assume that a = (a1; a2) and b = (a1; b2) with a2 < b2. Suppose thestatement is false. Then f(a) � f([a;b℄). We apply Lemma 2.2 to the retangle



6 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGEL}abd where  = (a2 + 1; a2) (onsequently f() = 0) and d = (a2 + 1; b2) andonlude that f is additive on }abd. But then f(a) = f(b) implies that f() =f(d), whereas f() = 0 and f(d) > 0. b����b0 �� �� �� ��d� �a �� ��� �� � �� � � x� ���This ontradition ompletes the proof. utLet f be a positive Frobenius funtion on ZZA1. Assume a = (a1; a2) is alattie point for whih f(a) is the minimal positive value on the ray of a; then awill be said to be ray minimal . Note that aording to Lemma 2.3, any ray ontainsa unique ray minimal vertex in ZZA1.Lemma 2.4. Let f be a positive Frobenius funtion on ZZA1 and let a = (a1; a2)be a ray minimal lattie point. Then f is additive on the region B = f(i; j) 2ZZ� ZZ j a1 � i � a2 + 1; a2 � j g. Moreover, if r = f(i; j) 2 ZZ� ZZ j j 2 ZZ g is aray interseting the region A = f(i; j) 2 ZZ� ZZ j a1 � i � j � a2 g, then the uniqueray minimal point r = (i; 2) of r must belong to A.��� �� �ra = (a1; a2) �� ��� � B� ��� A �� �� � r� � �� � � ��� � �� � x(a1; a1) (a2; a2) ���(a2 + 1; a2)Proof. We may apply Lemma 2.2 to B to get the additivity. As a onsequene, theordering on the ray of a, restrited to B, arries over to the other rays in B, thuswe get the seond assertion. ut



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 7Proposition 2.5. Let f be a positive Frobenius funtion on the tube T (n). Thenthere is a maximal wing U of T (n) suh that it ontains all the inomplete meshesof f .Proof. Instead of T (n), we onsider its universal overing ZZA1, and we lift thefuntion f to a positive Frobenius funtion on ZZA1 whih again will be denotedby f . Choose a ray minimal lattie point a = (a1; a2) suh that a2�a1 is maximal.(Note that a2 � a1 is just the distane in T (n) of the vertex whih orresponds toa, from the mouth of T (n)). Sine ��na = (a1 + n; a2 + n) is also a ray minimalpoint, the seond assertion of Lemma 2.4 yields that a2 � a1 � n � 1, so we aninlude a into a wing U = f(i; j) 2 ZZ� ZZ j a2 � n+ 1 � i � j � a2 g of order n asshown in the following diagram:��� � A �� �ra �(a2 � n+ 1; a2) �� � ��� � ��� ���a = (a1; a2) � �� ��na� U �� � ��nU �� � � � �� � � � �� � � � � � x��� ��(a2 + 1; a2)By the hoie of the point a and the wing U , Lemma 2.4 implies that the wingU ontains the ray minimal elements of all rays interseting U . Hene, by usingLemma 2.4 again, we get that the funtion f is additive on the region A = f(i; j) 2ZZ � ZZ j a2 � n + 1 � i � a2 + 1; a2 � j g. Sine every mesh of T (n) has arepresentative in U [A, we have proved the statement. utProof of Theorem 1.1. The �rst assertion is just the statement of Proposition 2.5.For the onverse, we shall again onsider ZZA1 as the universal overing of T (n).Let us assume that f is de�ned on the wing U = f(i; j) 2 ZZ� ZZ j 1 � i � j � n g.We may de�ne the extension of f to f(i; j) j i = 1; : : : ; n; j � i g reursively bysetting �f(i; j) = f(i; n) + �f(1; j � n) for j > n.



