
Frobenius fun
tions on translation quiversIstv�an �Agoston1, Erzs�ebet Luk�a
s2 and Claus Mi
hael RingelAbstra
t. Frobenius fun
tions are integral valued fun
tions given on verti
es of trans-lation quivers and satisfying 
ertain subadditivity 
onditions. Typi
al examples are thelength fun
tion and the dimension fun
tion on the stable Auslander{Reiten quiver ofa �nite dimensional sel�nje
tive algebra. In our paper we study in detail Frobeniusfun
tions on the translation quivers ZZA1, ZZA11 and some related ones. In parti
ularwe show that there is a one-to-one 
orresponden
e between Frobenius fun
tions on thestable tube T (n) and Frobenius fun
tions on the wingW (n), and we 
lassify them using
ertain related 
ombinatorial stru
tures.We denote by W (n) the wing of order n (it is the Auslander{Reiten quiver ofthe ring An(k) of upper triangular n � n-matri
es over a �eld k) and by T (n) =ZZA1=h�ni the stable tube of rank n (it is the Auslander{Reiten quiver of the lo
allynilpotent representations of the 
y
li
 quiver with n verti
es). Note that T (n) hasn full subquivers isomorphi
 to W (n) whi
h 
ontain all verti
es of the mouth; we
all them the maximal wings of T (n).Let � = (�0;�1; �) be a translation quiver (without multiple arrows) and letf : �0�!ZZ be a map. For any non-proje
tive vertex z of �, de�ne Æ(z) = Æf (z) =f(z) + f(�z) � Py! z f(y). A Frobenius fun
tion f on � is a map f : �0�!ZZ su
hthat for any non-proje
tive vertex z of � with Æ(z) 6= 0, we have both f(z) < Æ(z)and f(�z) < Æ(z). Note that any non-negative Frobenius fun
tion is subadditive,that is, Æ(z) � 0 for any non-proje
tive vertex. In dealing with a Frobenius fun
tionf on �, and a non-proje
tive vertex z with Æ(z) 6= 0, we say that the mesh endingin z is an in
omplete mesh. Typi
al examples of positive Frobenius fun
tions aregiven by the dimension fun
tion or the length fun
tion on the stable Auslander{Reiten quiver of a �nite dimensional sel�nje
tive algebra; the in
omplete meshesbeing those, where an inde
omposable proje
tive module has been removed.Our aim is a detailed study of positive Frobenius fun
tions on wings, stabletubes and the translation quivers ZZA1 and ZZA11. By using 
ertain 
ombinatorial1991 Mathemati
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tures we give a 
lassi�
ation of these fun
tions. In the forth
oming se
ond partof the paper algebrai
 representations will be given for some of these results. Theresults were reported at the Sixth International Conferen
e on Representations ofAlgebras, held at Ottawa in 1992.We would like to mention that many of the ideas used here 
an be tra
ed ba
kto [GR℄. For unexplained notation, we refer to [R℄.1. The main resultsThere is a strong interrelation between Frobenius fun
tions onW (n) and T (n).Theorem 1.1. If g is a positive Frobenius fun
tion on T (n), then there exists amaximal wing of T (n) whi
h 
ontains all in
omplete meshes. Conversely, if U is amaximal wing of T (n) then any fun
tion f : U0�! IN1 = f1; 2; 3; : : :g has a uniqueextension to a fun
tion �f : T (n)0�! IN1 whi
h is additive on all meshes whi
h arenot 
ontained in U . Su
h an extension �f is a positive Frobenius fun
tion if andonly if f is.Spe
ial 
ases of this statement have been 
onsidered by Erdmann (see [E℄) inher study of tame symmetri
 algebras.A 
onsequen
e of the above theorem is that any positive Frobenius fun
tionon T (n) is uniquely determined by its restri
tion to an appropriate maximal wingW (n). Thus we may fo
us our attention to positive Frobenius fun
tions on wings.Let us denote the proje
tive verti
es of W (n) by p1, p2, : : :, pn, indexed sothat there are arrows p1!p2!� � �!pn. Given a fun
tion f : W (n)�!ZZ, takefi = f(pi) and 
onsider the ve
tor (f1; : : : ; fn). We 
all a ve
tor (f1; : : : ; fn) withentries in IN1 binary if whenever fi = fj for some i < j, then there exists anindex ` su
h that i < ` < j and f` < fi. A binary ve
tor f = (f1; : : : ; fn) yields anembedded rooted binary tree B(f) with n verti
es as follows. The empty ve
tor (forn = 0) will 
orrespond to the empty tree. Given a binary ve
tor f = (f1; : : : ; fn),let ft be the minimal 
oordinate (by de�nition of a binary ve
tor, t is uniquelyde�ned). Let g = (f1 � ft; : : : ; ft�1� ft), and h = (ft+1� ft; : : : ; fn� ft). We takethe vertex with index t as root, and, in 
ase g or h are non-empty, we atta
h tot the trees B(g) and B(h) so that the root of B(g) is the upper left neighbor andthe root of B(h) is the upper right neighbor of t. Note that any embedded rootedbinary tree 
an be obtained in this way. Binary ve
tors f and f 0 with B(f) = B(f 0)will be said to be equivalent. For example, the binary ve
tors (7; 3; 5; 4; 5; 7) and(2; 1; 3; 2; 3; 4) are equivalent, the 
orresponding binary tree is:6�3 5� �1 4� �2



