Frobenius functions on translation quivers
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ABSTRACT. Frobenius functions are integral valued functions given on vertices of trans-
lation quivers and satisfying certain subadditivity conditions. Typical examples are the
length function and the dimension function on the stable Auslander—Reiten quiver of
a finite dimensional selfinjective algebra. In our paper we study in detail Frobenius
functions on the translation quivers ZAs, ZA and some related ones. In particular
we show that there is a one-to-one correspondence between Frobenius functions on the
stable tube T'(n) and Frobenius functions on the wing W (n), and we classify them using
certain related combinatorial structures.

We denote by W (n) the wing of order n (it is the Auslander—Reiten quiver of
the ring A, (k) of upper triangular n x n-matrices over a field k) and by T'(n) =
Z A /(™) the stable tube of rank n (it is the Auslander—Reiten quiver of the locally
nilpotent representations of the cyclic quiver with n vertices). Note that T(n) has
n full subquivers isomorphic to W (n) which contain all vertices of the mouth; we
call them the mazimal wings of T(n).

Let ' = (T'o,IT'1,7) be a translation quiver (without multiple arrows) and let
f:To—>Z be amap. For any non-projective vertex z of I', define 6(z) = d¢(2) =
f&)+ f(rz) = > f(y). A Frobenius function f on I' is a map f: 'y — Z such

y—z

that for any non-projective vertex z of I" with §(z) # 0, we have both f(z) < §(z)
and f(rz) < 6(z). Note that any non-negative Frobenius function is subadditive,
that is, 0(z) > 0 for any non-projective vertex. In dealing with a Frobenius function
f on T, and a non-projective vertex z with §(z) # 0, we say that the mesh ending
in z is an incomplete mesh. Typical examples of positive Frobenius functions are
given by the dimension function or the length function on the stable Auslander—
Reiten quiver of a finite dimensional selfinjective algebra; the incomplete meshes
being those, where an indecomposable projective module has been removed.

Our aim is a detailed study of positive Frobenius functions on wings, stable
tubes and the translation quivers ZA., and ZAY. By using certain combinatorial
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structures we give a classification of these functions. In the forthcoming second part
of the paper algebraic representations will be given for some of these results. The
results were reported at the Sixth International Conference on Representations of
Algebras, held at Ottawa in 1992.

We would like to mention that many of the ideas used here can be traced back
to [GR]. For unexplained notation, we refer to [R].

1. The main results
There is a strong interrelation between Frobenius functions on W (n) and T'(n).

THEOREM 1.1. If g is a positive Frobenius function on T(n), then there exists a
mazimal wing of T'(n) which contains all incomplete meshes. Conversely, if U is a
mazimal wing of T'(n) then any function f: Uy — INy = {1,2,3,...} has a unique
extension to a function f : T(n)o — INy which is additive on all meshes which are
not contained in U. Such an extension f is a positive Frobenius function if and

only if f is.

Special cases of this statement have been considered by Erdmann (see [E]) in
her study of tame symmetric algebras.

A consequence of the above theorem is that any positive Frobenius function
on T'(n) is uniquely determined by its restriction to an appropriate maximal wing
W (n). Thus we may focus our attention to positive Frobenius functions on wings.

Let us denote the projective vertices of W(n) by p1, P2, ..., Pn, indexed so
that there are arrows p; = pa — - -+ — pn. Given a function f : W(n) — Z, take
fi = f(p:) and consider the vector (f1,..., fn). We call a vector (fi,..., f,) with
entries in IN; binary if whenever f; = f; for some ¢ < j, then there exists an
index ¢ such that i < £ < j and f; < f;. A binary vector f = (f1,..., fn) yields an
embedded rooted binary tree B(f) with n vertices as follows. The empty vector (for
n = 0) will correspond to the empty tree. Given a binary vector f = (f1,..., fn),
let f; be the minimal coordinate (by definition of a binary vector, ¢ is uniquely
defined). Let g = (f1 — ft,. .., fie1 — ft), and h = (feq1 — ft, ..+, fu — ft). We take
the vertex with index ¢ as root, and, in case g or h are non-empty, we attach to
t the trees B(g) and B(h) so that the root of B(g) is the upper left neighbor and
the root of B(h) is the upper right neighbor of ¢. Note that any embedded rooted
binary tree can be obtained in this way. Binary vectors f and f' with B(f) = B(f')
will be said to be equivalent. For example, the binary vectors (7,3,5,4,5,7) and
(2,1,3,2,3,4) are equivalent, the corresponding binary tree is:
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We can now formulate the following theorem about the connection of binary

vectors and Frobenius functions on wings.

THEOREM 1.2. Let f be a positive Frobenius function on the wing W(n), and f; =
fi). Then (fi,..., fn) is a binary vector, and every binary vector occurs in this
way. Two positive Frobenius functions f and g on W (n) have the same incomplete

meshes if and only if the binary vectors (f1,..., fn) and (g1,...,9n) are equivalent.

