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t. This paper represents a general study of the (Yoneda) Ext-algebraA� of a �nite dimensional K-algebra A. Our motivation lies in the problem ofestablishing 
onditions under whi
h (i) the spe
ies of A� 
oin
ides with the dualspe
ies of A and (ii) the quasi-heredity of A (or A�) yields the quasi-heredityof A� (or A, respe
tively). These questions are 
losely related to the Kazhdan{Lusztig Theory as presented by [CPS2℄. The main results in
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ing the
on
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tion of quasi-hereditary algebras by Cline, Parshall andS
ott in [CPS1℄ and [PS℄, the 
on
ept has proved to be instrumental in a num-ber of areas of representation theory. The quasi-hereditary algebras arising inmost of these appli
ations enjoy some additional properties. Thus, a Kazhdan{Lusztig theory of Cline, Parshall and S
ott ([CPS2℄) leads to quasi-hereditaryalgebras whose homologi
al dual is again a quasi-hereditary algebra. One of themain obje
tives of the present paper is to �nd a natural 
lass of su
h algebras;the resulting 
on
ept of a solid algebra with the related Theorem 4.5 is givenin Se
tion 4. In the 
ourse, we also study the Ext-algebra A� of an algebra Ain general. The essential 
omponents of our ma
hinery in
lude the 
on
epts oftop embeddings and the sub
ategory C � mod-A in Se
tion 2 and the fun
torExt� : mod-A!A� -mod in Se
tion 3. In Se
tion 5 we deal with monomialalgebras; here we present a rather 
omplete des
ription, using and extendingresults of Green and Za
haria ([GZ℄). Finally, the fa
t that some of the resultsin the text 
annot be strengthened is illustrated by examples in Se
tion 6.Some of our results are parallel to those of Cline, Parshall and S
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2 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSshould also like to refer to the re
ent study of graded Koszul rings by Beilin-son, Ginzburg and Soergel ([BGS℄), as well as the le
tures of P. Smith andR. Mart��nez-Villa, presented at the Seventh International Conferen
e on Rep-resentation Theory in Mexi
o in August, 1994.Let A be a �nite dimensional algebra over an arbitrary �eld K. Letf ei j i 2 I g be a �xed 
omplete set of primitive orthogonal idempotents, withthe 
orresponding inde
omposable proje
tive (right) modules denoted by P (i),and their simple tops by S(i). Without loss of generality we will assume thatA is basi
, thus 1 = Pi2I ei. Throughout the paper we shall denote by Ŝ thedire
t sum of the simple modules S(i); thus ŜA ' A= radA. Whenever it isneeded, we shall speak about left A-modules, too; the 
orresponding proje
tiveand simple left modules will be denoted by P Æ(i) and SÆ(i).The Ext-algebra of A will be denoted by A�. It is, by de�nition, the K-algebra whose underlying ve
tor spa
e is�k�0ExtkA(Ŝ; Ŝ) ' �k�0 �i;j2I ExtkA �S(i); S(j)�and the multipli
ation is de�ned by the Yoneda produ
t of extensions. That isto say, if 0!S(i)!X`�1!� � �!X0!S(j)! 0and 0!S(j)!Ym�1!� � �!Y0!S(k)! 0represent elements of ExtÀ �S(j); S(i)� and ExtmA �S(k); S(j)�, respe
tively,then the 
orresponding produ
t is represented by the exa
t sequen
e0!S(i)!X`�1!� � �!X0!Ym�1!� � �!Y0!S(k)! 0in Ext`+mA �S(k); S(i)�.It is easy to 
he
k that in this way one gets an asso
iative K-algebra whi
his �nite dimensional if and only if gl:dimA < 1. Let us also mention that,in the presen
e of the standard K-duality, (A�)op ' (Aop)�, and thus we may
on�ne ourselves to studying Ext-algebras de�ned in terms of right A-modulesalone.In what follows we list some of the properties of A�; the proofs are straight-forward.



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 3Proposition 1.1. Let A be a basi
 �nite dimensional K-algebra and A� itsExt-algebra as de�ned above.(1) The de
omposition A� = �k�0ExtkA(Ŝ; Ŝ) de�nes a graded algebra stru
tureon A�.(2) If gl:dimA < 1, then for X 2 mod-A the 
orresponden
e Ext�(X) =�k�0ExtkA(X; Ŝ) de�nes a 
ontravariant fun
tor from mod-A to A� -modgr,the 
ategory of �nitely generated graded left A�-modules.(3) The elements fi = idS(i) 2 HomA �S(i); S(i)� � A� for i 2 I form a 
om-plete set of primitive orthogonal idempotents in A�. Thus the inde
om-posable left proje
tive A�-modules may be identi�ed with P �Æ(i) = A�fi 'Ext�A �S(i); Ŝ� = �k�0ExtkA �S(i); Ŝ�.(4) If A� is �nite dimensional, then radA� = �k�1ExtkA(Ŝ; Ŝ) and rad`A� ��k�`ExtkA(Ŝ; Ŝ).Noti
e that in part (4) of the previous statement the 
ontainment rad`A� ��k�`ExtkA(Ŝ; Ŝ) is very often proper, i. e. the �ltration given by the powers ofthe radi
al of A� (radi
al �ltration, for short) will not, in general, 
oin
ide withthe �ltration obtained from the natural grading of A� mentioned in part (1).One of the key points of our investigation is pre
isely the question, when willthe relation rad`A� = �k�`ExtkA(Ŝ; Ŝ) hold for every `.This question may also be formulated in terms of the spe
ies of the algebrasinvolved. Let us re
all that for the basi
 K-algebra A with primitive idempo-tents f ei j i 2 I g the spe
ies S(A) of A is the system (Di; i 2 I ; iWj ; i; j 2 I)of division algebras Di, �nite dimensional over K, and Di-Dj-bimodules iWj ,where Di = ei�A= radA�ei ' EndA �S(i)� and iWj = ei� radA= rad2A�ej 'DExt1A �S(i); S(j)�. (Here D stands for the standard K-duality.) When all thedivision algebras Di are equal to K and the bimodules iWj are dire
t sums of
opies of the regular bimodule K (for example, when K is algebrai
ally 
losed)then one may speak about the quiver �(A) of A; hen
e the 
omplete informa-tion is 
ontained in an oriented graph having I as its vertex set and dimK iWjarrows from i to j.Furthermore, if a spe
ies S = (Di; i 2 I ; iWj ; i; j 2 I) is given, thenwe may de�ne the dual spe
ies DS = ( ~Di; i 2 I ; i ~Wj ; i; j 2 I) for whi
h thedivision algebras are ~Di = Di, and i ~Wj = D(jWi) for i; j 2 I . | Then it is nottoo diÆ
ult to see that the previous question whether the natural grading ofA� gives the radi
al �ltration is equivalent to asking whether S(A�) = DS(A)holds. For quivers the previous 
ondition translates to �(A�) = �(Aop).The prin
ipal question that we investigate in our paper is the following:given a �nite dimensional quasi-hereditary algebra A, when is the Ext-algebra



