LEAN QUASI-HEREDITARY ALGEBRAS

ISTVAN AGOSTON!, VLASTIMIL DLAB? AND ERZSEBET LUKACS!

Abstract. A class of quasi-hereditary algebras, related to a variety of applica-
tions, is introduced and studied in the paper. We call these algebras lean; they
are characterized by the property that the species of consecutive centralizer alge-
bras of projective modules, defined by a heredity sequence of idempotents, can be
obtained by restrictions. Lean algebras are also characterized in terms of the so-
called top filtrations (of the radical of the algebra). Furthermore, some canonical
constructions of lean algebras are given for any ordered species.

In connection with their studies of highest weight categories arising in
the representation theory of complex semisimple Lie algebras and algebraic
groups, Cline, Parshall and Scott introduced the notion of a quasi-hereditary
algebra ([CPS1], [PS]). This concept, defined purely in ring theoretical terms,
has shortly proved to play an important role in a number of applications. No-
tably, the Bernstein—-Gelfand-Gelfand category O ([BGG]) has been shown to
be a categorical sum of blocks which are equivalent to module categories over
quasi-hereditary algebras (see e.g. [S]). Recent work of Cline, Parshall and Scott
([CPS2]), Beilinson, Ginsburg and Soergel ([BGS]) and Dyer ([D]) indicate that
the quasi-hereditary algebras which appear in the respective applications are
of a very particular type. The present paper represents an attempt to describe
a class of quasi-hereditary algebras with additional properties in terms of the
so-called top filtrations which may prove to be of importance in this connection.
These algebras have a particular affinity to the A(y) construction of [DR2]: the
species of the centralizers of projective modules (in a prescribed order) are ob-
tained by the successive restrictions. In a separate paper, we shall provide a
homological characterization of this class which will lead to a study of the rele-
vant formal (quadratic) algebras as defined by Beilinson and Ginsburg ([BG]).
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1. Preliminaries. Top filtrations

Let R be a semiprimary ring with identity; thus the (Jacobson) radical J
of R is nilpotent and R/J is Artinian. For simplicity we will assume that R is
basic, i.e. R/.J is the product of division rings. If { e1,ea,..., e, } is a complete
set of primitive orthogonal idempotents, then we shall usually fix an order of the
idempotents (e1,es,...,e,). For a given order of the primitive idempotents we
shall define the idempotent elements €; = e; +e;41 + ...+ e, for 1 <i < n; let
€n+1 = 0. The principal indecomposable projective (right) module isomorphic
to e;R will be denoted by P(i) and its simple top by S(7). The corresponding
left modules will be P°(i) and S°(i). Clearly, ;R ~ éP(]) for1<i<n.

j=i

The species of R is defined as S(R) = (D1, Ds,...,D,; W;, 1 <4,j <n),
where D; = e;Re;/e;Je; and ;W; = e;Jej/e;J?ej. Thus, if R = A is a finite
dimensional K-algebra over a central field K then D; is a finite dimensional
division ring over K and ;W; a D;-Dj-bimodule with K acting centrally for
1 <i,7 <n. When we want to stress the order of the idempotents, we will
speak about an ordered species.

The trace Ty X of a module M on a module X is defined as the sub-
module of X spanned by all submodules which are homomorphic images of
M: X =Y {Im f|f € Hom(M, X) }. Thus, given an order (e, e, ..., ey,),
every module has a filtration obtained by taking the traces of the projective
R-modules ¢;R, 1 <4 <non X:

X:TisX QTEZRXQ QTEiRXQ QTETLRXQTE("_H)RX:O-

Denoting by X the trace Te;RX, We can see easily that X = Xeg;R. We
shall call this the trace filtration of X (with respect to a given order). In
particular, for X = Rp we get in this way a chain of two-sided idempotent
ideals I; = R") = Re;R.

