HOMOLOGICAL DUALITY AND QUASI-HEREDITY

ISTVAN AGoSTON!, VLASTIMIL DLAB? AND ERZSEBET LUKACS?

ABsTRACT. This paper represents a general study of the (Yoneda) Ext-algebra
A* of a finite dimensional K-algebra A. Our motivation lies in the problem of
establishing conditions under which (i) the species of A* coincides with the dual
species of A and (ii) the quasi-heredity of A (or A*) yields the quasi-heredity
of A* (or A, respectively). These questions are closely related to the Kazhdan—
Lusztig Theory as presented by [CPS2]. The main results include introducing the
concept of a solid algebra and the relevant Theorem 4.5 as well as a rather complete
description of the situation in the case of monomial algebras in Section 5.

1. Introduction. Notation and basic definitions

Since the introduction of quasi-hereditary algebras by Cline, Parshall and
Scott in [CPS1] and [PS], the concept has proved to be instrumental in a num-
ber of areas of representation theory. The quasi-hereditary algebras arising in
most of these applications enjoy some additional properties. Thus, a Kazhdan—
Lusztig theory of Cline, Parshall and Scott ([CPS2]) leads to quasi-hereditary
algebras whose homological dual is again a quasi-hereditary algebra. One of the
main objectives of the present paper is to find a natural class of such algebras;
the resulting concept of a solid algebra with the related Theorem 4.5 is given
in Section 4. In the course, we also study the Ext-algebra A* of an algebra A
in general. The essential components of our machinery include the concepts of
top embeddings and the subcategory C C mod-A in Section 2 and the functor
Ext* : mod-A — A* -mod in Section 3. In Section 5 we deal with monomial
algebras; here we present a rather complete description, using and extending
results of Green and Zacharia ([GZ]). Finally, the fact that some of the results
in the text cannot be strengthened is illustrated by examples in Section 6.

Some of our results are parallel to those of Cline, Parshall and Scott
in [CPS2] although our approach and basic assumptions are different. We
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should also like to refer to the recent study of graded Koszul rings by Beilin-
son, Ginzburg and Soergel ([BGS]), as well as the lectures of P. Smith and
R. Martinez-Villa, presented at the Seventh International Conference on Rep-

resentation Theory in Mexico in August, 1994.

Let A be a finite dimensional algebra over an arbitrary field K. Let
{e;|i € I} be a fixed complete set of primitive orthogonal idempotents, with
the corresponding indecomposable projective (right) modules denoted by P(i),
and their simple tops by S(i). Without loss of generality we will assume that
A is basic, thus 1 = > e;. Throughout the paper we shall denote by S the

iel
direct sum of the simple modules S(i); thus S4 ~ A/rad A. Whenever it is
needed, we shall speak about left A-modules, too; the corresponding projective
and simple left modules will be denoted by P°(i) and S°(i).

The Ezt-algebra of A will be denoted by A*. It is, by definition, the K-
algebra whose underlying vector space is

Ext® (S, 5) ~ Ext® (S(i), S(j
IEO xtx (S, S) Eg @ Ext’ (S(i), S(j))

k>0 i,jel

and the multiplication is defined by the Yoneda product of extensions. That is
to say, if

0=S@{E) =X 1= = Xg—=>S(y)—=0

and

0=S()=Vp1—= =Yy =>Sk)—=0

represent elements of Ext (5(5),5(i)) and Ext’y (S(k),S(j)), respectively,
then the corresponding product is represented by the exact sequence

02S(i)» X 1= Xg—2Ym 1= =Yy —=S(k)—0

in Ext™ (S(k), S()).

It is easy to check that in this way one gets an associative K-algebra which
is finite dimensional if and only if gl.dim A < oc. Let us also mention that,
in the presence of the standard K-duality, (A*)" ~ (A4°P)*, and thus we may
confine ourselves to studying Ext-algebras defined in terms of right A-modules
alone.

In what follows we list some of the properties of A*; the proofs are straight-

forward.
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PROPOSITION 1.1. Let A be a basic finite dimensional K-algebra and A* its
Ext-algebra as defined above.

(1) The decomposition A* = & Ext®(S,8) defines a graded algebra structure

k>0
on A*.
(2) If gl.dim A < oo, then for X € mod-A the correspondence Ext*(X) =
d Eth(X, S) defines a contravariant functor from mod-A to A* -modg,,
k>0

the category of finitely generated graded left A*-modules.

(3) The elements f; = ids(; € Homy (S(i),S(i)) C A* for i € I form a com-
plete set of primitive orthogonal idempotents in A*. Thus the indecom-
posable left projective A*-modules may be identified with P*°(i) = A* f; ~
Ext? (S(i),5) = a Extk (S(),89).

(4) If A* is finite dimensional, then rad A* = kiﬁl Extk (S, 5) and rad® A* C
@ Extk(8,3). B
Y xtiy ( )

Notice that in part (4) of the previous statement the containment rad® A* C
e Extﬁ(g,g) is very often proper, i.e. the filtration given by the powers of
E>¢

the radical of A* (radical filtration, for short) will not, in general, coincide with
the filtration obtained from the natural grading of A* mentioned in part (1).
One of the key points of our investigation is precisely the question, when will
the relation rad® A* = k6>Be Ext% (S, S) hold for every .

This question may also be formulated in terms of the species of the algebras
involved. Let us recall that for the basic K-algebra A with primitive idempo-
tents {e;|i € I} the species S(A) of A is the system (D;, i € I; ;W;, 4,5 € I)
of division algebras D;, finite dimensional over K, and D;-D;-bimodules ;W
where D; = ei(A/ radA)el- ~ Endy (S(z)) and ;W; = ei(radA/ rad? A)ej ~
D Ext!y (S(i), S(j)). (Here D stands for the standard K-duality.) When all the
division algebras D; are equal to K and the bimodules ;¥ are direct sums of
copies of the regular bimodule K (for example, when K is algebraically closed)
then one may speak about the quiver T'(A) of A; hence the complete informa-
tion is contained in an oriented graph having I as its vertex set and dimg ;W;
arrows from ¢ to j.

Furthermore, if a species S = (D;, i € I; ;Wj,i,j € I) is given, then
we may define the dual species DS = (D;, i € I; Z-Wj, i,j € I) for which the
division algebras are D; = D;, and Z-Wj = D(;W;) fori,j € I. — Then it is not
too difficult to see that the previous question whether the natural grading of
A* gives the radical filtration is equivalent to asking whether S(A4*) = DS(A)
holds. For quivers the previous condition translates to I'(4*) = T'(A4°P).

The principal question that we investigate in our paper is the following:
given a finite dimensional quasi-hereditary algebra A, when is the Ext-algebra
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of A also quasi-hereditary? Or more generally: what can one say about A or
A* if one of them is quasi-hereditary?