4 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSof A also quasi-hereditary? Or more generally: what 
an one say about A orA� if one of them is quasi-hereditary?To this end, let us re
all the de�nition of a quasi-hereditary algebra (
f.[CPS1℄, [DR2℄). Let A be a �nite dimensional algebra with a �xed ordering e =(e1; e2; : : : ; en) of a 
omplete set of primitive orthogonal idempotents. Denoteby "i the idempotent "i = ei + ei+1 + : : : + en; for 
onvenien
e let "n+1 = 0.The tra
e �ltration of a module M (with respe
t to the �xed order e) is givenby M = M"1A � M"2A � � � � � M"nA � 0. Then we may de�ne the i-thstandard module �(i) to be the �rst non-trivial quotient in the tra
e �ltration ofthe inde
omposable proje
tive module P (i). Thus �(i) ' eiA=eiA"i+1A. Notethat �(i) is the largest quotient of P (i) with 
omposition fa
tors S(j) withj � i. The algebra A is 
alled quasi-hereditary with respe
t to the ordering eif �(i) is S
hurian, i. e. EndA�(i) is a division algebra for 1 � i � n and thetra
e �ltration fa
tors of the regular module AA are isomorphi
 to dire
t sums ofstandard modules. In the sequel we shall also use the notations U(i) = rad�(i)and V (i) = eiA"i+1A, with the 
orresponding left modules denoted by �Æ(i),UÆ(i) and V Æ(i). Thus we have the exa
t sequen
es 0!U(i)!�(i)!S(i)! 0and 0!V (i)!P (i)!�(i)! 0. For the basi
 properties of quasi-hereditaryalgebras and standard modules we refer the reader to [PS℄, [DR1℄, [DR2℄ and[DK℄.One of the main tools in our des
ription is the 
on
ept of top submodules ortop embeddings. Re
all that a submodule X � Y is said to be a top submodule(denoted by X t�Y ) if the embedding of X into Y indu
es an embedding oftopX = X= radX into topY = Y= radY ([ADL1℄). Or more formally: X t�Yif and only if X � Y and radX = X \ radY . In this 
ase the embedding ofX into Y is also 
alled a top embedding . A �ltration of a module X is 
alleda top �ltration if all the terms of the �ltrations are top submodules of X . Analgebra A is 
alled lean with respe
t to an ordering e of simple A-modules ifV (i) t� radP (i) and V Æ(i) t� radP Æ(i) for 1 � i � n. Further properties of topembeddings as well as 
hara
terizations of lean algebras 
an be found in [ADL1℄and [ADL2℄. 2. The spe
ies of an Ext-algebraFor an arbitrary module X 2 mod-A let� � � dj+1! Pj(X) dj!� � � d2!P1(X) d1!P0(X) d0!X! 0be a minimal proje
tive resolution of X , with the 
orresponding syzygies
j+1(X) = Kerdj for j = 0; 1; : : :.



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 5Definition 2.1. We say that a module X 2 mod-A belongs to C(i) = C(i)A forsome i 2 IN if 
j(X) t� radPj�1(X) for j = 1; 2; : : : ; i. For 
onvenien
e de�neC(0) = mod-A. Finally, let C = CA = 1\i=0 C(i). { Similarly, one may de�ne thesub
ategory CÆA � A -mod of left A-modules.Remark 2.2. (i)X 2 C(i) does not depend on the parti
ular minimal proje
tiveresolution 
hosen for X . In parti
ular, all proje
tive modules will belong to C.(ii) X 2 C(i) implies X 2 C(j) for every j � i.(iii) For any i � 1 we have that X 2 C(i) if and only if 
1(X) 2 C(i�1) and
1(X) t� radP0(X). If gl:dimA = ` <1 then CA = C(`)A .(iv) From the de�nition it is 
lear that A is lean if and only if the right andleft standard modules �(i) and �Æ(i) belong to C(1) and C(1)Æ, respe
tively.The next three lemmas give some of the 
losure properties of these sub
at-egories.Lemma 2.3. Let 0!X!Y !Z! 0 be a split exa
t sequen
e. Then for giveni 2 IN, we have Y 2 C(i) if and only if X;Z 2 C(i).Proof. Consider the sequen
e 0!
1(X)�
1(Z)!P0(X)�P0(Z)!X�Z! 0.Then 
learly 
1(X) � 
1(Z) maps into rad �P0(X) � P0(Z)� = radP0(X) �radP0(Z), and this is a top embedding if and only if 
1(X) t� radP0(X) and
1(Z) t� radP0(Z). By indu
tion on i and Remark 2.2.(iii) we are done. utLemma 2.4. Let 0!X!Y !Z! 0 be an exa
t sequen
e with the map X!Ya top embedding. Then if X and Z both belong to C(i) then also Y 2 C(i).Proof. We may assume i � 1. Consider the following diagram:0 0 0# # #0 ! 
1(X) ! 
1(Y ) ! 
1(Z) ! 0# # #0 ! P0(X) ! P0(Y ) ! P0(Z) ! 0# # #0 ! X ! Y ! Z ! 0# # #0 0 0Here 
1(X);
1(Z) 2 C(i�1), and 
1(X) t� radP0(X), 
1(Z) t� radP0(Z). Notealso that the middle row is split, i.e. P0(Y ) = P0(X) � P0(Z), sin
eX t�Y . Thus we get that 
1(X) t� radP0(Y ), hen
e 
1(X) t�
1(Y ). Soby indu
tion on i we get that 
1(Y ) 2 C(i�1). Also, 
1(Y )=
1(X) =



6 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACS
1(Z) t� radP0(Z) and radP0(Z) is a dire
t summand of radP0(Y )=
1(X),thus 
1(Y )=
1(X) t� radP0(Y )=
1(X). Now, Lemma 1.1.
) of [ADL1℄ givesthat 
1(Y ) t� radP0(Y ), so by Remark 2.2.(iii), Y 2 C(i), as required. utIt is easy to show that the 
onverse of Lemma 2.4 does not hold. A
tually,examples will be given in the last se
tion showing that X;Y 2 C does not implythat Z 2 C(1) and Y; Z 2 C does not imply that X 2 C(1).Lemma 2.5. Let 0!X!Y !Z! 0 be an exa
t sequen
e with X t� radY .Then we have:(i) if X 2 C(i) and Y 2 C(i+1) then Z 2 C(i+1);(ii) if Z 2 C(i+1) and Y is proje
tive then X 2 C(i);(iii) if Z 2 C(i) and X is proje
tive then Y 2 C(i).Proof. (i) Consider the following diagram with exa
t rows and 
olumns:0 0# #0 ! 
1(Y ) ! 
1(Z)# # #0 ! P0(Y ) �! P0(Z) ! 0# # #0 ! X ! Y ! Z ! 0# # #X ! 0 ! 0Here X � radY implies that P0(Y ) ' P0(Z), and the Snake Lemmagives us an additional exa
t sequen
e 0!
1(Y )!
1(Z)!X! 0. Sin
e
1(Y ) t� radP0(Y ) = radP0(Z) we get that 
1(Y ) t�
1(Z). By assumption,X 2 C(i), and by Remark 2.2.(iii), 
1(Y ) 2 C(i). Hen
e by Lemma 2.4 weget that 
1(Z) 2 C(i). Furthermore, X t� radY = radP0(Y )=
1(Y ). Sin
e
1(Y ) t� radP0(Y ), we get by Lemma 1.1.
) of [ADL1℄ that 
1(Z) t� radP0(Y )= radP0(Z). Hen
e Z 2 C(i+1).(ii) This follows from the de�nition of C(i) and by Remark 2.2.(i) and (iii).(iii) Consider the diagram we had in the proof of part (i). Again we get anexa
t sequen
e 0!
1(Y )!
1(Z)!X! 0 whi
h is in this 
ase split, as X isproje
tive. Sin
e 
1(Z) 2 C(i�1), we get by Lemma 2.3 that 
1(Y ) 2 C(i�1).Moreover, 
1(Y ) t�
1(Z) t� radP0(Z) = radP0(Y ), hen
e by Remark 2.2.(iii),Y 2 C(i), as required. utAs in the 
ase of Lemma 2.4, it is again easy to 
onstru
t examples toshow that the statements of (ii) and (iii) of the previous lemma 
annot be