The binary vectors of length n are just the dimension vectors of (not necessarily
basic) tilting modules for A, (k), see [HR], and therefore part of the previous result,
namely that every binary vector arises from Frobenius functions on W (n), follows

from [HW]. Here we shall give a direct combinatorial proof.

As one can see from Theorem 1.2, Frobenius functions on W (n) with the same
binary tree can be characterized by the set of their incomplete meshes. Actually,
not every configuration of meshes in W (n) can occur as the set of incomplete meshes
of a Frobenius function. We call two meshes independent if the subwings of W (n)
generated by these meshes either have at most one vertex in common or one of
the subwings contains the other one in its interior. (For a precise definition see
Section 4.) A set of meshes is independent if any two meshes in it are independent.

We can now state the following theorem.

THEOREM 1.3. A set S of meshes in the wing W (n) can be obtained as the full set
of incomplete meshes of a positive Frobenius function on W (n) if and only if S is

independent.

Similar characterizations will also be given for the sets of incomplete meshes

of Frobenius functions defined on the translation quivers ZA, and ZAY.

2. Wings and stable tubes

It seems to be convenient to consider instead of T'(n) or W(n) the translation

quivers ZA, and ZAZL.

We shall use the following coordinatization. By definition, the set of vertices
of ZAZ is the set Z x Z of integral lattice points in the plane. There are arrows
(a1,a2) (a1 + 1,a2) and (a1,a2) —*(a1,as + 1), and the translation is defined by

7(a1,a2) = (a1 —1,a2 — 1), for any (a1,a2) € Z X Z.
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Given the lattice points a = (a1, a2), b = (a1,d2), ¢ = (d1,az2) and d = (dy, d2)
with a1 < dy and ay < da, we define the rectangle $abea = {(1,J) € Z x Z|ay <
i < di, ag < j < dy}. We shall say that the rectangle $abca starts at a and
ends at d. A mesh is just a minimal rectangle. The upper half plane is the set of
points {(i,j) € Z x Z]i < j}, while by the extended upper half plane we mean
{(i,j) € Z x Z]|i < j+ 1}. (Thus the extended upper half plane will contain
also those meshes that have one vertex below the line x = {(i,i)|i € Z }.) Lattice
points having the same first coordinate will be said to belong to the same ray. If
a = (a1,a2) and b = (ay,be) are lattice points on the same ray then (a,b) will
denote the set of lattice points ¢ = (ay, c2) where ¢ is an integer between as and bo
and not equal to any of them. The notation for closed and half open intervals will
be also used accordingly. Dually, lattice points with the same second coordinate
will be said to belong to the same co-ray; we shall use the interval notation for
segments of co-rays as well.

Let f be an integer valued function defined on a subset of Z x Z. We define
the defect § of the function f on an arbitrary rectangle {apca in the domain of f
by dabca = f(a) + f(d) — f(b) — f(c). For {$abeca a mesh, we shall also write
0(d) = dabea. Given a subset U of Z x Z, the function f : U — Z is called additive
(or subadditive) if dabea = 0 (Or dabed > 0, respectively) for every mesh $apeq in U.
A mesh is called incomplete (with respect to f) if the defect of the mesh is non-zero.
The function f is called a Frobenius function if for every incomplete mesh {aped
we have dabea > f(a) and dabea > f(d). If U',U" are subsets of U, then we write
FU" < f(U"), provided f(u') < f(u"), for every u’' € U',u” € U".

We shall identify Z A, with the upper half plane, and we call the set of vertices
of the form (i,i), with i € Z the boundary of ZA,. In order to take care of
the boundary meshes of ZA,, any function defined on the vertices of ZA,, will
be extended to the extended upper half plane by zero. By definition, a positive
Frobenius function on Z A« is a Frobenius function f on the extended upper half
plane such that f(i,j) > 0 for i« < j and f(j + 1,7) = 0. We shall consider
Z Ay as the universal covering of T'(n); in this way each of the vertices of T'(n) will
correspond to infinitely many lattice points on the upper half plane, and the vertices
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on the mouth of T'(n) correspond to the points on the line x = {(i,7) |i € Z }. Note
that a Frobenius function on T'(n) lifts to a Frobenius function on ZA.

For the wing W (n), we shall fix a standard embedding, mapping the projective
vertices p1, P2, ..., Pn to the points (1,1),(1,2),...,(1,n); hence the 7~!-orbit of
p1 will correspond to the points (1,1),(2,2),...,(n,n).

LEMMA 2.1. Given a function f on a rectangle $apea, the defect of f on $aped
is the sum of the defects of f on all meshes in $apea. Consequently a subadditive
function f is additive on $apea if and only if dapea = 0.

Proof. Straightforward. O

LEMMA 2.2. Let f be a Frobenius function defined on the rectangle $apea and
assume f((a,c]) >0 and f(a) < f([a,b]). Then f is additive on $abed-

Proof. Suppose that f is not additive. Let {aprerar be a rectangle in $apeq such
that it has an incomplete mesh ending at d’ and every other mesh in it is complete.