To this end, let us recall the definition of a quasi-hereditary algebra (cf.
[CPS1], [DR2]). Let A be a finite dimensional algebra with a fixed ordering e =
(e1,e2,...,e,) of a complete set of primitive orthogonal idempotents. Denote
by e; the idempotent €; = e; + €;41 + ... + ep; for convenience let €,41 = 0.
The trace filtration of a module M (with respect to the fixed order e) is given
by M = Me1 A D MesA D -+ D Me,A D 0. Then we may define the i-th
standard module A(i) to be the first non-trivial quotient in the trace filtration of
the indecomposable projective module P(i). Thus A(i) ~ e;A/e;Ae;+1 A. Note
that A(i) is the largest quotient of P(i) with composition factors S(j) with
j <i. The algebra A is called quasi-hereditary with respect to the ordering e
if A(4) is Schurian, i.e. Ends A(4) is a division algebra for 1 < ¢ < n and the
trace filtration factors of the regular module A 4 are isomorphic to direct sums of
standard modules. In the sequel we shall also use the notations U (i) = rad A(7)
and V(i) = e;Ae; 11 A, with the corresponding left modules denoted by A°(7),
U°(i) and V°(i). Thus we have the exact sequences 0 = U (i) = A(i) = S(i) =0
and 0=V (i) > P(i) = A(i) > 0. For the basic properties of quasi-hereditary
algebras and standard modules we refer the reader to [PS], [DR1], [DR2] and
[DK].

One of the main tools in our description is the concept of top submodules or
top embeddings. Recall that a submodule X C Y is said to be a top submodule
(denoted by XéY) if the embedding of X into Y induces an embedding of
topX = X/rad X into topY = Y/radY ([ADLI1]). Or more formally: X é Y
if and only if X C Y and rad X = X NradY. In this case the embedding of
X into Y is also called a top embedding. A filtration of a module X is called
a top filtration if all the terms of the filtrations are top submodules of X. An
algebra A is called lean with respect to an ordering e of simple A-modules if
V(7) érad P(i) and V°(3) érad Pe(i) for 1 < i < n. Further properties of top
embeddings as well as characterizations of lean algebras can be found in [ADL1]
and [ADL2].

2. The species of an Ext-algebra

For an arbitrary module X € mod-A let
dji1 dy
BP0 S BPX) BP(X) BX -0

be a minimal projective resolution of X, with the corresponding syzygies
Qj+1(X) = Kerdj for ] = 0, 1, .
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DEFINITION 2.1. We say that a module X € mod-A belongs to C() = Cﬁf) for
some ¢ € IN if Qj(X)éradefl(X) for j =1,2,...,¢. For convenience define
C® = mod-A. Finally, let C =Cy = iE]OOC(i). — Similarly, one may define the
subcategory C4 C A-mod of left A-modules.

REMARK 2.2. (i) X € € does not depend on the particular minimal projective
resolution chosen for X. In particular, all projective modules will belong to C.

(ii) X € C') implies X € CY) for every j < i.

(iii) For any i > 1 we have that X € C(¥) if and only if Q; (X) € =Y and
01 (X) Erad Po(X). T gl.dim A = € < oo then C4 = C.

(iv) From the definition it is clear that A is lean if and only if the right and
left standard modules A(i) and A°(i) belong to C*) and C(V)°, respectively.

The next three lemmas give some of the closure properties of these subcat-
egories.

LEMMA 2.3. Let 0= X =Y = Z —0 be a split exact sequence. Then for given
i € IN, we have Y € C'D if and only if X,Z € C1.

Proof. Consider the sequence 0 = Q; (X)®Q1(Z) = Po(X)®Po(Z) = XBZ — 0.
Then clearly Q(X) ® Q1(Z) maps into rad (Po(X) ® Po(Z)) = rad Po(X) @

radPo(Z), and this is a top embedding if and only if €;(X) érad Po(X) and
0 (2) érad Po(Z). By induction on i and Remark 2.2.(iii) we are done. O

LEMMA 2.4, Let0— X =Y = Z — 0 be an ezxact sequence with the map X =Y
a top embedding. Then if X and Z both belong to C'V) then also Y € CV,

Proof. We may assume i > 1. Consider the following diagram:

0 0 0
{ { {

0 - UWX) - KUY) - W2 = 0
l l {

0 = Po(X) = PoY) = Po(Z2) = O
l l {

0 — X — Y — Z — 0
! ! {
0 0 0

Here 2, (X), 2 (Z) € =V, and Q4 (X) C rad Po(X), Q1 (Z) Erad Po(Z). Note
also that the middle row is split, i.e. Po(Y) = Po(X) & Po(Z), since
XéY. Thus we get that Ql(X)érad’Pg(Y), hence Ql(X)éﬂl(Y). So
by induction on i we get that Q;(Y) € CU~V. Also, Q(YV)/Q(X) =
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0 (2) éradPg(Z) and rad Py(Z) is a direct summand of rad Py(Y) /2 (X),
thus Q1 (Y)/Q (X) Crad Po(Y) /1 (X). Now, Lemma 1.1.c) of [ADL1] gives
that Q4 (Y) érad Po(Y), so by Remark 2.2.(iii), Y € C¥) as required. O

It is easy to show that the converse of Lemma 2.4 does not hold. Actually,
examples will be given in the last section showing that XY € C does not imply
that Z € C™Y) and Y, Z € C does not imply that X € C(1),

LEMMA 2.5. Let 0= X =Y > Z—0 be an exact sequence with XéradY.
Then we have:
(i) if X €CY and Y € CY then Z € CUHY);
(ii) if Z € CU*tY and Y is projective then X € C(9);
(iit) if Z € C'D and X is projective then' Y € C(9).

Proof. (i) Consider the following diagram with exact rows and columns:

0 0
1 )
Lo

o
1
Pl 4 O+ O

{ l

— Y — A - 0
{ {
0 0

- -

Here X C radY implies that Py(Y) =~ Po(Z), and the Snake Lemma
gives us an additional exact sequence 0—Q(Y)—Q(Z)— X —0. Since
(V) érad’Pg(Y) = rad Py(Z) we get that Ql(Y)éﬂl(Z). By assumption,
X € €, and by Remark 2.2.(iii), Q;(Y) € C%. Hence by Lemma 2.4 we
get that Q,(Z) € C'. Furthermore, XéradY = radPo(Y)/Q1(Y). Since
(V) éradPg(Y), we get by Lemma 1.1.c) of [ADL1] that Q4 (Z) érad’Pg(Y)
=rad Py(Z). Hence Z € CU+D),

(ii) This follows from the definition of C(? and by Remark 2.2.(i) and (iii).