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 3We 
an now formulate the following theorem about the 
onne
tion of binaryve
tors and Frobenius fun
tions on wings.Theorem 1.2. Let f be a positive Frobenius fun
tion on the wing W (n), and fi =f(pi). Then (f1; : : : ; fn) is a binary ve
tor, and every binary ve
tor o

urs in thisway. Two positive Frobenius fun
tions f and g on W (n) have the same in
ompletemeshes if and only if the binary ve
tors (f1; : : : ; fn) and (g1; : : : ; gn) are equivalent.The binary ve
tors of length n are just the dimension ve
tors of (not ne
essarilybasi
) tilting modules for An(k), see [HR℄, and therefore part of the previous result,namely that every binary ve
tor arises from Frobenius fun
tions on W (n), followsfrom [HW℄. Here we shall give a dire
t 
ombinatorial proof.As one 
an see from Theorem 1.2, Frobenius fun
tions on W (n) with the samebinary tree 
an be 
hara
terized by the set of their in
omplete meshes. A
tually,not every 
on�guration of meshes inW (n) 
an o

ur as the set of in
omplete meshesof a Frobenius fun
tion. We 
all two meshes independent if the subwings of W (n)generated by these meshes either have at most one vertex in 
ommon or one ofthe subwings 
ontains the other one in its interior. (For a pre
ise de�nition seeSe
tion 4.) A set of meshes is independent if any two meshes in it are independent.We 
an now state the following theorem.Theorem 1.3. A set S of meshes in the wing W (n) 
an be obtained as the full setof in
omplete meshes of a positive Frobenius fun
tion on W (n) if and only if S isindependent.Similar 
hara
terizations will also be given for the sets of in
omplete meshesof Frobenius fun
tions de�ned on the translation quivers ZZA1 and ZZA11.2. Wings and stable tubesIt seems to be 
onvenient to 
onsider instead of T (n) or W (n) the translationquivers ZZA1 and ZZA11.We shall use the following 
oordinatization. By de�nition, the set of verti
esof ZZA11 is the set ZZ � ZZ of integral latti
e points in the plane. There are arrows(a1; a2)!(a1 + 1; a2) and (a1; a2)!(a1; a2 + 1), and the translation is de�ned by�(a1; a2) = (a1 � 1; a2 � 1), for any (a1; a2) 2 ZZ� ZZ.



4 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGEL�� � � �� �� � � �� � �� �� �� � �� � �� �� �� � �� �� ��� �� �� �� �� �� �� �� ��� ��� �� �� �� x(0;1)(0;0) (1;0) ��� �� �� �� ��� �� ��� ��� ��� �� �� �� �� �� �� � �� �� �� � �� � �� �� �� � �� � � �� �� � � ��Given the latti
e points a = (a1; a2), b = (a1; d2), 
 = (d1; a2) and d = (d1; d2)with a1 < d1 and a2 < d2, we de�ne the re
tangle }ab
d = f(i; j) 2 ZZ � ZZ j a1 �i � d1; a2 � j � d2 g. We shall say that the re
tangle }ab
d starts at a andends at d. A mesh is just a minimal re
tangle. The upper half plane is the set ofpoints f(i; j) 2 ZZ � ZZ j i � j g, while by the extended upper half plane we meanf(i; j) 2 ZZ � ZZ j i � j + 1 g. (Thus the extended upper half plane will 
ontainalso those meshes that have one vertex below the line x = f(i; i) j i 2 ZZ g.) Latti
epoints having the same �rst 
oordinate will be said to belong to the same ray . Ifa = (a1; a2) and b = (a1; b2) are latti
e points on the same ray then (a;b) willdenote the set of latti
e points 
 = (a1; 
2) where 
2 is an integer between a2 and b2and not equal to any of them. The notation for 
losed and half open intervals willbe also used a

ordingly. Dually, latti
e points with the same se
ond 
oordinatewill be said to belong to the same 
o-ray ; we shall use the interval notation forsegments of 
o-rays as well.Let f be an integer valued fun
tion de�ned on a subset of ZZ� ZZ. We de�nethe defe
t Æ of the fun
tion f on an arbitrary re
tangle }ab
d in the domain of fby Æab
d = f(a) + f(d) � f(b) � f(
). For }ab
d a mesh, we shall also writeÆ(d) = Æab
d. Given a subset U of ZZ�ZZ, the fun
tion f : U!ZZ is 
alled additive(or subadditive) if Æab
d = 0 (or Æab
d � 0, respe
tively) for every mesh }ab
d in U .A mesh is 
alled in
omplete (with respe
t to f) if the defe
t of the mesh is non-zero.The fun
tion f is 
alled a Frobenius fun
tion if for every in
omplete mesh }ab
dwe have Æab
d > f(a) and Æab
d > f(d). If U 0; U 00 are subsets of U , then we writef(U 0) < f(U 00), provided f(u0) < f(u00), for every u0 2 U 0;u00 2 U 00.We shall identify ZZA1 with the upper half plane, and we 
all the set of verti
esof the form (i; i), with i 2 ZZ the boundary of ZZA1. In order to take 
are ofthe boundary meshes of ZZA1, any fun
tion de�ned on the verti
es of ZZA1 willbe extended to the extended upper half plane by zero. By de�nition, a positiveFrobenius fun
tion on ZZA1 is a Frobenius fun
tion f on the extended upper halfplane su
h that f(i; j) > 0 for i � j and f(j + 1; j) = 0. We shall 
onsiderZZA1 as the universal 
overing of T (n); in this way ea
h of the verti
es of T (n) will
orrespond to in�nitely many latti
e points on the upper half plane, and the verti
es