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 7strengthened. Examples will be given in the last se
tion that Y; Z 2 C does notimply that X 2 C(1) and X;Z 2 C does not imply that Y 2 C(1).The next proposition gives one of the most important homologi
al proper-ties of the elements of C(i). It turns out (
f. Proposition 2.11) that this propertyalmost 
ompletely 
hara
terizes these modules. The statement generalizes onedire
tion of Theorem 3 of [ADL2℄.Proposition 2.6. If X 2 C(i) for some i 2 IN, then the natural mapsExtkA(topX;S)!ExtkA(X;S) are surje
tive for every 0 � k � i and every(semi)simple module S.Proof. We shall pro
eed by indu
tion on i. Clearly, the statement is true fori = 0. For i = 1 this is just Proposition 2 of [ADL2℄; a
tually for the 
ase i = 1,k = 1, the 
onverse statement is also proved there.Assume now that the statement is proved for i� 1. Clearly, the only 
aseto 
onsider is k = i, as X 2 C(i) implies X 2 C(i�1) hen
e by the indu
tionhypothesis we get the surje
tivity between the Extk-modules for k < i.Thus assume that i > 1 and let E1 be an exa
t sequen
e of length k = ibetween S and X :E1 : 0!S!Xk�1!Xk�2!� � �!X1!X0!X! 0:Then E1 is equivalent to a sequen
e E2 via the following diagram:E2 : 0 ! S ! Xk�1 ! � � � ! ~X1 ! P0(X) ! X ! 0# #E1 : 0 ! S ! Xk�1 ! � � � ! X1 ! X0 ! X ! 0 .Thus we may write E2 as the Yoneda 
omposite of 0!S!Xk�1!� � �! ~X1!
1(X)! 0 and 0!
1(X)!P0(X)!X! 0. By assumption we have
1(X) 2 C(i�1), hen
e by indu
tion we get that E2 is equivalent to an exa
tsequen
e E3 (shown similarly as a Yoneda 
omposite) via:E2 : 0 ! S ! � � � ! ~X1 ! 
1(X) ! 0 ! 
1(X) ! P0(X) ! X ! 0# # # #E3 : 0 ! S ! � � � ! X 01 ! top
1(X) ! 0 ! top
1(X) ! ~P0 ! X ! 0 .Sin
e top
1(X) is semisimple and by i > 1, X 2 C(1), we get that the last partof the sequen
e is the image of an extension of topX with top
1(X):0 ! top
1(X) ! ~P0 ! X ! 0# #0 ! top
1(X) ! ~~P0 ! topX ! 0Hen
e we get the surje
tivity of the required Ext-maps. ut



8 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSCorollary 2.7. Let X 2 C(i) and S semisimple. Then any extension inExtk(X;S) for 2 � k � i 
an be represented by a long exa
t sequen
e betweenS and X where the kernel-
okernel terms in the interior of the sequen
e are allsemisimple.Proof. We shall give a proof by indu
tion on k. Any long exa
t sequen
e E1between S and X is equivalent to a sequen
e E2 viaE2 : 0 ! S ! ~Xk�1 ! Pk�2(X) ! � � � ! P0(X) ! X ! 0# # #E1 : 0 ! S ! Xk�1 ! Xk�2 ! � � � ! X0 ! X ! 0 .Here the kernel-
okernel terms of E2 are the syzygies 
k�1(X); : : : ;
1(X). ThusE2 is the Yoneda produ
t of an extension of S by 
k�1(X) and the k � 1-long
anoni
al exa
t sequen
e between 
k�1(X) and X . Now, by the assumption itfollows that 
k�1 2 C(1), and thus Proposition 2.6 implies that the �rst shortexa
t sequen
e is a lifting of an extension of S by top
k�1(X). Hen
e E2 isequivalent to the following Yoneda-
omposite E3:E2 : 0!S! ~Xk�1! 
k�1(X) ! 0! 
k�1(X) !� � �!P0(X)!X! 0# # # #E3 : 0!S! ~X 0k�1! top
k�1(X)! 0! top
k�1(X)!� � �! ~P0 !X! 0 .Consequently, if k = 2 then we are done. If k > 2 then we may apply theindu
tional hypothesis for the se
ond sequen
e between the semisimple moduletop
k�1(X) and X . This gives us the statement. utIn view of Proposition 1.1.(4) and the remarks following it, the previousobservation has the following dire
t 
onsequen
e for the spe
ies of the Ext-algebra A�.Corollary 2.8. If A is an algebra where all simple modules belong to CAthen the spe
ies S(A�) of A� is equal to the dual of the spe
ies of A, that isS(A�) = DS(A).Proof. We have to show only that for k � 2, every extension in ExtkA(Ŝ; Ŝ)is equivalent to a sequen
e whi
h is the Yoneda produ
t of k short exa
t se-quen
es with semisimple outer terms. But this is pre
isely the statement ofCorollary 2.7. utThe 
onverse of the previous statement is also true.Proposition 2.9. Let A be an algebra su
h that S(A�) = DS(A). Then everysimple module over A belongs to CA.



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 9Proof. Assume that there is a simple module S for whi
h S 2 C(i�1) n C(i); andassume i is minimal in this respe
t. Note that i � 2, as S 2 C(1) always holds.Thus 
i�1(S) 62 C(1), more pre
isely 
i(S) /t� radPi�1(S), hen
e there exists asimple module S0 and a short exa
t sequen
e E 0 : 0!S0! ~Pi�1!
i�1(S)! 0whi
h is the pushout of the sequen
e 0!
i(S)!Pi�1(S)!
i�1(S)! 0 andfor whi
h S0 � rad2 ~Pi�1. By Lemma 1 of [ADL2℄, this implies that one 
annotobtain E 0 as a pullba
k of an extension of a semisimple module with S0. Choosenow the element E of Exti(S; S0), 
orresponding to E 0 2 Ext1 �
i�1(S); S0�.If it would be possible to split this sequen
e into the produ
t of short exa
tsequen
es with semisimple endterms (i. e. if E would be equivalent to su
h asequen
e) then we would get a lifting from the �rst su
h sequen
e to E 0, a
ontradi
tion. Thus S(A�) 6= DS(A).Note that by the minimality of i and by Corollary 2.7, for arbitrary simplemodules S and S0 and for arbitrary k < i the elements of Extk(S; S0) 
an alwaysbe fa
tored into the produ
t of shorter exa
t sequen
es with semisimple outerterms. Sin
e E 
annot be fa
tored properly in this way, E 62 rad2A�. utHen
e we may formulate the following theorem about the spe
ies of theExt-algebra of an algebra A.Theorem 2.10. The following statements are equivalent for an algebra A.(i) S 2 CA for every simple right module S;(ii) SÆ 2 CÆA for every simple left module SÆ;(iii) S(A�) = DS(A).Proof. The equivalen
e of (i) and (iii) is just Corollary 2.8 and Proposi-tion 2.9. For the equivalen
e of (ii) and (iii) let us observe �rst that ifS(A) = (Di; i 2 I ; iWj ; i; j 2 I) then S(Aop) = ((Dopi ; i 2 I ; jWi; i; j 2 I)with the modules jWi being Dopi -Dopj -bimodules in a natural way. Then fromthe fa
t that (Aop)� = (A�)op we get that 
ondition (iii) is equivalent to thedual 
ondition S((Aop)�) = DS(Aop). Now we may apply the equivalen
e of (i)and (iii) to the algebra Aop. utA
tually, as we mentioned earlier, under the assumption that the simplemodules belong to C, one 
an prove the 
onverse of Proposition 2.6, too.Proposition 2.11. Assume that the 
onditions of Theorem 2.10 are satis�ed,i.e. every simple A-module S is in CA. Then the following statements areequivalent for a module X:(i) X 2 C(i);(ii) the natural map ExtkA(topX;S)!ExtkA(X;S) is surje
tive for every 0 �k � i and for every simple module S.