(iii) Consider the diagram we had in the proof of part (i). Again we get an
exact sequence 0 = Q;(Y) = Q1 (Z) = X — 0 which is in this case split, as X is
projective. Since Q;(Z) € €'Y, we get by Lemma 2.3 that ,(Y) € ¢(i=1),
Moreover, Q1 (Y) € Q,(Z) Erad Po(Z) = rad Po(Y), hence by Remark 2.2 (i),
Y € €, as required. O

As in the case of Lemma 2.4, it is again easy to construct examples to
show that the statements of (ii) and (iii) of the previous lemma cannot be
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strengthened. Examples will be given in the last section that Y, Z € C does not
imply that X € C™") and X, Z € C does not imply that Y € C(1),

The next proposition gives one of the most important homological proper-
ties of the elements of C(¥). It turns out (cf. Proposition 2.11) that this property
almost completely characterizes these modules. The statement generalizes one
direction of Theorem 3 of [ADL2].

PROPOSITION 2.6. If X € CO for some i € IN, then the natural maps
Ext¥ (top X, S) = Ext" (X, S) are surjective for every 0 < k < i and every
(semi)simple module S.

Proof. We shall proceed by induction on i. Clearly, the statement is true for
i = 0. For ¢ = 1 this is just Proposition 2 of [ADL2]; actually for the case i =1,
k =1, the converse statement is also proved there.

Assume now that the statement is proved for i — 1. Clearly, the only case
to consider is k = i, as X € C( implies X € Ci=Y hence by the induction
hypothesis we get the surjectivity between the Ext*-modules for k < i.

Thus assume that ¢ > 1 and let & be an exact sequence of length k& = i
between S and X:

E1: 08— X 1= X o= -2 X1 2> X2+ X —0.

Then & is equivalent to a sequence & via the following diagram:

E: 0 = 85 = Xy = 0 = Xl — Po(X) - X = 0
I I i i I
E: 0 = S = X1 = 0 = Xy — Xo - X —= 0.

Thus we may write £ as the Yoneda composite of 0 =S5 — Xj_ 1 —---
= X; =0 (X)—=0and 0— Q (X) = Py(X) = X — 0. By assumption we have
Q;(X) € €Y, hence by induction we get that & is equivalent to an exact
sequence & (shown similarly as a Yoneda composite) via:

E:028—> - > X > UX) 20> (X)) = Py(X)—> X =0
[ ! ! ! ool
E3:0—= S =+ = X >topM(X) = 0—=>topl(X)—= Py — X —=0.

Since top Q; (X) is semisimple and by i > 1, X € C), we get that the last part
of the sequence is the image of an extension of top X with top Q4 (X):

0 = topH(X) — P, = X = 0
I 4 \J
0 = topQ(X) = Py — topX — 0

Hence we get the surjectivity of the required Ext-maps. O
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COROLLARY 2.7. Let X € C9 and S semisimple. Then any extension in
Extk(X, S) for 2 < k < i can be represented by a long exact sequence between
S and X where the kernel-cokernel terms in the interior of the sequence are all

semisimple.

Proof. We shall give a proof by induction on k. Any long exact sequence &;
between S and X is equivalent to a sequence & via

E:0>8S = X1 2 Proa(X) = - 5 Py(X) > X =0
I i X3 i I

E1:0285=>X,_1—~> Xt == Xgo —-X=0.

Here the kernel-cokernel terms of £, are the syzygies Q1 (X), ..., Q1 (X). Thus
&, is the Yoneda product of an extension of S by Qj_1(X) and the k — 1-long
canonical exact sequence between Qj_1(X) and X. Now, by the assumption it
follows that Qj,_; € CV), and thus Proposition 2.6 implies that the first short
exact sequence is a lifting of an extension of S by top Q_1(X). Hence &, is
equivalent to the following Yoneda-composite £3:

£2:08S=Xp 1= U (X)) =202 QG (X)) == P(X)>X—0

| ’ ’ } I
£3:0 8= X, | > topQ_1(X) 2 0—=topQy_1(X)—=---—= Py —X—0.

Consequently, if ¥ = 2 then we are done. If k& > 2 then we may apply the
inductional hypothesis for the second sequence between the semisimple module
top Qx—1(X) and X. This gives us the statement. O

In view of Proposition 1.1.(4) and the remarks following it, the previous
observation has the following direct consequence for the species of the Ext-
algebra A*.

COROLLARY 2.8. If A is an algebra where all simple modules belong to Cx
then the species S(A*) of A* is equal to the dual of the species of A, that is
S(A*) = DS(A).

Proof. We have to show only that for & > 2, every extension in Extﬁ(é,g)
is equivalent to a sequence which is the Yoneda product of k short exact se-
quences with semisimple outer terms. But this is precisely the statement of
Corollary 2.7. O

The converse of the previous statement is also true.

PROPOSITION 2.9. Let A be an algebra such that S(A*) = DS(A). Then every
simple module over A belongs to C4.
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Proof. Assume that there is a simple module S for which S € C=1) \ C(); and
assume i is minimal in this respect. Note that i > 2, as S € C(!) always holds.
Thus Q;_1(S) ¢ C(V), more precisely Q;(S) éradPi_l(S), hence there exists a
simple module S’ and a short exact sequence &' : 0= S’ — P, — Q;21(5)—=0
which is the pushout of the sequence 0 — Q;(S) = P;_1(S) = Q;—1(S) = 0 and
for which S’ C rad? P,_,. By Lemma 1 of [ADL2], this implies that one cannot
obtain £ as a pullback of an extension of a semisimple module with S’. Choose
now the element & of Ext(S,S"), corresponding to &' € Ext! (Q;-1(9),5").
If it would be possible to split this sequence into the product of short exact
sequences with semisimple endterms (i.e. if £ would be equivalent to such a
sequence) then we would get a lifting from the first such sequence to &', a
contradiction. Thus S(A*) # DS(A).

Note that by the minimality of ¢ and by Corollary 2.7, for arbitrary simple
modules S and S’ and for arbitrary k < i the elements of Ext*(S, S') can always
be factored into the product of shorter exact sequences with semisimple outer
terms. Since € cannot be factored properly in this way, £ ¢ rad? A*. O

Hence we may formulate the following theorem about the species of the
Ext-algebra of an algebra A.

THEOREM 2.10. The following statements are equivalent for an algebra A.
(i) S € C4 for every simple right module S;

(i) S° € CY for every simple left module S°;

(iii) S(A*) = DS(A).

Proof. The equivalence of (i) and (iii) is just Corollary 2.8 and Proposi-
tion 2.9. For the equivalence of (ii) and (iii) let us observe first that if
S(A) = (D, i€ I; ;W;,i,j € I) then S(A%?) = (D, i€ I; ;Wi i,j € I)
with the modules ;W; being D”-Dj*-bimodules in a natural way. Then from
the fact that (A4°P)" = (A*)°? we get that condition (iii) is equivalent to the
dual condition S((A4°P)") = DS(A°P). Now we may apply the equivalence of (i)
and (iii) to the algebra A°P. O

Actually, as we mentioned earlier, under the assumption that the simple
modules belong to C, one can prove the converse of Proposition 2.6, too.