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 5on the mouth of T (n) 
orrespond to the points on the line x = f(i; i) j i 2 ZZ g. Notethat a Frobenius fun
tion on T (n) lifts to a Frobenius fun
tion on ZZA1.For the wingW (n), we shall �x a standard embedding, mapping the proje
tiveverti
es p1;p2; : : : ;pn to the points (1; 1); (1; 2); : : : ; (1; n); hen
e the ��1-orbit ofp1 will 
orrespond to the points (1; 1); (2; 2); : : : ; (n; n).Lemma 2.1. Given a fun
tion f on a re
tangle }ab
d, the defe
t of f on }ab
dis the sum of the defe
ts of f on all meshes in }ab
d. Consequently a subadditivefun
tion f is additive on }ab
d if and only if Æab
d = 0.Proof. Straightforward. utLemma 2.2. Let f be a Frobenius fun
tion de�ned on the re
tangle }ab
d andassume f((a; 
℄) � 0 and f(a) � f([a;b℄). Then f is additive on }ab
d.Proof. Suppose that f is not additive. Let }ab0
0d0 be a re
tangle in }ab
d su
hthat it has an in
omplete mesh ending at d0 and every other mesh in it is 
omplete.�b��b0�� ��� �� � �� ���d0 ��da �� �� �� � �� � ���� �
0 � ����
Let us de�ne the fun
tion f� by 
hanging the value of f only at d0 so that themesh ending at d0 be
omes 
omplete. Clearly, f�(d0) = f(d0) � Æ(d0) < 0 be
auseof the Frobenius property. Now f� is additive on the whole re
tangle }ab0
0d0 , onthe other hand the defe
t of f� is Æ�ab0
0d0 = f(a)� f(b0)� f(
0)+ f�(d0) < 0, sin
ef(a)� f(b0) � 0 and �f(
0) � 0. This 
ontradi
ts Lemma 2.1. utNoti
e that the above lemma 
an be dualized, swit
hing the left and right sidesof the diagram: f([
;d)) � 0 and f(d) � f([b;d℄) imply that f is additive on}ab
d. The on
oming statements will also admit su
h dualizations.Lemma 2.3. Let f be a positive Frobenius fun
tion on ZZA1. Assume that a andb are distin
t verti
es on the same ray. If f(a) = f(b) then there exists a point b0in (a;b) su
h that f(b0) < f(a).Proof. We may assume that a = (a1; a2) and b = (a1; b2) with a2 < b2. Suppose thestatement is false. Then f(a) � f([a;b℄). We apply Lemma 2.2 to the re
tangle
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d where 
 = (a2 + 1; a2) (
onsequently f(
) = 0) and d = (a2 + 1; b2) and
on
lude that f is additive on }ab
d. But then f(a) = f(b) implies that f(
) =f(d), whereas f(
) = 0 and f(d) > 0. b����b0 �� �� �� ��d� �a �� ��� �� � �� � � x� ���
This 
ontradi
tion 
ompletes the proof. utLet f be a positive Frobenius fun
tion on ZZA1. Assume a = (a1; a2) is alatti
e point for whi
h f(a) is the minimal positive value on the ray of a; then awill be said to be ray minimal . Note that a

ording to Lemma 2.3, any ray 
ontainsa unique ray minimal vertex in ZZA1.Lemma 2.4. Let f be a positive Frobenius fun
tion on ZZA1 and let a = (a1; a2)be a ray minimal latti
e point. Then f is additive on the region B = f(i; j) 2ZZ� ZZ j a1 � i � a2 + 1; a2 � j g. Moreover, if r = f(i; j) 2 ZZ� ZZ j j 2 ZZ g is aray interse
ting the region A = f(i; j) 2 ZZ� ZZ j a1 � i � j � a2 g, then the uniqueray minimal point 
r = (i; 
2) of r must belong to A.��� �� �ra = (a1; a2) �� ��� � B� ��� A �� �� � 
r� � �� � � ��� � �� � x(a1; a1) (a2; a2) ���(a2 + 1; a2)Proof. We may apply Lemma 2.2 to B to get the additivity. As a 
onsequen
e, theordering on the ray of a, restri
ted to B, 
arries over to the other rays in B, thuswe get the se
ond assertion. ut



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 7Proposition 2.5. Let f be a positive Frobenius fun
tion on the tube T (n). Thenthere is a maximal wing U of T (n) su
h that it 
ontains all the in
omplete meshesof f .Proof. Instead of T (n), we 
onsider its universal 
overing ZZA1, and we lift thefun
tion f to a positive Frobenius fun
tion on ZZA1 whi
h again will be denotedby f . Choose a ray minimal latti
e point a = (a1; a2) su
h that a2�a1 is maximal.(Note that a2 � a1 is just the distan
e in T (n) of the vertex whi
h 
orresponds toa, from the mouth of T (n)). Sin
e ��na = (a1 + n; a2 + n) is also a ray minimalpoint, the se
ond assertion of Lemma 2.4 yields that a2 � a1 � n � 1, so we 
anin
lude a into a wing U = f(i; j) 2 ZZ� ZZ j a2 � n+ 1 � i � j � a2 g of order n asshown in the following diagram:��� � A �� �ra �(a2 � n+ 1; a2) �� � ��� � ��� ���a = (a1; a2) � �� ��na� U �� � ��nU �� � � � �� � � � �� � � � � � x��� ��(a2 + 1; a2)By the 
hoi
e of the point a and the wing U , Lemma 2.4 implies that the wingU 
ontains the ray minimal elements of all rays interse
ting U . Hen
e, by usingLemma 2.4 again, we get that the fun
tion f is additive on the region A = f(i; j) 2ZZ � ZZ j a2 � n + 1 � i � a2 + 1; a2 � j g. Sin
e every mesh of T (n) has arepresentative in U [A, we have proved the statement. utProof of Theorem 1.1. The �rst assertion is just the statement of Proposition 2.5.For the 
onverse, we shall again 
onsider ZZA1 as the universal 
overing of T (n).Let us assume that f is de�ned on the wing U = f(i; j) 2 ZZ� ZZ j 1 � i � j � n g.We may de�ne the extension of f to f(i; j) j i = 1; : : : ; n; j � i g re
ursively bysetting �f(i; j) = f(i; n) + �f(1; j � n) for j > n.



8 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGEL�� �(i; j)� �� �(1; j � n) �� � ���(n+ 1; j)(1; n) �� � ��� � ��� � � � �� U � � � �� � � � �� (i; n)��� � ��� �� � � x� (1; 1) (n; n)��� ��(n+ 1; n)Simple 
al
ulation shows that �f satis�es the requirements. (Let us note herethat by solving the re
ursion we get:�f(i; tn+ j) = f(i; n) + (t� 1) � f(1; n) + f(1; j)for any t 2 IN1 and j 2 f 1; 2; : : : ; n g.) ut3. Frobenius fun
tions and binary treesLet us re
all that a ve
tor (f1; f2; : : : ; fn) with positive integer entries is 
alledbinary if whenever fi = fj with i < j then there is i < ` < j with f` < fi.Proposition 3.1. Let f be a positive Frobenius fun
tion on the wing W (n), andfi = f(pi). Then (f1; : : : ; fn) is a binary ve
tor, and every binary ve
tor o

urs inthis way.Proof. We shall use the standard embedding of W (n) into ZZA1. If f is a pos-itive Frobenius fun
tion on W (n), and fi = f(pi), then Lemma 2.3 asserts that(f1; : : : ; fn) is a binary ve
tor.Conversely, assume that a binary ve
tor (f1; : : : ; fn) is given, and let f(pi) = fi.We shall pro
eed by indu
tion to obtain a positive Frobenius fun
tion on W (n).Thus we assume that we have extended the fun
tion f to the shaded region in thefollowing diagram and we want to de�ne f on the endpoint d of the mesh }ab
d.��� ����b � W (n)�a ����d �� ��� �� 
� �� � � xIf f(b)+f(
) > f(a) then de�ne f(d) = f(b)+f(
)�f(a) so f will be additiveon the mesh }ab
d. If f(b) + f(
) < f(a) then 
hoose f(d) = f(b) + f(
) + 1.