Let us define the function f* by changing the value of f only at d’ so that the
mesh ending at d’ becomes complete. Clearly, f*(d') = f(d') — §(d’") < 0 because
of the Frobenius property. Now f* is additive on the whole rectangle $aprerar, on
the other hand the defect of f* is §%p wq = f(a) — f(b") — f(c') + f*(d") < 0, since
f(a) = f(b') <0and —f(c') <0. This contradicts Lemma 2.1. O

Notice that the above lemma can be dualized, switching the left and right sides
of the diagram: f([c,d)) > 0 and f(d) < f([b,d]) imply that f is additive on
{abed- The oncoming statements will also admit such dualizations.

LEMMA 2.3. Let f be a positive Frobenius function on ZA,,. Assume that a and
b are distinct vertices on the same ray. If f(a) = f(b) then there exists a point b’

in (a,b) such that f(b') < f(a).

Proof. We may assume that a = (a1, az2) and b = (ay, ba) with as < bs. Suppose the
statement is false. Then f(a) < f([a,b]). We apply Lemma 2.2 to the rectangle
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Qabed Where ¢ = (a2 + 1,a2) (consequently f(c) = 0) and d = (a2 + 1,b2) and
conclude that f is additive on {abeqa. But then f(a) = f(b) implies that f(c) =
f(d), whereas f(c¢) =0 and f(d) > 0.

This contradiction completes the proof. O

Let f be a positive Frobenius function on ZA,,. Assume a = (a1,a2) is a
lattice point for which f(a) is the minimal positive value on the ray of a; then a
will be said to be ray minimal. Note that according to Lemma 2.3, any ray contains

a unique ray minimal vertex in ZA.

LEMMA 2.4. Let f be a positive Frobenius function on Z A~ and let a = (a1, as)
be a ray minimal lattice point. Then f is additive on the region B = {(i,j) €
ZxZ|ay <i<ax+1, ay <j}. Moreover, if r ={(i,j) E ZXZ|j € Z} is a
ray intersecting the region A = {(i,j) € Z x Z|a; <i < j < az}, then the unique

ray minimal point ¢y = (i,c2) of v must belong to A.

Proof. We may apply Lemma 2.2 to B to get the additivity. As a consequence, the
ordering on the ray of a, restricted to B, carries over to the other rays in B, thus

we get the second assertion. O
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PROPOSITION 2.5. Let f be a positive Frobenius function on the tube T'(n). Then

there is a mazimal wing U of T'(n) such that it contains all the incomplete meshes

of f.

Proof. Instead of T'(n), we consider its universal covering Z A, and we lift the
function f to a positive Frobenius function on ZA,, which again will be denoted
by f. Choose a ray minimal lattice point a = (a1, a2) such that as — a1 is maximal.
(Note that as — a1 is just the distance in T'(n) of the vertex which corresponds to
a, from the mouth of T'(n)). Since 77 "a = (a1 + n,az + n) is also a ray minimal
point, the second assertion of Lemma 2.4 yields that as —a; < n — 1, so we can
include a into a wing U = {(i,j) € Zx Z|az —n+1<i<j<ay} of order n as

shown in the following diagram:

(a2 =n+1,a)

W
|

(a2 + 1,(12)

By the choice of the point a and the wing U, Lemma 2.4 implies that the wing
U contains the ray minimal elements of all rays intersecting U. Hence, by using
Lemma 2.4 again, we get that the function f is additive on the region A = {(i,j) €
ZxZlas—n+1<i<a+1, aa < j}. Since every mesh of T'(n) has a

representative in U U A, we have proved the statement. O

Proof of Theorem 1.1. The first assertion is just the statement of Proposition 2.5.

For the converse, we shall again consider Z A, as the universal covering of T'(n).

Let us assume that f is defined on the wing U = {(i,j) € Zx Z|1<i<j<n}.

We may define the extension of f to {(i,j)|i =1,...,n, j > i} recursively by
setting f(i,5) = f(i,n) + f(1,j —n) for j > n.
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e
|

(n+1,n)

Simple calculation shows that f satisfies the requirements. (Let us note here
that by solving the recursion we get:

fliytn+4) = fli,n) + (= 1) - f(1,n) + f(1,])

forany t € Ny and j € {1,2,...,n}.)

3. Frobenius functions and binary trees

Let us recall that a vector (f1, fa,. .., fn) with positive integer entries is called
binary if whenever f; = f; with ¢ < j then there is i < ¢ < j with f, < f;.

PROPOSITION 3.1. Let f be a positive Frobenius function on the wing W(n), and
fi=fi). Then (f1,..., fn) is a binary vector, and every binary vector occurs in
this way.

Proof. We shall use the standard embedding of W(n) into ZA,,. If f is a pos-
itive Frobenius function on W(n), and f; = f(p;), then Lemma 2.3 asserts that
(f1,..., fn) is a binary vector.