8 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGEL�� �(i; j)� �� �(1; j � n) �� � ���(n+ 1; j)(1; n) �� � ��� � ��� � � � �� U � � � �� � � � �� (i; n)��� � ��� �� � � x� (1; 1) (n; n)��� ��(n+ 1; n)Simple alulation shows that �f satis�es the requirements. (Let us note herethat by solving the reursion we get:�f(i; tn+ j) = f(i; n) + (t� 1) � f(1; n) + f(1; j)for any t 2 IN1 and j 2 f 1; 2; : : : ; n g.) ut3. Frobenius funtions and binary treesLet us reall that a vetor (f1; f2; : : : ; fn) with positive integer entries is alledbinary if whenever fi = fj with i < j then there is i < ` < j with f` < fi.Proposition 3.1. Let f be a positive Frobenius funtion on the wing W (n), andfi = f(pi). Then (f1; : : : ; fn) is a binary vetor, and every binary vetor ours inthis way.Proof. We shall use the standard embedding of W (n) into ZZA1. If f is a pos-itive Frobenius funtion on W (n), and fi = f(pi), then Lemma 2.3 asserts that(f1; : : : ; fn) is a binary vetor.Conversely, assume that a binary vetor (f1; : : : ; fn) is given, and let f(pi) = fi.We shall proeed by indution to obtain a positive Frobenius funtion on W (n).Thus we assume that we have extended the funtion f to the shaded region in thefollowing diagram and we want to de�ne f on the endpoint d of the mesh }abd.��� ����b � W (n)�a ����d �� ��� �� � �� � � xIf f(b)+f() > f(a) then de�ne f(d) = f(b)+f()�f(a) so f will be additiveon the mesh }abd. If f(b) + f() < f(a) then hoose f(d) = f(b) + f() + 1.



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 9(Note that we ould have de�ned f(d) to be f(b)+f()+m wherem is any positiveinteger. Hene the Frobenius extension usually will not be unique.) Thus the mesh}abd will be inomplete, satisfying the Frobenius property.It remains to onsider the ase when f(b)+f() = f(a). In this ase, we de�nef(d) = 0. Thus f beomes additive on the mesh }abd (but it is not positive). Letd = (d1; d2), and de�ne 0 = (d1; d1 � 1), a0 = (1; d1 � 1) and b0 = (1; d2). By thedual of Lemma 2.2 we get that f is additive on the retangle }a0b00d.��b0 �� ��� �� ��b �� a����d �a0 �� ��� ��� � �� � � �x���0Sine f(0) = f(d) = 0 � f ([0;d℄), the additivity implies that f(a0) = f(b0) �f ([a0;b0℄), ontraditing the assumption that the starting vetor is binary. Thuswe see that the ase f(b) + f() = f(a) annot our.The proof is now omplete. utWe have seen in the previous proof that the extension of a binary vetor to aFrobenius funtion on the wing W (n) may not be unique. We will show, however,that the position of the inomplete meshes in all these extensions is the same. Firstwe need some further tehnial remarks.Lemma 3.2. Let f be a non-negative Frobenius funtion on the retangle }abdsuh that the mesh starting at a is inomplete with respet to f . Then f is additiveon the remaining meshes in }abd. �b��� �� �� d� �a ��� ��� �� ����Proof. Let us de�ne a funtion f� on }abd by hanging the value of f only at aso that the mesh starting at a beomes omplete with respet to f�. Thus, by theFrobenius property we have f�(a) < 0. Then Lemma 2.2 gives that f� is additiveon }abd. The statement now follows. ut