Of particular interest are the (right) standard modules A(i). For 1 <
i < n, the module A(7) is the first non-zero factor in the trace filtration of P(i):
A(i) = P(i)/(P@#)@D). Similarly, we can define the left standard modules
A°(i). Thus we can write the following exact sequences:

0=V ()= P(i) > A(i) — 0,
0—U®i)—> A®) = S(i) —0,
0—=V(i)—rad P(i) = U(i) = 0.

Hence V(i) ~ P(i)(iﬂ) and U(i) ~ rad A(i). Of course, there are similar
sequences for the left modules V°(i), P° (i), A°(i), U°(i) and S°(i).
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In case R = A is a finite dimensional K-algebra, where K is a central field,
the K-dual of A°(7), 1 < i < n will be denoted by V(i) and they will be referred
to as the (right) costandard modules. Clearly, A(i) is the largest factor module
of P(i) such that the composition factors are all isomorphic to some S(j) for
j < i; and dually, V(i) is the largest submodule of (i), the injective hull of
S(i), for which the composition factors are isomorphic to some S(j) for j < i.
We should also note that the sequence A = (A(1), A(2),...,A(n)) depends on
the choice of the order (eq,es,...,e,).

We shall call the module A(i) Schurian if Endg (A(i)) is a division ring.
It is easy to see that A(4) is Schurian if and only if A°(i) is Schurian. The
sequence A is Schurian if every A(7) is Schurian for 1 < ¢ < n. Note that
A(i) is Schurian if and only if S(7) does not appear as a composition factor of
rad A(i).

Recall that the ring R is called quasi-hereditary with respect to the order
(e1,€a,...,en) if A is Schurian and the factor modules I;/I;41 for 1 < i < n
from the trace filtration of R are direct sums of A(i)’s (or equivalently, the
same conditions hold for left modules). For basic properties of quasi-hereditary
algebras we refer to [DR1] and [DR5].

An embedding of a module X into a module Y will be called a top embed-
ding if it induces an embedding of top X = X/rad X into topY = Y/radY.
In this case we shall write X é Y. Clearly, for X C Y the condition X é Y is
equivalent to rad X =radY N X, or in fact torad X DradY N X.

LeEMMA 1.1. Let X CY C Z be R-modules.

(a) X é Z implies XéY.

(b) XY and Y & Z implies X € Z.

(¢) Suppose XéZ. Then Y/XéZ/X if and only z'fYéZ.

Proof. We shall prove only (c) as the first two statements are straightforward.

Then we have the following sequence of equivalent conditions:

Y/x¢Z/X
YNnradZ) + X CradY + X
YnradZ = (Y Nnrad Z) N(radY + X).

But YNradZN(radY + X) = YN (radY + (radZnX)) = YN(radY +
rad X) = YNradY = radY. Thus the initial condition is equivalent to
Y NradZ = rad Y, that is to ¥ ¢ Z. 0
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A filtration X = X; D X2 D ... D X;;;, D X,;41 = 0 of a module X is
called a top filtration of X if X; é X for every 2 < i < m. In view of Lemma 1.1,
this is equivalent to the condition that X;/X; 14 éX/XiH for every 2 < i < m.
It also follows that any given top filtration of a module X can be refined to a
top filtration where the factors of consecutive terms all have simple tops.

Our interest will be directed mainly towards those modules where the trace
filtration (or a part of it) is a top filtration.

2. Lean semiprimary rings

Let R be a basic semiprimary ring with radical J and let (eq,es,...,ey)
be a complete ordered set of primitive orthogonal idempotents. We say that R
is lean with respect to this order if e;J?%e; = e;Je,, Je; for every 1 < 4,5 < n,
where m = min { i, }. R will be called lean quasi-hereditary if and only if R is
lean and quasi-hereditary with respect to the same order.