Conversely, assume that a binary vector (fi,..., f,) is given, and let f(p;) = f;.
We shall proceed by induction to obtain a positive Frobenius function on W (n).
Thus we assume that we have extended the function f to the shaded region in the
following diagram and we want to define f on the endpoint d of the mesh $apea-

If f(b)+ f(c) > f(a) then define f(d) = f(b)+ f(c)— f(a) so f will be additive
on the mesh Qapea. If f(b) + f(c) < f(a) then choose f(d) = f(b) + f(c) + 1.
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(Note that we could have defined f(d) to be f(b)+ f(c)+m where m is any positive
integer. Hence the Frobenius extension usually will not be unique.) Thus the mesh
{abea Will be incomplete, satisfying the Frobenius property.

It remains to consider the case when f(b)+ f(c) = f(a). In this case, we define
f(d) =0. Thus f becomes additive on the mesh {$apca (but it is not positive). Let
d = (di,ds), and define ¢’ = (dy,dy — 1), a’ = (1,dy — 1) and b’ = (1,d»). By the
dual of Lemma 2.2 we get that f is additive on the rectangle $apriera-

Since f(c¢') = f(d) =0 < f([c¢’,d]), the additivity implies that f(a') = f(b') <
f([a',b']), contradicting the assumption that the starting vector is binary. Thus
we see that the case f(b) + f(c) = f(a) cannot occur.

The proof is now complete. O

We have seen in the previous proof that the extension of a binary vector to a
Frobenius function on the wing W (n) may not be unique. We will show, however,
that the position of the incomplete meshes in all these extensions is the same. First
we need some further technical remarks.

LEMMA 3.2. Let f be a non-negative Frobenius function on the rectangle {aped
such that the mesh starting at a is incomplete with respect to f. Then f is additive
on the remaining meshes in $aped-

Proof. Let us define a function f* on {$apca by changing the value of f only at a
so that the mesh starting at a becomes complete with respect to f*. Thus, by the
Frobenius property we have f*(a) < 0. Then Lemma 2.2 gives that f* is additive
on {$abea. The statement now follows. O
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LEMMA 3.3. Suppose f is a positive Frobenius function on ZA.. Assume that
a = (a1,az) and b = (a1,bs) are lattice points on the same ray with ay < by. If
f@), f(b) < f((a,b)) and f(a) < f(b) then f is additive in the regions A =
{(i,j)) EZxZ|ay <i<ay+1, aa<j<bs}and B={(i,j) € ZxZ|as +1<
i <by, by <j}

Proof. Lemma 2.2 implies immediately that f is additive on A.

Suppose now that f is not additive on B. Choose an incomplete mesh ending at
d = (dy,d2) (see the shaded part on the diagram below), and define ¢ = (dy,d; — 1),
a' = (a1,d; — 1), b’ = (a1,d2) and d’ = (dy, b2).

The dual of Lemma 3.2 implies that apart from the mesh ending at d, f is additive
on the rectangle $aprea. In particular, f is additive on $apear. This and the initial
condition f(a') > f(b) imply that 0 = f(c) > f(d'), contradicting the positivity of
the function f. O

For a given binary vector (fi,..., f,) and i € {1,...,n} let us define A(i) =
A(i) =max{j <i|f; < fi}, where max() = 0. For i > 2 and f;_1 > f;, we have
A(i) +1 <i—1, and we define pu(i) € {A\(i) +1,...,7 — 1} so that f, ;) is minimal
among the values fy(;)41,..., fi—1 (notice that u(i) is well-defined since we consider

a binary vector).
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PROPOSITION 3.4. Let f be a positive Frobenius function f on W(n), with cor-
responding binary vector (fi,fa,..., fn). Then the incomplete meshes for [ are
precisely those ending at a lattice-point of the form (u(i) + 1,4) with fi_1 > f;.

Proof. First of all, according to Lemma 3.2, given any i with 2 < i < n, there is at
most one incomplete mesh ending at (5 + 1,4) for some j, and according to Lemma
2.2, if f;_1 < f;, then there is none.

Thus, we only have to show that in case f;—1 > f;, the mesh ending at d =
(j+1,4) is incomplete, where j = u(i). Let us define the following points: a = (1, j),
b = (1,i), c = (j+ 1,j),a = (L,A@G), b’ = (1,i — 1), ¢ = (A(i) + 1,A(4)),
d=0G+1i-1),t=(Xi)+1,5),u= (A@) +1,i), v = (j,j) and w = (j,i) (see
the diagram).