10 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELLemma 3.3. Suppose f is a positive Frobenius funtion on ZZA1. Assume thata = (a1; a2) and b = (a1; b2) are lattie points on the same ray with a2 < b2. Iff(a); f(b) � f ((a;b)) and f(a) � f(b) then f is additive in the regions A =f(i; j) 2 ZZ� ZZ ja1 � i � a2 + 1; a2 � j � b2 g and B = f(i; j) 2 ZZ� ZZ j a2 + 1 �i � b2; b2 � j g. � �b�� ��� � �� � � �a �� A � � B ��� � � �� ��� �� �� �� � ��� x���Proof. Lemma 2.2 implies immediately that f is additive on A.Suppose now that f is not additive on B. Choose an inomplete mesh ending atd = (d1; d2) (see the shaded part on the diagram below), and de�ne  = (d1; d1�1),a0 = (a1; d1 � 1), b0 = (a1; d2) and d0 = (d1; b2).b0 �� ��� � �� � � �b�� � � ��� � � �a0 �� � ��� �a ��� � ���� d ��� � � ���� �� � �� � �� � ��� d0� �� �� ��� x�����The dual of Lemma 3.2 implies that apart from the mesh ending at d, f is additiveon the retangle }a0b0d. In partiular, f is additive on }a0bd0 . This and the initialondition f(a0) � f(b) imply that 0 = f() � f(d0), ontraditing the positivity ofthe funtion f . utFor a given binary vetor (f1; : : : ; fn) and i 2 f 1; : : : ; n g let us de�ne �f (i) =�(i) = max f j < i j fj < fi g, where max ; = 0. For i � 2 and fi�1 > fi, we have�(i) + 1 � i� 1, and we de�ne �(i) 2 f�(i) + 1; : : : ; i� 1g so that f�(i) is minimalamong the values f�(i)+1; : : : ; fi�1 (notie that �(i) is well-de�ned sine we onsidera binary vetor).



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 11Proposition 3.4. Let f be a positive Frobenius funtion f on W (n), with or-responding binary vetor (f1; f2; : : : ; fn). Then the inomplete meshes for f arepreisely those ending at a lattie-point of the form (�(i) + 1; i) with fi�1 > fi.Proof. First of all, aording to Lemma 3.2, given any i with 2 � i � n, there is atmost one inomplete mesh ending at (j +1; i) for some j, and aording to Lemma2.2, if fi�1 � fi, then there is none.Thus, we only have to show that in ase fi�1 > fi, the mesh ending at d =(j+1; i) is inomplete, where j = �(i). Let us de�ne the following points: a = (1; j),b = (1; i),  = (j + 1; j), a0 = �1; �(i)�, b0 = (1; i � 1), 0 = ��(i) + 1; �(i)�,d0 = (j + 1; i� 1), t = ��(i) + 1; j�, u = ��(i) + 1; i�, v = (j; j) and w = (j; i) (seethe diagram). ��b = (1; i) �� �b0 = (1; i� 1) ��� ��� � �� � �� u �a = (1; j) �� ��� ��� �� �� w �� � � �����d = (j + 1; i)�a0 = (1; �(i)) �� ��� ����� ��� �t� � �d0� � �� � � ��� � � � � x��� v���0 = (�(i) + 1; �(i))  = (j + 1; j)The funtion f is learly not additive on }abd, sine Æabd = f(a)�f(b)+f(d)�f() = fj � fi + f(d) � 0 > 0. On the other hand, f is additive on }a0a0t and}tuvw by Lemma 3.3 (vertially striped region on the diagram). Also, f is additiveon }a0b0u (horizontally striped region) as well as on }ab0d0 (dotted region) byLemma 2.2. So the only mesh in }abd that an be inomplete is the one endingat d. utLet us have a loser look at the relationship between binary vetors and binarytrees. We may give an indutive reformulation of the de�nition of binary vetors asfollows. The vetor of length zero is binary. A vetor (f1; : : : ; fn) of length n � 1 isbinary, if all fi 2 IN1, the minimum of the fi ours only one, say ft = min f fi j 1 �i � n g for a unique t, and g = (g1; g2; : : : ; gt�1) = (f1 � ft; f2 � ft; : : : ; ft�1 � ft)and h = (ht+1; : : : ; hn) = (ft+1 � ft; : : : ; fn � ft) are binary vetors. Now to eahbinary vetor f = (f1; : : : ; fn) we may attah an embedded rooted binary tree B(f)with multipliities m = (m1; : : : ;mn) (attahed to the verties) in the followingfashion. The empty tree will orrespond to the empty vetor. Given the vetorf = (f1; : : : ; fn), where n � 1, with the index t and the vetors g and h de�ned asabove, we onstrut the following tree B(f) on the index set of f as verties. The