10 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSProof. We have to show only that (ii) implies (i) under the assumption on thesimple modules. Let us note �rst that for i = 1 the equivalen
e of these two
onditions is stated in Proposition 2 of [ADL2℄. Thus we may assume i > 1.Let us re
all from the proof of Proposition 2.9 that if X 2 C(j�1) n C(j) forsome 1 � j � i, then there exists an exa
t sequen
e E 2 Extj(X;S), with S sim-ple so that E is the Yoneda produ
t of some sequen
e E1 2 Ext1 �
j�1(X); S�and the 
anoni
al sequen
e E2 2 Extj�1 �X;
j�1(X)�, moreover the sequen
eE1 is not in the image of the map Ext1 � top
j�1(X); S�!Ext1 �
j�1(X); S�.On the other hand, if E was a lifting of a sequen
e E 0 2 Extj(topX;S), thenby the assumption on the simple modules, and by Corollary 2.7, E 0 
ould befa
tored as the produ
t of short exa
t sequen
es with semisimple outer terms.This would also result in a lifting of a sequen
e in Ext1 � top
j�1(X); S� to E1,a 
ontradi
tion. utIt is 
lear that the assumption that all simple modules belong to C isindeed ne
essary for the equivalen
e, as otherwise one 
ould 
hoose for X asimple module whi
h is not in C(i) but trivially satisfying 
ondition (ii).3. The fun
tor Ext�We shall assume in this se
tion that the Ext-algebra A� of the �nite di-mensional algebra A is itself �nite dimensional, i. e. gl:dimA <1.Let us re
all �rst that the fun
tor Ext� : mod-A!A� -modgr de�nedin Proposition 1.1 is the dire
t sum of the fun
tors ExtkA(�; Ŝ) for k � 0.That is, for an arbitrary module X 2 mod-A let Ext�(X) = Ext�A(X; Ŝ) =�k�0Extk(X; Ŝ) and similarly de�ne the a
tion on morphisms. For a moduleX 2 A� -modgr , let X [j℄ stand for the shifted graded module, i. e. the one forwhi
h X [j℄i = Xi�j .Here are some of the basi
 properties of Ext�.Lemma 3.1. (i) If X 2 CA, then we have radExt�(X) = �k�1ExtkA(X; Ŝ) =Ext� �
1(X)�[1℄ and in general for arbitrary ` � 1 we have rad` Ext�(X) =�k�`ExtkA(X; Ŝ) = Ext� �
`(X)�[`℄.(ii) If Ŝ 2 CA, that is, if all simple A-modules belong to CA then the 
onditionX 2 CA is equivalent to the 
ondition that radExt�(X) = �k�1ExtkA(X; Ŝ).Proof. The �rst statement follows from Proposition 2.6 and Corollary 2.7, sin
erad` Ext�(X) = (rad`A�)X . The se
ond statement is just a reformulation ofProposition 2.11. ut



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 11The next two lemmas show that Ext� : mod-A!A� -modgr preserves 
er-tain exa
t sequen
es.Lemma 3.2. Let 0!X!Y !Z! 0 be exa
t with the map X!Y a top em-bedding. If X 2 C, then the sequen
e 0!Ext�(Z)!Ext�(Y )!Ext�(X)! 0is also exa
t. If in addition Z 2 C, then the embedding Ext�(Z)!Ext�(Y ) isalso a top embedding.Proof. We have to show that the sequen
es 0!ExtiA(Z; Ŝ)!ExtiA(Y; Ŝ)!ExtiA(X; Ŝ)! 0 are exa
t for i � 0. Let us assume that the exa
tness is provedfor indi
es smaller than i and we shall prove it for i. Consider the following
ommutative diagram:0 ! X ! Y ! Z ! 0# # #0 ! topX ! topY ! topZ ! 0 .Here the bottom row is exa
t by the assumption X t�Y . Applying now thefun
tor ExtiA(�; Ŝ), we get the following 
ommutative diagram.0 ! ExtiA(Z; Ŝ) ! ExtiA(Y; Ŝ) ! ExtiA(X; Ŝ) ! 0" " "0 ! ExtiA(topZ; Ŝ) ! ExtiA(topY; Ŝ) ! ExtiA(topX; Ŝ) ! 0 .Here the bottom row is exa
t, sin
e the original sequen
e was split. Also thebeginning of the top row is exa
t by the indu
tional assumption. Finally, sin
eX 2 C, the last verti
al map is surje
tive by Proposition 2.6, hen
e the top rowis exa
t also at the last step. The se
ond part of the statement follows fromLemma 3.1.(i). utLemma 3.3. Let 0!X!Y !Z! 0 be exa
t with X � radY . If Y 2 C,then the sequen
e 0!Ext�(X)[1℄!Ext�(Z)!Ext�(Y )! 0 is also exa
t. Ifin addition Z 2 C, then Ext�(X)[1℄ � radExt�(Z), while adding the 
onditionX 2 C implies that Ext�(X)[1℄ t� radExt�(Z).Proof. Let us noti
e �rst that topY ' topZ and the morphism Y ! topYmay be fa
tored through Z via Y !Z! topZ ' topY . Proposition 2.6implies that the maps ExtiA(topY; Ŝ)!ExtiA(Y; Ŝ) are surje
tive, hen
e themaps ExtiA(Z; Ŝ)!ExtiA(Y; Ŝ) are also surje
tive, and the kernel of this mapis just Exti�1(X; Ŝ). Thus the �rst part of the statement follows. The se
-ond part now follows from Lemma 3.1.(i) sin
e Ext�(X)[1℄ � �k�1ExtkA(Z; Ŝ) =radExt�(Z). Finally, if X 2 C is assumed besides the original 
ondition thatY 2 C, then Lemma 2.5.(i) implies that Z 2 C. Hen
e by the previous 
on-siderations and by applying Lemma 3.1.(i) for the module X , we get thatExt�(X)[1℄ t� radExt�(Z), as required. ut



12 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSLet us now denote by S�Æ(i) and P �Æ(i) the 
orresponding simple andinde
omposable proje
tive left A�-modules. Based on the previous lemmas, weeasily get the following statements that we shall need in the sequel.Proposition 3.4. (i) Ext� �S(i)� = P �Æ(i).(ii) Ext� �P (i)� = S�Æ(i).(iii) Ext� � radP (i)�[1℄ = radP �Æ(i).Proof. The statements of (i) and (ii) are trivial, while (iii) follows from (i), (ii)and Lemma 3.3. utThe next statement establishes a 
onne
tion between the 
ategories CA andCÆA� .Proposition 3.5. If X; radX 2 CA, then Ext�(X) 2 CÆ(1)A� . Thus if radiX 2 Cfor every i then Ext�(X) 2 CÆA� .Proof. Take the exa
t sequen
e 0! radX!X! topX! 0 . Then Lemma 3.3implies that the following sequen
e is also exa
t:0!Ext�(radX)[1℄!Ext�(topX)!Ext�(X)! 0 :Here the middle term is proje
tive by Proposition 3.4.(i). Sin
e radX 2 C byassumtion, Lemma 3.3 implies that Ext�(radX)[1℄ t� radExt�(topX). Hen
eExt�(X) 2 CÆ(1)A� .The se
ond statement now follows by straightforward indu
tion. ut4. Quasi-hereditary algebras with spe
ial �ltrationsIn this se
tion we give a suÆ
ient 
ondition for an algebra to have a quasi-hereditary Ext-algebra. The 
ondition is in terms of the existen
e of 
ertain�ltrations. The 
anoni
al 
onstru
tions from [ADL1℄ will result in algebrassatisfying these 
onditions. In parti
ular we get that shallow, left medial, rightmedial and replete algebras will have replete, right medial, left medial andshallow Ext-algebras, respe
tively.Let us take an algebra A with a �xed ordering e = (e1; e2; : : : ; en) of itsprimitive orthogonal idempotents, and let us 
onsider A� with the \oppositeorder", i. e. with f = (fn; fn�1 : : : ; f1), where fi = idS(i). Take 'i = fi+fi�1+: : : + f1 and '0 = 0. Let us denote by ��Æ(i) the 
orresponding standard leftA�-modules (with respe
t to this opposite order), furthermore let U�Æ(i) andV �Æ(i) stand for the radi
al and the �rst syzygy of ��Æ(i). Then similarly tothe results of Proposition 3.4, one may identify the left standard A�-modules.