The function f is clearly not additive on $aped, since dabea = f(a) — f(b) + f(d) —
f(e) = fj — fi+ f(d) =0 > 0. On the other hand, f is additive on {aac't and
$tuvw by Lemma 3.3 (vertically striped region on the diagram). Also, f is additive
on $aberu (horizontally striped region) as well as on $anear (dotted region) by
Lemma 2.2. So the only mesh in {apcq that can be incomplete is the one ending
at d. O

Let us have a closer look at the relationship between binary vectors and binary
trees. We may give an inductive reformulation of the definition of binary vectors as
follows. The vector of length zero is binary. A vector (fi,..., fn) of length n > 1is
binary, if all f; € INy, the minimum of the f; occurs only once, say f; = min{ f; |1 <
i < n} for a unique t, and g = (g1,92,--.,9t—1) = (fr — fe, fo — feo ooy ft—1 — f2)
and h = (hig1, .., hn) = (ft41 — ft,-. ., fn — ft) are binary vectors. Now to each
binary vector f = (fi,..., fn) we may attach an embedded rooted binary tree B(f)
with multiplicities m = (my,...,m,) (attached to the vertices) in the following
fashion. The empty tree will correspond to the empty vector. Given the vector
f=(f1,--., fn), where n > 1, with the index ¢ and the vectors g and h defined as
above, we construct the following tree B(f) on the index set of f as vertices. The
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root will be the vertex ¢, its multiplicity is m; = f; and (in case the vectors g or
h are not empty) we connect ¢ with the roots of B(g) and B(h) by an edge so that
the root of B(g) is the left upper neighbor of ¢, and the root of B(h) is the right
upper neighbor of ¢. We shall say that the vertices of B(g) are to the left from ¢,
while those of B(h) are to the right. The multiplicities which we shall attach to
the vertices different from ¢ are those defined already for the vertices of B(g) and
B(h). Sometimes it will be convenient to give an orientation to the edges: then we
put an arrow of type ¢ starting at ¢ and ending at the root of B(g), and an arrow
of type 9 ending at ¢ and starting at the root of B(h). The quiver obtained in this
way will be denoted by E(f) For example, the binary vector f = (7,3,5,4,5,7)
yields the following tree B(f) with multiplicities:

6 2

; 5/¢ /
: ¢\4/¢ N S
¢\2/¢ N

with values: 3

The converse procedure, starting from an embedded, rooted binary tree with
multiplicities, is again easy. Namely, let us take the usual ordering of the nodes
“from left to right”, and add up all the multiplicities from the given node to the
root; this gives the vector.

Let f = (fi,...,fn) be a binary vector. Besides the function A = Ay we
shall consider also the dual function p = py defined by pf(i) = p(i) = min{j >
i|f;j < fi} (where min) = n +1). Clearly 0 < A(i) < i < p(i) < n+ 1 for
i = 1,...,n. The statement of Proposition 3.4 can be rephrased in the following
way. Let 1 < j < i <n. The mesh ending at (j + 1,4) is incomplete if and only if
A(G) = AG) and p(j) = i.

Also, it is easy to see that there is an arrow i — j in E(f) if and only if p(j) =i
and A(j) = A(i). And similarly, the existence of an arrow jim' is equivalent to
the condition that A(j) = ¢ and p(j) = p(i). Thus, we can describe the position of

the incomplete meshes in W (n) in terms of the tree structure.

PROPOSITION 3.4'. Let f be a positive Frobenius function on W(n), with corre-
sponding binary vector (fi, fa,..., fn). Then the mesh ending at the lattice point

(j + 1,4) is incomplete with respect to f if and only if there is an arrow i—>j in
the binary tree B(f1,..., fn).

Actually the following proposition shows that the position of the incomplete
meshes, the functions A and p attached to the binary vector and the binary tree
(without multiplicities) mutually determine each other.
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PROPOSITION 3.5 Let f = (f1,..., fn) and f' = (f1,..., fn) be two binary vectors,
B(f) and B(f') the corresponding binary trees, and X = Ar, p=pr, N =Xy and
p' = py . Then the following statements are equivalent:

(i) A=N;

@) p=r"
(i1) B(f) = B(f");
(131) for any positive Frobenius extension of f and f' to W(n), the position of

the incomplete meshes is the same.

Proof. The equivalence (i) <= (i') follows from the formulas p(i) = min {j|i <
j<m A(j) <i}and A(i) =max{j|1<j <14, p(j) >i}.

The implication (i) and (i') = (ii) follows immediately from the observation
preceding Proposition 3.4', while (ii) = (iii) is stated in Proposition 3.4'.

To prove (#i1) = (i), we have to show how to recover A from the position of the
incomplete meshes. We use induction. Always, we must have A\(1) = 0. Assume
we know A(j) for all j < 4, where i > 2. If there is no incomplete mesh ending
in a vertex with second coordinate i, then Proposition 3.4 asserts that f; 1 < f;,
thus A\(i) = ¢ — 1. Otherwise, there is an incomplete mesh ending in a vertex of the
form (j + 1,4), where j < i. Then by an observation preceding Proposition 3.4',
A(4) = A(@). By induction, A(j) is already known, thus so is A(7). O

Proof of Theorem 1.2. The statements of this theorem are contained in Proposition
3.1 and 3.5. O

4. Configurations of incomplete meshes

Let f be a positive Frobenius function on ZA,,. Recall that a vertex a has
been called ray minimal provided f(a) is the minimal positive value on the ray of
a. Similarly, a vertex b may be called co-ray minimal provided f(b) is the minimal
positive value on the co-ray of b. A vertex which is both ray minimal and co-ray
minimal will be said to be minimal.