12 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELroot will be the vertex t, its multipliity is mt = ft; and (in ase the vetors g orh are not empty) we onnet t with the roots of B(g) and B(h) by an edge so thatthe root of B(g) is the left upper neighbor of t, and the root of B(h) is the rightupper neighbor of t. We shall say that the verties of B(g) are to the left from t,while those of B(h) are to the right. The multipliities whih we shall attah tothe verties di�erent from t are those de�ned already for the verties of B(g) andB(h). Sometimes it will be onvenient to give an orientation to the edges: then weput an arrow of type ' starting at t and ending at the root of B(g), and an arrowof type  ending at t and starting at the root of B(h). The quiver obtained in thisway will be denoted by ~B(f). For example, the binary vetor f = (7; 3; 5; 4; 5; 7)yields the following tree ~B(f) with multipliities:6� 3 5'� � 1 4'� � 2 with values:
2�1 1� �4 1� �3The onverse proedure, starting from an embedded, rooted binary tree withmultipliities, is again easy. Namely, let us take the usual ordering of the nodes\from left to right", and add up all the multipliities from the given node to theroot; this gives the vetor.Let f = (f1; : : : ; fn) be a binary vetor. Besides the funtion � = �f weshall onsider also the dual funtion � = �f de�ned by �f (i) = �(i) = min f j >i j fj < fi g (where min ; = n + 1). Clearly 0 � �(i) < i < �(i) � n + 1 fori = 1; : : : ; n. The statement of Proposition 3.4 an be rephrased in the followingway. Let 1 � j < i � n. The mesh ending at (j + 1; i) is inomplete if and only if�(j) = �(i) and �(j) = i.Also, it is easy to see that there is an arrow i '�! j in ~B(f) if and only if �(j) = iand �(j) = �(i). And similarly, the existene of an arrow j  �! i is equivalent tothe ondition that �(j) = i and �(j) = �(i). Thus, we an desribe the position ofthe inomplete meshes in W (n) in terms of the tree struture.Proposition 3.40. Let f be a positive Frobenius funtion on W (n), with orre-sponding binary vetor (f1; f2; : : : ; fn). Then the mesh ending at the lattie point(j + 1; i) is inomplete with respet to f if and only if there is an arrow i '�! j inthe binary tree ~B(f1; : : : ; fn).Atually the following proposition shows that the position of the inompletemeshes, the funtions � and � attahed to the binary vetor and the binary tree(without multipliities) mutually determine eah other.



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 13Proposition 3.5 Let f = (f1; : : : ; fn) and f 0 = (f 01; : : : ; f 0n) be two binary vetors,~B(f) and ~B(f 0) the orresponding binary trees, and � = �f , � = �f , �0 = �f 0 and�0 = �f 0 . Then the following statements are equivalent:(i) � = �0;(i0) � = �0;(ii) ~B(f) = ~B(f 0);(iii) for any positive Frobenius extension of f and f 0 to W (n), the position ofthe inomplete meshes is the same.Proof. The equivalene (i) () (i0) follows from the formulas �(i) = min f j j i <j � n; �(j) < i g and �(i) = max f j j 1 � j < i; �(j) > i g.The impliation (i) and (i0) ) (ii) follows immediately from the observationpreeding Proposition 3.40, while (ii)) (iii) is stated in Proposition 3.40.To prove (iii)) (i), we have to show how to reover � from the position of theinomplete meshes. We use indution. Always, we must have �(1) = 0. Assumewe know �(j) for all j < i, where i � 2. If there is no inomplete mesh endingin a vertex with seond oordinate i, then Proposition 3.4 asserts that fi�1 < fi,thus �(i) = i� 1. Otherwise, there is an inomplete mesh ending in a vertex of theform (j + 1; i), where j < i. Then by an observation preeding Proposition 3.40,�(j) = �(i). By indution, �(j) is already known, thus so is �(i). utProof of Theorem 1.2. The statements of this theorem are ontained in Proposition3.1 and 3.5. ut4. Con�gurations of inomplete meshesLet f be a positive Frobenius funtion on ZZA1. Reall that a vertex a hasbeen alled ray minimal provided f(a) is the minimal positive value on the ray ofa. Similarly, a vertex b may be alled o-ray minimal provided f(b) is the minimalpositive value on the o-ray of b. A vertex whih is both ray minimal and o-rayminimal will be said to be minimal .Given a vertex a = (a1; a2) of ZZA1 (thus a1 � a2), the verties b = (b1; b2)with a1 � b1 � b2 � a2 will be said to be dominated by a; they form a wing W (a)of order a2�a1+1. This is the wing generated by the vertex a. The wing generatedby the mesh }abd is the wing W (b).Let f be a positive Frobenius funtion on ZZA1. A set of wingsW = fW` j ` 2I g of ZZA1 will be said to be omplete with respet to f provided any vertex on theboundary of ZZA1 belongs to one of the wings, any two elements of W are eitherdisjoint or one of them ontains the other, and �nally, if every inomplete mesh isontained in one of the wings in W .