PROPOSITION 2.11. Assume that the conditions of Theorem 2.10 are satisfied,
i.e. every simple A-module S is in C4. Then the following statements are
equivalent for a module X :
(i) X ec®;
(ii) the natural map Ext® (top X, S) — Exth (X, S) is surjective for every 0 <
k <'i and for every simple module S.
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Proof. We have to show only that (ii) implies (i) under the assumption on the
simple modules. Let us note first that for i = 1 the equivalence of these two
conditions is stated in Proposition 2 of [ADL2]. Thus we may assume i > 1.
Let us recall from the proof of Proposition 2.9 that if X € /=1 \ € for
some 1 < j < i, then there exists an exact sequence £ € Ext? (X, S), with S sim-
ple so that & is the Yoneda product of some sequence & € Ext! (Qj,l(X), S)
and the canonical sequence & € Ext/ ™! (X, Qj,l(X)), moreover the sequence
&1 is not in the image of the map Ext' (top Q;_1(X),S) = Ext" (Q;_1(X), S).
On the other hand, if £ was a lifting of a sequence &' € Ext/(top X, S), then
by the assumption on the simple modules, and by Corollary 2.7, £ could be
factored as the product of short exact sequences with semisimple outer terms.
This would also result in a lifting of a sequence in Ext' (top Q;_;(X),S) to &1,
a contradiction. O

It is clear that the assumption that all simple modules belong to C is
indeed necessary for the equivalence, as otherwise one could choose for X a

simple module which is not in C() but trivially satisfying condition (ii).

3. The functor Ext*

We shall assume in this section that the Ext-algebra A* of the finite di-
mensional algebra A is itself finite dimensional, i.e. gl.dim A < oo.

Let us recall first that the functor Ext* : mod-A — A*-mod,, defined
in Proposition 1.1 is the direct sum of the functors Extk(—,S) for k& > 0.
That is, for an arbitrary module X € mod-A let Ext*(X) = Ext%(X,S) =

@ Ext*(X,S) and similarly define the action on morphisms. For a module
k>0

X € A*-mod,,, let X[j] stand for the shifted graded module, i.e. the one for
which X[]]z = Xi,j.
Here are some of the basic properties of Ext*.

LemMA 3.1. (i) If X € Ca, then we have rad Ext*(X) = @ Ext%(X,S) =
k>1

Ext* (€4 (X))[1] and in general for arbitrary £ > 1 we have rad’ Ext*(X) =
®, Exth (X, ) = Ext* (Q(X))[4].
k>

(i) IJ;SY € Ca, that is, if all simple A-modules belong to C4 then the condition
X € Cy is equivalent to the condition that rad Ext*(X) = & Extf(X,5).
k>1

Proof. The first statement follows from Proposition 2.6 and Corollary 2.7, since
rad’ Ext*(X) = (rad® A*)X. The second statement is just a reformulation of

Proposition 2.11. |
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The next two lemmas show that Ext” : mod-A — A* -mod,, preserves cer-
tain exact sequences.

LEMMA 3.2. Let 0= X =Y = Z— 0 be exact with the map X =Y a top em-
bedding. If X € C, then the sequence 0 — Ext*(Z) — Ext*(Y) = Ext*(X) —0
is also exact. If in addition Z € C, then the embedding Ext*(Z) — Ext*(Y) is
also a top embedding.

Proof. We have to show that the sequences 0— Ext’(Z,S) — Exty (Y, S) —
Exty (X, S) — 0 are exact for i > 0. Let us assume that the exactness is proved
for indices smaller than ¢ and we shall prove it for ¢. Consider the following
commutative diagram:

O - X - Y = Z =0

) \) \:
0 = topX — topY — topZ — 0.

t
Here the bottom row is exact by the assumption X cY. Applying now the
functor Ext’y(—, S), we get the following commutative diagram.

0 — Exty(zZ,8) — Exty,(v,5) — Exty(X,5) — 0
T ST T

0 — Ext4y(topZ,S) — Ext4(topY,S) — Ext%(topX,S) — 0.
Here the bottom row is exact, since the original sequence was split. Also the
beginning of the top row is exact by the inductional assumption. Finally, since
X € C, the last vertical map is surjective by Proposition 2.6, hence the top row
is exact also at the last step. The second part of the statement follows from
Lemma 3.1.(i). O

LemMMA 3.3. Let 0= X =Y =+ Z—0 be exact with X C radY. IfY € C,
then the sequence 0 — Ext*(X)[1] = Ext*(Z) — Ext*(Y) =0 is also exact. If
in addition Z € C, then Ext™(X)[1] C rad Ext*(Z), while adding the condition

X € C implies that Ext*(X)[1] Crad Ext* (Z).

Proof. Let us notice first that topY ~ top Z and the morphism Y —topY
may be factored through Z via Y —=Z —topZ ~ topY. Proposition 2.6
implies that the maps Ext’ (topY, 5’) — ExtY (Y, 5') are surjective, hence the
maps Ext’y(Z,S) = Ext’, (Y, S) are also surjective, and the kernel of this map
is just Exti_l(X, 5’) Thus the first part of the statement follows. The sec-
ond part now follows from Lemma 3.1.(i) since Ext*(X)[1] C ke>91 Extk (Z,8) =

rad Ext*(Z). Finally, if X € C is assumed besides the original condition that
Y € C, then Lemma 2.5.(i) implies that Z € C. Hence by the previous con-
siderations and by applying Lemma 3.1.(1) for the module X, we get that

Ext* (X)[1] é rad Ext*(Z), as required. O
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Let us now denote by S*°(i) and P*°(i) the corresponding simple and
indecomposable projective left A*-modules. Based on the previous lemmas, we
easily get the following statements that we shall need in the sequel.

PROPOSITION 3.4. (i) Ext* (S(i)) = P*°(i).
(i) Ext* (P(i)) = S*°(i).
(iii) Ext* (rad P(i))[1] = rad P*°(i).

Proof. The statements of (i) and (ii) are trivial, while (iii) follows from (i), (ii)
and Lemma 3.3. O

The next statement establishes a connection between the categories C4 and
Che-

PROPOSITION 3.5. If X,rad X € Ca, then Ext*(X) € C5". Thus ifrad’ X € C
for every i then Ext*(X) € C5..

Proof. Take the exact sequence 0 @ rad X = X —top X = 0. Then Lemma 3.3
implies that the following sequence is also exact:

0 — Ext*(rad X)[1] = Ext* (top X) = Ext*(X) — 0.

Here the middle term is projective by Proposition 3.4.(i). Since rad X € C by
assumtion, Lemma 3.3 implies that Ext*(rad X)[1] érad Ext*(top X). Hence
Ext*(X) e c5M.

The second statement now follows by straightforward induction. O

4. Quasi-hereditary algebras with special filtrations

In this section we give a sufficient condition for an algebra to have a quasi-
hereditary Ext-algebra. The condition is in terms of the existence of certain
filtrations. The canonical constructions from [ADL1] will result in algebras
satisfying these conditions. In particular we get that shallow, left medial, right
medial and replete algebras will have replete, right medial, left medial and
shallow Ext-algebras, respectively.