Clearly, for R to be lean is equivalent to the condition that the species
S(Ct) of the centralizer ring C; = €,Re; can be obtained from S(R), the (or-
dered) species of R, by restricting it to the indices {¢,¢+ 1,...,n}. That
is to say, if S(R) = (D1,D2,...,Dn;iW;, 1 < 4,5 < n), then S(Cy) =
(D¢, Dyg1,...,Dpn; iWj, t <i,j <n).

In general there are many (quasi-hereditary) algebras which are not lean.
Consider for example the simple case of the (hereditary) path K-algebra A

of the graph 3—“»1—53; here the graph of the corresponding (hereditary)

centralizer algebra Cs is fﬂﬁ, and thus not just the restriction of the original
graph. Of course, this reflects the fact that a8 € esJ?es3 but af & exJesJes.
We should note, however, that in the case of hereditary algebras, an admissible
order of the idempotents (i.e. where e;Je; # 0 implies ¢ < j) always gives a
lean order.

The following theorem formulates the relationship between lean rings and

top trace filtrations.

THEOREM 2.1. Let R be a semiprimary ring with radical J and (e1,ea, ..., ¢e,)

a complete ordered set of primitive orthogonal idempotents. Assume that the

standard modules A(i) are Schurian for 1 < i < n. Then the following condi-

tions on R are equivalent:

(1) R is lean with respect to the given order, that is eiJer = e;JepJe; for
1<i,j<nandm=min{i,j};

(2) the trace filtration of U(i) is a top filtration and V (i) éradP(i) for 1 <
1< n;

(2°) the trace filtration of U°(i) is a top filtration and V"(i)iradP"(i) for
1 <1< n;
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(3) V(i) Erad P(i) and V°(i)
(4) the trace filtrations of U(

rad P°(i) for 1 <i < mn;

t
c
i) and of U°(i) are top filtrations for 1 <i < n.

To prove the theorem, we shall formulate first a few lemmas.

LEMMA 2.2. For a given sequence (e1,€a,...,€,) and an index 1 <i<n
V(i) £ rad P(i)

if and only if
eiJer =e;Jeir1Je; for every j > .

Proof. The proof follows from the following string of equivalent statements
expressing the fact that V(i) érad P(7):

t
eiJsH_leeiJ
eiJ2 NejJeir1 R =e;Jeip1d
el-Jer Ne;Jeir1Re; = e;Jeip1Je; forall 1<j<n.
However, the last equality is trivial for j < i, since €;41Re; = €;41Je; and

Jeir1J C J%; moreover, for j > i, the left-hand side collapses to e;.J%e; since
J€i+1R6j D) Jej D) J2ej. O

LEMMA 2.3. For a given sequence (e1,ea,...,e,) and indices 1 <i,j <n

(rad P°(j)) "/ (rad P°(j)) """ Crad P°(j)/ (rad P°(5)) '

if and only if
eiJ2ej = el-JsiJej .

Proof. As in the proof of the previous lemma, we write down equivalent state-
ments, expressing the top embedding from the lemma:

Re;Jej/Reir1Je; é Jej/Reiv1Jej,
Re;Je;N(Je; + Reiy1Jej) = JeiJej + Reip1 ey,
exReiJe;N(exJ e + exReiy1Je;) =
=epJe;Jej +epRejp1Je; forall 1 <k<n.
For k < i, the last equality is trivial, since both sides equal e Je;Je; . We can
also verify easily that for k£ > 4, both sides equal ey Re;y1Je; ; just observe that

exRe;J O epRejv1J O ey RepJ DO epJ? and ey Je;J Cepd C erReir1J. Hence
the only genuine condition remains for k = i: el-J2ej =e;Je;Je;j. a
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Using these lemmas we get the following proposition.

PROPOSITION 2.4. Let R be a semiprimary ring with Schurian standard mod-
ules A(i). Then the following are equivalent:

(@) V(i) éradP(i) for1<i<mn;

(b) eiJ?e; = eide;Jej for 1 <i<j<mn;

(c) the trace filtration of U°(j) is a top filtration for 1 < j < n.