14 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELProposition 4.1. Let f be a positive Frobenius funtion on ZZA1. The wingsW (a), with a a minimal vertex, form a omplete set of wings of ZZA1 with respetto f . Conversely, if W = fW` j ` 2 I g is a omplete set of wings of ZZA1, thenany minimal vertex b belongs to some W`.Remark 4.2. Let fW` j ` 2 I g be a omplete set of wings of ZZA1, and let W` beof order n`. In ase the numbers n` are bounded, we may selet the largest wingswith respet to inlusion, and obtain in this way a omplete set of pairwise disjointwings of ZZA1. However, the following example shows that there may not existsuh a omplete set of wings: i.e. we may have to inlude an inreasing hain ofwings W1 �W2 �W3 � : : : Let f be the Frobenius funtion on ZZA1, de�ned by:f((a1; a2)) = � 2 ja1 + a2j+ 1 for a1 � 0 � a2,2(a2 � a1) + 2 for 0 < a1 � a2 or a1 � a2 < 0.Here preisely those meshes }abd are inomplete for whih b = (�i; i) for somei 2 IN1.� �15 11 7 3 3 7 11 15� � � � � � � � � � � � � �13 9 5 1 5 9 13� � � � � � � � � � � � � �12 11 7 3 3 7 11 12� � � � � � � � � � � � � �10 9 5 1 5 9 10� � � � � � � � � � � � � �8 8 7 3 3 7 8 8� � � � � � � � � � � � � �6 6 5 1 5 6 6� � � � � � � � � � � � � �4 4 4 3 3 4 4 4� � � � � � � � � � � � � �2 2 2 1 2 2 2 xTo prove Proposition 4.1, we need the following lemmas.Lemma 4.3. Let f be a positive Frobenius funtion on ZZA1. Then any boundaryvertex of ZZA1 is dominated by a minimal vertex.Proof. Consider the vertex (i; i) on the boundary of ZZA1, and let C be the set ofall verties (a1; a2) with a1 � i � a2. Note that C is the set of all those vertieswhih dominate the vertex (i; i). Let us hoose a vertex b = (b1; b2) 2 C suh thatf(b) � f(C). We laim that b is a minimal vertex. Assume that b is not rayminimal. Let a = (b1; a2) be ray minimal, thus by assumption a2 < i. Consider the



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 15verties  = (a2 + 1; a2);d = (a2 + 1; b2), and apply Lemma 2.2 to the retangle}abd. �b = (b1; b2)� �� C �� � � ��� �� d = (a2 + 1; b2)��� � �� � � �a = (b1; a2) �� �� �� �� �� � ��� x��� (i; i) = (a2 + 1; a2)We see that f is additive on }abd, thus f(b) > f(d). However, the onditiona2 < i implies that d belongs to C, thus we obtain a ontradition to the minimalityof f(b).By duality, we also see that b is o-ray minimal, thus minimal. utLemma 4.4. Let f be a positive Frobenius funtion on ZZA1. Let }uvwx be aninomplete mesh in the extended upper half plane. Then v is dominated by a minimalvertex. � �b = (b1; b2) C �� �� �� � ��d = (a2 + 1; b2)��� � ��� � �� �� �� �� �� � ��v�� � ��a = (b1; a2) �� � ��� � x��� = (a2 + 1; a2)Proof. Let v = (v1; v2), and onsider the set C of all verties (a1; a2) with a1 � v1,and v2 � a2. Choose a vertex b 2 C suh that f(b) � f(C). We laim that b is aminimal vertex. Assume that b = (b1; b2) is not ray minimal. Let a = (b1; a2) beray minimal, thus by assumption a2 < v2. Consider the verties  = (a2+1; a2);d =(a2+1; b2), and apply Lemma 2.2 to the retangle }abd. We see that f is additiveon }abd, thus f(b) > f(d). Sine f is additive on }abd, the mesh }uvwx annotbe inside of }abd, thus we must have a2 + 1 � v1, and therefore d belongs to C.In this way, we obtain a ontradition to the minimality of f(b).By duality, we also see that b is o-ray minimal, thus minimal. ut