Let us take an algebra A with a fixed ordering e = (e1,ea,...,e,) of its
primitive orthogonal idempotents, and let us consider A* with the “opposite
order”, i.e. with £ = (fy, fn1 ..., f1), where f; = idg(;). Take p; = fi+ fi_1 +
...+ f1 and pg = 0. Let us denote by A*°(i) the corresponding standard left
A*-modules (with respect to this opposite order), furthermore let U*° (i) and
V*°(i) stand for the radical and the first syzygy of A*°(i). Then similarly to
the results of Proposition 3.4, one may identify the left standard A*-modules.
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PROPOSITION 4.1. Assume that (A, e) is quasi-hereditary with A(i) € C4 and
U(i) € Ca. Then the left standard module A*° (i) of A* is Schurian; moreover,
Ext* (A(i)) = A*°(i), Ext* (U(i))[1] = V*°(i) and Ext* (V(i))[1] = U*°(i).

Proof. By Lemma 3.1, the condition A(i) € C4 implies that rad Ext* (A(i)) =
@ Ext¥ (A(i), S). Hence we get that top Ext* (A(i)) ~ Homa (A(i),S) =~
k>1

Hom 4 (S(i), S(i)) is simple and of type S*°(i). Moreover, since A(i) has no
extensions with simple modules S(j) for j < i, and Ext, (A(i),5(i)) # 0if and
only if £ = 0 (cf. for example [DR2]), we get that the composition factors of
Ext* (A(i)) (with the exception of the top factor) are all of type S*°(j) with
j >i. Thus Ext* (A(i)) is a homomorphic image of A*° (7).

On the other hand, consider the sequence 0 = U (i) = A(i) = S(i) = 0. By
Lemma 3.3 we get that the following sequence is also exact:

0— Ext* (U(i))[1] = Ext* (S(i)) = Ext* (A(i)) = 0.

Moreover, Ext* (U(i))[1] C rad Ext* (S(i)), since Ext* (S(i)) ~ P*°(i) by part
(i). Finally, using again the fact that U(i) € Ca, we get by Lemma 3.1.(i)
that Ext* (U(i))[1] € A*p;—1 P*°(i) hence A*°(i) is a homomorphic image of
Ext* (A(i)). Comparing the two results we get the statement for Ext* (A(i)).
We also get that A*°(4) is Schurian, since the simple factor S*° (i) appears only
once as a composition factor of A*°(i).

The statement that Ext* (U(i))[1] = V*°(i) follows immediately from the
previous considerations. Furthermore, by Lemma 3.1.(i) we have also U*°(i) =
rad A*°(i) = rad Ext* (A(i)) = 8 Ext (A(i), ) = o Ext® (V(i),5)[1] =

Ext* (V(i))[1]. The proof is now complete. O

In order to find a subclass of quasi-hereditary algebras which is closed

under taking Ext-algebras, we introduce now the main concept of this section.

DEFINITION 4.2. An algebra A with a complete sequence of primitive orthog-
onal idempotents e = (eg,ea,...,e,) is called solid if it satisfies the following

)

conditions for 1 < < n:

(1) A(i) is Schurian;

(2) V(i) Crad P(i);

(3) U(i) has a top filtration by S(j)’s and A(j)’s for j < i;
(4) V(i) has a top filtration by A(j)’s and P(j)’s for j > i.

PROPOSITION 4.3. If the algebra (A, e) is solid then it is a lean quasi-hereditary
algebra with S(i), A(i),U(i) € C4 for 1 <i <mn.
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Proof. To prove the quasi-heredity, observe first, that from the filtration condi-
tions on V(%) it is easy to see that the module A 4 has a A-filtration with stan-
dard modules which are, by assumption, Schurian. Hence the algebra (A, e) is
quasi-hereditary.

To prove that the algebra A is lean, it is enough to show that it satisfies
condition (2) of Theorem 2.1 in [ADL1], i.e. that V(%) érad P(i) and the trace
filtration of U(i) is a top filtration for every i. The first part is included in
the definition of a solid algebra. For the second part, it is enough to prove the
following observation: A module X has top trace filtration if and only if it has
a top filtration where the quotients of the consecutive terms are homomorphic
images of the standard modules.

One direction of the statement is obvious since a top trace filtration can
be refined to a top filtration where all the quotients of the filtration are lo-
cal modules. For the opposite direction, assume that X has a filtration with
quotients being homomorphic images of standard modules. If £ is the largest
index for which an image of A(£) will occur as a quotient in the filtration then
clearly Xepy1 A = 0, moreover Xe A é X. The rest will now follow by down-
ward induction and from the fact that the natural image of a top filtration of
X when factoring out with the trace submodule XeyA remains a top filtration.
(It is worth mentioning that, unless we factor out with the trace of a projective
module, it is not true in general that the natural image of a top submodule is
necessarily a top submodule of the image.) Hence (A, e) is lean.

Next we shall prove by downward induction on ¢ that A(i) € C4. The
statement is clear for A(n) since it is projective. So assume the statement for
indices larger than i. Then the induction hypothesis and Lemma 2.4 imply
that V(i) € Ca, hence by Remark 2.2.(iii) we get that A(i) € C4. Thus the
statement is proved for A(i), 1 < i < n. In particular, S(1) = A(1) € Ca.
By induction on i and using Lemma 2.4 we get that U(i) € C4 and hence by
Lemma 2.5.(1) we have that S(i) € C4. This proves the statement. O

PROPOSITION 4.4. If A is solid with respect to the sequence e = (eq, e, ..., €ey,),
then the algebras AJ/Ae;11 A and €;Ae; for 1 <i < n are also solid.

Proof. Clearly, in both cases we may apply induction. Thus it is enough to
prove that the algebras A/Ae, A and 2 Aeo are solid. For the second statement
one only has to observe that if e € A is an idempotent element, X é Y in mod-A
and X = XeA, then Xe é Ye in mod-eAe. Thus the top filtrations of U (i) and
V(i) will be inherited from A to the algebra ey Aes. The rest is easy, as is the
case of the algebra A/Ae,A. O
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Let us mention, that the filtration conditions (3) and (4) for A/Ae;+1 A and
g;Ae; are precisely those that come by natural restrictions from the filtrations
for A.

The main result of this section is the following theorem.

THEOREM 4.5. Let (A,e) be a solid algebra. Then:

(a) ((A*)°",f) is solid (hence quasi-hereditary);

(b) S(A*) = DS(A);

(c) dimg A** = dimg A;

(d) (g;Ae;)* ~ A*[(A*p;_1 A*). (Note that the isomorphisms (A/(AsiA))* ~
pi—1A*@;_1 hold for any quasi-hereditary algebra (A, e)).