Given a vertex a = (a1, as) of ZAy (thus a; < ag), the vertices b = (b, bs)
with a; < b; < be < ag will be said to be dominated by a; they form a wing W (a)
of order as —ay + 1. This is the wing generated by the vertex a. The wing generated
by the mesh $apca is the wing W (b).

Let f be a positive Frobenius function on ZA.,. A set of wings W = {W,|{ €
I} of ZA, will be said to be complete with respect to f provided any vertex on the
boundary of Z A, belongs to one of the wings, any two elements of VW are either
disjoint or one of them contains the other, and finally, if every incomplete mesh is
contained in one of the wings in W.
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PROPOSITION 4.1. Let f be a positive Frobenius function on ZAs. The wings
W (a), with a a minimal vertex, form a complete set of wings of Z Ay with respect
to f. Conversely, if W = {Wy |l € 1} is a complete set of wings of ZA~, then

any minimal vertex b belongs to some W.

REMARK 4.2. Let {W,|¢ € I} be a complete set of wings of ZA,, and let W, be
of order ny. In case the numbers n, are bounded, we may select the largest wings
with respect to inclusion, and obtain in this way a complete set of pairwise disjoint
wings of ZA,,. However, the following example shows that there may not exist
such a complete set of wings: i.e. we may have to include an increasing chain of
wings W1 C Wy C W3 C ... Let f be the Frobenius function on Z A, defined by:

f((a a))_ 2|a1+a2|+1 for a1 <0< as,
LR2)) = 2(as —a1)+2 for0<ay <asora; <ax<O0.

Here precisely those meshes {abca are incomplete for which b = (—i,4) for some
i € INy.
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4 4 4 3 3 4 4 4
—— 2-— 2—— 2—-—— 1—— 2—— 2—— 2— =

To prove Proposition 4.1, we need the following lemmas.

LEMMA 4.3. Let f be a positive Frobenius function on ZA,. Then any boundary

vertex of Z A is dominated by a minimal vertex.

Proof. Counsider the vertex (i,7) on the boundary of ZA,, and let C be the set of
all vertices (a1, a2) with a; < i < as. Note that C is the set of all those vertices
which dominate the vertex (i,i). Let us choose a vertex b = (by,b2) € C such that
f(b) < f(C). We claim that b is a minimal vertex. Assume that b is not ray
minimal. Let a = (b1, as) be ray minimal, thus by assumption as < i. Consider the
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vertices ¢ = (az + 1,a2),d = (as + 1,bs), and apply Lemma 2.2 to the rectangle

Oabcd-

b = (b1, b)

) (i,4)

c= (a’2+1)a2

We see that f is additive on $aped, thus f(b) > f(d). However, the condition
a2 < ¢ implies that d belongs to C, thus we obtain a contradiction to the minimality

of f(b).

By duality, we also see that b is co-ray minimal, thus minimal. O

LEMMA 4.4. Let f be a positive Frobenius function on ZAy . Let Quvwx be an
incomplete mesh in the extended upper half plane. Then v is dominated by a minimal

vertezx.

a = (bl,ag)

c=(as+1,a9)

Proof. Let v = (vy,v2), and consider the set C of all vertices (a1, as) with a; < vy,
and vy < ay. Choose a vertex b € C such that f(b) < f(C). We claim that b is a
minimal vertex. Assume that b = (b1, bs) is not ray minimal. Let a = (b1, az2) be
ray minimal, thus by assumption as < vo. Consider the vertices ¢ = (a2 +1,as),d =
(a2 +1,by), and apply Lemma 2.2 to the rectangle $apca. We see that f is additive
on abed, thus f(b) > f(d). Since f is additive on $aped, the mesh {$uywx cannot
be inside of {aped, thus we must have as + 1 < vy, and therefore d belongs to C.
In this way, we obtain a contradiction to the minimality of f(b).

By duality, we also see that b is co-ray minimal, thus minimal. O
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LEMMA 4.5. Let f be a positive Frobenius function on ZAs. Let $apea be a
rectangle in the upper half plane. Then at most one of the vertices a, d can be ray
minimal.

Proof. If both a and d would be ray minimal then the defect of the rectangle $apecd
would be dabea = f(a) — f(b) + f(d) — f(c) < 0, contradicting the subadditivity
of f. O

Proof of Proposition 4.1. According to Lemma 4.3 and Lemma 4.4, every vertex
of the boundary and every incomplete mesh is contained in a wing W (a) for some
minimal a.

Let a, b be minimal vertices, dominating the wings W(a) and W (b), respec-
tively. According to Lemma 4.5, we see that in case these wings intersect, one of
them has to be contained in the other one. Thus we conclude that the set of wings
W (a) with a minimal is a complete set.