Proof. Note that the fact that A(7) is Schurian means that e; Je; R = e;Je;11 R.

In particular, this implies that the equation in (b) always holds for i = j.

Now the equivalence of (a) and (b) follows from Lemma 2.2 and the Schurian

property, while the equivalence of (b) and (¢) is an immediate consequence of

Lemma 2.3, since rad A°(j)/(rad Ao(j))(iH) ~ rad P°(j)/(rad Po(j))(iﬂ) for

i <j. 0
Of course, we can formulate also the dual of Proposition 2.4.

PROPOSITION 2.4°. Let R be a semiprimary ring with Schurian standard mod-
ules A°(i). Then the following are equivalent:

(@°) V(i) Crad P°(i) for 1 <i<mn;

(b°) ejJ%e; = ejJe;Je; for 1 <i<j<m;

(c®) the trace filtration of U(j) is a top filtration for 1 < j < n.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. We will use the conditions of Proposition 2.4 as well
as those of its dual, Proposition 2.4°. Now, condition (1) of the theorem is
equivalent to (b) and (b°); condition (2) is equivalent to (a) and (¢°); condition
(2°) to (a®) and (c); condition (3) to (a) and (a°); finally condition (4) to (c)
and (c°). 0

3. Special classes of lean quasi-hereditary algebras

From now on we will assume that R = A is a finite dimensional algebra
over a central field K. As before, (ej,e9,...,€,) will be a fixed order of a
set of primitive orthogonal idempotents and we shall assume that A is quasi-
hereditary with respect to this order.

In this section we will describe two classes of lean algebras: shallow and
replete, which in some sense lie in the opposite ends of the spectrum of lean
quasi-hereditary algebras. We will also construct canonical shallow and replete
algebras for any given species.
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Recall ([DR4]) that a quasi-hereditary algebra A is called shallow with
respect to the order (eq,es, ..., e,) if the modules U (i) = rad A(i) and U°(i) =
rad A°(i) are semisimple for 1 < i < n.

It follows from condition (4) of Theorem 2.1 that shallow algebras are lean,
since clearly, any filtration of a semisimple module is a top filtration. In fact,
we have the following characterization of shallow algebras.

THEOREM 3.1. Let A be a quasi-hereditary algebra with respect to an order
(e1,€2,...,6en). Then the following conditions on A are equivalent:
(1) e;J?%ej = e;JemJe; for every 1 <i,j < mn, where M = max{i,j};
(2) the trace filtration of rad P(i) is a top filtration and the consecutive factors
(rad P(i))(j)/(rad P(i))(jH) are semisimple for 1 < j <i < n;
(2°) the trace filtration of rad P°(i) is a top filtration and the consecutive factors
(rad P°(i))(j)/(rad Po(i))(jﬂ) are semisimple for 1 < j <i <n;
(3) V(i)éradP(i), Vo(i)éradpo(i), and the trace filtrations of V(i) and
V(i) are top filtrations for 1 <i < n;
(4) A is shallow, i.e. U(i) and U°(i) are semisimple for 1 <i < n.

Before proving the theorem we need the following observation.

LEMMA 3.2. For a given sequence (e1,€a,...,€,) and an index 1 <i<n
A@@)J* =0

if and only if
eiJ2ej =e;Jeir1Je; forall j<i.

Proof. Clearly, the condition eiJ2ej = e;Je;r1Je; is equivalent to el-Jzej -
eiJeir1Je;j. From the definition of A(i) we get that A(i)J? = 0 if and only
if e;J° C e;Jeir1A and this is equivalent to the condition that e;J%e; C
e;Jeir1Ae; holds for every 1 < j < n. But the last condition is always satisfied
for j > i since eiJer Ce;dej Cejdeipi1Ae;j. On the other hand, for j < i we
have e;Je;11Ae; = e;Jeir1Jej , hence the statement follows. a

PROPOSITION 3.3. Let R be a semiprimary ring with Schurian standard mod-

ules A(i). Then the following are equivalent:

(a) (radPo(j))(i)/(radPo(j))(iH) éradPo(j)/(Po(j))(iH) for 1 < j <
1< n;

(b) eiJ?e; =eiJe;Jej for 1 <j<i<m;

() A(1)J?> =0 for 1 <i<n.
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Proof. The Schurian property of A implies that the equivalence of (a) and (b)
follows from Lemma 2.3, while the equivalence of (b) and (c) is a consequence
of Lemma 3.2. O

As in the case of Proposition 2.4, we can also formulate the dual statement
Proposition 3.3° with conditions (a°), (b°) and (c°).

Proof of Theorem 3.1. We will use the conditions of Proposition 3.3 and its
dual. Condition (1) of the theorem is equivalent to (b) and (b°); condition (2)
to (a°) and (c); condition (2°) to (a) and (¢°); condition (3) to (a) and (a°);
finally conditon (4) to (¢) and (¢°). O

We have seen that shallow algebras are characterized by the fact that the
radical rad P(i) of every principal indecomposable module has a top filtration
with consecutive factors isomorphic to some S(j) for j < i or A(j) for j > i.
Thus shallow algebras are “as small as possible” among (lean) quasi-hereditary
algebras on a given species. The other extreme is realized by algebras which will
be called replete. A quasi-hereditary algebra A is replete with respect to the
order (e, e, ..., ey,) if the modules U(i) = rad A(i) and U°(i) = rad A°(7) have
top trace filtrations with consecutive factors isomorphic to direct sums of A(j)’s
and A°(j)’s, respectively, for 1 < j < i < n. Let us note that, in particular,
replete algebras are lean. Moreover, it will be shown that replete algebras are
“as big as possible” among lean (quasi-hereditary) algebras on a given species,
since the radical rad P(i) of every principal indecomposable module has a top
filtration with consecutive factors isomorphic to some A(j) for j < i or P(j)
for j > i.

THEOREM 3.4. Let A be a quasi-hereditary algebra with respect to an order

(e1,€2,...,en). Then the following conditions on A are equivalent:

(1) the trace filtration of U(i) is a top filtration with the consecutive factors
(rad P(i))(j)/(rad P(i))(Hl) isomorphic to direct sums of A(j)’s (where
j<ti), and V(i) érad P(i) with V(i) projective for 1 <i < n;

(1°) the trace filtration of U°(i) is a top filtration with the consecutive fac-
tors (rad Po(i))(j)/(rad P"(i))(Hl) isomorphic to direct sums of A°(j)’s
(where j < i), and V°(i) irad Pe (i) with V°(i) projective for 1 <i < n;

(2) V(i) érad P(i) and V°(i) érad Pe (i) with both V(i) and V°(i) projective;

(3) A is replete, i.e. U(i) and U°(i) have top filtrations with factors isomorphic
to A(j) and A°(j), respectively, for 1 < j < i < n.

The theorem is a consequence of the following proposition and its dual.
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PROPOSITION 3.5 Let A be a quasi-hereditary algebra with respect to an order
(e1,€2,...,6en). Then the following conditions on A are equivalent:

(1) V°(4) is projective for 1 < j < n;

(ii) U(i) has a A-filtration, i.e. a filtration where the factors of consecutive
terms are all isomorphic to A(k)’s for 1 <k <i < n.

Proof. We can easily see that condition (i) can be reformulated as

(i") proj.dim A°(j) <1 for1 < j<n.

Also, in view of Theorem 1 of [DR5], for a quasi-hereditary algebra A condition
(49) is equivalent to

(ii") Ext' (U(i),V(j)) =0 for 1 <i,j <n.