Proof. Propositions 4.1 and 4.3 imply that (4*°P,f) satisfies condition (1) for
solid algebras. Condition (2) for (4*°P, f) will follow from Proposition 3.4.(iii),
Proposition 4.1 and Lemma 3.2. Conditions (3) and (4) for (A*°P f) are the
consequences of Proposition 4.1 and Lemma 3.2. Thus (A*°?, f) is solid, proving
part (a).

Part (b) is an immediate consequence of Proposition 4.3 and the general
Theorem 2.10.

To prove (c), let us recall an earlier observation that the functor Ext*
establishes a bijection between the factors of the top filtrations of U (i) and V'(4)
and the top filtrations of V*°(i) and U*°(i); in this bijection simple modules
correspond to projective modules, standard modules correspond to standard
modules and projective modules to simple modules. Repeating the process,
we get that A** has the same type of filtrations for the modules U**(i) and
V**(i) as A does. It is clear that dimg S(i) = dimg S**(4), hence it is enough
to show that the indecomposable projective modules over A and A** have the
same composition factors. But this is easily proved first by induction for A(7)
and U (i) and then by downward induction for P(i) and V (i). Hence dimg A =
dimg A**,

Finally we prove (d). Evidently, the exact functor Homu(e; A, —)
mod-A — mod-¢; Ae; defines a homomorphism & : A* — (¢;4¢;)" whose ker-
nel satisfies Ker® D A*p;_1A*. Actually, this is an epimorphism. To see
this, let us observe first that by Proposition 4.3 the algebra A is lean, hence
Extly (S(j), S(€)) = Extl 4. (S(j),S(¢)) for any j,¢ > 4. Next, Proposi-
tions 4.4 and 4.3 imply that S(j) € Ce, ¢, for any j > i, hence by Corollary 2.7
every element of (g;4¢;)" can be represented by exact sequences with semisim-
ple kernel-cokernel terms in the interior of the sequence. Since the short exact
sequences with semisimple outer terms do appear in the image of ®, we get that

® is indeed an epimorphism.
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Thus to prove (d), it is enough to show that the K-dimensions of
A*/(A*(pi_lA*) and (g;A4¢;)* are equal. Now the remark following Proposi-
tion 4.4 implies that these two algebras satisfy the same filtration conditions,
hence an easy induction argument gives the equality of dimensions. O

COROLLARY 4.6. If the algebra (A,e) is shallow (left medial, right medial or
replete) then (A*,f) is replete (right medial, left medial or shallow, respectively)

on the dual species.

Proof. The statement follows from the previous theorem and the characteriza-

tions of shallow, left medial, right medial and replete algebras given in Section 3
of [ADL1]. O

5. The case of monomial algebras

In this section we shall be dealing with the case of monomial algebras.
Thus we shall assume that A = KT'/I, with T = ([,T1) a graph, where
To={1,2,...,n} is the set of vertices, also thought of as paths of length 0,
and I'; is the set of arrows; the corresponding idempotents of A will be denoted
by e1,e2,...,e,. Denote by I's the set of minimal 0-paths, i.e. paths belonging
to I such that they have no proper initial or end segments in I. The assumption
that A is monomial means that I = (['s). We call a path right-minimal 0-path
if it belongs to I and it has no initial segment in 1.

Having defined T'g, 'y, 5, we define the set 'y for k = 3,4, ... as follows:

Ly = {pip2...pr path | pr € Ty,
pjis a path ¢ I for 1 < j <k,
PjPj+1 is a right-minimal 0-path for 1 < j < k —1}.

Note that in the definition of I'y, the decomposition p = pyps ... p is unique, and

we will refer to it as the canonical decomposition of p. Finally take [' = :Lj) '
=0

and f+ = kole Fk .
Then (cf. [GZ]) the Ext-algebra A* of A is isomorphic to the K-algebra
whose multiplicative basis is ' and the multiplication is defined by:

o Jpp ifpp el

bep {O otherwise.

At this isomorphism a path in I’y from i to j corresponds to an extension in
Ext¥ (S(i), S(j)). In the sequel we shall identify these two algebras.

Let us start with a technical lemma about the multiplicative structure
of A*.
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LEmMA 5.1. (i) If p = pipa...pr is a canonical decomposition and p; € Ty
then py1...pi—1 and p;...pr both belong to T with these canonical decom-
positions, and thus p is the product of these paths in A*.

(ii) If pip2...pi—1 and p;...pr are canonical decompositions of two paths in
T, and pi_1pi is a O-path then pips...pi—1pi...px € L.

(iii) If p = p'aBp” € T with o, B € Ty and af € Ty, then the paths p'a and Bp"
both belong to T, thus p = p'a - Bp'" in A*.

(iv) Suppose that A is lean with respect to the given order and has Schurian
standard modules. If p = p'afp" € T with iﬂ>j£>k and j < i,k, then
p'a, Bp" € T; in particular p € A* f; A*.

Proof. (i) is obvious from the definition of . In (ii) we only need to notice
that p;_1p; is right-minimal as a 0-path, since p;_1 ¢ I and p; consists only of
one arrow. In order to prove (iii) we observe that af cannot be a part of any
canonical component of p, thus 3 is an initial segment of a component. Then
the right-minimality condition implies that ( itself is a canonical component,
so we can apply (i). Finally, we note that the conditions on A in (iv) imply
that any 2-long path a8 whose middle vertex is minimal belongs to I's, thus
we can apply (iii). O

Let us first prove a general statement about the graph of the Ext-algebra
of a monomial algebra A. The implication (3) = (2) was also proved by Green
and Zacharia (see [GZ]).

THEOREM 5.2. Let A ~ KT /I be a monomial algebra. Then the following are
equivalent:

(1) S(i) €Ca for 1 <i<n;

(2)
(3) A is quadratic;

(4) Ext%(S,S5) C rad®(A4*).

If (A, e) is, in addition, lean with Schurian standard modules, then conditions

A and A*°P have the same graph;

(1)~(4) are all equivalent to:
(5) A(i) e C, A°(i) € C° for 1 <i < n.

Proof. The equivalence of (1) and (2) was proved in Theorem 2.10 in a more
general setting, for arbitrary algebras.

Next, the implication (2) = (4) is clear, since the assumption on the graph
of A* means that the stronger condition of Ext’($,S) C rad® A* for i > 2 is
satisfied (cf. the remark following Proposition 1.1).

To prove that (4) = (3) suppose that A is not quadratic, i.e. I's contains
a path p longer than 2. Recall that the K-linear span of I's is in bijective
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correspondence with Ext? (S, S). Thus condition (4) would imply that p is the
product of two elements of I'. On the other hand it is clear that p ¢ T'; - ;.
Moreover, by the minimality of the elements of I's, p cannot contain a proper
zero subpath. Hence p ¢ rad® A*, a contradiction.

Finally, we get that (3) = (2), since if 'y consists of paths of length 2 only,
then by Lemma 5.1.(i) T; consists of paths of length i, and T'; C rad’ A*.