16 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELLemma 4.5. Let f be a positive Frobenius funtion on ZZA1. Let }abd be aretangle in the upper half plane. Then at most one of the verties a, d an be rayminimal.Proof. If both a and d would be ray minimal then the defet of the retangle }abdwould be Æabd = f(a) � f(b) + f(d) � f() < 0, ontraditing the subadditivityof f . utProof of Proposition 4.1. Aording to Lemma 4.3 and Lemma 4.4, every vertexof the boundary and every inomplete mesh is ontained in a wing W (a) for someminimal a.Let a, b be minimal verties, dominating the wings W (a) and W (b), respe-tively. Aording to Lemma 4.5, we see that in ase these wings interset, one ofthem has to be ontained in the other one. Thus we onlude that the set of wingsW (a) with a minimal is a omplete set.For the onverse, assume there is given a omplete set W = fW` j ` 2 I g ofwings of ZZA1 and take a minimal vertex b = (b1; b2). Consider the wing W (b).�b = (b1; b2)W (b) ��� �� ��d = (i+ 1; b2)a = (b1; i)�� ���� � ��� �� �� �� x(b1; b1) (i; i)���(i+ 1; i+ 1) (b2; b2) = (i+ 1; i)If the verties (i; i) for b1 � i � b2 on the mouth of W (b) are all ontained in thesame wing W` 2 W then W (b) � W`, hene b 2 W`. On the other hand, if weassume that no single element of W ontains all the verties from the mouth ofW (b), then there is an index b1 � i < b2 suh that (i; i) and (i+1; i+1) belong totwo disjoint wings in W , moreover for a = (b1; i),  = (i+ 1; i) and d = (i+ 1; b2),none of the meshes of the retangle }abd is ontained in the elements of W .Hene f is additive on }abd. But the minimality of b implies for the defet thatÆabd = f(a)� f(b)� 0 + f(d) > 0, ontraditing the additivity.The proof is now omplete. utLet S be a �nite subset of meshes in the extended upper half plane of ZZ� ZZ.The wing over of S is the smallest wing in ZZA1 whih ontains the top vertiesof all meshes in S.In aordane with the de�nition given for independent meshes in W (n), weall a set of meshes S in ZZA1 independent if there is no retangle }abd in theextended upper half plane suh that its meshes at a and at d are two distintelements of S. Note that this is equivalent to saying that the distint meshes