Consider now the exact sequence 0— U (i) = A(i) = S(i) =+ 0. By applying
the functor Hom (—, V(j)) to the sequence and taking into the account that
Ext’ (A(i),V(j)) = 0for 1 <i,j <nand ¢t > 1 (cf. Theorem 1 of [DR5]), we
get that Ext' (U(i), V(j)) ~ Ext* (S(i), V(j)). Now by using K-duality we get
the following string of equivalent conditions:

progdzon(j)<1 for 1<j<n;
Ext( z)—Oforlgi,jgn;
Ext( )—Oforlgi,jgn;
Ext? (U(z),V(g)) =0 for 1<i,j<n.

This shows the equivalence of conditions (i') and (i4'). O

Proof of Theorem 3.4. Clearly, in view of Theorem 2.1, each of the conditions
implies that A is lean. The rest will now follow from Proposition 3.4 (and
its dual). Namely, the fact that Ext' (A(i),A(j)) = 0for 1 < j <i<mn
implies that the existence of any A-filtration for a module M is equivalent to
the condition that the factors of the trace filtration are direct sums of A(i)’s.
O

COROLLARY 3.6. The global dimension of a replete algebra is at most 2.

Proof. This is a consequence of Theorem 3 of [DR3]. However, for the sake of
completeness we give a short proof here.

We have seen that the projectivity of the modules V(i) implies that
proj.dim A(i) < 1 for 1 < i < n. Thus from the existence of a A-filtration
for U(i) we also get that proj.dimU(i) < 1 as well. Finally from the exact
sequence

0—=U®)—=A®l)—=SE)—0

we obtain that proj.dim S(i) < 2 for 1 < i < n, as required. O
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In view of the characterizations of shallow and replete algebras (Theo-
rems 3.1 and 3.4), it is natural to define the following two “intermediate” classes
of lean quasi-hereditary algebras. A quasi-hereditary algebra A is said to be
right medial if all rad P(i) for 1 < i < n have top filtrations with factors iso-
morphic to some A(j) with 1 < j < n, i # j. An algebra is said to be left
medial if all rad P° (i) for 1 <4 < n have top filtrations with factors isomorphic
to some A°(j) with 1 < j < n, i # j, i.e. if the opposite algebra A° is right
medial. Using Propositions 3.3 and 3.5 and the quasi-heredity of A we can
see that this is equivalent to requiring that every rad P(i), 1 < i < n has top
filtration with factors isomorphic to S(j), 1 < j < iand P(j), i < j < n. Other
characterizations, similar to the ones given for shallow and replete algebras, can
be given for these two classes, too.

4. Canonical constructions

In this final section we are going to construct the “canonical” shallow,
medial and replete quasi-hereditary algebras over a given ordered species. Let
S = (D1,Ds,...,Dy; ;W;, 1 <i,5 <n) be an ordered species with ;7¥; = 0
for all 1 <4 < n. Let T'(S) be the tensor algebra over S:

TS)=AaWaeWS2eoWw®®ag.. .,

where A = Dy XDy x...xD, ,W = @ ;W; is a A-A-bimodule with A operating
i,j

via the projections, all tensor products are over A and the multiplication is
induced by W®" @, W® ~ W® s Of course, T(S) is, in general, infinite
dimensional.

Define the following ideals in T'(S):

=(W;®;Wi|j <max{ik})
W ® Wi |j <k)
Wi ® Wy |i>j) and
W; ® Wy |j <min{i,k})

Is
Iy,
In,

Ir

(
(
(
(

Put
H(S)=T(S)/Ig for H=S,M,,M;, and R.

We should mention here that the algebra S(S) was already constructed in
[DR4], while R(S) was defined in [DR3] and called there a peaked algebra on S.

THEOREM 4.1. The algebras S(S), M.(S), My(S), and R(S) are quasi-
hereditary algebras with the ordered species S. The algebra S(S) is shallow,
M. (S) right medial, M(S) left medial, and R(S) replete.
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In fact,
SS)AeWea(e W e:W;),

t>i
t>j

and M,.(S), M,(S) and R(S) are isomorphic to
ADWB@®i Wy ®..0 Wi, ®...® i Win)

where the summation runs through all sequences (ig,1,...,% ;.- 0m—1,0m),

m > 2, subject to

i1>i2>...>im,
g <i1 < ...<im-1, and
<1 <...<t>...>0p-1>0m, 0<t<m,

respectively.