Assume now that the algebra A is in addition lean with Schurian standard
modules. Let us show that (1) = (5). It is easy to see that U(i) is the K-
linear span of those non-zero paths for which the first arrow is i — j with j <,
while V(i) is the span of paths with first arrow i 5 ¢ and i < £. Thus rad P(i) =
U(i)®dV (i). Now condition (1) implies that rad P(i) = € (S(i)) € C4 and hence
by Lemma 2.3 we get that V(i) € C4. Since by assumption V(i) érad P(3),
we get that A(i) € C4. Using the equivalence of conditions (i) and (ii) of
Theorem 2.10, we get that (1) = (5).

To verify that (5) = (1)—(4), we will show that if A is not quadratic, then
A(i) € Ca or A°(i) € CS for some 1 < i < mn. If A is not quadratic, then there
is a path p € T'y of length greater than 2. Let p = ig P ﬂﬁik. Now, it
cannot happen that i > ¢; and 4} > i;_1 since otherwise the minimal vertex ¢;
would appear in the interior of the path p, hence by Lemma 5.1.(iv) we would
get that p is not a minimal 0-path. Thus, we may assume by the left-right
symmetry of condition (5) that ip < 4. But then we get that A(ig) ¢ Cf42),
since the path i, 23 - 2% i, is non-zero. This completes the proof. O

Let us now turn to the question of quasi-heredity. For the idempotents in
[y as elements of A* we shall also use the notation fi, fa,..., fn to conform
with the general notation in this paper. Recall that £ = (f,, fn—1,..., f1) and
wi = fi+ fio1+...+ f1, with g = 0.

The main result of this section is a necessary and sufficient condition for
the quasi-heredity of A*. In order to handle the concept of quasi-heredity
efficiently in this setting, we need the following technical lemma for algebras
with a multiplicative basis.

LEMMA 5.3. Suppose the algebra (A,e) has a multiplicative basis B = By U
By such that By = {e1,ea,...,e,} is a complete set of primitive orthogonal
idempotents and Bs is a basis of rad A. Then A is quasi-hereditary with respect
to the given order e if and only if for any b,b',c,c' € B,

(i) bejc = b'e;c’ implies that either be;c € Ae;11 A or be; = b'e; and e;c = e;c';
(ii) be;,eic ¢ Acip1 A implies that bejec ¢ Ae;pq1 A.

Proof. Let us notice first that for any b € B there is precisely one pair of indices
(i,7) such that e;be; # 0 and for this pair b = e;be;.
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Since the image of B(e; +. . .+e,_1) gives a multiplicative basis for A/Ae, A,
it is enough to prove that the conditions (i) and (ii) formulated for i = n hold
if and only if Ae, A is a heredity ideal, i.e. Ae, A is a direct sum of copies of
A(n) = P(n) with A(n) Schurian.

Assume first that Ae, A is a heredity ideal. Then we have Ae, A = > be, A
beB
where the non-zero summands have simple top isomorphic to S(n). On the other

hand the images of these summands are independent in Ae,A/rad(Ae,A).
Namely, suppose that 0 # ce, € Y, beyxp + Aeprad A for some ¢ € B

beB\{c}
and 2, € A. Then ce, € >, beyzpe, + AepradAe, = > Me, +
beB\{c} beB\{c}
Ae, rad Ae,, for some Ay, € K. But the Schurian property implies that
eprad Ae,, = 0, hence ¢ = ce, = >, Apb, a contradiction. Thus the
beB\{c}
number of non-zero summands in Y be, A is equal to the number of direct
beB

summands of top Ae, A, hence to the number of (indecomposable projective)

direct summands of Ae, A. Hence a dimension argument shows that > be, A
beB
is a direct sum, with non-zero components isomorphic to e, A. So the different

summands have disjoint bases, implying that be,c # b'e,c¢’ whenever b # b’
and beyc,b'end # 0; this gives half of condition (i). On the other hand, the
natural homomorphism e, A — be,, A (for be, # 0) is injective, hence it maps
different basis elements to different basis elements. This implies the other half
of condition (i) and also condition (ii).

Now assume that conditions (i) and (ii) are satisfied for (A4,e) with i =
n. We want to show that Ae, A is a heredity ideal. First, A(n) is Schurian,
i.e. eprad Ae,, = 0. Otherwise, there would be an element b € B such that
enben, # 0, 80 e, - e, - be, = epb- ey e, = enbe, # 0, contradicting condition
(i), since e,, # e,b. Next we show that Ae, A is a direct sum of copies of P(n).

As above, we can write Ade, A = Y be, A, where the non-zero summands are
beB
independent by (i). Furthermore, each summand is either 0 or isomorphic to

enA by conditions (i) and (ii). O

THEOREM 5.4. Let A = KT /I be a monomial algebra with gl.dim A < oo.
Then (A*,f) is quasi-hereditary if and only if (A, e) is lean with Schurian stan-
dard modules.

Proof. Assume first that (A,e) is lean with Schurian standard modules. Ac-
cording to Lemma 5.3, all we have to prove is that for every ¢ and for every
p,p,q.q €T

(i) p-fira=p'fi-d' & A*pi_1 A* implies that p = p’ and ¢ = ¢;

(ii) p- fi, fi-a & A*pi—1 A implies that p- f; - q & A*pi—1 4"
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To prove (i), assume s = p- fi-q =p' - fi - ¢ & A*p;_1A*. Then by
Lemma 5.1.(iv) the vertex i is minimal in the path s. If p # p', say, p is a
proper subpath of p' then Lemma 5.1.(iv) implies that s = p- f; -z - f; - ¢
with some z € I't. Now it follows from the leanness and the Schurian property,
together with Lemma 5.1.(ii) that «, -, z-z-x, . . . all belong to I, contradicting
the condition that gl.dim A < co.

In proving condition (ii) we use the same argument as above, showing first
that ¢ is a minimal vertex in both p- f; and f; - ¢ and then again Lemma 5.1.(ii)
implies (together with leanness and the Schurian property) that p- f; - ¢ is a
non-zero product in A* and the path contains no vertices smaller than i. Hence
pfira g A"pi1 A”.

Assume now that (A*, f) is quasi-hereditary. To prove that the monomial
algebra (A, e) is lean with Schurian standard modules, it is enough to show that

I" has no loops and for any arrows i£>j and jg k with j < i, k, the path af
is a O-path in A4, i.e. af € I's. The former statement follows immediately from
the Schurian property of A*, while the latter follows from condition (ii) of the
quasi-heredity of (A*,f), as described above. O

Another type of relationship between leanness and quasi-heredity is given
in the following theorem.

THEOREM 5.5. Let A = KT'/I be a monomial algebra. If (A,e) is quasi-
hereditary then either (A*,f) is lean with Schurian standard modules or the
graph of A* has loops.

Proof. Suppose (A, e) is quasi-hereditary and the graph of A* has no loops. Let
p € Ty, kK > 2 be a path going through the vertices vg, v1,...,v;. By induction
on k we prove that vq,...,v—1 < max{wg, vy }.