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 9(Note that we 
ould have de�ned f(d) to be f(b)+f(
)+m wherem is any positiveinteger. Hen
e the Frobenius extension usually will not be unique.) Thus the mesh}ab
d will be in
omplete, satisfying the Frobenius property.It remains to 
onsider the 
ase when f(b)+f(
) = f(a). In this 
ase, we de�nef(d) = 0. Thus f be
omes additive on the mesh }ab
d (but it is not positive). Letd = (d1; d2), and de�ne 
0 = (d1; d1 � 1), a0 = (1; d1 � 1) and b0 = (1; d2). By thedual of Lemma 2.2 we get that f is additive on the re
tangle }a0b0
0d.��b0 �� ��� �� ��b �� a����d �a0 �� ��� ��� �
 �� � � �x���
0Sin
e f(
0) = f(d) = 0 � f ([
0;d℄), the additivity implies that f(a0) = f(b0) �f ([a0;b0℄), 
ontradi
ting the assumption that the starting ve
tor is binary. Thuswe see that the 
ase f(b) + f(
) = f(a) 
annot o

ur.The proof is now 
omplete. utWe have seen in the previous proof that the extension of a binary ve
tor to aFrobenius fun
tion on the wing W (n) may not be unique. We will show, however,that the position of the in
omplete meshes in all these extensions is the same. Firstwe need some further te
hni
al remarks.Lemma 3.2. Let f be a non-negative Frobenius fun
tion on the re
tangle }ab
dsu
h that the mesh starting at a is in
omplete with respe
t to f . Then f is additiveon the remaining meshes in }ab
d. �b��� �� �� d� �a ��� ��� �� ����
Proof. Let us de�ne a fun
tion f� on }ab
d by 
hanging the value of f only at aso that the mesh starting at a be
omes 
omplete with respe
t to f�. Thus, by theFrobenius property we have f�(a) < 0. Then Lemma 2.2 gives that f� is additiveon }ab
d. The statement now follows. ut



10 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELLemma 3.3. Suppose f is a positive Frobenius fun
tion on ZZA1. Assume thata = (a1; a2) and b = (a1; b2) are latti
e points on the same ray with a2 < b2. Iff(a); f(b) � f ((a;b)) and f(a) � f(b) then f is additive in the regions A =f(i; j) 2 ZZ� ZZ ja1 � i � a2 + 1; a2 � j � b2 g and B = f(i; j) 2 ZZ� ZZ j a2 + 1 �i � b2; b2 � j g. � �b�� ��� � �� � � �a �� A � � B ��� � � �� ��� �� �� �� � ��� x���Proof. Lemma 2.2 implies immediately that f is additive on A.Suppose now that f is not additive on B. Choose an in
omplete mesh ending atd = (d1; d2) (see the shaded part on the diagram below), and de�ne 
 = (d1; d1�1),a0 = (a1; d1 � 1), b0 = (a1; d2) and d0 = (d1; b2).b0 �� ��� � �� � � �b�� � � ��� � � �a0 �� � ��� �a ��� � ���� d ��� � � ���� �� � �� � �� � ��� d0� �� �� ��� x�����
The dual of Lemma 3.2 implies that apart from the mesh ending at d, f is additiveon the re
tangle }a0b0
d. In parti
ular, f is additive on }a0b
d0 . This and the initial
ondition f(a0) � f(b) imply that 0 = f(
) � f(d0), 
ontradi
ting the positivity ofthe fun
tion f . utFor a given binary ve
tor (f1; : : : ; fn) and i 2 f 1; : : : ; n g let us de�ne �f (i) =�(i) = max f j < i j fj < fi g, where max ; = 0. For i � 2 and fi�1 > fi, we have�(i) + 1 � i� 1, and we de�ne �(i) 2 f�(i) + 1; : : : ; i� 1g so that f�(i) is minimalamong the values f�(i)+1; : : : ; fi�1 (noti
e that �(i) is well-de�ned sin
e we 
onsidera binary ve
tor).



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 11Proposition 3.4. Let f be a positive Frobenius fun
tion f on W (n), with 
or-responding binary ve
tor (f1; f2; : : : ; fn). Then the in
omplete meshes for f arepre
isely those ending at a latti
e-point of the form (�(i) + 1; i) with fi�1 > fi.Proof. First of all, a

ording to Lemma 3.2, given any i with 2 � i � n, there is atmost one in
omplete mesh ending at (j +1; i) for some j, and a

ording to Lemma2.2, if fi�1 � fi, then there is none.Thus, we only have to show that in 
ase fi�1 > fi, the mesh ending at d =(j+1; i) is in
omplete, where j = �(i). Let us de�ne the following points: a = (1; j),b = (1; i), 
 = (j + 1; j), a0 = �1; �(i)�, b0 = (1; i � 1), 
0 = ��(i) + 1; �(i)�,d0 = (j + 1; i� 1), t = ��(i) + 1; j�, u = ��(i) + 1; i�, v = (j; j) and w = (j; i) (seethe diagram). ��b = (1; i) �� �b0 = (1; i� 1) ��� ��� � �� � �� u �a = (1; j) �� ��� ��� �� �� w �� � � �����d = (j + 1; i)�a0 = (1; �(i)) �� ��� ����� ��� �t� � �d0� � �� � � ��� � � � � x��� v���
0 = (�(i) + 1; �(i)) 
 = (j + 1; j)The fun
tion f is 
learly not additive on }ab
d, sin
e Æab
d = f(a)�f(b)+f(d)�f(
) = fj � fi + f(d) � 0 > 0. On the other hand, f is additive on }a0a
0t and}tuvw by Lemma 3.3 (verti
ally striped region on the diagram). Also, f is additiveon }a0b
0u (horizontally striped region) as well as on }ab0
d0 (dotted region) byLemma 2.2. So the only mesh in }ab
d that 
an be in
omplete is the one endingat d. utLet us have a 
loser look at the relationship between binary ve
tors and binarytrees. We may give an indu
tive reformulation of the de�nition of binary ve
tors asfollows. The ve
tor of length zero is binary. A ve
tor (f1; : : : ; fn) of length n � 1 isbinary, if all fi 2 IN1, the minimum of the fi o