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 13Proposition 4.1. Assume that (A; e) is quasi-hereditary with �(i) 2 CA andU(i) 2 CA. Then the left standard module ��Æ(i) of A� is S
hurian; moreover,Ext� ��(i)� = ��Æ(i), Ext� �U(i)�[1℄ = V �Æ(i) and Ext� �V (i)�[1℄ = U�Æ(i).Proof. By Lemma 3.1, the 
ondition �(i) 2 CA implies that radExt� ��(i)� =�k�1ExtkA ��(i); Ŝ�. Hen
e we get that topExt� ��(i)� ' HomA ��(i); Ŝ� 'HomA �S(i); S(i)� is simple and of type S�Æ(i). Moreover, sin
e �(i) has noextensions with simple modules S(j) for j < i, and ExtkA ��(i); S(i)� 6= 0 if andonly if k = 0 (
f. for example [DR2℄), we get that the 
omposition fa
tors ofExt� ��(i)� (with the ex
eption of the top fa
tor) are all of type S�Æ(j) withj > i. Thus Ext� ��(i)� is a homomorphi
 image of ��Æ(i).On the other hand, 
onsider the sequen
e 0!U(i)!�(i)!S(i)! 0. ByLemma 3.3 we get that the following sequen
e is also exa
t:0!Ext� �U(i)�[1℄!Ext� �S(i)�!Ext� ��(i)�! 0 :Moreover, Ext� �U(i)�[1℄ � radExt� �S(i)�, sin
e Ext� �S(i)� ' P �Æ(i) by part(i). Finally, using again the fa
t that U(i) 2 CA, we get by Lemma 3.1.(i)that Ext� �U(i)�[1℄ � A�'i�1P �Æ(i) hen
e ��Æ(i) is a homomorphi
 image ofExt� ��(i)�. Comparing the two results we get the statement for Ext� ��(i)�.We also get that ��Æ(i) is S
hurian, sin
e the simple fa
tor S�Æ(i) appears onlyon
e as a 
omposition fa
tor of ��Æ(i).The statement that Ext� �U(i)�[1℄ = V �Æ(i) follows immediately from theprevious 
onsiderations. Furthermore, by Lemma 3.1.(i) we have also U�Æ(i) =rad��Æ(i) = radExt� ��(i)� = �k�1ExtkA ��(i); Ŝ� = �k�0ExtkA �V (i); Ŝ�[1℄ =Ext� �V (i)�[1℄. The proof is now 
omplete. utIn order to �nd a sub
lass of quasi-hereditary algebras whi
h is 
losedunder taking Ext-algebras, we introdu
e now the main 
on
ept of this se
tion.Definition 4.2. An algebra A with a 
omplete sequen
e of primitive orthog-onal idempotents e = (e1; e2; : : : ; en) is 
alled solid if it satis�es the following
onditions for 1 � i � n:(1) �(i) is S
hurian;(2) V (i) t� radP (i);(3) U(i) has a top �ltration by S(j)'s and �(j)'s for j < i;(4) V (i) has a top �ltration by �(j)'s and P (j)'s for j > i.Proposition 4.3. If the algebra (A; e) is solid then it is a lean quasi-hereditaryalgebra with S(i);�(i); U(i) 2 CA for 1 � i � n.



14 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSProof. To prove the quasi-heredity, observe �rst, that from the �ltration 
ondi-tions on V (i) it is easy to see that the module AA has a �-�ltration with stan-dard modules whi
h are, by assumption, S
hurian. Hen
e the algebra (A; e) isquasi-hereditary.To prove that the algebra A is lean, it is enough to show that it satis�es
ondition (2) of Theorem 2.1 in [ADL1℄, i. e. that V (i) t� radP (i) and the tra
e�ltration of U(i) is a top �ltration for every i. The �rst part is in
luded inthe de�nition of a solid algebra. For the se
ond part, it is enough to prove thefollowing observation: A module X has top tra
e �ltration if and only if it hasa top �ltration where the quotients of the 
onse
utive terms are homomorphi
images of the standard modules.One dire
tion of the statement is obvious sin
e a top tra
e �ltration 
anbe re�ned to a top �ltration where all the quotients of the �ltration are lo-
al modules. For the opposite dire
tion, assume that X has a �ltration withquotients being homomorphi
 images of standard modules. If ` is the largestindex for whi
h an image of �(`) will o

ur as a quotient in the �ltration then
learly X"`+1A = 0, moreover X"`A t�X . The rest will now follow by down-ward indu
tion and from the fa
t that the natural image of a top �ltration ofX when fa
toring out with the tra
e submodule X"`A remains a top �ltration.(It is worth mentioning that, unless we fa
tor out with the tra
e of a proje
tivemodule, it is not true in general that the natural image of a top submodule isne
essarily a top submodule of the image.) Hen
e (A; e) is lean.Next we shall prove by downward indu
tion on i that �(i) 2 CA. Thestatement is 
lear for �(n) sin
e it is proje
tive. So assume the statement forindi
es larger than i. Then the indu
tion hypothesis and Lemma 2.4 implythat V (i) 2 CA, hen
e by Remark 2.2.(iii) we get that �(i) 2 CA. Thus thestatement is proved for �(i), 1 � i � n. In parti
ular, S(1) = �(1) 2 CA.By indu
tion on i and using Lemma 2.4 we get that U(i) 2 CA and hen
e byLemma 2.5.(i) we have that S(i) 2 CA. This proves the statement. utProposition 4.4. If A is solid with respe
t to the sequen
e e = (e1; e2; : : : ; en),then the algebras A=A"i+1A and "iA"i for 1 � i � n are also solid.Proof. Clearly, in both 
ases we may apply indu
tion. Thus it is enough toprove that the algebras A=A"nA and "2A"2 are solid. For the se
ond statementone only has to observe that if e 2 A is an idempotent element, X t�Y in mod-Aand X = XeA, then Xe t�Y e in mod-eAe. Thus the top �ltrations of U(i) andV (i) will be inherited from A to the algebra "2A"2. The rest is easy, as is the
ase of the algebra A=AenA. ut