For the converse, assume there is given a complete set W = {W,|{ € I} of
wings of ZA. and take a minimal vertex b = (b, b2). Consider the wing W (b).

b = (b1, bs)

(bi,b1)  (i,0) W (i+1i+1) (by,bo) ™
c=(i+1,4)

If the vertices (i,4) for by < i < by on the mouth of W(b) are all contained in the
same wing Wy € W then W(b) C Wy, hence b € W;. On the other hand, if we
assume that no single element of Y/ contains all the vertices from the mouth of
W (b), then there is an index by <4 < by such that (7,7) and (i + 1,7 + 1) belong to
two disjoint wings in W, moreover for a = (by,i), ¢ = (i + 1,7) and d = (i + 1, b2),
none of the meshes of the rectangle $apcq is contained in the elements of W.
Hence f is additive on {$apcd- But the minimality of b implies for the defect that
dabea = f(a) — f(b) — 0+ f(d) > 0, contradicting the additivity.

The proof is now complete. O

Let S be a finite subset of meshes in the extended upper half plane of Z x Z.
The wing cover of S is the smallest wing in Z A, which contains the top vertices
of all meshes in S.

In accordance with the definition given for independent meshes in W(n), we
call a set of meshes S in ZA. independent if there is no rectangle {$apcaq in the
extended upper half plane such that its meshes at a and at d are two distinct
elements of S. Note that this is equivalent to saying that the distinct meshes
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Qabed and $aprerar are independent if and only if either [W(b) N W (b')| < 1 or
W(b) CW(c') or W(b') C W(c) (where W(c) and W(c') may be empty). In case
|[W(b) N W(b')| =1, we call the meshes close. Two meshes are S-equivalent if they

are related by the transitive closure of the closeness relation in S.

We may now formulate the following description of the possible positions of

the incomplete meshes in ZA...

PROPOSITION 4.6. Let S be a set of meshes in ZA,. Then S is the full set of
incomplete meshes for some positive Frobenius function f on ZAs if and only if S
is independent and every S-equivalence class of S is finite.

Proof. Let S be the set of incomplete meshes for a Frobenius function f on ZA.
Let us notice first that the independence of S clearly follows from Lemma 3.2.
Suppose now that $apea € S is equivalent to infinitely many meshes in S. Clearly,
by symmetry we may assume that there exists a sequence of meshes in S with top
vertices b = b; < by < ... so that the consecutive meshes are close to each other.
Let v; be the intersection of the line x with the ray of b;, while u; will denote the
intersection of the ray of b with the co-ray of b;.

Vi Va2 V3 V4 Vs

Lemma 2.2 implies that f(v;) > f(b;) (actually f(b;) must be minimal in
f([vi,bi])), thus the additivity of f on $u,_juv;b; (see the dual of Lemma 3.2)
gives that f(u;—1) > f(u;) for i = 2,3,.... Thus we would have an infinite decreas-
ing sequence of values of f, a contradiction.
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To prove the other direction, let us take a set S of meshes, satisfying the
conditions. We shall inductively construct a Frobenius function whose incomplete
meshes are precisely the prescribed ones. We start with the following observation.
An easy argument, similar to the one given in the proof of Theorem 1.1, shows that
if we have a Frobenius function on a set of disjoint wings then we can always extend
it additively to a wing containing them. In this extension we can freely choose the
values of the new vertices on the mouth; the rest is then uniquely determined.

We shall define the function f inductively on the wing covers of the S-
equivalence classes. Clearly, if we take two equivalence classes, they either have
disjoint wing covers or one of them has an element {apeq such that W(c) contains
the wing cover of the entire other equivalence class.

Let us now take an S-equivalence class R = { $a;bicid;

i=1,...,n} with
b; < ... < b,. We define the points u; and v; as above, completed with v, 1,
the intersection of the line x with the coray of b,,. Let us assume that f is already
defined on the wing covers of all other equivalence classes contained in the wing
cover of R. According to our earlier observations, we may actually assume that f
is defined on each W(c;), and the rest is still undetermined. We first extend f to
each W (b;) by setting f(v;) = n+ 1 for every i, extending f from W(c;) to W (a;)
and to W (d;) additively, finally setting f(b;) = n, thus making the mesh $a,b;c,d;
incomplete with da;b;c;a; — f(ai) = daibicia; — f(di) = 1.

Notice that in this way we have f([v;, b;]) > nand f([b;,viy1]) > nfori=1,...,n.
In particular, f([u;, va]) > n. Suppose that f is already extended to W (u;_;) for
some i < n so that f([uj—1,v;]) > n — i+ 2. Then we can extend f additively
to the rectangle $u,_juvib;, since f(v) — f(v;) > —1 for every v € [v;,b;] and
f(ui—1,v4]) > n—1i+2 > 2. Furthermore, the additivity gives that we have now
f(Qui,bs)) >n—i+2—-1=mn—1i+1, while f([b;,vit1]) > n>n—i+ 1, as we
observed above.