urs only on
e, say ft = min f fi j 1 �i � n g for a unique t, and g = (g1; g2; : : : ; gt�1) = (f1 � ft; f2 � ft; : : : ; ft�1 � ft)and h = (ht+1; : : : ; hn) = (ft+1 � ft; : : : ; fn � ft) are binary ve
tors. Now to ea
hbinary ve
tor f = (f1; : : : ; fn) we may atta
h an embedded rooted binary tree B(f)with multipli
ities m = (m1; : : : ;mn) (atta
hed to the verti
es) in the followingfashion. The empty tree will 
orrespond to the empty ve
tor. Given the ve
torf = (f1; : : : ; fn), where n � 1, with the index t and the ve
tors g and h de�ned asabove, we 
onstru
t the following tree B(f) on the index set of f as verti
es. The



12 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELroot will be the vertex t, its multipli
ity is mt = ft; and (in 
ase the ve
tors g orh are not empty) we 
onne
t t with the roots of B(g) and B(h) by an edge so thatthe root of B(g) is the left upper neighbor of t, and the root of B(h) is the rightupper neighbor of t. We shall say that the verti
es of B(g) are to the left from t,while those of B(h) are to the right. The multipli
ities whi
h we shall atta
h tothe verti
es di�erent from t are those de�ned already for the verti
es of B(g) andB(h). Sometimes it will be 
onvenient to give an orientation to the edges: then weput an arrow of type ' starting at t and ending at the root of B(g), and an arrowof type  ending at t and starting at the root of B(h). The quiver obtained in thisway will be denoted by ~B(f). For example, the binary ve
tor f = (7; 3; 5; 4; 5; 7)yields the following tree ~B(f) with multipli
ities:6� 3 5'� � 1 4'� � 2 with values:
2�1 1� �4 1� �3The 
onverse pro
edure, starting from an embedded, rooted binary tree withmultipli
ities, is again easy. Namely, let us take the usual ordering of the nodes\from left to right", and add up all the multipli
ities from the given node to theroot; this gives the ve
tor.Let f = (f1; : : : ; fn) be a binary ve
tor. Besides the fun
tion � = �f weshall 
onsider also the dual fun
tion � = �f de�ned by �f (i) = �(i) = min f j >i j fj < fi g (where min ; = n + 1). Clearly 0 � �(i) < i < �(i) � n + 1 fori = 1; : : : ; n. The statement of Proposition 3.4 
an be rephrased in the followingway. Let 1 � j < i � n. The mesh ending at (j + 1; i) is in
omplete if and only if�(j) = �(i) and �(j) = i.Also, it is easy to see that there is an arrow i '�! j in ~B(f) if and only if �(j) = iand �(j) = �(i). And similarly, the existen
e of an arrow j  �! i is equivalent tothe 
ondition that �(j) = i and �(j) = �(i). Thus, we 
an des
ribe the position ofthe in
omplete meshes in W (n) in terms of the tree stru
ture.Proposition 3.40. Let f be a positive Frobenius fun
tion on W (n), with 
orre-sponding binary ve
tor (f1; f2; : : : ; fn). Then the mesh ending at the latti
e point(j + 1; i) is in
omplete with respe
t to f if and only if there is an arrow i '�! j inthe binary tree ~B(f1; : : : ; fn).A
tually the following proposition shows that the position of the in
ompletemeshes, the fun
tions � and � atta
hed to the binary ve
tor and the binary tree(without multipli
ities) mutually determine ea
h other.



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 13Proposition 3.5 Let f = (f1; : : : ; fn) and f 0 = (f 01; : : : ; f 0n) be two binary ve
tors,~B(f) and ~B(f 0) the 
orresponding binary trees, and � = �f , � = �f , �0 = �f 0 and�0 = �f 0 . Then the following statements are equivalent:(i) � = �0;(i0) � = �0;(ii) ~B(f) = ~B(f 0);(iii) for any positive Frobenius extension of f and f 0 to W (n), the position ofthe in
omplete meshes is the same.Proof. The equivalen
e (i) () (i0) follows from the formulas �(i) = min f j j i <j � n; �(j) < i g and �(i) = max f j j 1 � j < i; �(j) > i g.The impli
ation (i) and (i0) ) (ii) follows immediately from the observationpre
eding Proposition 3.40, while (ii)) (iii) is stated in Proposition 3.40.To prove (iii)) (i), we have to show how to re
over � from the position of thein
omplete meshes. We use indu
tion. Always, we must have �(1) = 0. Assumewe know �(j) for all j < i, where i � 2. If there is no in
omplete mesh endingin a vertex with se
ond 
oordinate i, then Proposition 3.4 asserts that fi�1 < fi,thus �(i) = i� 1. Otherwise, there is an in
omplete mesh ending in a vertex of theform (j + 1; i), where j < i. Then by an observation pre
eding Proposition 3.40,�(j) = �(i). By indu
tion, �(j) is already known, thus so is �(i). utProof of Theorem 1.2. The statements of this theorem are 
ontained in Proposition3.1 and 3.5. ut4. Con�gurations of in
omplete meshesLet f be a positive Frobenius fun
tion on ZZA1. Re
all that a vertex a hasbeen 
alled ray minimal provided f(a) is the minimal positive value on the ray ofa. Similarly, a vertex b may be 
alled 
o-ray minimal provided f(b) is the minimalpositive value on the 
o-ray of b. A vertex whi
h is both ray minimal and 
o-rayminimal will be said to be minimal .Given a vertex a = (a1; a2) of ZZA1 (thus a1 � a2), the verti
es b = (b1; b2)with a1 � b1 � b2 � a2 will be said to be dominated by a; they form a wing W (a)of order a2�a1+1. This is the wing generated by the vertex a. The wing generatedby the mesh }ab
d is the wing W (b).Let f be a positive Frobenius fun
tion on ZZA1. A set of wingsW = fW` j ` 2I g of ZZA1 will be said to be 
omplete with respe
t to f provided any vertex on theboundary of ZZA1 belongs to one of the wings, any two elements of W are eitherdisjoint or one of them 
ontains the other, and �nally, if every in
omplete mesh is
ontained in one of the wings in W .