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 15Let us mention, that the �ltration 
onditions (3) and (4) for A=A"i+1A and"iA"i are pre
isely those that 
ome by natural restri
tions from the �ltrationsfor A.The main result of this se
tion is the following theorem.Theorem 4.5. Let (A; e) be a solid algebra. Then:(a) �(A�)op; f) is solid (hen
e quasi-hereditary);(b) S(A�) = DS(A);(
) dimK A�� = dimK A;(d) ("iA"i)� ' A�Æ(A�'i�1A�). (Note that the isomorphisms �A=(A"iA)�� ''i�1A�'i�1 hold for any quasi-hereditary algebra (A; e)).Proof. Propositions 4.1 and 4.3 imply that (A�op; f) satis�es 
ondition (1) forsolid algebras. Condition (2) for (A�op; f) will follow from Proposition 3.4.(iii),Proposition 4.1 and Lemma 3.2. Conditions (3) and (4) for (A�op; f) are the
onsequen
es of Proposition 4.1 and Lemma 3.2. Thus (A�op; f) is solid, provingpart (a).Part (b) is an immediate 
onsequen
e of Proposition 4.3 and the generalTheorem 2.10.To prove (
), let us re
all an earlier observation that the fun
tor Ext�establishes a bije
tion between the fa
tors of the top �ltrations of U(i) and V (i)and the top �ltrations of V �Æ(i) and U�Æ(i); in this bije
tion simple modules
orrespond to proje
tive modules, standard modules 
orrespond to standardmodules and proje
tive modules to simple modules. Repeating the pro
ess,we get that A�� has the same type of �ltrations for the modules U��(i) andV ��(i) as A does. It is 
lear that dimK S(i) = dimK S��(i), hen
e it is enoughto show that the inde
omposable proje
tive modules over A and A�� have thesame 
omposition fa
tors. But this is easily proved �rst by indu
tion for �(i)and U(i) and then by downward indu
tion for P (i) and V (i). Hen
e dimK A =dimK A��.Finally we prove (d). Evidently, the exa
t fun
tor HomA("iA;�) :mod-A!mod-"iA"i de�nes a homomorphism � : A�! ("iA"i)� whose ker-nel satis�es Ker� � A�'i�1A�. A
tually, this is an epimorphism. To seethis, let us observe �rst that by Proposition 4.3 the algebra A is lean, hen
eExt1A �S(j); S(`)� = Ext1"iA"i �S(j); S(`)� for any j; ` � i. Next, Proposi-tions 4.4 and 4.3 imply that S(j) 2 C"iA"i for any j � i, hen
e by Corollary 2.7every element of ("iA"i)� 
an be represented by exa
t sequen
es with semisim-ple kernel-
okernel terms in the interior of the sequen
e. Sin
e the short exa
tsequen
es with semisimple outer terms do appear in the image of �, we get that� is indeed an epimorphism.



16 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSThus to prove (d), it is enough to show that the K-dimensions ofA�Æ(A�'i�1A�� and ("iA"i)� are equal. Now the remark following Proposi-tion 4.4 implies that these two algebras satisfy the same �ltration 
onditions,hen
e an easy indu
tion argument gives the equality of dimensions. utCorollary 4.6. If the algebra (A; e) is shallow (left medial, right medial orreplete) then (A�; f) is replete (right medial, left medial or shallow, respe
tively)on the dual spe
ies.Proof. The statement follows from the previous theorem and the 
hara
teriza-tions of shallow, left medial, right medial and replete algebras given in Se
tion 3of [ADL1℄. ut5. The 
ase of monomial algebrasIn this se
tion we shall be dealing with the 
ase of monomial algebras.Thus we shall assume that A = K�=I , with � = (�0;�1) a graph, where�0 = f 1; 2; : : : ; n g is the set of verti
es, also thought of as paths of length 0,and �1 is the set of arrows; the 
orresponding idempotents of A will be denotedby e1; e2; : : : ; en. Denote by �2 the set of minimal 0-paths, i. e. paths belongingto I su
h that they have no proper initial or end segments in I . The assumptionthat A is monomial means that I = h�2i. We 
all a path right-minimal 0-pathif it belongs to I and it has no initial segment in I .Having de�ned �0;�1;�2, we de�ne the set �k for k = 3; 4; : : : as follows:�k = fp1p2 : : : pk path j p1 2 �1,pj is a path =2 I for 1 � j � k,pjpj+1 is a right-minimal 0-path for 1 � j � k � 1g :Note that in the de�nition of �k the de
omposition p = p1p2 : : : pk is unique, andwe will refer to it as the 
anoni
al de
omposition of p. Finally take ~� = 1[k=0�kand ~�+ = 1[k=1�k .Then (
f. [GZ℄) the Ext-algebra A� of A is isomorphi
 to the K-algebrawhose multipli
ative basis is ~� and the multipli
ation is de�ned by:p � p0 = � pp0 if pp0 2 ~�0 otherwise.At this isomorphism a path in �k from i to j 
orresponds to an extension inExtkA �S(i); S(j)�. In the sequel we shall identify these two algebras.Let us start with a te
hni
al lemma about the multipli
ative stru
tureof A�.



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 17Lemma 5.1. (i) If p = p1p2 : : : pk is a 
anoni
al de
omposition and pi 2 �1then p1 : : : pi�1 and pi : : : pk both belong to ~� with these 
anoni
al de
om-positions, and thus p is the produ
t of these paths in A�.(ii) If p1p2 : : : pi�1 and pi : : : pk are 
anoni
al de
ompositions of two paths in~�, and pi�1pi is a 0-path then p1p2 : : : pi�1pi : : : pk 2 ~�.(iii) If p = p0��p00 2 ~� with �; � 2 �1 and �� 2 �2, then the paths p0� and �p00both belong to ~�, thus p = p0� � �p00 in A�.(iv) Suppose that A is lean with respe
t to the given order and has S
hurianstandard modules. If p = p0��p00 2 ~� with i �! j �! k and j � i; k, thenp0�; �p00 2 ~�; in parti
ular p 2 A�fjA�.Proof. (i) is obvious from the de�nition of ~�. In (ii) we only need to noti
ethat pi�1pi is right-minimal as a 0-path, sin
e pi�1 =2 I and pi 
onsists only ofone arrow. In order to prove (iii) we observe that �� 
annot be a part of any
anoni
al 
omponent of p, thus � is an initial segment of a 
omponent. Thenthe right-minimality 
ondition implies that � itself is a 
anoni
al 
omponent,so we 
an apply (i). Finally, we note that the 
onditions on A in (iv) implythat any 2-long path �� whose middle vertex is minimal belongs to �2, thuswe 
an apply (iii). utLet us �rst prove a general statement about the graph of the Ext-algebraof a monomial algebra A. The impli
ation (3) ) (2) was also proved by Greenand Za
haria (see [GZ℄).Theorem 5.2. Let A ' K�=I be a monomial algebra. Then the following areequivalent:(1) S(i) 2 CA for 1 � i � n;(2) A and A�op have the same graph;(3) A is quadrati
;(4) Ext2A(Ŝ; Ŝ) � rad2(A�).If (A; e) is, in addition, lean with S
hurian standard modules, then 
onditions(1){(4) are all equivalent to:(5) �(i) 2 C, �Æ(i) 2 CÆ for 1 � i � n.Proof. The equivalen
e of (1) and (2) was proved in Theorem 2.10 in a moregeneral setting, for arbitrary algebras.Next, the impli
ation (2)) (4) is 
lear, sin
e the assumption on the graphof A� means that the stronger 
ondition of ExtiA(Ŝ; Ŝ) � rad2A� for i � 2 issatis�ed (
f. the remark following Proposition 1.1).To prove that (4) ) (3) suppose that A is not quadrati
, i. e. �2 
ontainsa path p longer than 2. Re
all that the K-linear span of �2 is in bije
tive