Let us first take the case k = 2. Suppose there is 1 < i < £ — 1 such
that v; > v; for 0 < j < ¢ and p = p'p” where the endpoint of p' is v;.
By the minimality of the O-path p the subpaths p' and p” are not 0 in A.
Since A is monomial, the non-zero paths of I' form a multiplicative basis of A,
satisfying the requirements of Lemma 5.3. The maximality of v; implies that
p',p" & Ae;r1 A, hence we may apply condition (ii) of Lemma 5.3 to get that
p = p'p" is a non-zero path. This contradicts to the assumption that p € I's.

Suppose the statement has been proved for indices up to k, k > 2; now we
shall prove it for k+ 1. Let p = p1pa ... prpr+1 be the canonical decomposition
of p. Let p' = p1pa...pr € Ty, pr, = rs such that p' = spry1 € I'y. Thus by
the induction hypothesis no internal vertex of p can be maximal as it would be
an internal vertex of p’ or p'.

Now, to prove that A* is lean with Schurian standard modules, by Theo-
rem 2.1 in [ADL1] it is enough to show that f; rad? A* fi C firad A*pprrad A* f;
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for 1 <i,j <nand M = max{i,j}. Solet p=p'-p" €T be a path from
i to j with p/,p" € Tt. Then, as we proved above, M = max{i,j} is big-
ger than any internal vertex of p, in particular than the endpoint of p'. So
p € firad A*pap—1 rad A* f;, proving that (A*,f) is lean. Notice that this also
proves the Schurian property (i.e. that f;rad A*f; C f; A*p;_1 A* f;) if we take
into account the assumption that the graph of A* has no loops. O

The previous two theorems yield the following corollary.

COROLLARY 5.6. Let A = KT'/I be a monomial algebra. If (A,e) is lean and
quasi-hereditary, then so is (A*,f).

Proof. Since A is quasi-hereditary, gl.dim A < oo and hence by Theorem 5.4
(A*,f) is quasi-hereditary. This, on the other hand, implies that the graph of
A* cannot have loops, so by Theorem 5.5 (A*,f) is also lean. O

6. Examples

1 .
EXAMPLE 6.1. Let A4 = 2 & 2 & %, and consider
1
3 a1 1
O—)1—> 23—)2—>0_
1

Here « is a top embedding and the first two terms of the sequence are in Cy4
but the last one is not in CS) (cf. Lemma 2.4).

1 2
EXAMPLE 6.2. Let Ay = 2 & 13 & 3, and consider
1 2

0= 13135350

Here a is a top embedding and the last two terms of the sequence are in Cy4,
but the first is not in CS) (see again Lemma 2.4).

4
1
EXAMPLE 6.3. Let Ay = 2 @ f o f o % 3, and consider
1
1

4
0— 3 51 54 >o0.
2
Here (3 is a top embedding into the radical of the second term, the last two terms
of the sequence are in C4, but the first one is not in CS) (see Lemma 2.5).

1
EXAMPLE 6.4. Let A4 = 23 @ ? @ 3, and consider
1

0—>2ﬁ>213—>§—>0.
Here 3 is again an embedding into the top of the radical of the second term,
the first and the last term of the sequence are in C4 but the middle term is not
in 4" (cf. Lemma 2.5)
A : .5).
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EXAMPLE 6.5. Let Ay = i Here A(1) € C,A(1)° € C° but S(1) ¢ C. Thus

the assumption in Theorem 5.2 on the Schurian property of A(i) was really
needed to prove the implication (5) = (1). (Let us mention here that for this
example only the projective modules are in C4.)

EXAMPLE 6.6. Let us consider the following algebra:
1 2 2% 2042
Ap=2®34D3 @D 2ktl 2042 @ Mt .. 2043 @ 2083 @ 2044 .
3 5 5 2k+3 2k+3 2044 26+4

Then S(1) € ¢tV \ ¢+2) and all the other simple modules are in C4. Hence
observe that Extk(S’,S’) C rad? A* for all 2 < k < £ + 1, thus the graph of
A* is increased only by an element from Ext‘*?(§,S). This cannot happen for
monomial algebras by Theorem 5.2 and Theorem 2.10.

EXAMPLE 6.7. Take the following algebra:

4
3
Apg=10]@203 50 3.
! 1

Then A(i) € Ca, A(i)° € C for 1 < i <n but U(4) € C4 (cf. Proposition 4.1).
Let us also observe that

4
ad=1870305 0]

is not lean with respect to the opposite order (cf. also Proposition 3.5) al-
though A is lean quasi-hereditary; for monomial algebras this cannot happen
by Corollary 5.6.

EXAMPLE 6.8. Let A be given by
2 3
A= 0130101 ds.
4 5

Then we have:
1 2
aAr=ad 13030 lias.
5 4

Thus A is lean quasi-hereditary but A* is not quasi-hereditary (with respect to

Y

Corollary 5.6. — Notice also that here for C' = g5 Aes we have

the opposite order), something that cannot happen for monomial algebras by

Co =

W

3
@4@§EB5 and
5
2 3 g 4
c:C"= 320D D5,
On the other hand for B* = A*/A*p; A* we have
pB =00 @5,

Hence (g9 Aey)* %A% /A* 1 A*, something that cannot happen for solid algebras
(see Theorem 4.5).
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2
3

® 3 @® 1. Then 4-4* = 1 & 2 ® °;. Hence A

1

is quasi-hereditary, monomial, and the graph of A* contains a loop, hence the

EXAMPLE 6.9. Let A4 =

DN =W N

second possibility in the implication of Theorem 5.5 actually may occur.

1 3

EXAMPLE 6.10. Let Aq = 3 @ 2 & 1 & 5. Then 4o A* =, @203 a ;.
2

Here A is monomial, lean and not quasi-hereditary, but A* is lean and quasi-

hereditary. Hence the converse of Theorem 5.5 and Corollary 5.6 is not true.

EXAMPLE 6.11. Let us consider the following algebra:

2 4 2k
1 3 2k+1 2k+2
Ap=2030105 @0 @ 3T) ® 2042 @ 2643 ® 2513 @ 2k4a.
3 5 5 7 2k+3 2k+3 2k+4

Then the Ext-algebra is given by:
— 1 2 3 4 2k+2 4 2k+3
AA = ook D3P g g D5 DD s ® iy B 2k

Thus A is a monomial algebra, and Ext%?(S, S) ¢ rad® A*; hence some new
elements of the species of A* come from high Ext’s. Of course, by Theorem 5.2
there are elements of Ext? (S, S) which get into the species, too.

EXAMPLE 6.12. Let A be given by

Then we have:
2
A*A*:§@315@3EB§EBZ and
2 5
A =30 '% @3@38 1.
3
Here A is replete but A £ A**. Thus in Theorem 4.5 although we have equality
for the dimensions of A and A**, in general we cannot state that these two
algebras would be isomorphic.
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