14 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELProposition 4.1. Let f be a positive Frobenius fun
tion on ZZA1. The wingsW (a), with a a minimal vertex, form a 
omplete set of wings of ZZA1 with respe
tto f . Conversely, if W = fW` j ` 2 I g is a 
omplete set of wings of ZZA1, thenany minimal vertex b belongs to some W`.Remark 4.2. Let fW` j ` 2 I g be a 
omplete set of wings of ZZA1, and let W` beof order n`. In 
ase the numbers n` are bounded, we may sele
t the largest wingswith respe
t to in
lusion, and obtain in this way a 
omplete set of pairwise disjointwings of ZZA1. However, the following example shows that there may not existsu
h a 
omplete set of wings: i.e. we may have to in
lude an in
reasing 
hain ofwings W1 �W2 �W3 � : : : Let f be the Frobenius fun
tion on ZZA1, de�ned by:f((a1; a2)) = � 2 ja1 + a2j+ 1 for a1 � 0 � a2,2(a2 � a1) + 2 for 0 < a1 � a2 or a1 � a2 < 0.Here pre
isely those meshes }ab
d are in
omplete for whi
h b = (�i; i) for somei 2 IN1.� �15 11 7 3 3 7 11 15� � � � � � � � � � � � � �13 9 5 1 5 9 13� � � � � � � � � � � � � �12 11 7 3 3 7 11 12� � � � � � � � � � � � � �10 9 5 1 5 9 10� � � � � � � � � � � � � �8 8 7 3 3 7 8 8� � � � � � � � � � � � � �6 6 5 1 5 6 6� � � � � � � � � � � � � �4 4 4 3 3 4 4 4� � � � � � � � � � � � � �2 2 2 1 2 2 2 xTo prove Proposition 4.1, we need the following lemmas.Lemma 4.3. Let f be a positive Frobenius fun
tion on ZZA1. Then any boundaryvertex of ZZA1 is dominated by a minimal vertex.Proof. Consider the vertex (i; i) on the boundary of ZZA1, and let C be the set ofall verti
es (a1; a2) with a1 � i � a2. Note that C is the set of all those verti
eswhi
h dominate the vertex (i; i). Let us 
hoose a vertex b = (b1; b2) 2 C su
h thatf(b) � f(C). We 
laim that b is a minimal vertex. Assume that b is not rayminimal. Let a = (b1; a2) be ray minimal, thus by assumption a2 < i. Consider the
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es 
 = (a2 + 1; a2);d = (a2 + 1; b2), and apply Lemma 2.2 to the re
tangle}ab
d. �b = (b1; b2)� �� C �� � � ��� �� d = (a2 + 1; b2)��� � �� � � �a = (b1; a2) �� �� �� �� �� � ��� x��� (i; i)
 = (a2 + 1; a2)We see that f is additive on }ab
d, thus f(b) > f(d). However, the 
onditiona2 < i implies that d belongs to C, thus we obtain a 
ontradi
tion to the minimalityof f(b).By duality, we also see that b is 
o-ray minimal, thus minimal. utLemma 4.4. Let f be a positive Frobenius fun
tion on ZZA1. Let }uvwx be anin
omplete mesh in the extended upper half plane. Then v is dominated by a minimalvertex. � �b = (b1; b2) C �� �� �� � ��d = (a2 + 1; b2)��� � ��� � �� �� �� �� �� � ��v�� � ��a = (b1; a2) �� � ��� � x���
 = (a2 + 1; a2)Proof. Let v = (v1; v2), and 
onsider the set C of all verti
es (a1; a2) with a1 � v1,and v2 � a2. Choose a vertex b 2 C su
h that f(b) � f(C). We 
laim that b is aminimal vertex. Assume that b = (b1; b2) is not ray minimal. Let a = (b1; a2) beray minimal, thus by assumption a2 < v2. Consider the verti
es 
 = (a2+1; a2);d =(a2+1; b2), and apply Lemma 2.2 to the re
tangle }ab
d. We see that f is additiveon }ab
d, thus f(b) > f(d). Sin
e f is additive on }ab
d, the mesh }uvwx 
annotbe inside of }ab
d, thus we must have a2 + 1 � v1, and therefore d belongs to C.In this way, we obtain a 
ontradi
tion to the minimality of f(b).By duality, we also see that b is 
o-ray minimal, thus minimal. ut



16 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELLemma 4.5. Let f be a positive Frobenius fun
tion on ZZA1. Let }ab
d be are
tangle in the upper half plane. Then at most one of the verti
es a, d 
an be rayminimal.Proof. If both a and d would be ray minimal then the defe
t of the re
tangle }ab
dwould be Æab
d = f(a) � f(b) + f(d) � f(
) < 0, 
ontradi
ting the subadditivityof f . utProof of Proposition 4.1. A

ording to Lemma 4.3 and Lemma 4.4, every vertexof the boundary and every in
omplete mesh is 
ontained in a wing W (a) for someminimal a.Let a, b be minimal verti
es, dominating the wings W (a) and W (b), respe
-tively. A