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 17}abd and }a0b00d0 are independent if and only if either jW (b) \W (b0)j � 1 orW (b) �W (0) or W (b0) �W () (where W () and W (0) may be empty). In asejW (b) \W (b0)j = 1, we all the meshes lose. Two meshes are S-equivalent if theyare related by the transitive losure of the loseness relation in S.�������� � ����� �� � �� �� � ���� � ���� �� �� � � � � � xWe may now formulate the following desription of the possible positions ofthe inomplete meshes in ZZA1.Proposition 4.6. Let S be a set of meshes in ZZA1. Then S is the full set ofinomplete meshes for some positive Frobenius funtion f on ZZA1 if and only if Sis independent and every S-equivalene lass of S is �nite.Proof. Let S be the set of inomplete meshes for a Frobenius funtion f on ZZA1.Let us notie �rst that the independene of S learly follows from Lemma 3.2.Suppose now that }abd 2 S is equivalent to in�nitely many meshes in S. Clearly,by symmetry we may assume that there exists a sequene of meshes in S with topverties b = b1 < b2 < : : : so that the onseutive meshes are lose to eah other.Let vi be the intersetion of the line x with the ray of bi, while ui will denote theintersetion of the ray of b with the o-ray of bi.u4����u3�� ��� �� � �� � �u2�� � ��� � �� � � �b = b1 = u1�� � ��b3 ��� ��b2 �� ����� �� ���� ��b4� � ���� � � �� : : :�� ��� ��� ������� xv1 v2 v3 v4 v5Lemma 2.2 implies that f(vi) > f(bi) (atually f(bi) must be minimal inf([vi;bi℄)), thus the additivity of f on }ui�1uivibi (see the dual of Lemma 3.2)gives that f(ui�1) > f(ui) for i = 2; 3; : : :. Thus we would have an in�nite dereas-ing sequene of values of f , a ontradition.



18 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELTo prove the other diretion, let us take a set S of meshes, satisfying theonditions. We shall indutively onstrut a Frobenius funtion whose inompletemeshes are preisely the presribed ones. We start with the following observation.An easy argument, similar to the one given in the proof of Theorem 1.1, shows thatif we have a Frobenius funtion on a set of disjoint wings then we an always extendit additively to a wing ontaining them. In this extension we an freely hoose thevalues of the new verties on the mouth; the rest is then uniquely determined.We shall de�ne the funtion f indutively on the wing overs of the S-equivalene lasses. Clearly, if we take two equivalene lasses, they either havedisjoint wing overs or one of them has an element }abd suh that W () ontainsthe wing over of the entire other equivalene lass.Let us now take an S-equivalene lass R = f}aibiidi j i = 1; : : : ; n g withb1 < : : : < bn. We de�ne the points ui and vi as above, ompleted with vn+1,the intersetion of the line x with the oray of bn. Let us assume that f is alreadyde�ned on the wing overs of all other equivalene lasses ontained in the wingover of R. Aording to our earlier observations, we may atually assume that fis de�ned on eah W (i), and the rest is still undetermined. We �rst extend f toeah W (bi) by setting f(vi) = n+1 for every i, extending f from W (i) to W (ai)and to W (di) additively, �nally setting f(bi) = n, thus making the mesh }aibiidiinomplete with Æaibiidi � f(ai) = Æaibiidi � f(di) = 1.ui����ui�1�� ��� �� � �� � �� � �� � �� � �b1 = u1�� ��bi�1 �a1 ����d1 ai�1 ����di�1 ������ ����� ��bi� �1� � : : : � �i�1� � ai ����di : : :�� � � �� �� � � �������� xv1 v2 vi�1 vi i vi+1Notie that in this way we have f([vi;bi℄) � n and f([bi;vi+1℄) � n for i = 1; : : : ; n.In partiular, f([u1;v2℄) � n. Suppose that f is already extended to W (ui�1) forsome i � n so that f([ui�1;vi℄) � n � i + 2. Then we an extend f additivelyto the retangle }ui�1uivibi , sine f(v) � f(vi) � �1 for every v 2 [vi;bi℄ andf([ui�1;vi℄) � n � i + 2 � 2. Furthermore, the additivity gives that we have nowf([ui;bi℄) � n � i + 2 � 1 = n � i + 1, while f([bi;vi+1℄) � n � n � i + 1, as weobserved above.Thus we an extend f toW (un), i.e. the wing over of R so that the inompletemeshes in the new part are exatly the elements of R.