Thus we can extend f to W (u,,), i.e. the wing cover of R so that the incomplete
meshes in the new part are exactly the elements of R.
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This way we can define f on the wing covers of all S-equivalence classes. If
these do not cover the entire half plane then we define arbitrarily the values at the
remaining points of the line x, and then extend f additively on the whole ZA .

O

Proof of Theorem 1.3. The necessity of independence, as in the case of Z A, clearly
follows from Lemma 3.2. On the other hand, by representing W (n) in ZA.,, any
subset of meshes of W (n) will have finite S-equivalence classes, hence by Proposi-
tion 4.6 there is a Frobenius function on Z A, with the prescribed set of incomplete
meshes. The restriction of this function to W (n) gives us the required representa-
tion. ad

It turns out that the independence condition is sufficient for the larger quiver
ZAZ, too.

PROPOSITION 4.7. A set S of meshes in ZAY is the set of incomplete meshes for
some positive Frobenius function on ZAY if and only if S is independent.

Proof. The necessity, like before, is obvious from Lemma 3.2. Thus to prove the
sufficiency, let us assume that we are given an independent set S of meshes. Let
us define for a vertex a = (aj,as) the number n(a) to be the number of meshes
belonging to S from the region A = {b = (by,b2) |b1 < a; and by < ax }U{c =
(c1,¢2) | €1 > a; and ¢o > as } (the shaded region on the diagram).

The independence of S ensures that this number n(a) is always finite. Now it is
easy to show that the function f(a) = 2n(a) + 1 is a positive Frobenius function
such that the incomplete meshes are precisely the elements of S. Namely, for any
mesh, when computing the defect, every other mesh is counted the same number of
times with plus and with minus sign, while the given mesh itself is counted twice
with plus sign only. This gives the additivity for meshes not in S, while for a mesh
{abea in S the exact values of f are f(a) = f(d) = 3 and f(b) = f(c) = 1. This
shows the statement. O

5. Frobenius length functions

The procedure presented in [HR] to associate a binary tree to a basic tilting
module for A, yields for a (not necessarily basic) tilting module T" a binary tree
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with multiplicities, and the corresponding binary vector is just the dimension vector
of T.

So we may call a binary vector basic provided it is the dimension vector of
a basic tilting module, or equivalently, if the corresponding binary tree has all
multiplicities equal to 1. It is also easy to see that the binary vector (fi,..., fn)
is basic if and only if 1 € {f; — fa@), fi — fo) } for every @ = 1,...,n (where
fo=0=Ff n+1)-

It is clear that to any binary vector we may attach its associated basic binary
vector by constructing first the corresponding binary tree, changing all the multi-
plicities to 1 and then taking the binary vector of this basic tree. From Proposition
3.5 it also follows that a binary vector and the associated basic vector will give rise
to Frobenius functions on W (n) with the same incomplete meshes.

The importance of basic binary vectors is underlined by the fact that they cor-
respond to the so called Frobenius length functions. A positive Frobenius function
f on a subset of Z x Z is called a Frobenius length function if for each incom-
plete mesh $abea We have dabed — f(a) = dabea — f(d) = 1. Frobenius length
functions on a general translation quiver are defined similarly. Typical examples of
Frobenius length functions are the length functions on the components of the stable
Auslander—Reiten quiver of a selfinjective algebra.

We have the following lemma.

LEmMMA 5.1. A basic binary vector (f1,..., fn) has a unique extension f to W(n)

) )

that is a Frobenius length function.

Proof. The construction in the proof of Proposition 3.1 gives a Frobenius extension
f for which dapeca — f(a) = 1 for every incomplete mesh ({apca. It also shows that
such an extension is unique.

We shall prove now that for the incomplete meshes of any Frobenius extension
f of a basic binary vector dapca — f(d) = 1 must also hold.

Let us take the standard representation of W (n) and assume that {apeq is an
incomplete mesh with d = (j + 1,4). Consider the rectangle {ab/cra With vertices
a'=(1,7),b' = (1,i) and ' = (j + 1, ).

The dual of Lemma 3.2 implies that {apeq is the only incomplete mesh in $arpiera,
thus by Lemma 2.1 we have dabed = dabiera = fj — fi — 0+ f(d). According to
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Proposition 3.4’ there is an arrow i — j in B(f1, ..., fa), and since (f1, ..., fn) is
basic, we see that f; — f; = 1. Thus dabea = 1 + f(d). This finishes the proof. O

REMARK 5.2. Note that also non-basic binary vectors may have an extension to
W (n) which is a Frobenius length function. In fact, the proof above shows that a
binary vector f = (f1,..., fn) has such an extension if and only if all the multiplici-

ties at the endpoints of the ¢-arrows in g(f) are equal to 1 (whereas the remaining
multiplicities may be arbitrary).

COROLLARY 5.3. Given a positive Frobenius function on W (n), there exists a Frobe-
nius length function on W(n) which has the same set of incomplete meshes.
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