ording to Lemma 4.5, we see that in 
ase these wings interse
t, one ofthem has to be 
ontained in the other one. Thus we 
on
lude that the set of wingsW (a) with a minimal is a 
omplete set.For the 
onverse, assume there is given a 
omplete set W = fW` j ` 2 I g ofwings of ZZA1 and take a minimal vertex b = (b1; b2). Consider the wing W (b).�b = (b1; b2)W (b) ��� �� ��d = (i+ 1; b2)a = (b1; i)�� ���� � ��� �� �� �� x(b1; b1) (i; i)���(i+ 1; i+ 1) (b2; b2)
 = (i+ 1; i)If the verti
es (i; i) for b1 � i � b2 on the mouth of W (b) are all 
ontained in thesame wing W` 2 W then W (b) � W`, hen
e b 2 W`. On the other hand, if weassume that no single element of W 
ontains all the verti
es from the mouth ofW (b), then there is an index b1 � i < b2 su
h that (i; i) and (i+1; i+1) belong totwo disjoint wings in W , moreover for a = (b1; i), 
 = (i+ 1; i) and d = (i+ 1; b2),none of the meshes of the re
tangle }ab
d is 
ontained in the elements of W .Hen
e f is additive on }ab
d. But the minimality of b implies for the defe
t thatÆab
d = f(a)� f(b)� 0 + f(d) > 0, 
ontradi
ting the additivity.The proof is now 
omplete. utLet S be a �nite subset of meshes in the extended upper half plane of ZZ� ZZ.The wing 
over of S is the smallest wing in ZZA1 whi
h 
ontains the top verti
esof all meshes in S.In a

ordan
e with the de�nition given for independent meshes in W (n), we
all a set of meshes S in ZZA1 independent if there is no re
tangle }ab
d in theextended upper half plane su
h that its meshes at a and at d are two distin
telements of S. Note that this is equivalent to saying that the distin
t meshes
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d and }a0b0
0d0 are independent if and only if either jW (b) \W (b0)j � 1 orW (b) �W (
0) or W (b0) �W (
) (where W (
) and W (
0) may be empty). In 
asejW (b) \W (b0)j = 1, we 
all the meshes 
lose. Two meshes are S-equivalent if theyare related by the transitive 
losure of the 
loseness relation in S.�������� � ����� �� � �� �� � ���� � ���� �� �� � � � � � xWe may now formulate the following des
ription of the possible positions ofthe in
omplete meshes in ZZA1.Proposition 4.6. Let S be a set of meshes in ZZA1. Then S is the full set ofin
omplete meshes for some positive Frobenius fun
tion f on ZZA1 if and only if Sis independent and every S-equivalen
e 
lass of S is �nite.Proof. Let S be the set of in
omplete meshes for a Frobenius fun
tion f on ZZA1.Let us noti
e �rst that the independen
e of S 
learly follows from Lemma 3.2.Suppose now that }ab
d 2 S is equivalent to in�nitely many meshes in S. Clearly,by symmetry we may assume that there exists a sequen
e of meshes in S with topverti
es b = b1 < b2 < : : : so that the 
onse
utive meshes are 
lose to ea
h other.Let vi be the interse
tion of the line x with the ray of bi, while ui will denote theinterse
tion of the ray of b with the 
o-ray of bi.u4����u3�� ��� �� � �� � �u2�� � ��� � �� � � �b = b1 = u1�� � ��b3 ��� ��b2 �� ����� �� ���� ��b4� � ���� � � �� : : :�� ��� ��� ������� xv1 v2 v3 v4 v5Lemma 2.2 implies that f(vi) > f(bi) (a
tually f(bi) must be minimal inf([vi;bi℄)), thus the additivity of f on }ui�1uivibi (see the dual of Lemma 3.2)gives that f(ui�1) > f(ui) for i = 2; 3; : : :. Thus we would have an in�nite de
reas-ing sequen
e of values of f , a 
ontradi
tion.



18 ISTV�AN �AGOSTON, ERZS�EBET LUK�ACS AND CLAUS MICHAEL RINGELTo prove the other dire
tion, let us take a set S of meshes, satisfying the
onditions. We shall indu
tively 
onstru
t a Frobenius fun
tion whose in
ompletemeshes are pre
isely the pres
ribed ones. We start with the following observation.An easy argument, similar to the one given in the proof of Theorem 1.1, shows thatif we have a Frobenius fun
tion on a set of disjoint wings then we 
an always extendit additively to a wing 
ontaining them. In this extension we 
an freely 
hoose thevalues of the new verti
es on the mouth; the rest is then uniquely determined.We shall de�ne the fun
tion f indu
tively on the wing 
overs of the S-equivalen
e 
lasses. Clearly, if we take two equivalen
e 
lasses, they either havedisjoint wing 
overs or one of them has an element }ab
d su
h that W (
) 
ontainsthe wing 
over of the entire other equivalen
e 
lass.Let us now take an S-equivalen
e 
lass R = f}aibi
idi j i = 1; : : : ; n g withb1 < : : : < bn. We de�ne the points ui and vi as above, 
ompleted with vn+1,the interse
tion of the line x with the 
oray of bn. Let us assume that f is alreadyde�ned on the wing 
overs of all other equivalen
e 
lasses 
ontained in the wing
over of R. A