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 19This way we an de�ne f on the wing overs of all S-equivalene lasses. Ifthese do not over the entire half plane then we de�ne arbitrarily the values at theremaining points of the line x, and then extend f additively on the whole ZZA1.utProof of Theorem 1.3. The neessity of independene, as in the ase of ZZA1, learlyfollows from Lemma 3.2. On the other hand, by representing W (n) in ZZA1, anysubset of meshes of W (n) will have �nite S-equivalene lasses, hene by Proposi-tion 4.6 there is a Frobenius funtion on ZZA1 with the presribed set of inompletemeshes. The restrition of this funtion to W (n) gives us the required representa-tion. utIt turns out that the independene ondition is suÆient for the larger quiverZZA11, too.Proposition 4.7. A set S of meshes in ZZA11 is the set of inomplete meshes forsome positive Frobenius funtion on ZZA11 if and only if S is independent.Proof. The neessity, like before, is obvious from Lemma 3.2. Thus to prove thesuÆieny, let us assume that we are given an independent set S of meshes. Letus de�ne for a vertex a = (a1; a2) the number n(a) to be the number of meshesbelonging to S from the region A = fb = (b1; b2) j b1 � a1 and b2 � a2 g[ f  =(1; 2) j 1 � a1 and 2 � a2 g (the shaded region on the diagram).� �� �� �����a�� �� �� �The independene of S ensures that this number n(a) is always �nite. Now it iseasy to show that the funtion f(a) = 2n(a) + 1 is a positive Frobenius funtionsuh that the inomplete meshes are preisely the elements of S. Namely, for anymesh, when omputing the defet, every other mesh is ounted the same number oftimes with plus and with minus sign, while the given mesh itself is ounted twiewith plus sign only. This gives the additivity for meshes not in S, while for a mesh}abd in S the exat values of f are f(a) = f(d) = 3 and f(b) = f() = 1. Thisshows the statement. ut5. Frobenius length funtionsThe proedure presented in [HR℄ to assoiate a binary tree to a basi tiltingmodule for An yields for a (not neessarily basi) tilting module T a binary tree



20 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELwith multipliities, and the orresponding binary vetor is just the dimension vetorof T .So we may all a binary vetor basi provided it is the dimension vetor ofa basi tilting module, or equivalently, if the orresponding binary tree has allmultipliities equal to 1. It is also easy to see that the binary vetor (f1; : : : ; fn)is basi if and only if 1 2 f fi � f�(i); fi � f�(i) g for every i = 1; : : : ; n (wheref0 = 0 = fn+1).It is lear that to any binary vetor we may attah its assoiated basi binaryvetor by onstruting �rst the orresponding binary tree, hanging all the multi-pliities to 1 and then taking the binary vetor of this basi tree. From Proposition3.5 it also follows that a binary vetor and the assoiated basi vetor will give riseto Frobenius funtions on W (n) with the same inomplete meshes.The importane of basi binary vetors is underlined by the fat that they or-respond to the so alled Frobenius length funtions. A positive Frobenius funtionf on a subset of ZZ � ZZ is alled a Frobenius length funtion if for eah inom-plete mesh }abd we have Æabd � f(a) = Æabd � f(d) = 1. Frobenius lengthfuntions on a general translation quiver are de�ned similarly. Typial examples ofFrobenius length funtions are the length funtions on the omponents of the stableAuslander{Reiten quiver of a sel�njetive algebra.We have the following lemma.Lemma 5.1. A basi binary vetor (f1; : : : ; fn) has a unique extension f to W (n)that is a Frobenius length funtion.Proof. The onstrution in the proof of Proposition 3.1 gives a Frobenius extensionf for whih Æabd � f(a) = 1 for every inomplete mesh }abd. It also shows thatsuh an extension is unique.We shall prove now that for the inomplete meshes of any Frobenius extensionf of a basi binary vetor Æabd � f(d) = 1 must also hold.Let us take the standard representation of W (n) and assume that }abd is aninomplete mesh with d = (j + 1; i). Consider the retangle }a0b00d with vertiesa0 = (1; j), b0 = (1; i) and 0 = (j + 1; j).��b0 = (1; i)�� ��� �� ��b �� a����d = (j + 1; i)�a0 = (1; j)�� ��� ��� � �� � � �x���0 = (j + 1; j)The dual of Lemma 3.2 implies that }abd is the only inomplete mesh in }a0b00d,thus by Lemma 2.1 we have Æabd = Æa0b00d = fj � fi � 0 + f(d). Aording to
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