18 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACS
orresponden
e with Ext2A(Ŝ; Ŝ). Thus 
ondition (4) would imply that p is theprodu
t of two elements of ~�+. On the other hand it is 
lear that p 62 �1 � �1.Moreover, by the minimality of the elements of �2, p 
annot 
ontain a properzero subpath. Hen
e p 62 rad2A�, a 
ontradi
tion.Finally, we get that (3)) (2), sin
e if �2 
onsists of paths of length 2 only,then by Lemma 5.1.(i) �i 
onsists of paths of length i, and �i � radiA�.Assume now that the algebra A is in addition lean with S
hurian standardmodules. Let us show that (1) ) (5). It is easy to see that U(i) is the K-linear span of those non-zero paths for whi
h the �rst arrow is i �! j with j < i,while V (i) is the span of paths with �rst arrow i �! ` and i < `. Thus radP (i) =U(i)�V (i). Now 
ondition (1) implies that radP (i) = 
1�S(i)� 2 CA and hen
eby Lemma 2.3 we get that V (i) 2 CA. Sin
e by assumption V (i) t� radP (i),we get that �(i) 2 CA. Using the equivalen
e of 
onditions (i) and (ii) ofTheorem 2.10, we get that (1) ) (5).To verify that (5) ) (1){(4), we will show that if A is not quadrati
, then�(i) 62 CA or �Æ(i) 62 CÆA for some 1 � i � n. If A is not quadrati
, then thereis a path p 2 �2 of length greater than 2. Let p = i0 �1! i1 �2!� � � �k! ik. Now, it
annot happen that i0 > i1 and ik > ik�1 sin
e otherwise the minimal vertex ijwould appear in the interior of the path p, hen
e by Lemma 5.1.(iv) we wouldget that p is not a minimal 0-path. Thus, we may assume by the left-rightsymmetry of 
ondition (5) that i0 < i1. But then we get that �(i0) 62 C(2)A ,sin
e the path i1 �2!� � � �k! ik is non-zero. This 
ompletes the proof. utLet us now turn to the question of quasi-heredity. For the idempotents in�0 as elements of A� we shall also use the notation f1; f2; : : : ; fn to 
onformwith the general notation in this paper. Re
all that f = (fn; fn�1; : : : ; f1) and'i = fi + fi�1 + : : :+ f1, with '0 = 0.The main result of this se
tion is a ne
essary and suÆ
ient 
ondition forthe quasi-heredity of A�. In order to handle the 
on
ept of quasi-heredityeÆ
iently in this setting, we need the following te
hni
al lemma for algebraswith a multipli
ative basis.Lemma 5.3. Suppose the algebra (A; e) has a multipli
ative basis B = B1 [B2 su
h that B1 = f e1; e2; : : : ; en g is a 
omplete set of primitive orthogonalidempotents and B2 is a basis of radA. Then A is quasi-hereditary with respe
tto the given order e if and only if for any b; b0; 
; 
0 2 B,(i) bei
 = b0ei
0 implies that either bei
 2 A"i+1A or bei = b0ei and ei
 = ei
0;(ii) bei; ei
 =2 A"i+1A implies that bei
 =2 A"i+1A.Proof. Let us noti
e �rst that for any b 2 B there is pre
isely one pair of indi
es(i; j) su
h that eibej 6= 0 and for this pair b = eibej .



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 19Sin
e the image of B(e1+: : :+en�1) gives a multipli
ative basis forA=AenA,it is enough to prove that the 
onditions (i) and (ii) formulated for i = n holdif and only if AenA is a heredity ideal, i. e. AenA is a dire
t sum of 
opies of�(n) = P (n) with �(n) S
hurian.Assume �rst that AenA is a heredity ideal. Then we haveAenA = Pb2B benAwhere the non-zero summands have simple top isomorphi
 to S(n). On the otherhand the images of these summands are independent in AenA= rad(AenA).Namely, suppose that 0 6= 
en 2 Pb2Bnf 
 g benxb + Aen radA for some 
 2 Band xb 2 A. Then 
en 2 Pb2Bnf 
 g benxben + Aen radAen = Pb2Bnf 
 g�ben +Aen radAen for some �b 2 K. But the S
hurian property implies thaten radAen = 0, hen
e 
 = 
en = Pb2Bnf 
 g�0bb, a 
ontradi
tion. Thus thenumber of non-zero summands in Pb2B benA is equal to the number of dire
tsummands of topAenA, hen
e to the number of (inde
omposable proje
tive)dire
t summands of AenA. Hen
e a dimension argument shows that Pb2B benAis a dire
t sum, with non-zero 
omponents isomorphi
 to enA. So the di�erentsummands have disjoint bases, implying that ben
 6= b0en
0 whenever b 6= b0and ben
; b0en
0 6= 0; this gives half of 
ondition (i). On the other hand, thenatural homomorphism enA! benA (for ben 6= 0) is inje
tive, hen
e it mapsdi�erent basis elements to di�erent basis elements. This implies the other halfof 
ondition (i) and also 
ondition (ii).Now assume that 
onditions (i) and (ii) are satis�ed for (A; e) with i =n. We want to show that AenA is a heredity ideal. First, �(n) is S
hurian,i. e. en radAen = 0. Otherwise, there would be an element b 2 B2 su
h thatenben 6= 0, so en � en � ben = enb � en � en = enben 6= 0, 
ontradi
ting 
ondition(i), sin
e en 6= enb. Next we show that AenA is a dire
t sum of 
opies of P (n).As above, we 
an write AenA = Pb2B benA, where the non-zero summands areindependent by (i). Furthermore, ea
h summand is either 0 or isomorphi
 toenA by 
onditions (i) and (ii). utTheorem 5.4. Let A = K�=I be a monomial algebra with gl:dimA < 1.Then (A�; f) is quasi-hereditary if and only if (A; e) is lean with S
hurian stan-dard modules.Proof. Assume �rst that (A; e) is lean with S
hurian standard modules. A
-
ording to Lemma 5.3, all we have to prove is that for every i and for everyp; p0; q; q0 2 ~�:(i) p � fi � q = p0 � fi � q0 62 A�'i�1A� implies that p = p0 and q = q0;(ii) p � fi; fi � q 62 A�'i�1A� implies that p � fi � q 62 A�'i�1A�.



20 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSTo prove (i), assume s = p � fi � q = p0 � fi � q0 62 A�'i�1A�. Then byLemma 5.1.(iv) the vertex i is minimal in the path s. If p 6= p0, say, p is aproper subpath of p0 then Lemma 5.1.(iv) implies that s = p � fi � x � fi � q0with some x 2 ~�+. Now it follows from the leanness and the S
hurian property,together with Lemma 5.1.(ii) that x; x�x; x�x�x; : : : all belong to ~�, 
ontradi
tingthe 
ondition that gl:dimA <1.In proving 
ondition (ii) we use the same argument as above, showing �rstthat i is a minimal vertex in both p �fi and fi � q and then again Lemma 5.1.(ii)implies (together with leanness and the S
hurian property) that p � fi � q is anon-zero produ
t in A� and the path 
ontains no verti
es smaller than i. Hen
ep � fi � q 62 A�'i�1A�.Assume now that (A�; f) is quasi-hereditary. To prove that the monomialalgebra (A; e) is lean with S
hurian standard modules, it is enough to show that� has no loops and for any arrows i �! j and j �! k with j � i; k, the path ��is a 0-path in A, i. e. �� 2 �2. The former statement follows immediately fromthe S
hurian property of A�, while the latter follows from 
ondition (ii) of thequasi-heredity of (A�; f), as des
ribed above. utAnother type of relationship between leanness and quasi-heredity is givenin the following theorem.Theorem 5.5. Let A = K�=I be a monomial algebra. If (A; e) is quasi-hereditary then either (A�; f) is lean with S
hurian standard modules or thegraph of A� has loops.Proof. Suppose (A; e) is quasi-hereditary and the graph of A� has no loops. Letp 2 �k, k � 2 be a path going through the verti
es v0; v1; : : : ; v`. By indu
tionon k we prove that v1; : : : ; v`�1 < max f v0; v` g .Let us �rst take the 
ase k = 2. Suppose there is 1 � i � ` � 1 su
hthat vi � vj for 0 � j � ` and p = p0p00 where the endpoint of p0 is vi.By the minimality of the 0-path p the subpaths p0 and p00 are not 0 in A.Sin
e A is monomial, the non-zero paths of � form a multipli
ative basis of A,satisfying the requirements of Lemma 5.3. The maximality of vi implies thatp0; p00 62 A"i+1A, hen
e we may apply 
ondition (ii) of Lemma 5.3 to get thatp = p0p00 is a non-zero path. This 
ontradi
ts to the assumption that p 2 �2.Suppose the statement has been proved for indi
es up to k, k � 2; now weshall prove it for k+1. Let p = p1p2 : : : pkpk+1 be the 
anoni
al de
ompositionof p. Let p0 = p1p2 : : : pk 2 �k , pk = rs su
h that p00 = spk+1 2 �2. Thus bythe indu
tion hypothesis no internal vertex of p 
an be maximal as it would bean internal vertex of p0 or p00.Now, to prove that A� is lean with S
hurian standard modules, by Theo-rem 2.1 in [ADL1℄ it is enough to show that fi rad2A�fj � fi radA�'M radA�fj