ording to our earlier observations, we may a
tually assume that fis de�ned on ea
h W (
i), and the rest is still undetermined. We �rst extend f toea
h W (bi) by setting f(vi) = n+1 for every i, extending f from W (
i) to W (ai)and to W (di) additively, �nally setting f(bi) = n, thus making the mesh }aibi
idiin
omplete with Æaibi
idi � f(ai) = Æaibi
idi � f(di) = 1.ui����ui�1�� ��� �� � �� � �� � �� � �� � �b1 = u1�� ��bi�1 �a1 ����d1 ai�1 ����di�1 ������ ����� ��bi� �
1� � : : : � �
i�1� � ai ����di : : :�� � � �� �� � � �������� xv1 v2 vi�1 vi 
i vi+1Noti
e that in this way we have f([vi;bi℄) � n and f([bi;vi+1℄) � n for i = 1; : : : ; n.In parti
ular, f([u1;v2℄) � n. Suppose that f is already extended to W (ui�1) forsome i � n so that f([ui�1;vi℄) � n � i + 2. Then we 
an extend f additivelyto the re
tangle }ui�1uivibi , sin
e f(v) � f(vi) � �1 for every v 2 [vi;bi℄ andf([ui�1;vi℄) � n � i + 2 � 2. Furthermore, the additivity gives that we have nowf([ui;bi℄) � n � i + 2 � 1 = n � i + 1, while f([bi;vi+1℄) � n � n � i + 1, as weobserved above.Thus we 
an extend f toW (un), i.e. the wing 
over of R so that the in
ompletemeshes in the new part are exa
tly the elements of R.
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an de�ne f on the wing 
overs of all S-equivalen
e 
lasses. Ifthese do not 
over the entire half plane then we de�ne arbitrarily the values at theremaining points of the line x, and then extend f additively on the whole ZZA1.utProof of Theorem 1.3. The ne
essity of independen
e, as in the 
ase of ZZA1, 
learlyfollows from Lemma 3.2. On the other hand, by representing W (n) in ZZA1, anysubset of meshes of W (n) will have �nite S-equivalen
e 
lasses, hen
e by Proposi-tion 4.6 there is a Frobenius fun
tion on ZZA1 with the pres
ribed set of in
ompletemeshes. The restri
tion of this fun
tion to W (n) gives us the required representa-tion. utIt turns out that the independen
e 
ondition is suÆ
ient for the larger quiverZZA11, too.Proposition 4.7. A set S of meshes in ZZA11 is the set of in
omplete meshes forsome positive Frobenius fun
tion on ZZA11 if and only if S is independent.Proof. The ne
essity, like before, is obvious from Lemma 3.2. Thus to prove thesuÆ
ien
y, let us assume that we are given an independent set S of meshes. Letus de�ne for a vertex a = (a1; a2) the number n(a) to be the number of meshesbelonging to S from the region A = fb = (b1; b2) j b1 � a1 and b2 � a2 g[ f 
 =(
1; 
2) j 
1 � a1 and 
2 � a2 g (the shaded region on the diagram).� �� �� �����a�� �� �� �The independen
e of S ensures that this number n(a) is always �nite. Now it iseasy to show that the fun
tion f(a) = 2n(a) + 1 is a positive Frobenius fun
tionsu
h that the in
omplete meshes are pre
isely the elements of S. Namely, for anymesh, when 
omputing the defe
t, every other mesh is 
ounted the same number oftimes with plus and with minus sign, while the given mesh itself is 
ounted twi
ewith plus sign only. This gives the additivity for meshes not in S, while for a mesh}ab
d in S the exa
t values of f are f(a) = f(d) = 3 and f(b) = f(
) = 1. Thisshows the statement. ut5. Frobenius length fun
tionsThe pro
edure presented in [HR℄ to asso
iate a binary tree to a basi
 tiltingmodule for An yields for a (not ne
essarily basi
) tilting module T a binary tree
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ities, and the 
orresponding binary ve
tor is just the dimension ve
torof T .So we may 
all a binary ve
tor basi
 provided it is the dimension ve
tor ofa basi
 tilting module, or equivalently, if the 
orresponding binary tree has allmultipli
ities equal to 1. It is also easy to see that the binary ve
tor (f1; : : : ; fn)is basi
 if and only if 1 2 f fi � f�(i); fi � f�(i) g for every i = 1; : : : ; n (wheref0 = 0 = fn+1).It is 
lear that to any binary ve
tor we may atta
h its asso
iated basi
 binaryve
tor by 
onstru
ting �rst the 
orresponding binary tree, 
hanging all the multi-pli
ities to 1 and then taking the binary ve
tor of this basi
 tree. From Proposition3.5 it also follows that a binary ve
tor and the asso
iated basi
 ve
tor will give riseto Frobenius fun
tions on W (n) with the same in
omplete meshes.The importan
e of basi
 binary ve
tors is underlined by the fa
t that they 
or-respond to the so 
alled Frobenius length fun
tions. A positive Frobenius fun
tionf on a subset of ZZ � ZZ is 
alled a Frobenius length fun
tion if for ea
h in
om-plete mesh }ab
d we have Æab
d � f(a) = Æab
d � f(d) = 1. Frobenius lengthfun
tions on a general translation quiver are de�ned similarly. Typi
al examples ofFrobenius length fun
tions are the length fun
tions on the 
omponents of the stableAuslander{Reiten quiver of a sel�nje
tive algebra.We have the following lemma.Lemma 5.1. A basi
 binary ve
tor (f1; : : : ; fn) has a unique extension f to W (n)that is a Frobenius length fun
tion.Proof. The 
onstru
tion in the proof of Proposition 3.1 gives a Frobenius extensionf for whi
h Æab
d � f(a) = 1 for every in
omplete mesh }ab
d. It also shows thatsu
h an extension is unique.We shall prove now that for the in
omplete meshes of any Frobenius extensionf of a basi
 binary ve
tor Æab
d � f(d) = 1 must also hold.Let us take the standard representation of W (n) and assume that }ab
d is anin
omplete mesh with d = (j + 1; i). Consider the re
tangle }a0b0
0d with verti
esa0 = (1; j), b0 = (1; i) and 
0 = (j + 1; j).��b0 = (1; i)�� ��� �� ��b �� a����d = (j + 1; i)�a0 = (1; j)�� ��� ��� �
 �� � � �x���
0 = (j + 1; j)The dual of Lemma 3.2 implies that }ab
d is the only in
omplete mesh in }a0b0
0d,thus by Lemma 2.1 we have Æab
d = Æa0b0
0d = fj � fi � 0 + f(d). A

ording to



FROBENIUS FUNCTIONS ON TRANSLATION QUIVERS 21Proposition 3.40 there is an arrow i '�! j in ~B(f1; : : : ; fn), and sin
e (f1; : : : ; fn) isbasi
, we see that fj � fi = 1. Thus Æab
d = 1 + f(d). This �nishes the proof. utRemark 5.2. Note that also non-basi
 binary ve
tors may have an extension toW (n) whi
h is a Frobenius length fun
tion. In fa
t, the proof above shows that abinary ve
tor f = (f1; : : : ; fn) has su
h an extension if and only if all the multipli
i-ties at the endpoints of the '-arrows in ~B(f) are equal to 1 (whereas the remainingmultipli
ities may be arbitrary).Corollary 5.3. Given a positive Frobenius fun
tion onW (n), there exists a Frobe-nius length fun
tion on W (n) whi
h has the same set of in
omplete meshes.A
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