Proof. For the proof of the statement about S(S) we refer to [DR4]. Similarly,
it was shown in [DR3] that R(S) is quasi-hereditary. Thus we shall only prove
here that R(S) is replete and leave the verification of the statements about
M,(S) and M;(S) to the reader.

To show that R(S) is replete, we can combine Theorem 2 and the Proposi-
tion of Section 6 in [DR3]; then we get that V(i) and V°(i) are both projective
for 1 <4 < n; moreover, it follows from the construction that e;Je;Je;, = 0
for i > j < k; thus Propositions 2.4 and 2.4° imply that V(i) érad P(i) and
similarly V°(i) ¢ rad P°(i) for 1 <i < n. 0

Let us note here that usually neither shallow, nor replete algebras are
uniquely defined for a given species. In the following example we give the
regular representations of algebras which are shallow, right medial, left medial
and replete, but which are not isomorphic to the canonical algebras defined
above.

Consider the ordered K-species given by the graph

Then for n = 4 the following composition series charts describe the regular

representations of shallow, right medial, left medial and replete algebras over
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the given species.
1 2 3 4
Ss= 2®13d24D ;"
1 2 3

3
1 s 24 3t

2@ P @13 @ 3
1 1 2 1

s
=
Il

r

1

2 s 3 4
M1M£:13@24@234@3;
3

2
13
13 24
Rr= 240 2'd13 & °
13 ) 2 .
2 1
1

2 3

4

1

Finally, to justify the remarks preceding Theorem 3.4, we can state the
following theorem, part of which can also be found in [DR4].

THEOREM 4.2. Let A be a lean quasi-hereditary algebra with ordered species
S =S8(A) = (D1,Ds,....,Dy; iW;, 1 <i,j <n). Then for S = S(S) and
R = R(S) we have dimg e;Se; < dimg e;Ae; < dimg e;Re; for 1 <1i,j < n;
in particular, dimg S < dimg A < dimg R and equality holds if and only if A
is either shallow or replete, respectively, with respect to the given order.

Proof. For the inequalities concerning shallow algebras we refer to [DR4]. Actu-
ally, the minimality of the dimension of shallow algebras is valid even without
the restriction that A is lean.

To show that dimg e;Ae; < dimg e;Re; for 1 < i,j < n, we shall proceed
by downward induction on 7 + j. The case i = 7 = n is trivial, since the quasi-
heredity of A and R implies that dimg e, Ae, = dimg e,Re, = dimg D,.
Assume now that ¢ + j < 2n and suppose that ¢ < j (the other case will
follow by symmetry). The fact that A and R are lean implies that V4 (i) ~
eiAsiHAérad P4 (i) and Vg(i) ~ eiRsiHRérad Pg(i). Thus for the projec-
tive cover of V(i) we get P(Va(i)) ~ kGEiPA(k)dik where d;, = dimp, ;W ,

and similarly, V(i) ~ @ Pgr(k)%* (since Vg(i) is itself projective). Hence we
k>i
have:
dimg Va(i)e; < dimg P(Va(i))e; = Y di - dimg Pa(k)e;,
k>i

and the induction hypothesis implies that the last term is not greater than

> dix - dimg Pr(k)e; = dimg Vg(i)e; . Since for T = A or T = R we have
k>i
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eiTej = Vr(i)e; for i < j and e;Te; ~ Vr(i)e; & D; as vector spaces, we

have proved the inequality. Finally, if we have equality everywhere, then V4 (7)
(and V3 (i)) must be isomorphic to the projective cover P (V(i)) (or P(V$(i)),
respectively) for 1 <i < n, thus implying that A is replete. O
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