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 21for 1 � i; j � n and M = max f i; j g. So let p = p0 � p00 2 ~� be a path fromi to j with p0; p00 2 ~�+. Then, as we proved above, M = max f i; j g is big-ger than any internal vertex of p, in parti
ular than the endpoint of p0. Sop 2 fi radA�'M�1 radA�fj , proving that (A�; f) is lean. Noti
e that this alsoproves the S
hurian property (i. e. that fi radA�fi � fiA�'i�1A�fi) if we takeinto a

ount the assumption that the graph of A� has no loops. utThe previous two theorems yield the following 
orollary.Corollary 5.6. Let A = K�=I be a monomial algebra. If (A; e) is lean andquasi-hereditary, then so is (A�; f).Proof. Sin
e A is quasi-hereditary, gl:dimA < 1 and hen
e by Theorem 5.4(A�; f) is quasi-hereditary. This, on the other hand, implies that the graph ofA� 
annot have loops, so by Theorem 5.5 (A�; f) is also lean. ut6. ExamplesExample 6.1. Let AA = 121 � 21 � 31 , and 
onsider0! 31 �! 12 31 ! 12 ! 0:Here � is a top embedding and the �rst two terms of the sequen
e are in CAbut the last one is not in C(1)A (
f. Lemma 2.4).Example 6.2. Let AA = 121 � 21 32 � 32 , and 
onsider0! 12 �! 1 32 ! 3 ! 0:Here � is a top embedding and the last two terms of the sequen
e are in CA,but the �rst is not in C(1)A (see again Lemma 2.4).Example 6.3. Let AA = 121 � 21 � 31 � 41 321 , and 
onsider0! 12 �! 412 ! 4 ! 0:Here � is a top embedding into the radi
al of the se
ond term, the last two termsof the sequen
e are in CA, but the �rst one is not in C(1)A (see Lemma 2.5).Example 6.4. Let AA = 12 31 � 21 � 3 , and 
onsider0! 2 �! 12 3 ! 13 ! 0:Here � is again an embedding into the top of the radi
al of the se
ond term,the �rst and the last term of the sequen
e are in CA but the middle term is notin C(1)A (
f. Lemma 2.5).



22 ISTV�AN �AGOSTON, VLASTIMIL DLAB AND ERZS�EBET LUK�ACSExample 6.5. Let AA = 111 . Here �(1) 2 C;�(1)Æ 2 CÆ but S(1) 62 C. Thusthe assumption in Theorem 5.2 on the S
hurian property of �(i) was reallyneeded to prove the impli
ation (5) ) (1). (Let us mention here that for thisexample only the proje
tive modules are in CA.)Example 6.6. Let us 
onsider the following algebra:AA = 123 � 23 45 � 35 � � � � � 2k2k+1 2k+22k+3 � 2k+12k+3 � � � � � 2`+22`+32`+4 � 2`+32`+4 � 2`+4 :Then S(1) 2 C(`+1) n C(`+2) and all the other simple modules are in CA. Hen
eobserve that Extk(Ŝ; Ŝ) � rad2A� for all 2 � k � ` + 1, thus the graph ofA� is in
reased only by an element from Ext`+2(Ŝ; Ŝ). This 
annot happen formonomial algebras by Theorem 5.2 and Theorem 2.10.Example 6.7. Take the following algebra:AA = 1 � 21 � 321 � 43 521 � 51 :Then �(i) 2 CA;�(i)Æ 2 CÆA for 1 � i � n but U(4) 62 CA (
f. Proposition 4.1).Let us also observe thatA�A� = 1 � 21 � 32 � 43 51 � 51is not lean with respe
t to the opposite order (
f. also Proposition 3.5) al-though A is lean quasi-hereditary; for monomial algebras this 
annot happenby Corollary 5.6.Example 6.8. Let A be given byAA = 14 � 21 34 � 345 � 45 � 5 :Then we have: A�A� = 145 � 21 34 � 34 � 45 � 5 :Thus A is lean quasi-hereditary but A� is not quasi-hereditary (with respe
t tothe opposite order), something that 
annot happen for monomial algebras byCorollary 5.6. | Noti
e also that here for C = "2A"2 we haveCC = 234 � 345 � 45 � 5 andC�C� = 23 5 � 34 � 45 � 5 :On the other hand for B� = A�=A�'1A� we haveB�B� = 23 � 34 � 45 � 5 :Hen
e ("2A"2)� 6'A�=A�'1A�, something that 
annot happen for solid algebras(see Theorem 4.5).



HOMOLOGICAL DUALITY AND QUASI-HEREDITY 23Example 6.9. Let AA = 12312 � 2312 � 312 . Then A�A� = 12 � 23 � 31 3 . Hen
e Ais quasi-hereditary, monomial, and the graph of A� 
ontains a loop, hen
e these
ond possibility in the impli
ation of Theorem 5.5 a
tually may o

ur.Example 6.10. Let AA = 134 � 2 � 342 � 42 . Then A�A� = 12 3 � 2 � 34 � 42 .Here A is monomial, lean and not quasi-hereditary, but A� is lean and quasi-hereditary. Hen
e the 
onverse of Theorem 5.5 and Corollary 5.6 is not true.Example 6.11. Let us 
onsider the following algebra:AA = 123 � 2345 � 345 � 4567 � � � � � 2k2k+12k+22k+3 � 2k+12k+22k+3 � 2k+22k+32k+4 � 2k+32k+4 � 2k+4 :Then the Ext-algebra is given by:A�A� = 12 4 6 ��� 2k+4 � 23 � 34 6 ��� 2k+4 � 45 � � � � � 2k+22k+3 � 2k+32k+4 � 2k+4 :Thus A is a monomial algebra, and Extk+2A (Ŝ; Ŝ) 6� rad2A�; hen
e some newelements of the spe
ies of A� 
ome from high Ext's. Of 
ourse, by Theorem 5.2there are elements of Ext2A(Ŝ; Ŝ) whi
h get into the spe
ies, too.Example 6.12. Let A be given byAA = 13 � 21 543 � 3 � 43 � 543 :Then we have: A�A� = 13 � 21 53 � 3 � 43 � 54 andA��A�� = 13 � 21 543 � 3 � 43 � 543 :Here A is replete but A 6' A��. Thus in Theorem 4.5 although we have equalityfor the dimensions of A and A��, in general we 
annot state that these twoalgebras would be isomorphi
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